Center for Computing Research (CCR)
Center for Computing Research
Dakota
Dakota: Optimization and Uncertainty Quantification Algorithms for Design Exploration and Simulation Credibility.
The Dakota toolkit provides a flexible, extensible interface between analysis codes and iterative systems analysis methods. Dakota contains algorithms for:
· optimization with gradient and nongradient-based methods;
· uncertainty quantification with sampling, reliability, stochastic expansion, and epistemic methods;
· parameter estimation with nonlinear least squares methods; and
· sensitivity/variance analysis with design of experiments and parameter study methods.
These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty.
Associated Projects: Albany ALEGRA CASL FASTMath Kokkos Trilinos
Contact: Adams, Brian M., briadam@sandia.gov
2015-9117 W