Center for Computing Research (CCR)

Center for Computing Research

Research Areas
Computational Physical Simulation

The CCR and Sandia have a long and distinguished history of leadership in computational science and engineering, including massively parallel computation, uncertainty quantification, mathematical optimization, scalable solvers, software toolkits, and scientific software engineering, to name a few. The CCR stewards, leverages, and extends these capabilities to remain responsive to Sandia's immediate mission needs. At the same time, CCR anticipates and pursues mathematical and computational technologies that may have an impact on future mission needs.

Focus Areas

Data and Decision Sciences

Sandia and the CCR support decision-makers in multiple national security application domains including cyber security, non-proliferation, counterterrorism, and battlefield situational awareness. The decision sciences research is multidisciplinary and blurs the line between computing and humans. This group has extensive experience in a number of computational fields such as discrete math, graph analytics, statistics, machine learning, and visualization, as well as the cognition and cognitive neuroscience that is required to explore and understand human decision-making and cognition.

Focus Areas

Motivating Applications & Software

Technologies developed by the CCR are closely aligned to Sandia's broader set of mission strategies. These technologies have applications in numerous areas including, but not limited to, nuclear weapons, cyber security, climate modeling, alternative energy, and improvements to the power grid.

Focus Areas

Scalable Computing

The CCR has a legacy of leadership in high-performance computing (HPC) at extreme scales. First-of-a-kind platforms, such as the Intel Paragon, ASCI Red (the world's first teraflops computer), and Red Storm (co-developed by Cray), helped form the basis for one of the most successful supercomputer product lines ever—the Cray XT series. The CCR continues to play an important role, working closely with HPC vendors to provide solutions for next-generation systems that meet the complex mission needs of the laboratories. Our particular interests include advanced architecture design and evaluation, including Beyond Moore capabilities, scalable system software, scalable input/output, and algorithms.

Focus Areas