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The Sensitivity Analysis Story
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Our problem of interest has 4 inputs and 8 outputs

Outputs (responses) have different properties:
— monotonic vs. nhon-monotonic
— smooth vs. discontinuous
— noisy vs. clean

Input
Parameters
We examine different SA techniques:

LHS, LP-Tau } sampling The Model

PCE } stochastic expansion
Response
Metrics

SDP, ACOSSO, DACE } surrogates
[:::]Shmm
National
Laboratories

We compute sensitivity indices and compare them
to exact values; in particular, we examine
performance with respect to sampling resolution
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Why Sensitivity Analysis?

e Sensitivity Analysis is a way to rank input variables according to
their importance relative to the uncertainty in model output.

e \We can determine variables that are important for optimization
or UQ, which variables to gather more data on, or which
variables to control in an experiment.

® Local: local linear or under-resolved behavior can be misleading.

® Global: can be computationally expensive—meta-modeling can
help.

f(X1) f(X1) local global

<

- J RC @ ﬁgtnigil?al
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We conduct sensitivity analyses with DAKOTA.

( DAKOTA

optimization, sensitivity analysis,
parameter estimation,

L uncertainty quantification

Input
parameters

Response
metrics

Computational Model (simulation)
Black box: any code: mechanics, circuits,
high energy physics, biology, chemistry

http://dakota.sandia.gov/

e DAKOTA can automate typical “parameter variation” studies with a generic interface
to simulation software and advanced methods.

e UQ methods in DAKOTA include:
— Sampling (LHS, quasi-MC, classical experimental designs, OAs, VBD)
— Reliability methods (FORM, SORM, AMV+, etc.)
— Dempster-Shafer Evidence Theory
— Stochastic expansion methods: Polynomial chaos, stochastic collocation

- JRC — Epistemic-aleatory nested approaches @ ﬁgtnigil?al
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Correlation and Variance-Based Decomposition
(VBD) are global sensitivity characterizations
of uncertainty in model outputs Y.

e Goal: to assess inputs over a hypercube of interest.

e Correlation analysis identifies the strength and direction of
a linear relationship between input and output.

e VBD identifies the fraction of the variance in the output that can be
attributed to an individual variable alone or with interaction effects.

— Main effect sensitivity S; is the Var [E(Y‘x.)l
: : : X; !
fraction of the uncertainty in Y that Si = Vl 7
can be attributed to input x; alone aile) <%
— Total effect index T, is the fraction of the E[Var(Y‘x )}
uncertainty in Y that can be attributed to Tl = Vary ! 'd';/'vefgggé
x; and its interactions with other variables i) these ideas
— Calculation of §; and T, requires the evaluation of m-dimensional

integrals, approximated by Monte-Carlo sampling. x= (s X s Xy oeees Xpr) |

__________________________

— Computationally intensive, as replicated sets of samples are evaluated:
B JRC N samples and D inputs— evaluation of N x (D + 2) samples. @ Santia
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How sensitivity indices are o _ Var(E(Y | X))
calculated ’ Var(Y)

e Full Factorial:
— Take n values of each input variable X;; the number of samples are a full

tensor product of n samples in each input variable, N = n¢
— For each particular value of X, ca.lculate EY|X, =x,)
the average over the other X; variables.
— Calculate the variance of this
expectation (variance over n values)
e Approximation in Sensitivity Analysis in Practice (Satelli et al. 2004):
— Calculate two independent sample matrices, A and B, with d
(number of inputs) columns and n rows . C.is constructed by
taking the it column of A and substituting it into B.

Var(E(Y| X))

— Y, Yg and Y, are the vectors of responses = Y, oY

from evaluating the simulator at the N

sample values in A, B, or C. estimated var(Y) = (%Y Y)-f’
— Total samples is (2+d)*n
— Requires that n is of order thousands o \no YY) - f°

B JRC for accura cy " estimated var(Y) @ ﬁg%gﬁal
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Variance-Based Decomposition: a notional example.

* Main effects indices §; identify the fraction of uncertainty in the output
attributed to X; alone

e Total effects indices T; corresponds to the fraction of the uncertainty
attributed to X; and its interactions with other variables

5 -
45 4
*
4 | *
:
35 -
> 34 s o .
* . .
S 25 ! H ; * :
o
3 ° ' ° * ) .
14 2 T * * P = *
. %
1.5 4 °* ° ‘
§ § X
1 4 . S
05 - ! .
O T T T T T 1
0 02 04 06 0.8 1 1.2
. Sandia
Variable X2 National
EUROPEAN COMMISSION Laboratories
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Meta-models (Response Surfaces) provide an
alternative to sampling-based VBD.

e Build the meta-model using some of the data
— This is feasible for moderately high dimensional data

e Calculate additional matrices to be analyzed using the meta-model
and compute VBD indices

e Meta-models can also be used, e.g., to generate confidence
intervals of the computed indices (measure of convergence)

* There are different approaches to constructing these surrogates:
e Stochastic expansions (polynomial chaos, stochastic collocation)
e “Regression” surfaces (regression and smoothing)

u JRC @ ﬁg?igil?al
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Other response surface models provide
alternatives to sampling-based approaches.

e SDP = State-Dependent Parameter Regression

— SDP modeling* is a class of non-parametric smoothing, first suggested by Young$, that
is similar to smoothing splines and kernel regression approaches but is performed
using recursive (non-numerical) Kalman filter and associated fixed interval smoothing.

— Good for additive models, and flexibile in adapting to local discontinuities, strong
non-linearity, and heteroskedasticity.

e ACOSSO = Adaptive COmponent Selection and Smoothing Operator

— ACOSSOT is a multivariate smoothing-spline approach (COSSO%) that is augmented by
a weighted (wj), scaled (A) penalty function:

F= min| 3 (5os) + 2 3, P

— ACQOSSO is thought to perform best for a reasonably smooth underlying response.

e DACE = Design and Analysis of Computer Experiments
— Gaussian Process emulator for the data

D = # inputs

§ Young, P. C. “The identification and estimation of nonlinear stochastic systems,” in T Storlie, C.B., Bondell, H.D., Reich, B.J., Zhang, H.H., “Surface estimation, variable
Nonlinear Dynamics and Statistics, A. |. Mees et al., eds., Birkhauser, Boston (2001). selection, and the nonparametric oracle property,” Stat. Sinica, to appear (2010).

= Katto, M., Pagano, A., Young, P. C., "State dependent parameter meta-modelling I Y.Lin,Y., and H. Zhang, H., “Component selection and smoothing in smoothing
and sensitivity analysis,” Comput. Phys. Comm., 177, pp. 863—876 (2007). spline analysis of variance models,” Ann. Stat., 34, pp. 2272-2297 (2006).

CUNUFCAIY LUIMIMIDOIUIY ¥ LAUUIALUIIES
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Stochastic Expansion Methods provide one
alternative to sampling-based VBD.

e Stochastic expansion methods — Polynomial Chaos Expansion (PCE)
or Stochastic Collocation (SC) — produce functional representations
of stochastic variability.

e Sudret” (i) demonstrated that the sensitivity indices are explicit
functions of the stochastic expansion, and (ii) derived the PCE case.

— NOTE: Once the PCE is obtained, sensitivity indices are calculated
explicitly, i.e., without sampling

e Tang$ derived the sensitivity indices as analytic functions of SC.
e Both of these techniques have been implemented in DAKOTA.

e This approach is very efficient, since the calculation of sensitivity
indicies does not require more function evaluations in addition to
those used to construct the stochastic expansions.

* Sudret, B., “Global Sensitivity analysis using polynomial chaos expansion,” Rel. Engr. & Syst. Safety, 93, pp. 964—-979 (2008).

$Tang, G., laccarino, G., Eldred, M.S., "Global Sensitivity Analysis for Stochastic Collocation Expansion," paper AIAA-2010-2922

n " in Proceedings of the 12th AIAA Non-Deterministic Approaches Conference, Orlando, FL, 12—15 April 2010. agtn_dia |
ve - lona
EUROPEAN COMMISSION Jd L Ilaboratories
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An archetypal case for 1-D compressible flow is
the experimental “shock tube” configuration.

e For 1-D compressible, inviscid, non-heat-conducting flow,
the state U and flux f are given by

U = [p, pu, pET' f = lpu, pu2+p, pEu+pul'

- A—
on : \
where FE = e+ i 1 l/tz; Specific internal energy (SIE) Specific kinetic energy

_____

* An example is an experimental shock tube for gas dynamics.

— Conservation laws = PDEs. po '

— Constant, uniform initial =0 1
conditions. _

— For t> 0, the solution is given
by a set of self-similar (i.e.,

functions of x/t only) waves -
Diaphragm Position
HJ.REhiS is a specific case of the so-called Riemann problem.

Sandia
National
EUROPEAN COMMISSION Laboratories
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\\Pressure =



SAND2010-6627C

The Riemann problem can have very different
solutions, depending on the initial conditions.

e There are five basic (p,u) (1) P inal)

solutions for the 1D P / S S
gas dynamics . \/
\P

SCS

equations with an
ideal gas EOS*. et/
— These depend on the ll

relative pressures and i s\ | &R
velocities in the ICs \}/

RCS

SCR

oL
® S =Shock

_ \
= \,R/ R R

R = Rarefaction N/ x

V = Vacuum/Void ' RICVCR
*R. Menikoff, Applications of Non- \
Reactive Compressible Fluids, N | R L R

Bl J LANL Report LA-UR-01-273 (2001) . — A — SHa
el Wave curves Self-similar Snapshot Laboratories

P

=

RCR

RCVCR

CR NS
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We focus on sensitivity analysis for a single
problem, related to the well-known Sod problem.

(1.0, 1.0,0.0,1.4),-0.5=x<0.5 “Left’

e |nitial state: (o,p,u,y) = .
(o.p.,y) {(0.125,1.0,0.0,1.4), 0.5<x<1.5 “Right’

* Fix the left state; vary the right state; consider fixed #;,,, = 0.2

® The solution structure varies significantly Shock

near the initial
) 2 Rarefaction
point (). /

Q L
® Evaluate the 5 10
T o N Rarefaction
) i !
sen5|t|V|ty near £ : :
that point. b= Rarefaction
oT4]
=
| Shock o5 o <\Ra refaction X&
Shock Right Velocity Shock |
n JRL Sod G., : “A Survey of Several Finite Difference Methods for Systems of Nonlinear m ﬁgtnigﬁal
EUROPEAN COMMISSION Hyperbolic Conservation Laws”, J. Comput. Phys., 27, pp. 1-31 (1978). Laboratories



SAND2010-6627C

We fix the final time and the left state, but vary
both the right state and a numerical parameter.

Input Why?
N le Initial pressure on right Uncertainty in initial condition
§ 3 X, Initial velocity on right Uncertainty in initial condition
X Polytropic index y on right Uncertainty in material model
X, CFL parameter: ¢, At/Ax Numerical parameter

e From the self-similar nature of the solution, only one state need
be varied, not both: hence, we vary only values on the right.

. . L .
e Higher pressure, higher y — Do 3 | Nominal
. < .
higher sound speeds and faster g g High'y
Wave propagation 0.5 1 15 0 0.5 1 1.5
> v :
e 0<CFL< 1 — stable Hon 3 o Nominal
S o $ om High CFL
CFL > 1 — unstable Q* &

I JRC o e
0 05 1 15 0 05 1 15 National
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Most of our responses are from probes

® A probe measures some guantity
at some location
— We measured at one location on the

left and two on the right of the initial
interface location

— We record the value at the end of the o I_
simulations, t=0.2

T T W
X=0.35
YS, Y6, Y7
X=1.16
* Defining the responses requires Y2,Y3,Y4 e1a
a lot of thought; intuition about Y1

the physics is not enough

- JRC @ ﬁg?igil?al
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We consider specific characteristics of the
solution as the output variables.

Output Why?

f Y, Specific internal energy, x =1.4  Coupled physics
% J Y, Massdensity, x=1.16 Wave speed
= Y; Kinetic energy, x =1.16 Physics diagnostic

. Y, Timeof1stAp,x=1.16 Experimental diagnostic
£ Y. Mass density, x = 0.35 Wave speed
~ | Y, Kinetic energy, x =0.35 Physics diagnostic

- Y, Time of 18t Ap, x =0.35 Experimental diagnostic

Y, CPUtime Computational diagnostic

e Shock-Physics analysts think of the problem in these terms

- JRC @ ﬁg?igil?al
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We simulate this problem with the
ALEGRA multi-physics code.

Shock and Multi-physics HEDP Theory and ICF Target Design Overview

e The ALEGRA suite of applications models shock and
high energy environments for solids, fluids, and
plasmas using a multi-material arbitrary
Lagrangian-Eulerian (ALE) multi-physics
methodology.

e  ALEGRA applications run on large, parallel,
message-passing architectures in 2-D and 3-D
geometries.

ALEGRA Applications
e  Armor Design and Analysis
e Shaped Charges & Explosively Formed Penetrators
e  Railgun Design and Analysis
e  Magnetohydrodynamics (MHD)
e  Z-pinch, Inertial Confinement Fusion
e |sentropic Compression Experiments/Magnetic Flyers

n
B
o

’ Experiment
"I ALEGRA =5

Current (MA)
s
P
=]

N
o
Velocity (km/s)

-
o

0 LonserL.

| 23 2.4 25 26

o
2

- Time x 1.e-6 (s) ! Sandia
v = . . . . . . H nal
UROPEAN COMMISSION Isentropic Compression: Magnetic Flyer Predlchc@[ﬂﬂ!rmﬂes
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Y1:SIEatx=1.4
Output surface slice for the Exact Model

® Y1 is a simple output we
use as a test

Y1: SIE-exact u=0.00625, cfi=1.195 X1, X3 varying
X2 fixed

® No waves reach this
probe location so the SIE
remains at its initial value

— The initial value is a
function of X1 and X3 only

SIE 50 |

¢ Surfaces shown were generated with an exact Riemann
solver (“Exact Model”), not the simulation code.

- J RC @ ﬁgtnigil?al
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Y2: patx=1.16
Output surface slices for the Exact Model

Y2: p-ex u,=0.00625, cfl=0.805 X1, X3 varying
X2 fixed
Flat plateaus indicate no " okt o
waves have reached this \
location |
Y2: p-ex y,=1.405, cfl=0.805 X1, X2 varying
X3 fixed
:m i Sharp jumps indicate shocks

0.9 .
Pr 1
1.1
1.2 A 0.2
0.2 -0.1 Ou 0
'

B JRC | e
National
EUROPEAN COMMISSION Laboratories
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Output surface slices for the Exact Model

Y2: p-ex y,=1.205, cfl=0.805

0.136
p 0128 0135
012
013
0112
0.104 0.125
012
0115
08
09
P 1
11
12—~ o 0.1 02

X3 increasing |

Y2: p-ex u=-0.24375, cfl=0.805

0.135
0.136 0.13
0.128 0.125

Po012 012
0.112

0.115

0.104

0.8

X2 increasing |

B JRC
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0.136
0.128

P
0.12
0.112
0.104

0.136
0.128

0.12
0.112
0.104

0.8

Y2: p-ex y,=1.405, cfl=0.805

0.135
0.13
0.125
0.12

0.115

0 0.1 0.2

Y2: p-ex u;=0.00625, cfl=0.805

0.135
0.13
0.125
0.12
0.115

Y2: p-ex y,=1.595, cfl=0.805

0.136
, 0128 0135
012
013
0112
0108 0.125
012
0.115
08 —
09
p 1
11
12— " 0.1 02

X1, X2 varying
X3 fixed

u,

Y2: p-ex u=0.24375, cfl=0.805

0.135
0.136 0.13
0.128 0.125
0.12
0.12
0.112
0.104 0115
0.8
X1, X3 varying

X2 fixed

Sandia
National
Laboratories
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Y3: uatx=1.16
Output surface slices for the Exact Model

Y3: uZ-ex y,=1.205, cfl=0.805 ¥3: u%-ex y,=1.405, cfl=0.805 Y3: u-ex y,=1.595, cfl=0.805
0.12 0.12 0.12
> 01 0.12 > 0.1 0.12 2 0.12
U 0.08 01 U 0.08 01 u 01
0.06 0.06 ) '
004 0.08 004 0.08 0.08
0.02 0.06 0.02 0.06 0.06
0 0.04 0 0.04 0.04
0.02 0.02 0.02
0 0 0
08 08
0.9 0.9
P e 1
1.1
2 2
2 o % 01 0 2 o % 01 0
.
X3 . . X1, X2 varying
g l X3 fixed
¥3: uP-ex u,=-0.24375, cfl=0.805 Y3: u-ex u,=0.00625, cfl=0.805 ¥3: u-ex u,=0.24375, cfl=0.805

0.12
0.1

0.08
0.06
0.04
0.02

I i X1, X3 varyi
X2 increasing | a2 varing

- J R C ﬁgtnigil?al
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Y4:t, atx=1.16
Output surface slices for the Exact Model

Y4: t,-ex y,=1.205, cfl=0.805 Y4: 1,,-ex 1,=1.405, cfl=0.805 Y4: 1,,-ex 7,=1.595, cfl=0.805
—
02 p—— 0.2
g, 01 0.2 t, 0.2 y, 210 0.2
018 0.19 0.19 018 0.19
o.17 0.18 0.18 0.17 0.18
016 0.17 017 016 0.17
0.15 : ! 0.15 !
0.16 0.16 0.16
0.15 0.15 0.15
08 08
0.9 09
P 1 Pr
11 . B
12— 0 0.1 0.2 . ’y " ] . . vy o ] .
up 4 .
X3 . . X1, X2 varying
g — X3 fixed
Plateaus:

Simulations end
at t=0.2.

Y4: t,-6x u;=-0.24375, cfl=0.805 Y4: 1,-6x u,;=0.00625, cfl=0.805 Y4: 1,-6x u,;=0.24375, cfl=0.805
—
x// . el 3
P 0.2 02 02
02 — 0.19 02 0.19 02 ¢ 0.19
0.19 0.18 0.19 0.18 0.19 0.18
ty 0.8 017 4 018 017 4 018 0.47
0.17 0.16 0.17 0.16 0.17 0.16
0.16 015 016 015 016 0.15
0.15 0.15 0.15
1.6 1.6
1.5 1.5
0.8 1.4 0.8 0.8 1.4

0.9

Pr 1.1 Pr 1.1

. . . X1, X3 varying
X2 increasing p———) X2 fred
-JHC ﬁgtnigil?al

EUROPEAN COMMISSION Laboratories




SAND2010-6627C

Scatterplots of model outputs give
some insights into the distributions.

Init. Right p Init. Right u Init. Right y CFL

e Some outputs
appear insensitive: Y, :

— Y, variation with X, ----- K

* Some trends inthe y ..
data are clear:

o]

W o
004 *

— Y, variation with X3 ---5-
3 0027 _*,
— Y5 variation with X, -----"1

0.27

e \/BD sensitivity Y, |

0181

indices quantify

this behavior...
Y8

awn Ndd 2wn oy ydiy Ix 3y jeurd d sy jeury 315 1ysiy [euly

014

Sandia

- J R C National
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We show results for estimators of the main and
total sensitivity indices S and T' for several methods.

(e DACE 256 Gaussian process approach, 256 samples
ACOSSO 256 adaptive smoothing spline, 256 samples
_® SDP 256 non-parametric smoothing, 256 samples

analytic VBD, 6"-order, uniform distr., 1296 samples
196k sample, Sobol’/Saltelli estimates [”goT,Zit”;,sg;,d”]
analytic VBD, 4t-order, uniform distr., 256 samples
. 6.e+4 samples, LHS sampling-based VBD

LHS 6000 6.e+3 samples, LHS sampling-based VBD

Meta-models
A
[ }

Analytic VBD
o o o

LHS Sampling
A
o
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R-EXACT 160k 1.60e+5 Riemann (exact) samples, F.F. VBD

e R-EXACT-2.56M 2.56e+6 Riemann (exact) samples, FF. VBD
-JRC @ﬁgtnigﬁal

EUROPEAN COMMISSION Laboratories

Full Factorial
A




SAND2010-6627C

These analyses present several questions.

e Do these approaches give consistent results, e.q., for rankings?

e Do these results vary for the different outputs, Y,-Y,, Y¢?

e How do these results depend on the different inputs, X,—X,?
e Do these results “converge”?

e How do sampling and meta-model results compare?

e Can we distinguish among different meta-models?

e How do exact solution results compare to ALEGRA results?

u JRC @ ﬁg?igil?al

EUROPEAN COMMISSION Laboratories



Comparison of R? for different meta-

models under sample size gives

a measure of the goodness-of-fit.

SAND2010-6627C

e The R? statistic is plotted for
SDP, ACOSSO, and DACE (GP)
emulators built with sample
sizes: N=128, 256, 512.

e The goodness-of-fit clearly
varies with the output:

B JRC

EUROPEAN COMMISSION

Y, is very well fit
Y,, Y, are reasonably well fit

Y, is reasonable with SDP,
ACOSSO, but not so well
with DACE (GP)

Y, is fit consistently better
with DACE than the
consistently poor fit with
SDP and ACOSSO

1
0.8

0.6

Yl 0.4

0

—@—visop

——v1-DACE

0 100 200 300 400 500 600

Sample Size

0 100 200 300 400 500 600

Sample Size

—l- v8-ACOSSO
—4— Y8-DACE

0 100 200 300 400 500 600

Sample Size

31S Y31y |eul

Iy Y31y |euly

swn Ndd

0.8

0.2

0

—@—v2:s0p

Sample Size

e .

—@—vasDP
—l- V4-ACOSSO
——v4DACE

d 13y |euly

0 100 200 300 400 500 600

awn dv 1y3ry

0 100 200 300 400 500 600

Sample Size

)
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The sensitivity indices S and T for Y,
perform similarly for all approaches.

e As anticipated, Y, (SIE) depends strongly on X, (pg) and X; (yz)
e Sampling, meta-model, and “exact” results are all consistent.

Main Total
X, X,
X3 XS
2 H
E % y1-LHS_6e3 E 5 y1-LHS_6e3
X B X O
2 [ 2 O
l‘ y1-SDR256 9 y1-SDR256
B y1-AC0SS0256 | B y1-ACOSS0256 | |
B y1-DACE256 B y1-DACE256
# A-EXACT-160k A-EXACT-160k
X # A-EXACT-2.56M X A-EXACT-2.56M
1 Ml R-EXACT-160k 1 M R-EXACT-160k
il R-EXACT-2.56M MM R-EXACT-2.56M
-0.2 04 06 08 1 12 02 0 02 04 06 08 1 12
S
T
LHS 6000 ACOSSO 256 A-EXACT 160k  R-EXACT 160k
B3 JRe SDP 256 DACE 256  A-EXACT-2.56M R-EXACT-2.56M

EUROPEAN COMMISSION w i.;t;a;:(.ﬁnes
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The sensitivity indices for Y, have
some interesting features.

e For Y, (final right p), main and total indices have different
values, indicating those inputs interact with others.

Main Total
: " l y2—LI-.|876e3 ] >y2-ACOS‘30256
] B y2-DACE256
X X 0 A-EXACT-160k
4 4 | A-EXACT-2.56M
O M R-EXACT-160k
B y2-SDR256 l R-EXACT-2.56M |
N 4 m
X X
3 3
= =
= =
— E y2-LHS 6e3 —
. X O > Inter- < X
What is 2 O action 2
happpe ning U 5-AC0850256 | among
here: — TP y2DACE286 | these v
| B A-EXACT-2.56M Inputs 1
M R-EXACT-160k ; “
Ml REXACT-2.56M e ——
| T T 7 - I 1 ] i
02 0 02 04 06 038 1 1.2 02 0 02 04 06 038 1 1.2
S T
LHS 6000 ACOSSO 256 A-EXACT 160k  R-EXACT 160k
B R SDP 256  DACE 256  A-EXACT-2.56M R-EXACT-2.56M

EUROPEAN COMMISSION w i.;t;a;:(.ﬁnes



SAND2010-6627C

The sensitivity indices for Y; perform
similarly for all approaches.

e As anticipated, Y; (final right KE) depends strongly on X, (up).
— Sensitivity on Xj; (y3) is less than heuristically expected.

Main Total
X4 é oL oo X4 E y3-LHS_6e3
= g
| B y3-SDR256 |
B )5 acoss0256 A ( A R
B y3-DACE256 . A-EXACT-160k
X A-EXACT-160k X £ A-EXACT-2.56M
. oy i B i
2 M R-EXACT-2.56M 2, REXACT 2 50M
5 = m,
X > Inter- < X
action
among
these
X inputs | X,
: ~ . \ ;
-0.2 08 1 1.2 -02 0 02 04 06 08 1 1.2
T
LHS 6000 ACOSSO 256 A-EXACT 160k  R-EXACT 160k
B JRe SDP 256  DACE 256  A-EXACT-2.56M R-EXACT-2.56M

EUROPEAN COMMISSION w i.-i;b‘l.]"r;:t.(.)nes



SAND2010-6627C

The sensitivity indices for Y, also show
some unusual features.

e Asexpected, Y, (right Ap time) depends strongly on X, (pR).

Main Total
.‘ y4—LHS;6e3 [ | 5/4—ACOS‘SO256 : [ ] y4-;LHS_Be3‘
Is not 9 y4-SDR256 % Ejgﬁg%%%k,w % y4-SDR256
completely A | L i B JAcossozse |
consistent | AEXAGT 160K
: [ e
45 M R-EXACT-2.56M
»g i i S
X
2
x| . x e
02 0 02 04 06 08 I 12 -02 0 02 04 06 08 1 12
S T
LHS 6000 ACOSSO 256 A-EXACT 160k  R-EXACT 160k
B3 JRe SDP 256  DACE 256  A-EXACT-2.56M R-EXACT-2.56M
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Estimators of the main and total sensitivity
indicess converge under quasi-random sampling.

: : . Main Total
e Confidence intervals obtained 141 ! ay
. . * 4 Q_)
with bootstrap technique. v E
L =
e Confidence intervals decrease i =
. . . o "sampleSize” " " 9x10° 0 Sample Size 2%10°
with increasing # of model runs.  ** 0.8 ey — T
e The lower/upper bounds of the Y, T o 2
main indices are wider than A .1 —
o " “samplesize’ " " 2x105 LT sampleSize” " aw108
those of the total indices. og? T SIS S > o
e The estimator of the main Y. . =
T 3 . |
indices appears to have a , ‘ ‘ g
larger variance than the _0'15  samplesize  2X10° O'Z O U E B A B TH T G _
estimator of the total indices. ‘ [ ——-
u >
Wl Init. Right p X5 Init. Right y Y, ; =
; 3
X, Init. Right u X, CFL parameter S Camesze | mar 02 6 et 7 a0 ?
§ saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, ' g
“Variance based sensitivity analysis of model output. Design and estimator for Y Py
the total sensitivity index,” Comp. Physics Comm., 181, 259-270 (2010). . %
* G.E.B. Archer, A. Saltelli, I.M. Sobol’, “Sensitivity Measures, ANOVA-Like Tech- : ndia
niques and the Use of Bootstrap,” J. Statist. Comput. Simul., 58, pp. 99-120 (1997).—12+ « w« w« w & & w w 0.4 = u jonal
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Variation of SDP + Sobol” results with sample size...

B JRC

EUROPEAN COMMISSION

Meta-model results are for
SDP + Sobol” esimators built
with sample sizes: N=128,
256, 512, 1024.

Sobol” indices are are obtained
executing the meta-model at a
set of untried points.

Both main and total indices
are well-behaved from the
perspective of convergence.
Again, the indices from N=256
are already quite robust to
further refinement.
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We have some answers to our questions...

e Do these approaches give consistent results, e.q., for rankings?

— In general, the different meta-models are consistent, both in ranking
and magnitude, particularly for main effects (less so for total effects).

e Do these results vary for the different outputs?
— “Well-behaved” outputs (e.g., ¥, and Y;) are quite consistent.

— “Less-well-behaved” output (Yg) shows much greater variability.

e How do these results depend on the different inputs?
— “Well-behaved” inputs (e.g., X, X,) follow the above pattern.
— Otherinputs (X;, X,) show more variation for SDP and ACOSSO.

— Correct index values can be more challenging to properly calculate
when there are significant interactions among the inputs (e.g., ¥,)

- JRC @ ﬁg?igil?al
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We have some answers to our questions...

e Do these results “converge”?

— Yes (empirically): more samples — the results “settle down”
— Yes and No: the “converged” value might differ from the exact value.

e How do sampling and meta-model results compare?
— Generally very well, at least under adequate resolution.

e Can we distinguish among different meta-models?
— The actual numbers varied slightly, but the rankings are robust.

e How do exact solution results compare to ALEGRA results?
— “Well-behaved” inputs (e.g., X;, X,) follow the above pattern.

---------------------------------------------------------------------------------------------------------

——————— -

—————————————————————————

_________________________________________________________________________________________________________

- J RC @ ﬁgtnigil?al
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Conclusions: What we determined

 We considered real-physics test problem, with an exact sol’n.

 We also generated an exact (full factorial) solution for the
sensitivity analysis problem.

* For this well resolved (many samples) problem, all sampling
approaches and meta-models gave consistent main effects
index values:

— Comparable values — Comparable rankings — Converged

 We found that small details about how the sensitivity indices
were estimated had an effect on the results.

* Differences between the computational model and the exact
model were observed.

u JRC @ ﬁg?igil?al
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Backup Slides

- J RC @ ﬁgtnigil?al

EUROPEAN COMMISSION Laboratories



SAND2010-6627C

What we get from Sensitivity Analysis

of Computer Simulations
e wantg
{ Reality ]

Input
Parameters
Physics, Mathematics
< . .
Governing Equations
The Model +
Constitutive Relations
Algorithms, Discretization
Response
Metrics

)
{ ]
® Numerical Model
II!IJ[‘(: (:::)ﬁ?ﬂ%
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What we get from Sensitivity Analysis
of Computer Simulations

Input !
Parameters Reality

Physics, Mathematics
< . .
Governing Equations
The Model +
Constitutive Relations
I Algorithms, Discretization
Response
Metrics

- JRC @ ﬁg?igil?al
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Y&: CPU time

e Y8 (CPU time) has no analog in the Exact Model

® Expectations:
— Linear dependence on X4 (cfl number)

— Weak, indirect dependence on the other inputs through
wave speeds

— Dominated by strong random noise

— Not clear that results for different SA techniques should
match

- J RC @ ﬁgtnigil?al
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The sampling implementation of VBD
can be computationally demanding.

e Requires N x (D + 2) function evaluations, where D is the
number of input variables and N is the number of samples.

— Common practice: N should be at least a few hundred to
obtain reasonably accurate variance estimates.

" I
Xy oo Xp,
X12 o o o XD2
Xl3 e o o XD3
leN XDN/
Sample 1
B8 JRC

EUROPEAN COMMISSION

a I
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KXIN XDN/

Sample 2

Column Swap>

e B
Xll e oo X]l e e o XD]
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Xl3-.oXi3 o..X‘D3

\XlN Xin - XDN/

Sample i

)
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Generalized Polynomial Chaos Expansions
approximate the response with a spectral projection
using orthogonal polynomial basis functions.

* Expand the response R in terms of prescribed basis functions P!

Yo(&1) Yoo 1

U1 &1

Vo(& )

N
n=0

2 -
&1

| | | A | A I |

| | A | A I |

(&1
(&1

12(&1) Yol&2
(1 §1&2
o (§1

¢-1 etc.

)
)
)
&1) V1(&
) U
e

— The basis functions are orthogonal wrt som elght function

E

— The coefficients «, are fit to the data

e This approach is nonintrusive by estimating the coefficients a, using:
— Sampling (expectation) — Point collocation (regression)
— Tensor-product quadrature — Smolyak sparse grid quadrature

e Wiener-Askey Generalized PCE is an “optimal” form of this method.

— Key idea: use a set of basis functions i, (§) that are related to the
assumed underlying distribution, leading to exponential convergence

— E.g., the set of Legendre polynomials P, (&), orthogonal on [-1,1] with

weight function unity, are the optimal basis for a uniform distribuh@ Santia
e

B JRC
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Stochastic Collocation with Lagrange interpolation

uses interpolants for the basis functions.

* Instead of estimating coefficients for known basis

functions, form interpolants for known coefficients

T — T
Li=]] /
Xy — T4

m

j=1
J#1

My mi,,

N, |
R=3 1L L=) - r(g
j=1

.]1:1 jnzl

B JRC
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&) (Lo e L)

— Simpler (no expansion order)

Same as forming

Form sparse interpolant using sum of tensor producE\{the sparse grid
Key concept: use the same Gauss points/weights from the orthogonal

polynomials for specified input PDFS‘\{
Advantages relative to PCE:

Gives the same exponential
convergence rates!

— Adapts to integration approach/collocation pts | /%

Disadvantages relative to PCE:

— Needs structured data sets: quadrature/sparse | %

grid, no random sampling sets (as in PCE)

N,
2y 2
=1

N,
E W,
j=1
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The underlying equations in ALEGRA are
related to hyperbolic conservation laws.

e The fundamental equations are statements of conservation laws:

State 0" U ______________
+ div fU) = SU)—x € Q C R,
&t f_( __)-‘ __g_——)-'\

F/ux function Source term
— Depending on the physics modeled, the state U may include, e.g.:
o Internal state variables from material strength models
o Magnetic field quantities for MHD simulations

— These are discretized on a hexahedral mesh in the Arbitrary Lagrangian-
Eulerian framework, amenable to general meshing and remapping.

* The gas dynamics equations of this study are the simplest

“nonlinear physics” equations that are an intrinsic part of
the full suite of models in ALEGRA.

* This study is a prototype for the future analysis of more
“JR@mplicated, physics-rich problems. @Sandia

National
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Y1:SIEatx=1.4
Output surfaces for the Simulation Model

® Y1 is independent of X4.

® For Y1, the exact model
and the simulation model
are identical.

B JRC

EUROPEAN COMMISSION

Exact Y1: SIE-exact u,=0.00625, ofi=1.195 X1, X3 varying
Model X2 fixed

50
40

30
SIE 54

10

1.2

Simulation Y1: SIE-sim u=0.00625, cfl=1.195 X1, X3 varying
Model X2, X4 fixed

50
40
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Y2: patx=1.16
Output surface slices for the Simulation Model

Surface is nosier, noise
increases with X4

Y2: p-ex y,=1.405, cfl=0.805 Y2: p-sim y,=1.405, cfl=0.805 Y2: p-sim vy,=1.405, cfl=1.195

0.135
0.13
0.125
0.12
0.115

imulation Model X1, X2 varying
X4 =1.195 X3, X4 fixed

0.2

Simulation Model
X4 =0.805

Shocks are not
as sharp

® Compared to the Exact Model, most simulation Model
B JRC response surfaces show only mild differences @ Sania

National
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Y3: uatx=1.16
Output surface slices for the Simulation Model

¥3: uZ-ex y,=1.595, cfl=0.805 ¥3: uZ-sim y,=1.595, cfl=0.805 Y3: uZ-sim y,=1.595, cfl=1.195

0.12

1.2 Y o1 o 01 0.2

Exact Simulation Model Simulation Model X1, X2 varying
Model X4 =0.805 X4 =1.195 X3, X4 fixed

e Some simulation Model response surfaces show
significant differences in values

- J RC @ ﬁgtnigil?al
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Y4:t, atx=1.16
Output surface slices for the Simulation Model

Y4:t,-ex y,=1.595, cfl=0.805 Y4:t,-sim y,=1.595, cfl=0.805 Y4:t,-sim y,=1.595, cfl=1.195
02— i elaa e
02 Y 01 NY\YQ’ E= 02 0.2
0.19 0.18 = - 0.19 0.19
0.18 2‘:; o 0.18 0.18
0.17 015 *‘ 0.17 0.17
0.16 0.16 016
0.15 0.15 0.1
08 t;t‘__/_,/—/
p 1
1.1 @ ’
12 N 0 0.1 02 _
Simulation Model Simulation Model X1, X2 varying
X4 =0.805 X4 =1.195 X3, X4 fixed

® In a few cases, Simulation Model

P N
/m
(@)
o)

response surfaces show a different - SC hen
topology than the Exact Model 5,
/RCS\

Right Velocity

- J RC @ ﬁgtnigil?al
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The physics suggests that certain outputs
should be relatively sensitive to certain inputs.

Outputs

NN NN NN NN

B JRC
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Inputs — X, X,

Init. Right p Init. Right u Init. Right y CFL

Final Right SIE STRONG

Final Right p SOME STRONG
Final Right KE SOME STRONG
Right Ap time STRONG SOME
Final Left p weak SOME
Final Left KE weak SOME
Left Ap time SOME weak
CPU time

X, X,

STRONG

SOME weak

SOME weak
STRONG weak

weak weak

weak weak

SOME weak

SOME
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