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Sensitivity analysis is comprised of techniques to quantify the effect of the input variables on a set of outputs.
In particular, such sensitivity indices can be used to infer which input parameters most significantly affect
the results of a computational model. With continually increasing computing power, sensitivity analysis has
become an important technique by which to understand the behavior of large-scale computer simulations.
Many sensitivity analysis methods rely on sampling the input distributions. Such sampling-based methods
can be computationally expensive, requiring many evaluations of the simulation; in this case, the Sobol´
method provides an easy and accurate way to compute variance-based measures, provided a sufficient num-
ber of model evaluations are available. As an alternative, meta-modeling approaches have been devised to
approximate the response surface and estimate various measures of sensitivity. In this work, we consider
a variety of sensitivity analysis methods, including different sampling strategies, different meta-models,
and different ways of evaluating variance-based sensitivity indices. The problem we consider is the 1-D
shock-tube problem. By the proper choice of inputs, discontinuous solutions are obtained, thereby lead-
ing to discontinuous response surfaces; such surfaces can be particularly problematic for meta-modeling
approaches. The goal of this study is to compare the estimated sensitivity indices with exact values. (UNC)
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Sensitivity Analysis
For a given model with a number of inputs and
outputs, sensitivity analysis identifies the inputs
that have the greatest influence on each output.
This is achieved by evaluating the model many
times using different input values sampled from
their distributions and measuring the outputs.

The sensitivity of an output Y to each input Xi is
quantified by Sobol´ sensitivity indices. [5]
Traditional regression coefficients only detect
linearity or monotonicity, while the variance-based
Sobol´ indices are not limited in this way. The
first-order (“main effects”) indices quantify the
variability in Y that can be attributed to Xi alone,
and are defined by

Si =
Var(E(Y |Xi))

Var(Y )
, (1)

where Var(·) is the variance, E(·) is the expected
value, and E(Y |Xi) is the expected value of Y
conditioned on Xi. The total effects indices are
defined by

Ti =
E(Var(Y |X−i))

Var(Y )
, (2)

where Var(Y |X−i) is the variance of Y
conditioned on all the inputs except Xi, and
quantify the variability in Y that can be attributed
to Xi and all of its interactions with other inputs.

These indices are multidimensional integrals that,
in practice, are evaluated approximately. We
compute the indices by numerical quadrature when
using full-factorial sampling (FFS, which requires
the most simulations but gives the best estimates),
by two different estimation approaches for smaller
sets of samples [6, 7] as described below, and by an
analytic formula when stochastic expansions are
used, also described below. In FFS, each input can
assume a number of values and the set of samples
includes all possible combinations of all input
values. Reduced sets of samples are obtained by

Latin Hypercube Sampling (LHS) and quasi-Monte
Carlo sequences (QMCS), which represent the
possible input combinations in a balanced fashion.

We describe sensitivity index estimators from two
references, Saltelli et al. [6] and an updated and
improved approach from the same group [7]. Each
reference provides an estimator for the main
effects, Si, and total effects, Ti. Some notation: if
we denote the original sample matrices as A and B,
we denote by A

(i)
B the matrix A except for the

ith column, which has been taken from matrix B.
Similarly, B(i)

A is the matrix B except for the
ith column, which has been taken from matrix A.
We define C as the matrix with 2n rows and d
columns obtained by appending B to A. C is used
in some formulas to estimate the total variance, as
all rows of C are independent. The mean value is
denoted by ⟨·⟩.

With this notation, given an output function f , the
earlier estimators [6] are computed as follows:

Si =
1
n

∑n
j=1 f(A)jf(B

(i)
A )j − ⟨f(A)⟩⟨f(B)⟩

1
n

∑n
j=1 f(A)jf(A)j − ⟨f(A)⟩⟨f(B)⟩

,

(3)

Ti = 1−
1
n

∑n
j=1 f(B)jf(B

(i)
A )j − ⟨f(B)⟩⟨f(B)⟩

1
n

∑n
j=0 f(B)jf(B)j − ⟨f(B)⟩⟨f(B)⟩

.

(4)
Equation 3 is a corrected version; in the
reference [6, Eq. 5.37] the estimate of Ê2 should
be the product of the mean of f(A) and the mean
of f(B).

The improved estimators [7] are calculated by:

Si =

1
n

∑n
j=1 f(A)j

(
f(B

(i)
A )j − f(B)j

)
1
2n

∑2n
j=1 f(C)jf(C)j − ⟨f(C)⟩2

, (5)

Ti =

1
2n

∑n
j=1

(
f(A)j − f(A

(i)
B )j

)2
1
2n

∑2n
j=1 f(C)jf(C)j − ⟨f(C)⟩2

. (6)

The improved formula for the total sensitivity
index is attributed to Jansen [2] by Saltelli et al. [7].
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Meta-models
From a limited number of costly numerical
simulations, a meta-model can be developed as a
less expensive alternative. We consider three
regression-based meta-models: State-Dependent
Parameter Regression (SDP), the Adaptive
COmponent Selection and Smoothing Operator
(ACOSSO), and Design and Analysis of Computer
Experiments (DACE). SDP models [3] are a class
of non-parametric smoothing that is similar to
smoothing splines and kernel regression
approaches but is performed using a recursive
Kalman filter approach with associated fixed
interval smoothing. ACOSSO [8] is a multivariate
smoothing-spline approach augmented by a
weighted, scaled penalty function. The DACE
approach is essentially the well-known Gaussian
Process emulator.

Alternatively, stochastic expansion methods
produce functional representations of stochastic
variability, where model output is represented by
analytic functions of stochastic inputs. We
consider the Polynomial Chaos Expansion
(PCE) [1], which represents the output as a sum of
orthogonal polynomial basis functions, with the
polynomials chosen according to the assumed
input distribution. Once the coefficients of the
polynomials are determined, one has an analytic
formulation of the output. The stochastic
expansion coefficients are used to directly calculate
variance-based sensitivity indices. [9] This
approach can be computationally efficient, insofar
as the calculation of input sensitivities does not
require additional function evaluations beyond
those needed to construct the stochastic expansion.

A Shock Physics Problem
The shock physics problem we consider is the
one-dimensional shock tube problem for ideal
gases. The governing equations are the inviscid
Euler equations, which form the basis of many
computational physics models. The Riemann
problem is defined by two materials at initially

uniform states on both sides of an interface. When
the interface is broken, the materials interact,
generating waves. Three types of waves occur:
rarefaction waves (smooth expansions), shock
waves, and contact surfaces, the latter two of which
involve discontinuous jumps across the wave.
There are four possible wave configurations, as
indicated in Fig. 1.

Figure 1: Map of the wave configurations of the
shock tube problem, as a function of initial right
pressure and velocity. The box identifies the
region covered by these inputs in the sensitivity
analysis problem. The sectors are identified by
the solution structure, where “S” = shock, “C” =
contact, and “R” = rarefaction.

The Sensitivity Analysis Problem
For this study, the initial left state is held fixed at
the values (ρL, pL, uL, γL) = (1.0, 1.0, 0.0, 1.4),
while the right density has a fixed value, 0.125, and
the other inputs are given in Table I. A uniform
distribution is assumed for all Xi. The
computational domain, −0.5 ≤ x ≤ 1.5 with the
initial interface location is x = 0.5, is discretized
into 200 elements. Simulations are run to a final
time of t = 0.2. For a given set of input values, the
ALEGRA code [4] is used to evaluate the
numerical solution of the Riemann problem. The
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Table I: Input variables and their ranges.

Input Variable Min. Max.
X1 pR 0.8 1.2
X2 uR −0.25 0.25
X3 γR 1.2 1.6
X4 CFL 0.8 1.2

outputs Yj , j = 1, . . . , 4, are extracted from the
computed solution at fixed (Eulerian) spatial
locations at the final time. Here we discuss only
the second output, the density at x = 1.16.

Figure 2 shows the response surface for Y2 as a
function of X1 and X2, generated from the
simulation model (ALEGRA). For low values of
X1 and X2 no wave reaches this location, so Y2
retains its initial value. For high values, an
expansion wave reduces the density by an amount
that depends on the input values. Finally, with high
values of X1 and low values of X2, a shock
reaches this location and the density is increased.
Two FFS cases, generated using ALEGRA and
labelled “AExact,” can be viewed as the exact
solution to the sensitivity analysis problem using
the simulation model.

A related sensitivity analysis problem is defined by
using the exact solution of the Riemann problem
(as apposed to approximate solutions from
ALEGRA) to generate the response surface. We
refer to this as the “exact model,” and two FFS
cases, labelled “RExact,” are included in the results
below.

Preliminary Results
We conduct the sensitivity analyses with DAKOTA
(http://dakota.sandia.gov/) from Sandia, and with
SimLab (http://simlab.jrc.ec.europa.eu/) and other
Matlab routines developed by JRC. One example
of the results is Fig. 3, a plot of the main sensitivity
indices S for the output Y2 (the final density at

Y2: ρ-sim γr=1.405, cfl=0.805
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Figure 2: Response surface for Y2 from
simulation with γR = 1.405 and CFL = 0.805.

x = 1.16), as estimated by several different
methods and with different sample sizes. The
corresponding total effects indices are shown in
Fig. 4. There is obvious variability among the
results for the different methods. In particular the
ACOSSO and SDP underpredict the total effects
for the three important inputs, X1, X2, and X3.
Among the other methods there are slight but
visible differences. For the important inputs the
indices for for the main and total effects differ,
with the total effects indices much greater than the
main indices for almost every method, indicating
that there are significant interaction effects among
these inputs.

Additionally, this case exhibits a visible
discrepancy between the full-factorial results for
the exact model (“RExact”) and the simulation
model (“AExact”) for both X1 and X2. The exact
model sensitivity indices for X2 are significantly
greater than for X1 while these indices are
essentially equal for the simulation model. This is
a manifestation of the difference between the exact
solution of the Riemann problem and the
corresponding approximate numerical solution
produced by the ALEGRA simulation code.
Clearly, even for this weak shock problem, which
is considered to be a very easy problem to simulate
by the shock physics community, relatively small
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Figure 3: Main sensitivity index S for the
output Y2 (final density at x = 1.16).

errors made in the simulations can influence the
sensitivity analysis results.

In initial work on this article, the LHS results
for 6000 and 60K samples were computed with the
Saltelli et al. 2004 estimators (Eqs. (3) and (4)).
Both Si and Ti were quite inaccurate when
calculated using 6000 or 60K samples, especially
when compared to the other methods. We
investigated this issue further, since it was a major
concern: 60K samples should be sufficient to
obtain accurate SA estimates for this 4-D problem,
even with the interaction effects and nonlinearities.
We compared two formulas for Si and two
formulas for Ti, as detailed in the first section. We
analyzed this problem using five different seeds
and 60K samples. Thus, for each seed, we
generated a completely separate sensitivity
analysis (involving 10K× (2 + 4) = 60K function
evaluations for each seed). With each set of 60K
samples, we computed Si and Ti for both formulas.
Further, for both the Saltelli et al. 2004 and the
Saltelli et al. 2010 estimators, we computed the
indices two ways: with the “true” function
response and with the function response
normalized by the mean (e.g., zero-mean function
response).
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Figure 4: Total sensitivity index T for the
output Y2 (final density at x = 1.16).

Figures 5 and 6 show the differences in the results
for Y2, a response that involves significant
interaction between the inputs. The exact values
of Si are 0.26, 0.25, 0.02, 2.0× 10−4 for
variables X1–X4, respectively. The exact values of
Ti are 0.67, 0.66, 0.2, and 0.005 for
variables X1–X4, respectively. Figure 5 shows that
the formulas with a normalized response (yellow
and green bars) clearly perform better than the
un-normalized formulas shown by the red and blue
bars. This is true for both Si and Ti (shown in
Fig. 6) but especially for Si. Without normalizing
the responses, the main effects indices are often
negative, which indicates erroneous results. In the
normalized cases, there are very slight differences
between the 2004 and 2010 implementations
(green and yellow), but in quantitative comparisons
the 2010 formulas are more accurate and show
more consistency (lack of variability across seeds.)

Conclusions
We have compared several different sensitivity
analysis approaches for a canonical shock physics
problem. We examine variance-based Sobol’
sensitivity indices produced by these approaches to
learn how well they perform as a function of the
number of samples and how accurate they are for
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Figure 5: Main sensitivity index Si for Y2 (final
density at x = 1.16) from two estimators, with
and without normalization, and five
independent LHS designs. The black bar for
each input (above the green bars) is the exact
result from “AExact 2.56M”. Blue bars are from
Saltelli et al. 2004, Eq. (3), not normalized. Red
bars are from Saltelli et al. 2010, Eq. (5), not
normalized. Yellow bars are from Saltelli et
al. 2004, Eq. (3), normalized. Green bars are
from Saltelli et al. 2010, Eq. (5), normalized.

discontinuous response surfaces. Our simulation
model provides approximate numerical solutions to
this problem, and can be executed quickly enough
to generate as many samples as needed. This
allows us to use a full factorial sampling of the
input hypercube to provide exact sensitivity
indices, to which we compare the estimates from
the sampling and meta-modeling approaches.

1. The number of samples used for this initial
work was sufficient to obtain accurate
sensitivity indices from all the methods.
Overall the different sampling approaches
and meta-models gave similar results, with
the DACE and PCE meta-models slightly
better than SDP and ACOSSO when
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Figure 6: Total sensitivity index Ti for Y2 (final
density at x = 1.16) from two estimators, with
and without normalization, and five
independent LHS designs. The black bar for
each input (above the green bars) is the exact
result from “AExact 2.56M”. Blue bars are from
Saltelli et al. 2004, Eq. (4), not normalized. Red
bars are from Saltelli et al. 2010, Eq. (6), not
normalized. Yellow bars are from Saltelli et
al. 2004, Eq. (4), normalized. Green bars are
from Saltelli et al. 2010, Eq. (6), normalized.

interactions among inputs were significant.

2. For LHS sampling, a detail about how the
estimators are applied makes a big difference
in the results for outputs with interacting
inputs. In particular, it is critical to subtract
the mean value of the output before applying
the sensitivity index estimators (Eqs. (3), (4),
(5), and (6).) Without this step, there was
very little consistency in the index values
across independent LHS designs, and this
inconsistency was much greater than the
differences between the Saltelli et al. 2004
and Saltelli et al. 2010 formulas. The 2010
formulas are more accurate than the 2004
formulas.
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3. Our shock physics problem has a known,
exact solution. When this exact model
replaces the simulation model (which
provides approximate numerical solutions),
for some outputs the sensitivity indices
change significantly. While this does not
affect our examination of the different
techniques, it does emphasize the risks of
drawing inferences about reality based on
models of reality.

A more detailed description of this work has been
submitted to Reliability Engineering & System
Safety for publication. We intend to build upon
these results in several ways. We intend to examine
more complicated physics problems that involve
discontinuous behavior. Additionally, we plan to
extend the methodologies discussed in this work to
discontinuous inputs; such inputs are widespread in
multiphysics simulation codes, which often allow,
for example, different numerical methods, different
models for the physics, and different databases for
material response. Although there were not
striking differences among the different methods
used to estimate sensitivity indices for the idealized
problem examined of this study, we speculate that
greater differences between approaches will be
seen as discrete inputs are incorporated.
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