
Deployment of Enterprise-Scale Systems Sustainability
Optimization on Commodity Computing Clusters

Jean-Paul Watson • David R. Strip • David L. Woodruff

Sandia National Laboratories
Discrete Math and Complex Systems Department

Albuquerque, NM 87185, USA

jwatson@sandia.gov • drstrip@sandia.gov

Graduate School of Management
University of California, Davis

Davis, CA 95616, USA

dlwoodruff@ucdavis.edu

Enterprise-scale military logistics operations for system sustainability are now commonly

modeled as large-scale stochastic simulation models, as opposed to more traditional analytic

models. While typically possessing less restrictive and unrealistic modeling assumptions,

optimization wrappers for these simulation models are significantly more difficult to solve

than simpler analytic models. In particular, the optimization models are naturally expressed

as stochastic mixed-integer programs, which are notoriously difficult, especially relative to

their deterministic, mixed-integer programming counterparts. Consequently, deployment to

real-world customers is a significant issue. We describe our experience in developing a prac-

tical, stochastic programming solution for efficiently optimizing the enterprise-scale logistics

networks for sustaining the operation of the Lockheed Martin Joint Strike Fighter and the

US Army Future Combat Systems. Our approach, based Rockafellar and Wets’ Progressive

Hedging (PH) algorithm, is naturally and efficiently parallelized on the small-to-moderate-

scale computing clusters that end-users may possess, and can effectively solve stochastic

mixed-integer programs with hundreds to thousands of decision variables. Unfortunately,

the acquisition and maintenance costs of computing clusters prevent many end-users from

accessing and leveraging parallel compute resources. To bridge this gap, we discuss de-

ployment of our parallel PH algorithm on the Amazon EC2 compute cluster. Finally, we

detail various real-world requirements driving the deployment of our parallel PH solution.

(Stochastic Programming, Progressive Hedging, Logistics, Parallel Computing, Supply Chain

Optimization, Systems Sustainability)

1

1. Introduction

Acquisition and initial deployment costs of military systems are significant, as any casual

reader of the popular press will observe. Less appreciated is the fact that the cost required

to sustain these systems through years or decades of operational life – whether peacetime

or wartime – generally far exceeds these “up-front” costs. The same is true for commercial

systems such as oil rigs, airline fleets, and server-class computer systems. For any of these

systems, a primary concern during pre-deployment planning is to provide sufficient logistical

support in the form of spare parts and repair-related resources to ensure that the deployed

systems remain operational with sufficiently high probability, at the minimal possible cost.

A notional example involves the deployment of various squadrons of fighter aircraft at bases

throughout the world. A typical optimization objective is this context is to minimize the

investment cost in the logistics network while ensuring that each aircraft in each squadron is

available to fly missions 90% of the time. The logistical system in these problems consists of

original equipment manufacturers (OEMs) to build, stock, and repair parts, supply depots to

store spare parts, repair depots for fixing high-cost “recoverable” parts such as engines, and

bases with limited supply and repair functionality; the various sites are typically arranged in

a complex, multi-echelon structure. The decision variables in such an optimization problem

include, for each site in the logistics system: the quantity of each repair-related resources,

the initial allocation of spare parts, and the parameters associated with part inventory re-

order policies. We refer to this general class of logistics network optimization problem as the

Support Enterprise Sustainability Problem, or SESP. For a more detailed overview of this

problem class, we refer the reader to Muckstadt (2005).

Beginning in the 1960s, SESPs were formulated and solved using analytic optimization

models such as METRIC (Sherbrooke, 1968), VARI-METRIC (Slay, 1984), and most re-

cently, ASM (Slay and King, 1987). These models make certain assumptions regarding the

distribution of part failure times on deployed systems, logistics network structure, repair

turn-around times, and inter-site transportation times. Given these assumptions and target

performance (i.e., availability) levels for a deployed system, these models can efficiently lo-

cate minimal-cost solutions. As a consequence, these models have seen widespread adoption

throughout all branches of the military and in various commercial contexts.

2

Despite the success of these analytic models, there has recently been an emerging and

accelerating shift toward explicit simulation (e.g, discrete event) models of the SESP. Promi-

nent examples include the Support Enterprise Model (SEM) (Smith et al., 2006), which is

used by Lockheed Martin to analyze the SESP for the F-35 Joint Strike Fighter, and the

System-of-Systems Analysis Toolkit (SoSAT) for analyzing the SESP for the US Army’s

Future Combat Systems. These simulations are being used in the planning / pre-production

phases for the corresponding systems, in order to assess the impact of system reliability and

logistics network changes on life-cycle sustainability costs. In the case of Lockheed Martin,

the primary objective is to develop a low-cost, efficient logistics network in order to secure

contracts for F-35 sustainability. In the case of the US Army, the objectives are to mini-

mize long-term support costs for FCS and to identify design improvements in the logistics

networks to improve system availability.

The shift from analytic models to simulation models is driven by three primary factors:

1) customers are viewing the assumptions underlying models such as METRIC and VARI-

METRIC as increasingly restrictive, 2) analytic models generally fail to provide a mechanism

to accurately capture and quantify variability in a logistics system, and 3) customers wish to

assess the impact of imposing various “business rules” (e.g., priority rules for deciding which

bases should get a spare part at a particular point in time) on logistics network performance.

Simulation models naturally address these shortcomings, but incur two significant costs.

First, accurate simulation of a large-scale SESP with global deployment scope, hundreds of

sites, thousands of deployed systems, each with hundreds to thousands of parts, incurs non-

trivial run-times for individual simulation replications. Second, existing analytic models are

no longer applicable due to variable levels of departure from the underlying set of assumptions

under which they were originally developed.

We have begun to address these two issues by developing a novel approach to optimizing

the SESP given an underlying simulation of a logistics system sustainability network (Watson

et al., Submitted). We formulate the SESP as a stochastic mixed-integer program (Kall and

Wallace, 1994), which we then solve using Rockafellar and Wets’ Progressive Hedging (PH)

scenario-based decomposition algorithm (Rockafellar and Wets, 1991). By leveraging various

computationally and mathematically motivated algorithmic techniques, we are able to solve

individual instances of very large-scale SESPs (e.g., for the Joint Strike Fighter) in hours to

tens of hours of computing time, each possessing thousands of decision variables. Although

this represents a significant advance in terms of optimization technology for simulation-

3

based SESPs, a number of serious practical barriers related to end-user deployment remain,

all driven by the need to significantly reduce run-times in order to increase analysis turn-

around times.

In this paper, we detail our efforts to address these deployment barriers through paral-

lelization of our PH approach for solving the SESP on widely available “commodity” parallel

computing environments, i.e., Beowulf clusters. We begin in Section 2 with an overview of

both the target application – optimization of enterprise-scale SESPs – and the formulation

of SESPs as stochastic mixed-integer programs. The PH algorithm for solving SESPs is then

introduced in Section 3. Although effective for solutions of SESPs, a number of real-world

factors drive the need for significant speedup, through parallelization, of the basic serial PH

algorithm. We discuss these factors in Section 4. Our approach to parallelization of PH

is discussed in Section 5. For purposes of data sensitivity, we cannot disclose results on

the Joint Strike Fighter SESP or in-progress work on the Future Combat Systems SESP.

Consequently, we developed synthetic, publically available data sets for dissemination of

results; these data sets are described in Section 6. Performance results of our parallel PH

algorithm on both a typical Beowulf cluster and Amazon’s EC2 cluster are respectively dis-

cussed in Sections 7 and 8. We conclude with a discussion of the implications of our results

in Section 9.

2. The SESP: Description and Formulation

A detailed description of the SESP is provided in (Watson et al., Submitted); in this section,

we provide a brief overview with an emphasis on the problem-solving approach. In a given

SESP problem instance, the decision variables consist of (1) stock and re-order levels for

each part at each site in the system; relevant sites include all supply depots (independent of

echelon level), OEMs, and bases, and (2) assigned quantities for all repair-related resources

for each site in the system; relevant sites include repair depots, OEMs, and bases. We as-

sume a (s, q) inventory re-order policy, s > q, with the initial procurement level for each

part/site combination set to some n, s ≤ n ≤ q. The cost of an SESP solution is given by the

procurement cost of the initial spare parts and resource allocations, in addition to any on-

going operational and maintenance costs associated with resources. Various secondary costs,

including those associated with the replacement of consumable parts, site-to-site transporta-

tion, and shop materials for part repair, are generally ignored; these costs are ”sunk” in the

4

sense that they are in practice unavoidable once the spares and resource levels throughout a

logistics system are determined. The optimization objective is to identify a SESP solution

that minimizes cost while ensuring that target percentage availability statistics for deployed

systems are achieved. Availability of a system is locally dictated by the presence of spare

parts to replace failed components; at the global level, additional factors include the ability

of supply depots to ship parts, the capacity of repair depots to fix failed parts, and the lead

time required to procure new replacement parts.

As discussed in Section 1, it is becoming commonplace for customers to model SESPs

through the use of simulation tools, due largely due to the complexity of operational fail-

ure distributions (e.g., in the case of combat) and imposition of customer-specific business

rules. Two examples of simulation models we are currently involved with include the Sup-

port Enterprise Model (SEM) (Smith et al., 2006) and the System of Systems Analysis

Toolkit (SoSAT), both developed at Sandia National Laboratories. SEM is targeted toward

SESPs involving military aircraft, while SoSAT is designed to model ground combat systems

such as a tank brigade. SEM and SoSAT are respectively in active use for analysis of the

Lockheed Martin Joint Strike Fighter (JSF) and US Army Future Combat Systems (FCS)

SESPs. While powerful, the flexibility and resolution of these simulations comes with a price:

evaluation of individual solutions, e.g, to determine system availabilities, is generally expen-

sive, requiring minutes to hours of run-time for individual simulation replications. Given

thousands to tens of thousands of decision variables, traditional “black-box” optimization

approaches (such as simulation-based optimization (Gosavi, 2004)) are therefore not feasible

in this context.

To develop our optimization “wrapper” for SESP simulation models, we leverage the

underlying simulation in a limited role, specifically to provide input to the optimization

process. Given an SESP instance, the corresponding simulation model is executed to generate

part failure data for each system, for some number of independent replications or scenarios.

These replications are executed in a “flooded” mode, i.e., one in which the supply of parts

and available resources is unconstrained. By directly leveraging the simulation model in

this fashion, it is possible to sample part failures from non-parametric or not generally

accessible (from an analytic standpoint) parametric distributions, e.g., complex wear-out

distributions or failure due to combat damage. The resulting part failure sequences are

necessarily optimistic relative to a cost-constrained environment. In particular, part failures

are assumed to be independent. For example, consider a part failure sequence for a particular

5

plane from a flooded SEM replication in which a landing gear component fails on day n and

the engine fails on day n + 5. In a parts-rich environment, the landing gear is quickly

repaired, such that the engine will fail due to the aircraft being operational; in a resource-

constrained environment, lack of a spare landing gear component may down the plane for

n > 5 days, in which case the engine failure would be delayed. However, given the typically

high availability requirements (on the order of 90% through 95%) for nearly all deployed

military and commercial systems, the degree of conservatism is in practice not significant.

For any given SESP scenario, s ∈ S, it is conceptually straightforward to develop a mixed-

integer programming (MIP) formulation to express the cost minimization of the support

enterprise, subject to the constraint that average availability of each system is greater than

or equal to a user-specified threshold. Such a MIP must track state variables such as on-hand

and due-out inventory quantities, repair queue and repair in-process status, and the number

of systems downed due to lack of a spare part. Constraints in the MIP then conserve

inventory positions across time, enforce limits on the utilization of repair resources, and

model inter-site transport delays; there are significant nuances related to the corresponding

MIP model, which are detailed in Watson et al. (Submitted) and Greenberg (2007). Given

|S| scenarios, each with distinct part failure time-series, we define a stochastic MIP for the

aggregate SESP through linking constraints, simply enforcing that the value of any given

decision variable is identical in all individual scenario MIP solutions. The aggregate SMIP

model is known as an extensive form formulation of the SESP.

Ideally, it would be possible to solve the extensive form of the SESP directly with existing

commercial MIP solvers such as CPLEX (ILOG). However, this is currently not computa-

tionally feasible due to both the size and empirical difficulty of the resulting problems; even

solution of MIPs corresponding to individual scenarios is too expensive given large-scale,

real-world SESP instances. In response, we have developed powerful domain-specific heuris-

tics for solving the MIPs corresponding to individual SESP scenarios, achieving solutions in

seconds to minutes of run-time. The difficulty of the MIP formulation and details regarding

the heuristics are described in Watson et al. (Submitted). Given high-quality solutions for

individual SESP scenarios, the question is then: How can solutions to individual scenarios

be aggregated to form a single, low-cost solution to the extensive form of the SMIP that

simultaneously satisfies performance constraints in all scenarios.

6

3. An Overview of Progressive Hedging

Numerous algorithms for solving stochastic mixed-integer programs (SMIPs) (Kall and Wal-

lace, 1994) are based on decomposition by time stages of the scenario tree, i.e., a tree in

which verticies represent decision points, edges represent specific decisions, and the leaves

represent the set of all possible outcomes. Alternatively, horizontal decomposition algorithms

decompose SMIPs by complete scenarios, i.e., via specific and complete paths through the

scenario tree. Progressive Hedging (PH), introduced by Rockafellar and Wets (1991), is a

horizontal decomposition approach to solving SMIPs. PH is particularly appropriate when

there exist good, fast heuristics for generating solutions to individual scenarios. As discussed

above in Section 2, this is the case for our formulation of the SESP.

For an individual scenario s, many problems of practical interest can be cast in the

general framework of constrained optimization:

Minimize c · xs (Ps)

Subject to: xs ∈ Qs

where xs is a decision vector of length ns, c is a vector of cost coefficients, and the requirement

xs ∈ Qs expresses the problem constraints, i.e., to ensure xs is a feasible solution. We use

the subscript s to emphasize that the specific problem characteristics will depend on the

scenario that is actually observed.

For each scenario s ∈ S, we denote the probability of occurrence by Pr(s). These

probabilities allow us to take into account prior knowledge of the distribution of individual

scenarios, or to weight the relative importance of particular scenarios based on problem-

specific knowledge. For the operational decisions associated with the SESP, the goal is to

minimize expected investment cost, which can be written as:

Minimize
∑

s∈S Pr(s)(c · x) (EF)

Subject to: x ∈ Qs

where the use of the decision vector x (xs = x, ∀s ∈ S) that does not depend on the scenario

implicitly implements the non-anticipativity constraints that avoid allowing the decisions to

depend on a particular scenario.

For the optimization problem EF, the basic PH algorithm can be stated as follows, taking

a perturbation factor ρ > 0 as the sole input parameter:

7

1. k := 0

2. For all scenarios s ∈ S
x(0)

s := argmin
x

(c · x) : x ∈ Qs

3. x̄(0) :=
∑

s∈S Pr(s)x(0)
s

4. w(0)
s := ρ(x(0)

s − x̄(0))

5. k := k + 1

6. For all scenarios s ∈ S

xk
s := argminx(c · x

+w(k−1)
s · x + ρ/2

∥∥∥x− x̄(k−1)
∥∥∥2

)

: x ∈ Qs

and

w(k)
s := w(k−1)

s + ρ
(
x(k−1)

s − x̄(k−1)
)

7. x̄(k) :=
∑

s∈S Pr(s)x(k)
s

8. If the termination criteria are not met, then go to step 5.

The termination criteria are based mainly on the convergence of the x(k)
s to a common x̄,

although non-convergence in the case of non-convex optimization problems such as the SESP

is a possibility, so termination may also be based on an iteration limit.

Integer constraints on elements of the decision vector x render stochastic programming

problems non-convex and significantly increase the difficulty of solution. A variety of algo-

rithms for solving the resulting SMIPs have been proposed (e.g., see (Maarten and van der

Vlerk, 1996–2003)). For some smaller problem instances, standard mixed-integer program-

ming (MIP) solvers can be used (Parija et al., 2004) to directly solve the extensive form EF

of the problem. However, standard MIP solvers fail to consistently solve even individual sce-

nario sub-problems in for our SESP formulation, let alone the extensive form of the problem

(Watson et al., Submitted).

In contrast, PH is a natural algorithm for solving large-scale SMIPs via scenario decompo-

sition. Although the integer variables also add complexity to solution via the PH algorithm,

they can be used to speed convergence because equality is well-defined and easily detected

(Løkketangen and Woodruff, 1996). An alternative approach is to use PH to solve a variant

8

of the SESP where the integer restrictions are relaxed and then round the solution obtained

at convergence (Listes and Dekker, 2005). Unfortunately, this technique yields poor-quality

solutions in the case of the SESP.

The intent of this section is to provide a concise overview of the PH algorithm, with detail

sufficient to understand the issues involved in parallelization of PH, as described subsequently

in Section 5. Further detail on the solution of SMIPs can be found in Berland and Haugen

(1996) and Mulvey and Vladimirou (1991), while examples of specific applications of PH are

reported in Listes and Dekker (2005) and Løkketangen and Woodruff (1996). To achieve

convergence in tractable run-times for the SESP in the serial case, we introduced a number

of computationally and mathematically motivated techniques that significantly complicate

the core PH algorithm. However, none of these modifications impact the nature of the PH

parallelization. These techniques, in addition to further modeling considerations encountered

in applying PH to the SESP, are fully detailed in Watson et al. (Submitted).

4. Parallel Solution of the SESP: Requirements and

Impact

Prior to considering parallelization of our PH algorithm, we first address the obvious question:

What end-user requirements are driving the need to develop a parallel implementation of PH

for the SESP? As discussed below in Section 7, and in our prior empirical analysis (Watson

et al., Submitted), the serial run-times of PH on small-to-medium sized SESP instances

range from hours to days on modern workstations. Fundamentally, the SESP is a strategic

planning problem; response times of 1-2 days would perhaps not appear to be a deployment

issue. However, as we now discuss, three real-world factors drive the ultimate need for faster

solution times:

Significant Expected Growth in the Number of Scenarios: For the SESP correspond-

ing to the JSF logistics system, we consider at most between 30 and 60 scenarios. These

small scenario counts are driven by the duration of the planning horizon, which is typ-

ically at most several years. With such long horizons, relatively few scenarios are

required to observe a full range of system responses, as system performance metrics

are quantities averaged over the entire duration of the simulation. In contrast, our

work on the FCS logistics system indicates that several hundred scenarios are required

to achieve the same degree of coverage; the duration of the FCS planning horizon is

9

on the order of days to weeks. We expected other SESPs, especially in the commercial

domain, exhibit a similar characteristic. Larger numbers of scenarios significantly in-

creases the run-time time of PH, due to both increases in the cost of solving individual

scenarios and in the aggregate number of PH Iterations. Further, even in the case of

JSF, consideration of larger numbers of scenarios yields improved confidence in the

ability of solution performance to generalize to unobserved scenarios.

Design is an Inherently Iterative Process: Perhaps counter to intuition, real-world

strategic planning problems such as the SESP are solved numerous times. Simulation

input parameters are refined over time, as the characteristics of system components be-

come better understood, and with higher degrees of accuracy. Optimization objectives

and side-constraints are frequently redefined following analysis of prior optimization

runs that identify possible trade-offs and binding constraints in system performance

metrics. In the cases of parameter and objective refinement, solution times of ap-

proximately ten hours are a realistic performance target for our PH algorithm, as this

allows execution of optimization runs overnight. During the course of a work day,

analysts can then refine input simulation databases, analyze optimization results from

the previous night’s run, or specify new optimization targets and side constraints – all

in preparation for a new overnight optimization run; the process then repeats.

Analysts Generate Ideas Faster Than They Can Be Assessed: Analysts commonly

express the desire to expend additional computational cycles – assuming they are

available – investigating “what-if” questions, to ensure a more broad exploration of the

system design space. For any reasonably complex SESP, there universally exist more

hypothetical optimization scenarios to assess than could ever be practically computed.

However, the importance of these analyses should be not be under-stated, as they serve

to significant increase end-user confidence in the quality and performance of an SESP

solution. In terms of run-time targets, “as fast as possible” is the only constraint we

have in practice to satisfy this requirement, at least while PH solve times remain in

the range of tens of minutes to days.

10

5. Parallelization of Progressive Hedging

As is evident in the pseudo-code presented in Section 3, each iteration of the PH algorithm

consists of a set of independent optimizations for individual scenarios s ∈ S followed by

computation of the weights w(k)
s and averages x(k) for use in the next iteration of the algo-

rithm. In the SESP, as is typical in most applications of PH, the bulk of the computation

is in the optimization for the individual scenarios, with only minor computation required to

calculate the weights and averages. While the scenario solves are independent and can be

easily parallelized, the PH algorithm must be synchronized prior to execution of the subse-

quent PH iteration, as both individual scenario solves and weight adjustments rely on the

updated x(k). Suppose that the individual scenario solve times are roughly equal, with indi-

vidual processors (assuming one scenario is assigned to each processor) spending little time

waiting for the slowest solve to complete. In the supercomputing community, this sort of

situation is referred to as “embarrassingly parallel” – a problem in which the ratio of compu-

tation to communication is very high, processors tend to spend very little time waiting; this

paradigm thus has the potential to scale efficiently on parallel computers. The question of

whether individual scenario solve times are roughly equal (a necessary condition to achieve

large speedups in parallel computing environments) is an empirical one, and is addressed in

Sections 7 and 8.

The relatively high computation-to-communication ratio exhibited by PH on the SESP

allows for potentially efficient parallelization on even the most loosely coupled computing

clusters. To maximize deployment flexibility, we implemented our parallelization strategy

using remote procedure calls (RPC), rather than a more sophisticated (and restrictive) ap-

proach such as MPI, which significantly increases the level of technical expertise required

to assemble and manage a compute cluster. RPC provides a set of standards that allow

a program running on one compute node to pass data and invoke subroutines on another

compute node via a network connection such as TCP/IP. A brief introduction can be found

online (RPC Overview, 1997). The RPC standard is also available online (RPC Specifica-

tion, 1988). Bloomer (1992) provides a detailed exposition of RPC and various examples.

RPC is a simple instance of the client-server communication paradigm. The server runs

continuously, waiting for a client to request a service. The RPC mechanism accepts the

incoming message from the client, unpacks the data into the machine’s native format from

the network neutral transmission format (XDR), and dispatches the call to the appropriate

11

subroutine. This mechanism allows for deployment on a heterogeneous set of computing

nodes. The machinery behind this processing is largely hidden from the developer, who

can use the RPCGEN (Unix) or MIDL (Windows) preprocessors to translate an interface

specification into the necessary code.

In the case of our implementation for the SESP, the server code has three functions

exposed via RPC: optimize a scenario with no consideration of weights (step 2 of the PH

pseudocode), optimize a scenario accounting for variable weights (step 6 of the PH pseu-

docode), and terminate the server. The server is launched with a fairly simple command

line that specifies the TCP port to use for the RPC connection and the prefix that is used

to determine the locations of the various input and output files. By providing the RPC port

assignment on launch rather than hardcoding a choice, we can manage multiple instances of

the server on multi-core and multi-chip processors. On launch the SESP problem instance is

read, defining the logistics system, the decision variables, all of the available scenarios, and

ρ parameter value(s); a server can potentially generate solutions for any given scenario. The

server then waits for a service request to arrive via RPC. Both the non-weighted and weighted

RPC calls simply pass a scenario number as an argument, indicating which sub-problem is

to be solved. In the case of the non-weighted solve, no additional input is required. In the

weighted case, the client transmits files specifying the w(k−1)
s and x(k−1) for a specific scenario

s ∈ S prior to invoking the RPC call.

Upon completion of a scenario solve, the RPC call returns to the client, which then

downloads a file specifying the resulting value for the decision vector xs. While it is possible

to use RPC to transmit data between the client and server, for simplicity we use secure

copy (scp) or remote copy (rcp), depending on the specific environment. As discussed below

in Section 7, communication times for this data are not a significant issue. In compute

clusters where all nodes share a common file system, the cost of the explicit file transfers

can be avoided, at least in principle. For example, a common cluster configuration possesses

a large disk array on a head node, which is mounted via NFS on each compute node.

Unfortunately, NFS may cache portions of the file system, making it difficult to determine if

a particular input or output file is associated with the current or a previous iteration of PH.

In our experiments, we experienced considerable problems with PH convergence specifically

because we were often working with “stale” data.

The client, which is the external interface to the system, is written in two parts: an AMPL

(AMPL, 2007) script that implements the PH algorithm and a dispatcher (written in C++)

12

that assigns scenarios to servers for solution during each iteration of the PH algorithm. The

dispatcher is launched with a list of IP addresses and port numbers for the available servers,

which may be smaller than the number of scenarios. At each iteration of the PH algorithm,

the dispatcher works through the list of active servers, assigning unsolved scenarios to free

servers as they become available. All file transfers are initiated by the dispatcher. In all of

the parallel computational experiments reported in Sections 7 and 8, the client codes are

executed on a compute node distinct from the servers. One advantage of this deployment

configuration is that “head” compute node of a cluster is often multi-CPU or multi-core,

allowing the dispatcher code to execute multiple parallel threads for RPC invocation and file

transfer.

Clearly, the client is a potential bottleneck in the execution of PH, though in general the

impact is quite small because it represents such as small fraction of the overall computation.

Due to convergence accelerators we developed for PH (Watson et al., Submitted), individual

scenario solve times are inversely proportional the PH iteration count k. Consequently, in

the final PH iterations, the communication costs associated with RPC invocation and file

transfers can overwhelm the efficiency of parallelizing the individual scenario solves. When

this occurs (easily detected by straightforward heuristics), we terminate parallel execution

of the dispatcher and instead solve all scenarios on the client compute node.

We conclude by observing that our approach to parallelizing PH is clearly straightfor-

ward. This choice was due simply to the near-linear speedups observed in the course of

our computational tests (as described in Sections 7 and 8); alternative approaches may only

achieve mild improvements in efficiency. Some of these approaches, including asynchronous

versions of PH, are described in Somervell (1998).

6. The Benchmark Problems

In Sections 7 and 8, we empirically investigate the performance of parallel PH for solving

SESPs. The experiments are performed using a set of synthetic SESP instances, generated

specifically for dissemination of results, as the full-scale SESPs corresponding to both the JSF

and FCS logistics enterprises are proprietary. The instances are based on a simple echelon

network structure consisting of a single repair depot, supply depot, and OEM, in addition

to n operational aircraft bases. Five aircraft, composed in a single squadron, are assigned to

each of the n bases. Each squadron flies a single sortie consisting of two aircraft – assuming

13

two such aircraft are available – for 4 hours every day. Each aircraft consists of 50 modeled

parts, representing a range of failure distributions (e.g., random and wearout) experienced

during operational flying time. The part failure sequences for these instances were generated

using the SEM simulator, and each instance contains failure data for |S| realizations or

operational scenarios. The decision variables are restricted to the procurement levels for

the spare parts at each site in the system. Repair depots are assumed to be uncapacitated,

performing repairs in a fixed duration; this assumption mirrors that present in the METRIC

(Sherbrooke, 1968) and other analytic SESP optimization models. Further details regarding

the structure of the test problems (in addition to instances involving resource-related decision

variables) are available in Watson et al. (Submitted).

We consider test problems with both |S| = 10 and |S| = 30 scenarios, in addition to

n = 2, n = 5, and n = 10 bases, yielding a total of six instances. We note that solutions

obtained with |S| > 30 scenarios are not significantly different than for |S| = 30 scenarios,

i.e., |S| = 30 is sufficient for these instances (due to the long time horizon and heavy

operational pace) to achieve target performance on unobserved scenarios. The largest test

problems we consider possess 528 decision variables, which is significant relative to most

stochastic mixed-integer program benchmarks. All of the test problems are freely available

for general use, and can be obtained by contacting the authors. Finally, we note that we have

executed both serial and parallel versions of PH on significantly larger, real-world SESPs –

specifically those corresponding to the full JSF logistics network and scaled versions of the

FCS logistics network. These differences in scale should be considered when interpreting the

run-times of PH reported below.

7. Experimental Results: A Native Beowulf Cluster

We first examine the performance of our PH algorithm executing on a typical Beowulf

cluster (Beowulf Overview, 2007), i.e., a simple parallel computing environment constructed

using commodity processors and interconnect, as opposed to the more specialized, custom

hardware historically associated with parallel computers. Beowulf clusters are representative

of the parallel computing environments that typical customers, e.g., governmental agencies,

defense contractors, and commercial firms, may possess. This includes the US Army and

Lockheed Martin end-users for which our parallel deployment of PH is targeted. Our test

cluster consists of a head node running dual Intel Xeon 2.8 GHz processors with 2GB of

14

RAM, and 42 Intel Pentium 4 2.4GHz compute nodes, each with 1GB of RAM. Because

the memory footprint of our heuristic for solving individual scenarios is less than 5 Mb

for the largest test problems we consider in this paper, the relatively low memory capacity

per compute node is not a factor. The compute nodes are connected to the head node

via standard 100MBs network interconnect. It is important to observe that although many

researchers – particularly in Computer Science – view such a cluster as simplistic, many

customers still consider deployment and support of Beowulf clusters to be a major challenge.

As a consequence, Beowulf clusters are not as pervasive in customer environments as one

might expect.

For each of our test problems, we allocate one compute node for each scenario. As

discussed in Section 6, the time horizons for these test problems is sufficiently long – one

year – such that numbers of scenarios |S| > 30 yield no significant improvement in the

ability of solutions to achieve performance targets in novel scenarios not considered by the

PH algorithm. For each test instance, we consider two ρ parameter selection rules, f100K and

sep, both detailed in Watson et al. (Submitted). The f100K rule generally yields lower-quality

solutions than the κ = sep rule, although the run-times are much lower. While not discussed

in this paper, for purposes of replicability we document the following values for the remaining

PH parameters (see Watson et al. (Submitted) for details): µ = 0, λq = 0.5%, and λt = 0.5%.

For each test problem, we execute five independent trials of our parallel PH algorithm,

recording the elapsed (i.e., wall clock) time per trial. The baseline serial performance is

assessed using a single trial executed on an arbitrary compute node, again recording the

elapsed time. Multiple trials are executed in the parallel case due to variance in the file

transfer and RPC communication times, which is often significant. The individual scenario

solves are deterministic, with a single serial run being sufficient to establish a baseline.

Num. Bases (n) Num. Scenarios Serial Run-Time Parallel Speedup on |S| Compute Nodes
2 10 2.39 2.91 – 4.05

30 20.57 6.27 – 7.70
5 10 11.94 5.52 – 7.86

30 114.07 12.14 – 20.89
10 10 88.64 8.43 – 8.75

30 681.06 25.06 – 26.17

Table 1: Speedup statistics for parallel PH on a standard Beowulf computing cluster, using
the ρ selection strategy f100K. Serial run-times are reported in minutes.

15

Num. Bases (n) Num. Scenarios Serial Run-Time Parallel Speedup on |S| Compute Nodes
2 10 40.15 3.31 – 3.69

30 135.37 11.17 – 12.45
5 10 64.33 7.72 – 8.1

30 668.99 22.03 – 23.77
10 10 566.08 8.13 – 8.22

30 5334.44 24.64 – 25.48

Table 2: Speedup statistics for parallel PH on a standard Beowulf computing cluster, using
the ρ selection strategy sep. Serial run-times are reported in minutes.

The experimental results obtained for the ρ selection rules f100K and sep are respectively

shown in Tables 1 and 2. The columns labeled “Serial Run-Time” record the baseline elapsed

time to solve the test problem on a single compute node; units are in minutes. The last two

columns record the range of speedups over the five trials of the parallel PH implementation

relative to the serial PH baseline baseline, given the respective ρ selection rule. Speedup

is given as the serial elapsed time divided by the parallel elapsed time; for |S| = 10 and

|S = 30|, the theoretical maximums are respectively 10 and 30.

Due primarily to network latency variability, we observe considerable variability in speed-

ups for a given test problem, particularly in the case of the ρ selection rule f100K. The

speedup distributions are Gaussian-like, with a tendency toward the center of the given

interval. The variability decreases with increases in problem size, which is the expected

behavior as the ratio of computation to communication time increases; individual scenario

solve times are proportional to instance size. For the largest test problem (n = 10, |S| =

30), the variability is minimal and would likely not be noticed by or impact an end-user.

Speedups are slightly greater for the sep rule in the case of the smaller n = 2 and n = 5 test

instances, as the increased number of total PH iterations results in an improved computation-

to-communication ratio. For the larger n = 10 instances, this ratio is already large, yielding

no significant difference in speedup under the two ρ selection rules.

In terms of absolute performance, the speedups observed on smaller problem instances are

poor. For the two n = 2 instances, the allocated compute nodes are in aggregate idle at least

half the time. Improved speedups are observed for the two n = 5 instances, where efficiency

of the allocated compute nodes is generally at least 75%. The most impressive speedups

are observed on the largest test problems, where compute node efficiencies are consistently

around 85%. As with the observed variability in speedups across trials for a single test

problem, the pattern of improved speedups with growth in problem size is attributable to

16

the increased ratio of computation-to-communication time. Although we have considered

avenues for further reduction in communication time, specifically in terms of file transfer

mechanisms, the resulting efficiency is not raised to above 90%. This barrier is due to the

inherent variability in run-time across individual scenario solves at any given PH iteration.

Lacking approaches to reduce this variability, which are presently absent in the literature,

we believe we are near the upper limits of speedup that can be practically obtained in the

case of large test problems. However, the efficiency is already high both in absolute terms

and relative to many real-world deployments of parallel algorithms.

In conclusion, the general trends we observe in these experiments indicate that for large

problem instances, we can obtain very significant speedups in the execution of our PH al-

gorithm for the SESP on a typical Beowulf compute cluster. Such speedups are crucial for

obtaining the required analytic throughput required in the case of the JSF and FCS cus-

tomers, as these SESP instances are one or more orders of magnitude larger than the largest

test case we consider in this paper. In addition to increasing throughput (addressing the

issues we raise in Section 4), the resulting speedups allow us to execute PH using parameter

settings that tend to yield improved solutions, albeit at the expense of significant increases

in serial run-time. For example, the ρ selection rule sep generally provides higher-quality

solutions than the f100K rule; other examples are discussed in Watson et al. (Submitted).

Further, large speedups allow us to extend our analysis to SESPs requiring consideration of

much greater numbers of scenarios (e.g., 100 ≥ k ≥ 200), e.g., as is required for the FCS

logistics system analysis. Finally, we note that our speedups are consistent with those re-

ported by Silva and Abramson (1993) on smaller test problems in a different domain, where

the speedups on 18 processors was at most ≈14.5. This equates to roughly 80% efficiency,

on a shared-memory machine with significantly lower communication delays than found on

a typical Beowulf cluster.

8. Experimental Results: The Amazon EC2 Cluster

Although parallel computing environments are gradually becoming accessible to more and

more end-users, the total cost – in terms of expertise, labor, and facilities – of maintaining

even a simple cluster is often prohibitive to many analysis departments in both commercial

and military organizations. Consequently, a major and often ignored challenge in deploying

parallel computing solutions to customers involves the identification and acquisition of a par-

17

allel computing environment. One alternative to direct procurement is the use of commodity,

“pay-as-you-go” computing clusters such as Amazon’s EC2, which we describe below in Sec-

tion 8.1. One obvious concern with the use of such clusters is whether the raw performance

and speedups observed on a native Beowulf cluster will transfer. Experimental consideration

of this question is addressed in Section 8.2.

8.1 The Amazon EC2 Compute Cluster

In Section 4 we discussed a variety of benefits that an analyst or decision maker might derive

from being able to quickly solve SESP optimizations using parallelized PH. In spite of these

sometimes substantial benefits, many organizations do not have the budget to purchase or

the skills to manage a large cluster. While our RPC-based implementation of parallel PH

would allow a group of workstations to be utilized as a loosely coupled compute cluster,

there often are security or organizational considerations that preclude this approach.

In August, 2006, Amazon.com launched the EC2 Elastic Compute Cloud (EC2 Overview,

2007), an on-demand scalable compute grid. From the user perspective, each node in the

grid has the compute power equivalent to a 1.7GHz Xeon with 1.75 GB of memory, a 160GB

disk, and 250MBs network interconnect. Compute nodes execute virtual machines running

under Xen (2007), executing any operating system that can operate on a Xen-hosted virtual

machine. EC2 provides a series of Amazon Machine Images, or AMIs, that can be booted on

EC2 nodes, and further provides a method for generating custom operating system images

from scratch. An image executing on a compute node is referred to in EC2 as an instance.

Charging is based on how many instances are executing, independent of whether they are

consuming CPU cycles. Instances are billed at $0.10 / hour, rounded to the next integral

hour, plus $0.10/GB for data transmitted to EC2 and up to $0.18/GB for data transferred

out. Although EC2 is currently in limited beta release, we experienced no issues in either

instantiating runs with 30 instances, or with data transfer and instance reliability.

The EC2 instances have no persistent memory that lasts beyond the life of the instance

– shutting down an instance is akin to destroying a machine. In addition to the server farm,

Amazon has developed the Simple Storage Service (S3), a massive file system providing data

security and redundant backup. Like EC2, it is billed at a very fine grain level. Storage is

$.15/GB month, and data transfer is the same as EC2. Data transfer between EC2 and S3

is free. AMIs must be stored on S3 for booting in EC2. One can use S3 to provide persistent

18

storage between invocations of an instance on EC2. Using software developed by 3rd parties,

S3 can be mounted as a file system on EC2, providing simple persistent storage.

EC2 and S3 are managed through commands issued to Amazon servers via HTTP pro-

tocols. Plug-ins to the Mozilla Firefox web browser provide graphical interfaces to EC2 and

S3, greatly simplifying management activities such as starting and stopping instances, or

moving files. Python, C#, and Java interfaces to the command set are also available.

Due to licensing issues, almost all of the pre-built AMIs are based on Linux. Thus, a

user’s perception of ease of use of the EC2 system is tightly related to the user’s familiarity

with Linux or related operating systems. While it is not necessary to modify an AMI in order

to implement our RPC-based parallelization, we chose to create a custom bundled image that

would start the server at boot time. In order to this, we started with an Amazon-produced,

pre-built Fedora Core 4 image and added a script that would execute at boot time. The

boot script executes a Python script that causes the booting instance to access the S3 file

system to fetch the current executable for our server and to start the server, using an input

dataset also fetched from S3. Instructions and tools for bundling a new AMI are provided

on the Amazon web site.

Finally, to illustrate the appeal of an Amazon-like commodity compute cluster, we observe

that the total cost for all of our experimental analyses on the EC2 cluster – including those

reported subsequently in Section 8.2 and additional preliminary experimentation – totaled

less than $200.

8.2 Empirical Speedups on the EC2 Cluster

Num. Bases (n) Num. Scenarios Serial Run-Time Parallel Speedups on |S| Compute Nodes
2 10 10.72 3.48 – 4.22

30 55.98 10.33 – 10.57
5 10 48.40 6.25 – 7.71

30 362.64 18.39 – 19.52
10 10 344.62 9.07 – 10.85

30 2335.54 25.23 – 26.71

Table 3: Speedup statistics for parallel PH on the Amazon EC2 compute cluster, using the
ρ selection strategy f100K. Serial run-times are reported in minutes.

To assess the performance of our parallel PH implementation on the EC2 cluster, we

replicate the experimental methodology previously introduced in Section 7. The sole excep-

tion involves omission of results for the ρ selection rule sep on test problems with |S| = 30;

19

Num. Bases (n) Num. Scenarios Serial Run-Time Parallel Speedups on |S| Compute Nodes
2 10 51.09 4.33 – 5.60
5 10 260.61 10.34 – 12.39
10 10 2189 12.11 – 12.27

Table 4: Speedup statistics for parallel PH on the Amazon EC2 compute cluster, using the
ρ selection strategy sep. Serial run-times are reported in minutes.

this exception was driven by the excessive run-times required to establish the serial perfor-

mance baseline in the case of the n = 5 and n = 10 instances. The results for the ρ selection

rules f100K and sep are respectively shown in Tables 3 and 4.

Contrasting the results relative to those reported in Section 7 (Tables 1 and 2), we

observe qualitatively similar speedups for both the ρ selection strategies f100K and sep. In

most cases, the speedups obtained on the EC2 cluster are slightly greater than that observed

on our Beowulf cluster; the differences in these cases can be attributed to the faster network

interconnect (250 MBs versus 100MBs). Consequently, there is no risk inherent in deploying

a parallel solution on the EC2 cluster, despite the potential for performance issues relating

to the use of virtual machines and multi-user contention for resources.

Serial run-times are, as expected, larger on the EC2 cluster. The EC2 PH runs execute

roughly four times longer than the corresponding runs on our native Beowulf cluster. This

difference should strictly be attributable to differences in the CPUs; 2.4GHz Pentium 4s in

the case of our native Beowulf cluster, and (virtual) 1.7GHz Intel Xeons in the case of the

Amazon EC2 cluster. However, we observe a run-time discrepancy roughly twice as large

as expected given experiments with physical 1.7GHz Intel Xeon machines. Other users have

observed similar mismatches between observed performance and that claimed by Amazon,

e.g., see (EC2 Performance Issue, 2007), and we are in communication with Amazon to

resolve the issue. In any case, it is clear that absolute throughput relative to that obtained

with a native Beowulf cluster will be significantly improved, although to a lesser degree than

is possible once the CPUs offered by commodity clusters such as EC2 achieve near-state-of-

the-art individual performance levels.

9. Conclusions

The Support Enterprise Sustainability Problem (SESP) is a major, high-impact optimization

problem in the analysis and deployment of both commercial and military systems. Previ-

20

ously, we introduced a novel simulation-based formulation of this problem as a stochastic

mixed-integer program (SMIP), and developed an effective serial implementation of Progres-

sive Hedging for generating high-quality solutions. While achieving tractable run-times, e.g.,

on the order of hours to tens of hours, a number of factors drive the need for parallelization

of the Progressive Hedging algorithm in order to achieve significant reductions in run-time;

these include the iterative nature of problem and optimization specification, the desire to

perform “what-if” analyses, and a significant expected growth in the number of scenarios

that much be considered.

We performed a straightforward implementation of Progressive Hedging in parallel, and

examined empirical speedups on two compute clusters: a typical Beowulf cluster and the

Amazon EC2 cluster. Our objective was to demonstrate that large-scale stochastic programs

can in fact be solved on commodity parallel computing hardware, using simple, widely un-

derstood technologies for inter-node communication. In practice, end-users typically do

not have access to supercomputing-class environments, and acquisition and maintenance of

even “simple” clusters is a non-trivial investment. Our experimental results indicate that

for large-scale problem instances, near-linear speedups (e.g., efficiencies of roughly 85% or

greater) can be obtained using commodity technologies. Obtaining near-linear speedups on

the EC2 cluster is particularly significant, as it eliminates the need for end-user acquisition

and maintenance of cluster computing technologies, and provides the further benefit of a

“pay-as-you-go” cost model.

Fundamentally, there is admittedly little algorithmic novelty in our approach. The “em-

barrassingly parallel” approach to solving the SESP formulation using Progressive Hedging

is effective, obtaining near-linear speedups, so there was little initial motivation for pursu-

ing more advanced approaches; we do plan to examine asynchronous variants of Progressive

Hedging in the future (Somervell, 1998), to determine if linear speedups can indeed be ob-

tained. Rather, our focus is on demonstrating the impact of the approach. We are able to

solve very large-scale, real-world stochastic programs (the largest of which are not reported

here due to the proprietary nature of the data), and have demonstrated that the perfor-

mance of the approach will transfer to parallel computing environments that are most easily

accessible to end-users. The resulting speed-ups significantly improve analytic throughput,

with the aforementioned benefits to end-users and improvements in our ability to address

more realistic and complicated formulations of the SESP.

21

Acknowledgments

Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin

Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

References

AMPL. 2007. AMPL. http://www.ampl.com.

Beowulf Overview. 2007. Wikipedia Beowulf entry. http://en.wikipedia.org/wiki/

Beowulf\ cluster.

Berland, N.J., K.K. Haugen. 1996. Mixing stochastic dynamic programming and scenario

aggregation. Annals of Operations Research 64 1–19.

Bloomer, J. 1992. Power Programming with RPC . O’Reilly and Associates.

EC2 Overview. 2007. Amazon EC2. http://www.amazon.com/gp/browse.html?node=

201590011.

EC2 Performance Issue. 2007. Amazon. http://developer.amazonwebservices.com/

connect/thread.jspa?threadID=16912&tstart=0.

Gosavi, A. 2004. Simulation-Based Optimization: Parametric Optimization Techniques and

Reinforcement Learning . Springer.

Greenberg, H. 2007. A fine-grained mixed-integer programming model for logistics optimiza-

tion. Tech. rep., Sandia National Laboratories.

ILOG. 2007. ILOG CPLEX 10.1. http://www.ilog.com/cplex.

Kall, P., S.W. Wallace. 1994. Stochastic Programming . Wiley, Chichester.

Listes, O., R. Dekker. 2005. A scenario aggregation based approach for determining a robust

airline fleet composition. Transportation Science 39 367–382.

Løkketangen, A., D. L. Woodruff. 1996. Progressive hedging and tabu search applied to

mixed integer (0,1) multistage stochastic programming. Journal of Heuristics 2 111–128.

22

Maarten, H., M.H. van der Vlerk. 1996–2003. Stochastic Integer Programming Bibliography .

WWW, http://mally.eco.rug.nl/biblio/stoprog.html.

Muckstadt, J.A. 2005. Analysis and Algorithms for Service Parts Supply Chains . Springer.

Mulvey, J.M., H. Vladimirou. 1991. Applying the progressive hedging algorithm to stochastic

generalized networks. Annals of Operations Research 31 399–424.

Parija, G.R., S. Ahmed, A.J. King. 2004. On bridging the gap between stochastic integer

programming and mip solver technologies. INFORMS Journal on Computing 16.

Rockafellar, R.T., R. J-B. Wets. 1991. Scenarios and policy aggregation in optimization

under uncertainty. Mathematics of Operations Research 119–147.

RPC Overview. 1997. Linux Journal. http://www.linuxjournal.com/article/2204.

RPC Specification. 1988. RPC: Remote procedure call protocol specification version 2,

rfc1057. ftp://ds.internic.net/rfc/rfc1057.txt.

Sherbrooke, C.C. 1968. METRIC: A multi-echelon technique for recoverable item control.

Operations Research 16 121–141.

Silva, A., D. Abramson. 1993. Computational experience with the parallel progressive hedg-

ing algorithm for stochastic linear programs. Proceedings of the 1993 Parallel Computing

and Transputers Conference. 164–174.

Slay, F.M. 1984. VARI-METRIC: An approach to modeling multi-echelon resupply when the

demand process is poisson with a gamma prior. Tech. Rep. AF501-2, Logistics Management

Institute, Washington, D.C.

Slay, F.M., R.M. King. 1987. Prototype aircraft sustainability model. Tech. Rep. AF601-R2,

Logistics Management Institute, Washington, D.C.

Smith, V.D., D.G. Searles, B.M. Thompson, R.M. Cranwell. 2006. SEM: Enterprise modeling

of JSF global sustainment. Proceedings of the 37th Conference on Winter Simulation.

1324–1331.

Somervell, Michael. 1998. Progressive hedging in parallel. Proceedings of the 33rd ORSNZ

Conference.

23

Watson, J.P., D.L. Woodruff, D.R. Strip. Submitted. Progressive hedging innovations for a

stochastic spare parts support enterprise problem, Sandia National Laboratories Technical

Report 2007-3722J.

Xen. 2007. Xensource. www.xensource.com.

24

