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Variable horizon in a peridynamic body
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e Peridynamics background

» States, horizon
* Rescaling a material model (at a point)
* Variable length scale (over a region)
* Partial stress

* Local-nonlocal coupling examples




Purpose of peridynamics .

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body

e Why do this? Develop a mathematical framework that help in modeling...
* Discrete-to-continuum coupling
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* Cracking, including complex fracture patterns L
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 Communication across length scales.

Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture surface of ‘Silceram’
glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D.
Rawlings.)




Peridynamics basics: ) s
The nature of internal forces

Standard theory Peridynamics
Stress tensor field Bond forces within small neighborhoods
(assumes contact forces and (allow discontinuity)

smooth deformation)
Horizon 9
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Internal surface

Hy=family of
pii(z,1) = V - o(w, ) + b(z, 1) pii (3, 1) = / F(g.2) dg + b(z. )
Hx
Differentiation of contact forces Summation over bond forces




Peridynamics basics: )
States

e A state is a mapping on bonds in a family.

e Notation:
Alz|(€)

where A is a state at a point z in a body, and £ is a bond in the family of x.

e Most of the states we deal with are vector-valued.




Peridynamics basics: )
Deformation state and force state

e The deformation state maps each bond to its deformed image.

Y[z[(qg — ) = y(q) — y()

e The force state maps each bond to bond force densities.
fla,x) = Llx){q — =) — Llgl(z — q)
e The material model at x maps deformation states to force states.

Tle) =T(Y[z]))  Tlg) = LT(Y[q])

Deformation y

—




Peridynamics basics: ) s
Elastic materials

e A material is elastic if there is a scalar-valued strain energy density function
W (Y) such that

A

T =Wy

° WX denotes the Frechet derivative with respect to the deformation state

WY +dY) =W () + Wy edY
for any small Y.

e Here,

A-ﬁ:/% Al€) - B(E) de

Differential work at x is

dW = T[a)(q — z) - dY[z]{q — x).




Scaling of a material model ) .

e Suppose we have a material model W, for some given horizon e.

e Try to find a material model with a new horizon ¢ such that W5 = W.
whenever the deformation is homogeneous.

e Define;

r —= 6/5 fe = T£5 Xe<€6> — TZ5<€6>

e Our scaled material model is given by

A A

Ws(Xs) = We(X).

—c

< > Y
Same strain energy
density

Material with horizon €

Material with horizon §




Scaling of the force state ) i

e Now find the scaled force state T's. We know

dW =T edY =1Ts;edYs;.
e Then

T edy, = / (&) dY.(¢.) d,

- /5 T (€ - (rdY 5(€s)) (rPdés)
PP o dY,

where D is the number of dimensions.

e Hence the scaled force state is

Ts(Ys)=rPHT (Y, r=¢€/d.

—€ \—¢€




Rescaling works fine if the horizon is@ &:.
independent of position

e Example: Uniform strain in a homogeneous bar.
u=Hzx
where H is a constant.

o |f we set
T5(&s) = (e/0)*T (&)

as derived above, we are assured the strain energy is independent of horizon.
e |t follows that stress is also independent of horizon.
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Solution u(x)

6 material E




Variable horizon: the problem ) .

The scaling discussed above holds at any point .

We might anticipate that we can let horizon §(x) vary with position and get
the same result.

Specifically, set
_ §
Tlx) =6 (@) Z( ——
Lle) = 5202 (5
where Z is a reference force state with horizon ¢ = 1.

Surprise! The uniform strain deformation is not in equilibrium even though it
has uniform strain energy density.

B ]

& (x) material Up

™ solution u(x):

A Prescribed horizon 6(x)
a

b




Search for a different scaling

e Instead of

Tla] = 6-2(2)2 <%>

search for pairs of functions §(z) and F(x) such that T given by

Tla] = F(2)Z <%>

is equilibrated with no body force.

e This search has so far turned up only the following result:

d(x) = o + ax, F(x) =6 2(x).
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e Thisis interesting but not very practical since it doesn't allow enough flexibility

in modeling. A
u

6 (x) material
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iPrescribed horizon 8(x)
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Interactions with variable horizon

e If the horizon is constant throughout the body, we write
| [zl o) - e - 0] da+ bw) =0
Hx

where Hy is the family of x.

e If the horizon varies, we need to change the volume of integration to S,, the
“superfamily” of = consisting of all the points that x interacts with either
through its own material model or the material model at the other points.

sz’HxU{qEB’xE’Hq}
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Origin of artifacts ) .

= The peridynamic force density operator L(x) involves the force state not only at x
but also the force states at all points within the horizon.

0 =L(x)+b, L(x) = J {Ts[x1{q — x) — Tsp[q){x — q)}dq

so simply scaling the material model at x is not sufficient.

§(x) ( ‘ 5(q)

Variable horizon
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Consider altering the equilibrium equati@m’iﬁ

e Use the 1D bar problem to define a “continuum patch test”.

e In a deformation of the form
u(x) =upg+ Hzx

where ug and H are constants, and the material model is of the form

T[z)(&) = 6~*(2)Z(H) <%>

where Z is a state that depends on H only, require

L(z)=0

/\u
for all = and for any prescribed (). ' / \ §(x)  \ '

1
1
1
: |ub
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U, = R |
“1 Solution u(x) _
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Peridynamic stress tensor

e The peridynamic stress tensor field* is defined by
=[] {zle— iyt w) - T sl - )} dy s

e v allows the peridynamic force operator to be written in a form similar to the
local theory:

L@ = [ {zllta— o) - Zlte - )} da = o).

— OO

e v is the force per unit area carried by nonlocal interactions.

Tlx —yKy + w) _.._>>

<€ T ? @ >
y —F w
X

*R. B. Lehoucq & SS, “Force flux and the peridynamic stress tensor,” JMPS (2008)
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Partial stress field

e If  and I’ are constant, the peridynamic stress field simplifies to
o) = [ exie) de
e Now use this expression to define a new field 1y for any force state field:
ie) = [ €Llalte) de
e In the patch test,

Tll(e) = 5 2(x)Z <m> —  wl)= [ ez

independent of .

e 1 is called the partial stress field.




Equilibrium equation based on the g
partial stress field

e The previous observation (that 1 is independent of x in the patch test) leads
to the following proposed expression for internal force density:

Lo() = 22(2)

where the equilibrium equation is

Lo(x) +b(x) =0

i) = [ " Tl de

for any deformation, any &(z), and any material model (possibly heteroge-
neous).

e Trivially, this model passes the patch test.
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Concept for coupling method

= |dea: within a coupling region in which § is changing, compute the internal force

density from

L) =2 (x), vo(x): = [, ET[xI(§) d¢
instead of the full PD nonlocal integral.
= Here, T[x](x) is determined from whatever the deformation happens to be near x.
= Z is no longer involved.

= The material model has not changed from full PD, but the way of computing L

has.
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Local-nonlocal coupling idea

Local region Transition region Nonlocal region
d d
L0 =2 L) = 2 LG) = [TxIE) — Tl + £1(-6) dg

N

Full peridynamic (PD)

vo(x) = j ETIx1(E) dé

A

v (x) = a(F(x))

Partial stress
(PS)

Horizon & (x)

Good old-fashioned
local stress

Position x
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Continuum patch test results

* Full PD shows artifacts, as expected.
PS shows no artifacts, as promised.

Horizon Strain
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Continuum patch test with coupling

* No artifacts with PD-PS coupling (this was hoped for but not guaranteed).
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Pulse propagation test problem

* Does our coupling method work for dynamics as well as statics with variable horizon?

delta
B | E— T —
1.0 7 : L
ot pp PS Local-nonlocal transition
0.8 & i region has width 1
0.7 | -
8 = 1 (nonlocal) - 0'6 i ; /
o :
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s |
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Pulse propagation test results

*  Movies of strain field evolution

Full PD everywhere Coupled PD-PS
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Pulse propagation test results

e Strain field: no artifacts appear in the coupled model the local-nonlocal transition.

Full PD everywhere Coupled PD-PS
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Discussion

* The partial stress approach may provide a means for local-nonlocal coupling

within the continuum equations.
e Uses the underlying peridynamic material model but modifies the way

internal force density is computed.
* Expected to workin 2D & 3D, linear & nonlinear.
e PSisinconsistent from an energy minimization point of view.
* Not suitable for a full-blown theory of mechanics and thermodynamics
(as full PD is).
* Not yet clear what implications this may have in practice.
* We still need to use full PD for crack progression.




Extra slides




Peridynamic vs. local equations 1) .

State notation: State(bond) = vector

Relation Peridynamic theory Standard theory
Kinematics Y{q-x) = y(a) - y(x) F(x) = Y (x)
X

Linear momentum | ;5 (x) — / (t(q, X) — t(x,q)) dVy+b(x) | PY(X) =V 0o(x)+b(x)
H

balance
Constitutive model t(q,x) = T{q — x), T = i(X) o=o(F)
Angular momentum / Y(q—x) x T(q—x) dVy =0 o— ol
balance H
Elasticity T = Wy (Fréchet derivative) o = Wr (tensor gradient)
First law ézloi\—l—q—i—r t=ag-F+q+r

N

TeY — /H T(e) Y(€) dVe




