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SUMMARY

This abstract explores the potential advantages of discontin-

uous Galerkin (DG) methods for the time-domain inversion

of media parameters within the earth’s interior. In particular,

DG methods enable local polynomial refinement to better

capture localized geological features within an area of interest

while also allowing the use of unstructured meshes that can

accurately capture discontinuous material interfaces. This

abstract describes our initial findings when using DG methods

combined with Runge-Kutta time integration and adjoint-

based optimization algorithms for full-waveform inversion.

Our initial results suggest that DG methods allow great flex-

ibility in matching the media characteristics (faults, ocean

bottom and salt structures) while also providing higher fidelity

representations in target regions.

INTRODUCTION

Inversion of earth media parameters is of primary importance

to exploration geophysics with the specific goal of construct-

ing accurate subsurface characterizations in a computationally

efficient manner. Full-waveform inversion (FWI) is one of sev-

eral techniques that are being pursued to produce higher qual-

ity earth models. Recently, Krebs et al. (2009) have demon-

strated the viability of this approach by combining FWI with

phase encoding in order to efficiently produce accurate earth

models. Although their synthetic experiments show accu-

rate reconstructions when using time-domain finite-difference

methods on structured grids, in practice complex geological

structures and material properties may hinder the ability of

these methods to accurately invert for these features. In this

paper, we build on the FWI and phase-encoding ideas but make

use of an unstructured, yet high-order accurate, numerical ap-

proach based upon the DG method. We explore the flexibility

engendered by DG methods to improve the characterization of

complex subsurface features through unstructured meshes and

localized polynomial refinement.

Discontinuous Galerkin methods have been developed and

utilized in many fields since their inception in the early 1970’s

(see e.g., Reed and Hill 1973; Cockburn 1999; Cockburn et al.

2000; Hesthaven and Warburton 2008). In the past several

years, DG methods have been applied to seismic modeling by

Käser, Dumbser, and co-workers who have investigated several

aspects of DG methods in relationship to forward seismic-

wave propagation on unstructured meshes including: elas-

tic wave propagation (Käser and Dumbser, 2006), numerical

properties (Käser et al., 2008), viscoelastic attenuation (Käser

et al., 2007), topography representation (Käser et al., 2008;

de la Puente, 2008; Park and Antin, 2004), and p-adaptivity

(Dumbser et al., 2007). DG methods in conjunction with inver-

sion have also recently been explored in the frequency domain

(Brossier et al., 2009). However, one feature, common to all

these prior studies is that they are limited to piecewise constant

representations of medium parameters within each element.

This significantly reduces their ability to accurately represent

complex earth models. For example, even a simple linear

variation of properties with depth must be represented with a

staircase-like, elementwise, constant-layered approximation.

In this study, we investigate time-domain acoustic inversion

with DG methods that are not artificially constrained to use

piecewise constant material models. In this context, we inves-

tigate the advantages of both unstructured meshes and higher-

order polynomial refinement. The large-scale nature of the

earth-model inversion problem requires efficient algorithms

and to meet those needs, we use adjoint-based gradient decent

algorithms, simultaneous source encoding, and fully parallel,

distributed-memory implementations. Results are presented

for synthetic numerical experiments based on the Marmousi2

model (Martin et al., 2006).

FORMULATION AND METHODOLOGY

The acoustic FWI problem can be formulated as a constrained

optimization problem with a least-squares objective function
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subject to the acoustic wave equation

β
∂ p

∂ t
+∇ ·v = βφ in Ω× (0,T ] (2a)

ρ
∂v

∂ t
+∇p = 0 in Ω× (0,T ] (2b)

p(x,0) = 0 for x ∈ Ω (2c)

v(x,0) = 0 for x ∈ Ω (2d)

which is solved subject to appropriate boundary conditions. In

these expressions, β = 1/(ρc2) is the compressibility; B is the

space of admissible media; ρ is the mass-density; c is the wave

speed; Ω is the computational domain; T is the time horizon;

Nr is the number of receivers; Ns is the number of sources; ωs

is the random phase encoding for source s; φ is encoded sum

of all explosive pressure sources; p̃ is the measured pressure

data; and ξr(x) is the spatial kernel for receiver r. The forms

for φ , ωs and ξr are described in more detail below. The

state variables are pressure, p(x,t) and particle velocity, v(x,t)
defined for (x,t) ∈ Ω× [0,T ].

We have written the acoustic wave equations in first-order, flux

form such that the material properties, ρ and β appear on the

time derivative. In this way, the system can be readily seen to

be a conservative, hyperbolic system where the conservation

variables are the products β p and ρv. This allows the direct

application of a standard conservative discontinuous Galerkin

method with no artificial restrictions on the variation of media

parameters.
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The adjoint-state method (see, e.g., Tarantola 2005) is used to

solve the inversion problem, by forming a Lagrangian func-

tional that combines the objective function and the constraint

(state equations) multiplied by adjoint variables. The optimal-

ity conditions are derived by taking variations with respect

to the state, adjoint and inversion variables and setting the

resulting equations to zero. This produces the original state

equations, adjoint equations, and a nonlinear gradient equation

along with adjoint boundary and end conditions. The adjoint

equation is driven by a source term that comes from the lin-

earized objective function but is otherwise identical in form to

the original state equations for this self-adjoint system.

Our numerical solution strategy consists of a sequential ap-

proach in which the state equation is first solved and then the

adjoint equation is integrated backwards starting from the ad-

joint end-condition. The adjoint solution is then used to solve

the gradient equation and a gradient descent algorithm along

with a line search is used to update the inversion parameters.

In principle our numerical implementation mimics the solution

strategy described above but there are some differences that are

worth noting. Instead of deriving the optimization conditions,

then discretizing, and finally linearizing, we instead discretize,

linearize and derive the optimality conditions. The latter ap-

proach is better suited to accommodate a DG discretization.

We have verified our gradients against directional finite differ-

ences (both second and fourth order) using random direction

vectors with agreement to double-precision machine accuracy.

Our DG spatial discretization is based on the work of Collis

and co-workers (Collis, 2002a,b; Collis and Ghayour, 2003;

Chen, 2004; Chen and Collis, 2004; Ramakrishnan and Collis,

2004; Ramakrishnan, 2005; Chen and Collis, 2008) and is a

modal DG implementation in which numerical quadrature is

used to accurately evaluate integrals in the resulting weak-

form. This is to be contrasted with the work of Dumbser,

Käser and co-workers who use a quadrature-free approach that

is particularly attractive for linear, constant coefficient systems

where exact integration can be used to improve computation-

ally efficiency. Unfortunately, the quadrature-free approach,

which is well-known in the the CFD community (Atkins and

Shu, 1997), comes with several important restrictions: only

simplicial meshes are allowed, curved elements are not sup-

ported, elements must have constant medium properties, and

nonlinearities lead to aliasing or the need for spatial filters.

While these constraints may at first seem daunting, there are

important problems (linear wave propagation through elemen-

twise homogeneous materials) for which these methods are

quite useful. Nevertheless, it is the opinion of the authors

that such an approach is not viable for seismic inversion where

sub-element level variations in material properties are required

– especially for the rather large element sizes that are ideally

used in high-order DG for the wavefield variables.

Our DG implementation removes these restrictions thereby al-

lowing hybrid meshes of quadrilateral and triangular elements,

curved boundaries to more accurately capture topology, and

high-order polynomial variations of material properties within

each element. A companion submitted abstract (T. M. Smith,

S. S. Collis, C. C. Ober, J. R. Overfelt, and H. F. Schwaiger,

personal communication, 2010) describes our variable media

DG implementation in more detail in the context of isotropic,

linear elasticity. For the acoustic equations presented here,

the formulation is analogous except that differentiability of

the medium properties within each element is not required

since the equations are solved in conservation form. We

recently reported simple verification studies for our DG imple-

mentation using manufactured solutions of the acoustic wave

equation (Ober et al., 2009) and, subsequently, the method has

been validated in both 2D and 3D against reference solutions

and time-domain finite-difference codes for both acoustic and

elastic physics. Due to space limitations, both the detailed

formulation and verification studies are not reported here, but

will be summarized in the associated presentation.

Our DG spatial discretization is used in conjunction with ex-

plicit time-stepping using a standard fourth-order Runge-Kutta

algorithm for both the state and adjoint equations where care

is taken to use a method that is self-adjoint. It should be

noted that the optimality conditions of this material inversion

problem are nonlinear and therefore a gradient-descent method

coupled with a line-search algorithm (Brent, 1973) is used.

A random phase-encoding scheme is implemented, equivalent

to the one developed by Krebs et al. (2009) in which re-

encoding is used on every iteration. Under these conditions, it

is not clear whether one can reliably use a conjugate-gradient

algorithm which requires a two-step recurrence. Therefore, we

use a simple steepest-descent approach here and future work

will explore the use of more advanced optimization algorithms.

Despite the possibly unattractive convergence properties of

steepest descent, the benefits of phase encoding (and thereby

simultaneously inverting multiple shots), far outweighs the

benefit of sequentially inverting for each source.

In this study, an explosion source is used of the form

φ(x,t) =

Ns
X

s=1

ωsw(t)ξs(x) (3)

where ωs ∈ {−1,1} is the random encoding scalar for source

s and w(t) is a Ricker wavelet defined by

w(t) = (1−2π2 f 2
p (t − t0))exp(−π2 f 2

p (t − t0)
2) (4)

and using fp = 5 Hz and t0 = 0.3 s. The spatial kernel is given

by a Gaussian ball centered at xs with standard deviation, σ ,

ξs(x) =

„

1

σ
√

2π

«N

exp

„ |x−xs|2
2σ2

«

(5)

where N is the number of space-dimensions (N = 2 for the

studies presented here). Receivers are also modeled using

the Gaussian kernel for ξr(x) and σ = 30m for the cases

presented here. Note that we could also have used a kernel

of the form ξs(x) = δ (x − xs) which would closely match

the formulation used by Krebs et al. (2009). However, Dirac

delta functions introduce a fundamentally unresolvable feature

within any discretized numerical implementation and we chose

to make sure that our problem setup was fully resolvable for

our initial studies. Future studies will explore point sources

and receivers.
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(a)

(b)

Figure 1: Marmousi2 earth model: (a) the true model with

20 m sampling and (b) the smoothed initial model.

RESULTS

Structured Mesh Inversion

We consider an inversion problem based on the Marmousi2

model (Martin et al., 2006), down sampled to 20 m over the

region 0 ≤ x ≤ 16000 m, and 0 ≤ y ≤ 3500 m as shown in Fig-

ure 1(a). The model has been padded on the bottom by 500 m,

not shown, so that a sponge-type (Grosch and Orszag, 1977)

non-reflecting boundary condition does not affect the lower

portion of the model. This padded region simply duplicates

values of the bottom of the model and produces a total model

depth of 4000 m. The sources are uniformly spaced at (xs =
s∗1000 m, 300 m) where 1≤ s≤ (Ns = 15), with simultaneous

random phase-encoding. The receivers are uniformly spaced at

(xr = r ∗200+500 m, 100 m) where 0 ≤ r ≤ (Nr = 75).

First consider a structured mesh composed of quadrilaterals

mimicking a standard finite-difference grid but with cell sizes

of 200 m. With 1,600 elements (80 × 20) and a polynomial

order of five, a total of 80× 20× (5 + 1)2 = 57,600 degrees

of freedom are used for each field variable, relative to 800×
200 = 160,000 for finite-difference at 20 m resolution. The

greater resolving power of DG affords a significant reduction

in degrees of freedom, both in the wavefield and in model

parameters. A free-surface boundary condition is enforced on

the ocean surface and a sponge-type, non-reflecting bound-

ary treatment along with first-order characteristic-based non-

reflecting boundary conditions are imposed on the sides and

bottom of the computational domain.

To obtain an initial model, the true model, shown in Fig-

ure 1(a), was smoothed using a damped least-squares method

where the smoothing operator at the top surface was 500 m

(vertically) by 1000 m (horizontally) and linearly increased by

a factor of four towards the bottom of the model. The initial

model is shown in Figure 1(b) and is similar to that used by

Krebs et al. (2009).

One method to reduce the computational costs is to start in-

version with a short-time horizon, T , to initially invert for

the shallow layers. This shortened time horizon reduces the

cost of the forward modeling and subsequently the inversion

algorithm. Once the shallow layers are fairly well resolved

(i.e., the reduction in the model-fit slows), one can increase T

to include additional data and then continue the inversion to

obtain additional details at depth.
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Figure 2: Influence of parameterization on model-fit conver-

gence in terms of c in units of m/s (first five curves). Model-

fit for different time horizons using inversion parameter S3

(fifth through eighth curves). Comparison of the polynomial

refinement and the unstructured mesh (last two curves).

We start with a time horizon of T = 2.67 s and begin by

investigating the influence of parameterization on the rate of

convergence. One such set of parameterizations are powers

of the wave speed, c. As shown in Figure 2, there is a clear

trend that negative powers of c lead to faster convergence in the

model-fit. The slowest convergence is observed when using

bulk modulus, κ = ρc2. Inverting directly for c leads to a

slight improvement in convergence. But, successive negative

powers of c, moving from slowness, S = 1/c, to compress-

ibility, β = 1/(ρc2) to S3 = 1/c3 each result in increased

rates of convergence in model-fits. While this suggests that S3

may be a particularly effective parameterization for acoustic

inversion of this model, additional investigations are required

to determine the generality of this result.

Figure 2 also shows the effect of increasing the time-horizon

from T = 2.67 s to T = 5.33 s. With more trace data, the T =

5.33 s case is better able to reduce the model-fit, however this

is with additional cost. At 300 iterations, the inverted model

from the T = 2.67 s time horizon was used as the initial model

to restart the T = 5.33 s time horizon run. As seen in Figure 2,

this restart method quickly approaches the original T = 5.33 s

time-horizon curve but at a computational savings of 23%.

Further savings could be achieved if additional restarts had

been employed with intermediate time-horizons. Inversions

were also performed using T = 8 s but no additional improve-

ment in model-fit was observed (see Figure 2).

The projected and predicted models are shown in Figure 3(a.1)

and (a.2), respectively, and are in good agreement. It should be

noted that the projected model is the best one could expect as

it shows what can be represented by the DG method using a

polynomial order of five on 200 m elements.

Inversion with Local Polynomial Refinement

In Figure 3(a) there are two areas of interest denoted with black

arrows. One is near a target region in the upper left quadrant

and the other is in the anticline region. Because of the thin
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Figure 3: Acoustic wave-speed for both (1) projected and

(2) predicted models using S3 inversion parameter at 400

iterations and T = 5.33 s: (a) uniform structured mesh; (b)

local p-refinement; (c) unstructured mesh at 215 iterations.

structure of the target, the media is not well represented on

the uniform mesh with 200 m elements and p = 5. Likewise,

in the anticline region, inter-element jump can be seen in

the predicted model (i.e., a slight discontinuous horizontal

behavior). These types of DG jumps at mesh boundaries

can be used as error-indicators that point to regions requiring

mesh refinement. Our future work will explore automated

solution adaptive inversion using jumps as error indicators.

Here, we do a proof-of-principle study by locally increasing

the polynomial order from p = 5 to 8 in these two areas

and re-running the inversion. Figure 3(b.1) shows that the

projection of the truth solution is indeed improved in these

two regions (e.g., the magnitude and size of the target region).

Figure 3(b.2) shows the predicted model on the p-refined mesh

with improved results around the target region and removal

of the inter-element jumps near the anticline. The model-fit

with local polynomial refinement is shown in Figure 2 and is

similar to that of the structured-mesh inversion confirming that

a global L2 measure is insensitive to these local improvements.

Unstructured Mesh Inversion

Discontinuous-material interfaces, such as ocean bottom, salt

structures, and faults, occur routinely in surveyed regions.

Traditionally, these interfaces are smoothed to allow for mesh-

Figure 4: Unstructured mesh aligning with faults, salt flanks

and selected layers.

ing as well as compatibility with high-order finite-difference

methods. Using unstructured DG methods, these interfaces

can be captured with the mesh to produce more accurate results

(see Figure 4). We used the Cubit (Clark, 2010) meshing

package to discretize the Marmousi2 model with a hybrid

mesh of triangles and quadrilaterals. The layers, faults and

salt structure were obtained through the original Marmousi2

model specification. In a real problem, this information would

be iteratively determined as part of the inversion, but here it

serves as a proof-of-principle for mesh-adaptive inversion.

Model-fit convergence is shown in Figure 2 with a trend sim-

ilar to the structured mesh cases. However, the magnitude

of the initial model-fit is higher than the structured mesh

results. Since the unstructured mesh exactly captures several

high-contrast geological features, it does a relatively better

job of representing the truth model, Fig. 1(a), then the struc-

tured mesh while the smooth initial model, Fig. 1(b), is well-

represented on all meshes thereby leading to a higher initial

model miss-fit. The better representation of the projected

truth model is clear when comparing Figure 3(c.1) to (b.1).

Figure 3(c.2) shows the predicted model (after 215 iterations)

for the unstructured mesh which is similar in quality to the

structured mesh in most regions of the model. The target

region is not as well represented since the mesh is relatively

coarse there (see Figure 4). A careful examination of the fault

regions suggest that the unstructured mesh is better able to

represent these features for inversion but additional work is

needed to fully exploit the potential of unstructured meshing.

CONCLUSIONS

Time-domain inversion using discontinuous Galerkin on un-

structured meshes and with local polynomial refinement is

shown to better capture localized geological features and ac-

curately capture discontinuous-material interfaces. These ap-

proaches provide the ability to surgically refine representations

in order to improve predicted models for specific geological

features. Our future work will entail automated extensions to

directly incorporate local refinement and adaptive unstructured

meshes within the inversion process.
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Käser, M., V. Hermann, and J. de la Puente, 2008, Quantitative

accuracy analysis of the discontinuous Galerkin method for

seismic wave propagation: Geophysical Journal Interna-

tional, 173, 990–999.

Krebs, J. R., J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee,

A. Baumstein, and M.-D. Lacasse, 2009, Fast full wave

seismic inversion using encoded sources: Geophysics, 74,

177–188.

Martin, G. S., R. Wiley, and K. J. Marfurt, 2006, Marmousi2:

An Elastic Upgrade for Marmousi: The Leading Edge, 25,

156–166.

Ober, C. C., S. S. Collis, B. van Bloemen Waanders, and

C. Marcinkovich, 2009, Method of manufactured solutions

for the acoustic wave equation: SEG Technical Program

Expanded Abstracts, 28, 3615–3619.

Park, S.-H., and N. Antin, 2004, A discontinuous Galerkin

method for seismic soil-structure interaction analysis in

the time domain: Earthquake Engineering and Structural

Dynamics, 33, 285–293.

Ramakrishnan, S., 2005, Local variational multiscale method

for turbulence simulation: PhD thesis, Rice University.

Ramakrishnan, S., and S. S. Collis, 2004, Multiscale modeling

for turbulence simulation in complex geometries: AIAA

Paper 2004-0241.

Reed, W. H., and T. R. Hill, 1973, Triangular mesh methods

for the neutron transport equation: Technical Report LA-

UR-73-479, Los Alamos Scientific Laboratory.

Tarantola, A., 2005, Inverse problem theory and methods for

model parameter estimation: SIAM.


