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[1, 2, 4, 5, 11, 12, 16, 17, 21, 26, 31, 32]. There have been far fewer papers concernedwith the e�cient computation of the QR factorization, Householder tridiagonaliza-tion, or the eigenvalue problem [7, 8, 22, 37]. Fewer still have tried to address densematrix algorithms in general.Early implementations of dense matrix algorithms, and in particular the LU fac-torization, mostly used row or column decompositions in which entire rows or columnsof the matrix were assigned to individual processors [17, 18, 21, 26]. The columnsor rows that a processor owned were usually \wrapped" or scattered throughout thematrix to obtain good load balancing. On computers with 64 to 128 processors, thee�ciencies of these algorithms were usually between 50% and 75% for the largestproblems that could be stored on the machines, but the algorithms did not scaleparticularly well as the number of processors increased [17, 21].An alternative method for assigning matrix elements to processors is the torus{wrap mapping. Variants of this assignment scheme have been independently dis-covered by several researchers, and consequently given a number of di�erent namesincluding cyclic [23], scattered [15], grid [36], and subcube{grid [8], as well as torus{wrap [30]. The mapping was �rst described by O'Leary and Stewart in a data-owcontext [29, 30], and the synergy between the torus{wrap mapping and the hyper-cube topology was observed by Fox [14, 15]. Variants of the torus{wrap mappinghave been used in high performance LU factorization codes on a number of di�erentmachines [3, 4, 6, 9, 27, 35, 36]. Assuming each matrix element is stored on only asingle processor, Ashcraft built on work by Saad to show that for LU factorization, thetorus{wrap mapping exhibits communication properties within a constant factor ofoptimal [1, 32]. (Ashcraft has recently devised an algorithm with lower order commu-nication that violates this nonduplication assumption, but it requires an impracticalfactor of p1=3 additional storage, where p is the number of processors [2].) Variousalgorithms for QR factorization employing the torus{wrap mapping have been de-scribed that use Givens rotations [8], modi�ed Gram{Schmidt [37] and Householderreections [22, 27]. A torus-wrap mapping algorithm for Householder tridiagonaliza-tion is described in [7]. A triangular solve algorithm using this mapping that achievesasymptotically optimal performance is presented in [5, 28]. Because of its scalingproperties, the torus{wrap mapping has been suggested as the basic decompositionfor parallel dense linear algebra libraries [13].Despite the evident recent popularity of the torus{wrap mapping for a numberof di�erent dense linear algebra implementations, a careful analysis of the strengthsand weaknesses of the mapping has been lacking. One purpose of this paper is toprovide such an analysis, including communication overhead, memory requirementsand load balancing issues. Our approach is to identify the critical computation andcommunication components of dense matrix operations on distributed memory com-puters and then to analyze the impact of di�erent mappings on the performance ofthese components. Thus, the results in this paper are more general than much of thecurrent literature, and we anticipate that our analysis will provide a basis for futureresearch in this area.Another purpose of this paper is to explore the practical aspects of implementa-tions of dense matrix algorithms using the torus{wrap mapping. Three algorithmsare actually implemented for this end, LU factorization, QR factorization and House-holder tridiagonalization. Using these implementations, we compare the performanceof a range of torus{wrap mappings with that of the row{wrap and column{wrap map-pings, and we examine the scalability of the torus{wrap mapping to large numbers2



of processors using numerical results obtained on a 1,024{processor nCUBE 2. Wealso present models of performance for these three implementations that allow us toexamine such e�ects as communication/computation overlap and the e�ect of vectorlengths on communications and on the BLAS operations. These models then allowus to predict the optimal torus{wrap decompositions.In x2, we characterize the basic operations required for dense matrix algorithmsand their implications in the parallel computing environment; deriving lower boundson required inter-processor communication. We de�ne the torus{wrap mapping inx3 and describe its relationship to more familiar decomposition schemes. In x4, wediscuss in more detail the properties of the torus-wrap decomposition, including itscommunication requirements, scalability, and compatibility with the standard BLASroutines. We present data from implementations of several di�erent dense matrix al-gorithms in x5. These results clearly show the advantages of the torus{wrap mapping.Conclusions are presented in x6.2. Dense linear algebra operations and communication. Nearly all denselinear algebra algorithms consist of a sequence of fundamental operations that trans-form a matrix into somemore desirable form. The two most important such operationsare Gauss transformations and Householder reections. These operations generallydominate the computational e�ort in a dense linear algebra algorithm, so their e�cientexecution is essential for good performance. On a message passing multiprocessor theexecution time of an algorithm can depend greatly upon its communication patterns,so minimizing the communication for these fundamental operations is important forachieving good parallel performance [23, 24, 33].To understand the communication required to perform Gauss and Householdertransformations, consider Fig. 1, where A is an m � n matrix, u is an m{vector andv an n{vector. Under either a Gauss transformation or a Householder reection (ora Gauss{Jordan transformation), each element of A is updated by the outer{productof u and v; that is Aij  Aij + uivj . The di�erence between the algorithms is inthe construction of u and v, which is a lower order operation in both computationand communication. The outer{product update of an element of A depends uponthe element of u directly to its left and the element of v above it. The processorthat calculates the new value for Aij must know the old Aij as well as ui and vj ,which may require some communication. We will establish a lower bound on the totalcommunication volume for this operation, which is a subset of the communicationrequired to perform a Gauss or Householder transformation.vTu AFig. 1. Structure of Gauss and Householder transformations.We denote by N (q) the number of matrix elements owned by processor q, and letp be the total number of processors. We will assume that(i) each element of A (and of u and v) is owned by a single processor, and(ii) the matrix elements are balanced; that is, for each processor q, N (q) � �mn=p3



for some constant � > 0.We de�ne the communication volume, VC , of an algorithm to be the total length ofall the messages the algorithm requires. For numerical algorithms, messages typicallyconsist of oating point numbers, so the lengths are most naturally measured in termsof number of oating point values. The following theorem is a generalization of resultsfound in [32].Theorem 2.1. Under Assumptions (i) and (ii) above, the communication volumerequired to execute a Gauss, Householder or Gauss{Jordan transformation is at least2p�pmn � (m + n).Proof. Each element in the matrix needs the value of v above it and the value ofu to its left. Let tri denote the number of processors owning elements of row i and tcjbe the number of processors owning elements of column j. To transmit ui (or vj) toall the processors in row i (or column j) requires at least tri � 1 (or tcj � 1) messagesof length 1, so the communication volume can be bounded byVC � mXi=1(tri � 1) + nXj=1(tcj � 1):(1)Now we denote by srq (and scq) the number of rows (and columns) of which processorq owns at least one element. It follows from the de�nitions that Ppq=1 srq =Pmi=1 tri ,and Ppq=1 scq =Pnj=1 tcj . Substituting these identities into (1) yieldsVC � �(m + n) + pXq=1(srq + scq)� �(m + n) + pXq=1 2psrqscq :Assumption (ii) ensures that for each q, srqscq � N (q) � �mn=p, soVC � �(m + n) + pXq=1 2p�mn=p= 2p�pmn� (m + n):Corollary 2.2. Under Assumptions (i) and (ii) above, the communication vol-ume required to execute a Gauss, Householder or Gauss{Jordan transformation on asquare n� n matrix is at least 2n(p�p� 1).Ashcraft has recently proposed an LU factorization algorithmthat requires �(p1=3n2)communication volume, but it violates Assumption (i) [2]. This algorithm is imprac-tical in its current form, requiring an extra factor of p1=3 storage.The lower bound expressed in Theorem 2.1 is attainable, up to a constant factor.For simplicitywe let m and n be divisible bypp, and assume thatm+n � min(m;n)for some constant . If we assign each processor a dense rectangular block of thematrix of size (m=pp)� (n=pp), then � = 1, and each row and each column will beowned by only pp of the processors. The total communication volume involved inbroadcasting a row will be n(pp� 1), and for a column m(pp� 1), implying a totalof (n + m)(pp � 1) � pmnp � (m + n), which is within a constant factor of thebound from Theorem 2.1. 4



We note that if each column (or row) of the matrix is owned by a single processor,then a Gauss or Householder transformation requires the broadcast of that column(or row) to all other processors. This involves a communication volume of m(p � 1)(or n(p � 1)). Assuming again that m + n � min(m;n) for some constant , thisvolume is at least (2=)pmn(p� 1), which is larger than the lower bound by �(pp).Finally, we observe that the results in this section are a consequence of the factthat dense linear algebra operations can be formulated to require only a restrictedform of communication. Values must be exchanged within each row of the matrix andwithin each column. Any operation that involves this communication pattern will beamenable to a similar analysis.3. The torus{wrap mapping. Most of the previous work on parallel denselinear algebra has involved assigning elements of the m � n matrix A to processorsusing columns, rows or blocks. In a column (or row) scheme, entire columns (orrows) of the matrix are assigned to a single processor. One possibility is to havecolumns 1 through n=p assigned to processor zero, columns n=p + 1 through 2n=passigned to processor one and so on. Since most matrix factorizations work from leftto right, decreasing the number of active columns, this scheme has the disadvantagethat processor q has no work left to do after column (q+1)n=p is processed. For thisreason, it is preferable to assign columns 1, p+1, 2p+1; . . . to processor zero, columns2, p+2, 2p+2; . . . to processor one, and so forth to form what is known as a column{wrap mapping. Column{wrap (and row{wrap) mappings have been the most widelyused choice for dense linear algebra algorithms, but as noted in x2, row and columnmethods require �(pp) more communication volume than necessary. For machineswith a small number of processors, the simplicity of these mappings may outweighthe communication drawbacks, but for massively parallel machines this factor of ppcan be very important.In block schemes, each processor is assigned a single dense rectangular submatrix.Many di�erent block mappings are possible involving di�erently shaped rectangularsubmatrices and di�erent assignments of blocks to processors. As mentioned in x2,block schemes can come within a constant of achieving the lower bound on communi-cation volume. However, they have the same problems with idle processors that thenonwrapped row and columnmethods have. Hybrid block{column{wrap or block{row{wrap mappings are also possible. In these mappings, instead of owning a scatteredset of single columns (or rows), a processor owns a scattered set of several adjacentcolumns (rows).An analogy with row and column methods suggests wrapping a block mappingin both rows and columns. The result is what we will call the torus{wrap mapping.As there are many di�erent block mappings, there are correspondingly many torus{wrap mappings. If the number of processors, p, can be factored as a product ofpr and pc, then we can construct a block mapping in which the blocks are of size(m=pr) � (n=pc). For any appropriate pr and pc values, we get a block mappingand its torus{wrap counterpart. We note that in the limiting cases the torus{wrapmapping reduces to a row{wrap mapping (when pr = p and pc = 1), or a column{wrap mapping (when pc = p and pr = 1). We call the special case in which pr = pca square torus{wrap mapping. If it is not the case that m is divisible by pr and n bypc then some processors will own one more row and/or column than others.Another choice in a block mapping occurs when deciding which blocks get assignedto which processors. Because communication in dense linear algebra algorithms occurspredominantly within rows or within columns, it is convenient to assign blocks in such5



0 1 2 3 0 1 2 34 5 6 7 4 5 6 78 9 10 11 8 9 10 1112 13 14 15 12 13 14 1516 17 18 19 16 17 18 1920 21 22 23 20 21 22 2324 25 26 27 24 25 26 2728 29 30 31 28 29 30 310 1 2 3 0 1 2 34 5 6 7 4 5 6 7Fig. 2. Processors owning matrix elements in a natural torus{wrap.a way that communication among the set of processors owning a row (or column) ise�cient. With mesh architectures, this is achieved by constructing a set of blocksthat reect the shape of the processor array. If the mesh is constructed as a rectangleof pr � pc processors, then the blocks are of size (m=pr)� (n=pc), which are assignedto processors in the natural way. The rows and columns are then wrapped to generatethe corresponding torus{wrap assignment. This constitutes what we will call a naturaltorus{wrap mapping, and ensures that row (or column) communication occurs entirelywithin rows (or columns) of the processor mesh. An example of the natural torus{wrap is depicted in Fig. 2, where the mesh is of size 8� 4, and the value displayed ateach location is the processor that owns the corresponding matrix entry.For hypercubes, we can exploit the fact that a d{dimensional hypercube can beviewed as the product of two hypercubes of dimensions dr and dc, where dr + dc = d.This is accomplished by dividing the bits of the processor identi�er into two sets, brand bc of cardinality dr and dc respectively. The bits of br can be associated with therow numbering of the matrix elements, and those of bc with the column numbering.That is, all the processors owning elements from a single row of A have the samebr bits, and all processors with elements from a column have the same bc bits. Thisassignment scheme ensures that communication within a row involves changing onlybits of bc, while communication within a column involves only bits of br. So each rowof the matrix lies within a subcube of dimension dc, and each column in a subcubeof dimension dr. In this way, a total of pc = 2dc processors are assigned elements ofeach row, and pr = 2dr processors are assigned elements of each column.One method for assigning processor numbers on a hypercube is to take the rownumber of a matrix element, subtract one, express the result modulo pr, and thentake the Gray code of the resulting dr bit number. (For a discussion of Gray codes, see[15].) Performing the analogous calculation on the column bits, and assigning matrixelements to the resulting processors generates the Gray{coded torus{wrap, which isdiscussed in detail by Chu and George in [8]. An example corresponding to Fig. 2 isdepicted in Fig. 3. The advantage of the Gray{coded torus{wrap is that neighboringelements of the matrix are owned by neighboring processors. More formally, a Gray{coded torus{wrap embeds a pr by pc mesh into a hypercube.Figures 2 and 3 indicate another way to de�ne the torus{wrap mapping. Theassignment pattern of the leading pr by pc submatrix de�nes a tile, and the entirematrix is covered by copies of this tile in the obvious way.An important generalization of the torus{wrap mapping is the block{torus{wrap,in which the matrix is �rst decomposed into a collection of blocks of size �1 � �2.Each block is assigned to a single processor, in such a way that the distribution of6



0 1 3 2 0 1 3 24 5 7 6 4 5 7 612 13 15 14 12 13 15 148 9 11 10 8 9 11 1024 25 27 26 24 25 27 2628 29 31 30 28 29 31 3020 21 23 22 20 21 23 2216 17 19 18 16 17 19 180 1 3 2 0 1 3 24 5 7 6 4 5 7 6Fig. 3. Processors owning matrix elements in a Gray{coded torus{wrap.blocks mirrors the distribution of elements in a torus{wrap mapping. We note thatthe torus{wrap is a special case of the block{torus{wrap in which �1 = �2 = 1.The block{torus is a natural generalization of block{row and block{column methods.Using blocks instead of single elements has both advantages and disadvantages, aswill be discussed in the next section.It is convenient to notice that for all the mappings considered above, each proces-sor is assigned precisely the matrix elements that lie in the intersection of a particularset of rows and columns. Bisseling and van de Vorst call mappings with this propertyCartesian [4]. Merely specifying a set of row indices and column indices for eachprocessor uniquely de�nes a Cartesian mapping. Under a block mapping, a processoris assigned a consecutive set of row indices and a consecutive set of column indices.In a torus{wrap mapping, the row indices assigned to a processor constitute a linearsequence separated by pr , and the column indices a sequence with step size pc. In arow (or column) mapping, each processor is assigned all of the column (or row) indicesand a subset of the row (or column) indices.We conclude this section by observing that a matrix distributed among processorsin a torus{wrap format can be viewed as a permutation of a matrix distributed in ablock scheme. Speci�cally, a matrix Ab distributed in a block{wrap format can betreated as �T1At�2, where �T1 and �2 are permutation matrices and At is a matrixdistributed in a torus{wrap format. This equivalence allows for a di�erent inter-pretation of the torus{wrap mapping. As observed in [27], a standard factorizationalgorithm on At can be viewed as a factorization of Ab in which the rows and columnsare eliminated in a permuted order. An important result of this observation is thatis possible to take advantage of the attractive properties of a torus{wrap mappingwithout necessarily having to redistribute the matrix among processors. For exam-ple, a block system can be solved by a routine that assumes a torus{wrapped system,and the result is correct up to permutations. More precisely, A�1b x = �T2A�1t �T1 x,so a block mapping can be made to perform like a torus{wrap mapping, withoutredistributing the matrix, by merely permuting the right hand side and the solutionvectors.4. Virtues of the torus{wrap mapping. The torus{wrap mapping has anumber of distinct advantages over the more conventional assignment schemes. Thesevirtues become increasingly important as the number of processors increases. Gener-ally, the torus{wrap mapping requires less communication than row or column schemesand it has excellent load balancing properties. These advantages will be discussed in7



detail in the following subsections, and their impact on performance of a collection oflinear algebra algorithms will be presented in x5. Many of these issues are familiar toresearchers who have used the torus{wrap mapping and have been touched upon ina number of publications describing speci�c implementations.4.1. Communication volume. The square torus{wrap mapping allows Gaussand Householder transformations to be executed with a total communication volumeof �(pmnp), which is within a constant factor of optimal. Row and column schemesrequire about a factor of pp more communication. We note, however, that if the ma-trix or the number of processors is small, message startup time dominates the messagetransmission time so that this factor of pp is not seen. Also, when p is small, the re-duced communication volume may not compensate for the increased complexity of thetorus{wrap. The direction of high performance computing is towards large problemsand massive parallelism, so the factor of pp will become increasingly important.Most linear algebra algorithms involve a sequence of about �m Gauss or House-holder transformations, where �m = min(m;n). This implies an overall communicationvolume of �( �mppmn) for torus{wrap, and �(p �mpmn) for row and columnmappings.The number of oating point operations (ops) is typically �( �mmn), which, if bal-anced, implies �( �mmn=p) per processor.If we wish to solve larger problems by increasing the number of processors withoutincreasing the memory of each processor, then the largest problem we can solve hasmn = cp for some constant c. This implies that the number of ops per processoris �( �m) and the torus{wrap communication volume is �(p �m), while the row or col-umn communication volume is �(p1:5 �m). All contemplated interconnection networksfor massively parallel machines have 
(p) wires, so the torus{wrap communicationrequirements have the potential to scale well. However, no proposed network has
(p1:5) wires, so row and column schemes will eventually be limited by communica-tion. Similar but more detailed analyses for LU factorization can be found in [1, 4].This advantage is not speci�c to Gauss and Householder transformations. Theproof of Theorem 2.1 can be applied to any operation that requires communicationwithin rows and columns, implying that such operations can be performed with nearoptimal communication volume using a torus{wrap mapping.4.2. Communication parallelism. Although helpful for scaling analyses, com-munication volume may not be a particularly useful metric for performance modelingbecause it ignores any overlap in the communication operations. It is often the casethat several messages can be transmitted simultaneously on di�erent communicationchannels. To correctly predict performance, the times required by these overlappingmessages should not be added. We de�ne the e�ective communication volume of analgorithm to be the total length of all the messages that are not overlapped. Thee�ective communication volume is a good estimate of the time required for communi-cation operations when most messages are long so message startup time is negligible.This is the case for most dense linear algebra algorithms on large matrices.With a torus{wrap mapping, the transmission of a column involves pr overlap-ping broadcasts to pc � 1 other processors. Assuming a logarithmic broadcast and amessage length of m=pr, this results in an e�ective communication volume of dcm=pr .Similarly, the transmission of a row requires an e�ective volume of drn=pc. Whendc = dr = d=2, the combined e�ective volume is d(m + n)=(2pp), but for the lim-iting cases of row or column mappings, it is dn or dm respectively. If m and n areabout equal, the square torus{wrap mapping has an e�ective communication volumeof about a factor of pp less than that of row or column mappings. When the matrix8



is not square, or the row and column communication loads are not exactly equal, anonsquare torus{wrap mapping may be best. This will be the case for some of theexamples we consider in x5.Since it roughly approximates communication time, the e�ective communicationvolume allows us to investigate the proportion of execution time devoted to commu-nication. For dense factorizations of square matrices the sequential operation countis usually �(n3), so if the load is well balanced the time spent performing these op-erations should be �(n3=p). A dense factorization typically requires �(n) Gauss orHouseholder transformations, so the ratio of e�ective communication volume to par-allel operation time is �((drpr + dcpc)=n). For row or column schemes, this impliesthat the ratio of communication time to compute time grows as �(dp=n), but for asquare torus it only grows as �(dpp=n). Assuming that each processor has �nitememory, n can only grow as pp. In this case, the relative cost of communicationscales as �(dpp) for row and column mappings, but as �(d) for a square torus. Theproportion of time spent on communications grows much more slowly for a squaretorus than for row or column mappings, allowing scalability to much larger machines.For hypercubes, there are sophisticated broadcast schemes that manage to over-lap communications more e�ectively than simple logarithmic broadcasts [24]. Thesealgorithms use all of the wires in a cube (or subcube) to perform a broadcast. Us-ing these algorithms, the row and column transmissions involve a combined e�ectivecommunication volume of m=pr + n=pc. When n and m are about equal, a squaretorus is still better than a row or column method by about a factor of pp=2.4.3. Message queue overhead. Row or column schemes require broadcasts ofentire rows or columns of the matrix. Torus{wrap methods only require broadcasts ofsubsets of rows and columns with lengths n=pc and m=pr . To exploit the advantagesof asynchronous communications, a processor that expects to receive a message musthave space reserved for it. The amount of reserved space is less for a square torusthan for a row or column mapping by a factor of about pp. This leaves more spacethat can be devoted to other things, like storing matrix elements. Consequently,the torus{wrap mapping allows larger problems to be solved than row or columnmappings.With block{torus{wrap methods, sets of blocks are broadcast together. The to-tal communication volume is unchanged, as is the e�ective volume, but since sets ofcolumns (or rows) are broadcast together, the number of startups is decreased andthe lengths of messages are increased by a factor of �2 (or �1). This reduces the totalcommunication time, but increases the amount of memory required for communica-tion.4.4. BLAS compatibility. Much work has been done developing a standardset of basic linear algebra subprograms or BLAS, which are available as a high per-formance library on many machines [10, 25]. The BLAS were devised with densevectors or matrices in mind, but with the torus{wrap mapping each row and columnis scattered. Although processors do not own any consecutive portion of the matrix,the submatrix assigned to each processor is rectangular and can be stored in a densematrix format. For all the operations required for Gauss, Householder and Gauss{Jordan transformations, this submatrix can be treated as dense, which allows the useof levels one, two and three BLAS operations.4.5. Load imbalance. To achieve optimal performance from a parallel com-puter, it is important that each processor has nearly the same total amount of work9



to do; that is the computational load must be balanced. For most dense matrix al-gorithms, the total number of oating point operations that have to be performed toupdate matrix element A(i; j) is proportional to min(i; j). We will de�ne the load ofelement A(i; j) as min(i; j) and the load on a processor as the total load of all theelements it owns. Under a torus{wrap mapping, if A is an m � n matrix, the mostheavily loaded processor will be the one owning element A(m;n), and the least loadedwill be the processor that would own A(m + 1; n + 1) if A were larger. We denotethe former processor by q and the latter by s, and let their loads be W (q) and W (s)respectively. We are interested in � = W (q)�W (s).We observe that except for entries in the last row or last column ofA, each elementowned by q has a neighbor down and to the right that is owned by s. Similarly, withthe possible exception of elements in the �rst row or �rst column, each value owned bys has a neighbor owned by q to the upper left. Each such pair of elements contributesa value of �1 to �. If we denote the number of pairs by Np, then� = �Np +Wm;n(q)�W1;1(s);where Wi;j(x) is the load on processor x from elements in the row i and elements inthe column j of the matrix.We denote the �rst row partially owned by processor q in the torus{wrap mappingas r0, and the corresponding �rst column as c0. We assume for concreteness thatm � n; the other case is analogous. The values of Np and W1;1(s) are easy tocompute. To compute Wm;n(q) we separately sum the contributions from elementsin the last row, elements in the last column that are above the diagonal, and theremaining elements in the last column on or below the diagonal. Some algebra givesthe following result.Np = (m � r0pr )(n� c0pc ) = (m� r0)(n � c0)=p;W1;1(s) = bc0=pccbm=prc + br0=prcbn=pcc � bc0=pccbr0=prc;Wm;n(q) = (n+ c02 )(n � c0pc + 1) + dn � r0pr e(r0 + pr2 (dn � r0pr e � 1)) + nbm � npr c:In the limit as m, n, and p become large W1;1 becomes negligible, as do r0 and c0, so� approaches n2=(2pc) + n(m� n=2)=pr �mn=p. (If n > m the corresponding resultis � = m2=(2pr) +m(n�m=2)=pc �mn=p.) For a square matrix, this maximal loadimbalance reduces to n2(pr+pc�2)=(2p). So for a square matrix, a square torus{wrapinduces less load imbalance than a row{wrap or column{wrap by a about a factor ofpp=2. A similar conclusion is reached for parallel LU factorization by Bisseling andvan de Vorst in [4].Assuming that each processor has �nite memory, then for square matrices n cangrow as pp. Since the number of ops grows as n3, the run time should scale roughlyas n3=p, which is proportional to pp. The maximum load imbalance scales as pr+pc,which is p for row or columnmappings, butpp for a square torus{wrap. Consequently,the proportional load imbalance increases aspp for row or columnmappings, but staysconstant for a square torus{wrap.Similar results apply for a block{torus mapping. For simplicity in the analysis,we assume that �2 = �1 = �, and that n and m are both divisible by �. In thiscase, we can generalize the previous analysis by counting blocks instead of singleelements. Letting the Np and Wi;j notation now apply to entire blocks, Np scaleslinearly with � because the workload imbalance associated with a pair of diagonally10



adjacent blocks increases as �3, but the number of blocks decreases as �2. Similarly,Wm;n increases by about a factor of �, while W1;1 increases by about a factor of �2=2.Since the the contribution of W1;1 to � is negative, the growth in the load imbalancewith delta is at most linear. For large m, n and p, and small �, the Np and Wm;nterms will dominate W1;1, so the load imbalance from a block{torus scheme withsquare blocks will approach �fn2=(2pc)+n(m�n=2)=pr�mn=pg, where m � n. Theimportant conclusion is that if the block sizes are small, the maximal load imbalanceis proportional to the linear dimension of the blocks.4.6. Processor idle time. Even if all the processors have the same total amountof work to do, the overall calculation will be ine�cient unless each processor alwayshas something to work on. Algorithms using Gauss or Householder transformationsusually begin by computing a function of the �rst column (or row) of the matrix; thenorm for Householder and the largest element for Gauss. If this �rst column (row)is not distributed, as in a column (row) mapping, then the other processors need towait until this calculation is complete. This problem is exacerbated by using a block{column (or block{row) approach to allow level three BLAS, since several columns(rows) must be manipulated before the other processors have any work to do. Atorus{wrap mapping allows some parallelism in the processing of each column or rowwhich reduces this potential idle time problem. With a block{torus{wrap mapping,the idle time at the beginning of the calculation grows linearly with �1 or �2.Most factorizations eliminate the rows and/or columns of the matrix in order,from left to right and top to bottom. As the factorization nears completion, onlyprocessors that still own active matrix elements have work to do. With column(or row) schemes, processors begin to drop out when there are p columns (rows)remaining. Block methods are even worse. With the torus{wrap, however, all theprocessors stay active until there are only pc columns (or pr rows) left to eliminate.If the matrix has p more (fewer) rows than columns then a row{wrap (column{wrap)mapping avoids this problem, but for the important special case of square and nearlysquare matrices, the torus{wrap mapping allows greater parallelism near the end ofthe computation. As at the beginning, with a block{torus{wrap the idle time at theend of the calculation grows linearly with �1 or �2.5. Numerical results. In this section, we discuss the implementations of threedense matrix algorithms, LU factorization, QR factorization, and Householder tridiag-onalization. For each of these examples, we investigate the performance implicationsof using di�erent mapping schemes, both analytically and experimentally. All nu-merical experiments were performed in double precision C on a 1,024 node nCUBE 2hypercube at the Massively Parallel Computing Research Laboratory at DOE's San-dia National Laboratory.Our algorithms require only very simple communication patterns consisting ofbroadcast, collect, and binary exchange operations. We implemented each of thesefunctions in a simple, generic way so that the resulting code should run on any archi-tecture. Although our timings given are for a speci�c computer, the broad conclusionsshould be appropriate for other machines. For hypercubes there are asymptoticallymore e�cient communication algorithms as was alluded to in x4.2, but our implemen-tations do not exploit them.5.1. LU factorization. Our �rst example is LU factorization with partial piv-oting of a dense n � n matrix A. This the most important factorization in linearalgebra as it is a very e�cient method for solving systems of linear equations. There11



are several variants of LU factorization, each requiring 2n3=3 + O(n2) ops. Our al-gorithm uses the column{oriented, kij version as described in [19]. The algorithm issummarized in Fig. 4, where Roman subscripts denote integers and Greek subscriptsdenote sets of integers.Processor q owns row set � and column set �For j = 1 to n(� Find pivot row �)If j 2 � Then(� Compute maximum of entries in column j �)q := maxi2� jAi;jjBinary exchange to compute  = maxq qs := index of row containing the entry (� Generate update vector, v, from column j of A �)If j 2 � ThenA�;j := A�;j=v� := A�;jBroadcast column v� and s to processors sharing rows �Else Receive v� and s(� Exchange pivot row and diagonal row, and broadcast pivot row �)If j 2 � ThenSend w� = Aj;� to processor owning As;�If s 2 � ThenReceive w�u� := As;�Broadcast row u� to processors sharing columns �As;� := w�Else Receive u�If j 2 � ThenAj;� := u�If j 2 � and j 2 � ThenA(j; j) = A(j; j) �  (� Restore diagonal �)� := � n fjg (� Remove j from active rows �)� := � n fjg (� Remove j from active columns �)A�;� := A�;� � v�u�Fig. 4. Parallel LU factorization for processor q.Our implementation of this algorithm incorporates double precision arithmeticand uses a Gray{coded torus{wrap mapping. As presented, this algorithm can be usedwith any Cartesian mapping, but in practice, block algorithms would be modi�ed tosend fewer, larger messages. The algorithm can be easily modi�ed for a block{torus{wrap mapping, but since nCUBE only supports level one BLAS, we did not investigatethis possibility. Improvements in performance have been observed on other machinesusing block algorithms [35]. To minimize the time spent waiting for the determination12



and broadcast of pivot elements our algorithm employs a compute{ahead technique.The processors owning the next column in the matrix generate and send the pivotinformation before updating the remainder of their elements.The nCUBE 2 has 1,024 processors arranged in a ten dimensional hypercube.Each processor has four Mbytes of memory, which must be divided between the op-erating system, code, data and communication bu�er. Using the optimal distributionof data among the processors, we can allocate about 3.8 Mbytes for data storage inour code. This means that the largest double precision, dense matrix that can befactored in core is about 22,000 � 22,000. Factoring the Linpack benchmark matrixof this size requires 3612 seconds (1.96 Gop/s), using a processor decomposition inwhich pc = 64 and pr = 16, which is the optimal decomposition of 1,024 processorsfor this size problem as will be seen later in this section.To investigate the e�ect of the di�erent torus{wrap decompositions on scaling weneed to use a matrix that can be stored on fewer than 1,024 processors. We factoredan 8; 000 � 8; 000 matrix with di�erent numbers of processors and the results arepresented in Table 1. We note that although we can store a matrix of size n = 11; 000on 256 processors, the communication bu�er requirements of the nonoptimal row andcolumn distributions require that we reduce the size of the matrix, as was discussedin x4.3. Table 1. Run times on the nCUBE 2 for LU factorization of an 8,000� 8,000 matrix.256 processors 512 processors 1,024 processorspc pr seconds pc pr seconds pc pr seconds1 256 2568 1 512 2406 1 1,024 23942 128 1335 2 256 1064 2 512 9534 64 930 4 128 624 4 256 4838 32 777 8 64 462 8 128 30716 16 719 16 32 396 16 64 23732 8 706 32 16 372 32 32 20764 4 729 64 8 376 64 16 201128 2 806 128 4 412 128 8 215256 1 996 256 2 506 256 4 260512 1 712 512 2 3641,024 1 589We can model the performance to gain insight into the scaling properties and theoptimal balance between pc and pr. There are four major contributions to the runtime of the LU factorization code: a pivot entry search and pivot column update, arow broadcast, a column broadcast, and an outer{product update of the unfactoredsubmatrix. We will need the following values taken from the nCUBE 2 manuals forour model.Variable Description MicrosecondsTc;a message startup time 100.Tc;b transmission time per double precision number 4.00Tp;a startup time for pivot operations 16.3Tp;b computational time for pivot operations (per element) 1.955Td;a startup time for a daxpy 11.0Td;b computational time for a daxpy (per element) 0.964With these variables, the total time spent computing the outer{product updates of13



the unfactored portion of the submatrix using the column{oriented daxpy can bemodeled as Tupdate = n22pcTd;a + n33pTd;b:The time spent on pivot entry searches, which includes a local search and a binaryexchange by those processors containing part of a column, and pivot column updatescan be approximated byTpivot = nTp;a + n22pr Tp;b + drn(2Tc;a + 3Tc;b);where we recall that dr and dc are the dimensions of the subcubes to which columnsand rows are assigned, respectively. The time for a logarithmic broadcast of the pivotrow is about Trow = dr �nTc;a + n22pcTc;b� :Finally, the time for a logarithmic broadcast of the pivot column is approximated byTcolumn = dcnTc;a + n22pr Tc;b:The total run time, Ttotal, is modeled by summing the four contributions above.We note an important di�erence between the contributions to the overall run timeof the row broadcasts and the column broadcasts. If the processor holding columnj+1 is the �rst processor to complete its portion of the broadcast of the pivot column,then the search for the pivot and update of column j + 1 can be overlapped with theremaining stages of the broadcast of column j. When a Gray{coded torus{wrapmapping is used on a hypercube, the processors holding column j + 1 are neighborsof those owning column j. Consequently, a logarithmic broadcast can be structuredin such a way that the processors owning column j + 1 quickly receive column j andthen have no further participation in the broadcast. Thus the factor dc multiplies onlythe startup time in the contribution to the total run time. The row broadcast, onthe other hand, cannot be overlapped with any computations (without destroying theload balance of the algorithm) so that dr multiplies both the startup and transmissiontime contributions to the total run time.The data from Table 1 is shown graphically in Fig. 5, where instead of the runtime, the vertical axis is the Mop/s rate achieved. To generate these values, we usedthe number of ops required by the sequential algorithm, about 3:41� 1011.We observe that the optimal distribution is not achieved at dc = dr. Qualitatively,the major reason for this is the fact that column broadcasts can be overlapped withcomputations while row broadcasts cannot. Tupdate and Tpivot also contribute to thisphenomenon since the startup time for column operations is reduced by increasing dc,and the communication time required to �nd the pivot element (which is the dominantterm in Tpivot) is reduced by decreasing dr.This observation can be examined quantitatively by looking at the model. Specif-ically, if we write Ttotal in terms of n, d, dc and the timing constants, di�erentiate withrespect to dc and set the resulting expression equal to zero, we obtain the equation22dc �Tp;b + Tc;b2d �� 2dc �4Tc;a + 6Tc;b)n ln 2 �� �Td;a + �d� dc + 1ln2�Tc;b� = 0:14
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Fig. 5. Performance of the LU factorization code on the nCUBE 2.We cannot solve this equation in closed form, but, in practice, simple numericaltechniques can be used to compute the optimum value of dc. Here, we derive anapproximate expression for the optimum value of dc. First, we observe that errors inthe linear term involving dc have only a small e�ect in the �nal solution and replace(d� dc + 1= ln 2)Tc;b with dTc;b=2. Second, we observe that for most cases of interest22dc�d � 2dc=n so that the second term can be dropped from the expression. Now,solving for dc yields dc = d2 + 12 log2�Td;a + dTc;b=2Tp;b + Tc;b � :(2)We note that even though this value is approximate, the predictions are close to theobserved optima as shown in Fig. 5. The predicted peak performances (for integervalues of dc) are 487 Mop/s for d = 8 and dr = 3, 925 Mop/s for d = 9 and dr = 3and 1700 Mop/s for d = 10 and dr = 4. We see from (2) that the optimum valueof dc is shifted from the value d=2 by an amount that depends on the startup timefor the daxpy operation, the computation time for the pivot search operation and theamount of row communication that cannot be overlapped with computation, but thisshift is relatively small on the nCUBE 2 because the constants involved are of similarmagnitudes.One way to improve the performance of the code for large dr would be to use theBLAS to update rows (in the outer{product update) rather than columns. This wouldhave the e�ect of increasing the vector lengths for the BLAS calls and reducing thenumber of startups. We did not incorporate this improvement into the code becausethe optimum performance occurs for dr < d=2 and would not be a�ected by theswitch. This improvement will be discussed in more detail in x5.2 dealing with QRfactorization. 15



As parallel machines are built with more and more processors, it becomes possibleto solve larger and larger problems. An important metric of parallel algorithms is howthey scale to larger problems on more processors [20]. We will assume the amount ofmemory available to a processor remains constant, so the largest dense matrix that canbe stored on a machine has n2 = cp for some constant c. We de�ne scaled speedup tobe the ratio of computation rate to the single processor computation rate for problemsin which the number of matrix elements per processor remains constant. We note thatthis de�nition of scaled speedup is based on holding the memory requirements on eachprocessor constant, not the workload on each processor. Because the LU factorizationof a dense matrix requires O(n3) ops but only O(n2) storage, holding the work loadper processor constant would result in lower scaled speedup values.The results of a set of runs to determine scaled speedups are presented in Table 2.The �rst column of the table gives the linear dimension of the square matrix, and thesecond the dimension of the hypercube. The third column contains the values of dcand dr that proved optimal. The fourth column shows the observed total number ofMops per second of execution time, where a op count of 2n3=3 is used. The �fthcolumn divides the fourth by the number of processors. Scaled speedups are presentedin the sixth column. The last column presents e�ciencies, which we de�ne to be thescaled speedup divided by the number of processors. We note that the e�cienciesgreater than one in the second and third rows of the table are due to the fact thatthe BLAS operations have greater e�ciency with longer vectors.Table 2. Times for LU factorizations of scaled matrices.Matrix Cube dr : dc Mop/s Mop/s Scaled E�.Size Dim Observed per Proc. Speedup500 0 0 : 0 1.94 1.94 1.00 1.00707 1 0 : 1 3.94 1.97 2.03 1.011,000 2 0 : 2 7.84 1.96 4.04 1.011,414 3 1 : 2 15.41 1.93 7.94 0.992,000 4 1 : 3 30.78 1.92 15.87 0.992,828 5 2 : 3 60.99 1.91 31.44 0.984,000 6 2 : 4 121.95 1.91 62.86 0.985,657 7 3 : 4 242.40 1.89 124.95 0.978,000 8 3 : 5 483.50 1.89 249.23 0.9711,314 9 4 : 5 963.50 1.88 496.65 0.9716,000 10 4 : 6 1917.19 1.87 988.24 0.96In x4.1, we discussed the complexity of the communication volume and concludedthat use of the torus{wrap mapping results in better scaling of an algorithm than ei-ther the row{wrap or the column{wrapmapping. This is born out by Fig. 6, where theperformance of row{wrap and column{wrap mappings are compared to the optimaltorus{wrap mapping for these scaled problems.5.2. QR factorization. Our second example is Householder QR factorizationwithout pivoting of an m�n matrixA. After LU, QR is probably the most importantfactorization in linear algebra, and is used in least squares problems, eigen{problems,basis generation and other settings. The total op count for this algorithm is 2n2(m�n=3) + O(n2) for the usual situation in which m � n [19]. Our parallel algorithm isoutlined in Fig. 7 and is described in greater detail in [22]. Alternative QR algorithmsthat use the torus{wrap mapping can be found in [8, 37].As with the LU implementation described in x5.1, to minimize time spent waitingfor a Householder vector to be computed and broadcast, the processors that share thenext column to be processed generate and broadcast their elements of the Householder16
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Row-wrap  Fig. 6. Mop/s/processor rates for LU factorization with di�erent pro-cessor mappings.vector before updating the rest of their matrix elements. Run times for the same setof problem sizes considered in x5.1 are presented in Table 3.Table 3. Run times on the nCUBE 2 for QR factorization of an 8,000� 8,000 matrix.256 processors 512 processors 1,024 processorspc pr seconds pc pr seconds pc pr seconds1 256 3105 1 512 2612 1 1,024 25152 128 2087 2 256 1532 2 512 13244 64 1643 4 128 1042 4 256 7798 32 1463 8 64 834 8 128 53716 16 1428 16 32 756 16 64 43632 8 1381 32 16 729 32 32 40864 4 1384 64 8 713 64 16 381128 2 1437 128 4 736 128 8 383256 1 1559 256 2 814 256 4 418512 1 996 512 2 5071,024 1 715The total run time for this algorithm can be modeled as the sum of the times forcomputing Householder vectors, broadcasting Householder vectors, generating inner{products and performing outer{product updates. In addition to those parametersfrom x5.1, our model requires the following values from the nCUBE 2 manuals.Variable Description MicrosecondsTn;a startup time for a 2{norm 13.0Tn;b computational time for 2{norm (per element) 0.86317



Processor q owns row set � and column set �For j = 1 to n(� Generate Householder vector, v, from column j of A �)If j 2 � Then(� Compute contribution to norm of column j �)q := AT�;jA�;jBinary collapse  =P q to processor owning Aj;jIf j 2 � Then� = 2( + jAj;jjp)Aj;j := Aj;j + sign(Aj;j)pv� := A�;jBroadcast v� (and � ) to processors sharing rows �ElseReceive v� (and � )� := � n fjg (� Remove j from active columns �)rq� := vT�A�;� (� Compute portion of dot{products �)Binary exchange (with appended � ) among processors sharingcolumns � to compute r� :=P rq�A�;� := A�;� � (2=� )v�r� (� Update the submatrix �)� := � n fjg (� Remove j from active rows �)Fig. 7. Parallel Householder QR for processor q.To generate a Householder vector the processor owning the top element mustknow the vector's 2{norm. The total time spent performing this task consists of thetime for the local computations followed by the time for a binary collapse to combinethe partial sums, which can be approximated byTnorm = nTn;a + n(2m � n)2pr Tn;b + drn(Tc;a + Tc;b):The total time spent broadcasting Householder vectors can be modeled asTbcast = dcnTc;a + n(2m� n)2pr Tc;b:As with the LU factorization column broadcast, the generation of the next House-holder vector overlaps with all but the �rst stage of the broadcast of the current one.Thus the factor dc does not appear in the per element term of the broadcast.The time for computing all the dot{products is the sum of the time required forthe numerics, Tdot�calc, and the time for combining all the partial sums within eachcolumn Tdot�comm. Although for hypercubes there are asymptotically more e�cientalternatives [15, 34], we perform this communication using a binary exchange whichrequires redundant numerical operations. The gains from the more sophisticatedalgorithms are of a low order and so insigni�cant for large problems, and by not ex-ploiting hypercube speci�cs we can reach broader conclusions about the performanceof torus{wrap algorithms. 18



The numerical operations associated with the dot{products can be performed as adaxpy within rows, or as a ddot within columns (which has about the same startup andper{element cost as a daxpy). Our implementation dynamically chooses whicheverof these operations involves fewer startups. For simplicity of analysis, we ignore thefact that the optimal choice can change during a run for nonsquare matrices, in whichcase the dot{product terms are aboutTdot�calc = n2 min( npc ; 2m � npr )Td;a + n2(m � n=3)2p Td;b;Tdot�comm = drnTc;a + drn22pc Tc;b:Finally, the outer{product updates on submatrices can be performed using daxpyswithin either columns or rows. We again choose whichever leads to fewer startups, sothe total update time can be approximated asTupdate = n2 min( npc ; 2m� npr )Td;a + n2(m � n=3)2p Td;b:The data from Table 3 is shown graphically in Fig. 8, where the vertical axis isthe Mop rate achieved. To compute rates, we used the sequential op count, whichfor this problem is about 6:83� 1011 ops.
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Fig. 8. Performance of the QR factorization code on the nCUBE 2.The cusp in the curves is due to switching between a row oriented and a columnoriented application of the level one BLAS. We expect the model to overpredict per-formance since by only including communication and BLAS it neglects any overheads.In the extreme case of column{wrapping, the model clearly overestimates the overlapof computation with communication. The model can be used to predict the optimal19



decomposition of processors among rows and columns by setting the derivative of theexpression for run time to zero. However, as in x5.1, no closed form expression results.The peak performance is achieved when dr is somewhat less than dc due primarily tothe greater communication within columns than within rows. A nonsquare torus alsoallows for fewer BLAS startups.As in x5.1, we ran a sequence of factorizations in which the memory required perprocessor remained constant, allowing us to compute scaled speedups. The resultsare presented in Table 4. As before, the e�ciencies greater than one are due to longervectors in the BLAS routines.Table 4. Times for QR factorizations of square matrices.Matrix Cube dr : dc Mop/s Mop/s Scaled E�.Size Dim Observed per Proc. Speedup500 0 0 : 0 1.97 1.97 1.00 1.00707 1 0 : 1 3.98 1.99 2.02 1.011,000 2 0 : 2 7.95 1.99 4.04 1.011,414 3 0 : 3 15.83 1.98 8.05 1.002,000 4 1 : 3 31.42 1.96 15.97 1.002,828 5 1 : 4 62.76 1.96 31.90 1.004,000 6 2 : 4 124.56 1.95 63.31 0.995,657 7 2 : 5 249.06 1.95 126.59 0.998,000 8 3 : 5 494.32 1.93 251.24 0.9811,314 9 3 : 6 989.71 1.93 503.03 0.9816,000 10 3 : 7 1963.91 1.92 998.01 0.97Computation rates per processor for this set of problems are plotted in Fig. 9,comparing the optimal torus{wrap to row{ and column{wrap mappings. As withLU, the torus{wrap mapping allows for much greater scalability than row or columnschemes.5.3. Householder tridiagonalization. Our third example, Householder tridi-agonalization of a symmetric n�nmatrixA, is used in eigenvector calculations of sym-metric or Hermitian matrices. The best sequential algorithm requires 4n3=3 +O(n2)ops, and n2=2 +O(n) storage [19]. An algorithm that fails to exploit the symmetryof the matrix will require additional computation and memory, so it is better to storeand manipulate only a lower (or upper) triangular part of the matrix. This causesproblems for row or column oriented mappings since a particular row (or column) ofthe matrix is now stored partially as a row and partially as a column. The same is-sues arise with other algorithms for symmetric matrices, like Cholesky decomposition.However, since a square torus{wrap mapping treats rows and columns symmetrically,it is well suited to deal with this problem.Our algorithm for square tori is outlined in Fig. 10. Each processor stores itsportion of the lower triangular part of A in a column major format. One property oftorus{wrap mappings as we have de�ned them is that for square tori the processorsowning diagonal matrix elements are assigned a set of row indices equal to their set ofcolumn indices. This is also true for block torus{wrap mappings with square blocks,but it is not generally true of Cartesian mappings. This property makes transposingvectors easy, since these diagonal processors have the appropriate elements of both avector and its transpose. We exploit this convenience in our implementation, whichlimits us to square tori. A similar algorithm is described in [7].As evidenced by Fig. 10, exploiting symmetry makes this algorithmmore compli-cated than those for LU and QR. First a Householder vector, v, must be generatedand broadcast. The appropriate elements of the transpose of v (and later w) are then20
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Row-wrap  Fig. 9. Mop/s/processor rates for QR factorization with di�erent pro-cessor mappings.communicated to each processor. Next comes the calculation of s = �Av, where �A is theremaining submatrix. This is followed by the computation of w = 2(s� (vT s)v=� )=� ,where � = jjvjj2. Finally, an outer{product update of the matrix elements is per-formed.We implemented this algorithm on the nCUBE 2 and used the code to factor an8; 000�8; 000, double precision matrix, which required 1653 and 556 seconds on cubesof dimension eight and ten respectively.The algorithm in Fig. 10 can be generalized to apply to non-square torus map-pings, but this involves substantial complexity in performing the transpose operationsand the matrix{vector multiplications. Although we did not implement this moregeneral algorithm, we can develop a performance model to investigate the tradeo�sassociated with di�erent mappings. Our model will require the parameters introducedin the previous two sections and the following values from the nCUBE 2 manuals.Variable Description MicrosecondsTs;a startup time for a dscal 7.8Ts;b computational time for dscal (per element) 0.554Tt;a startup time for a ddot 10.0Tt;b computational time for ddot (per element) 0.984Computing and broadcasting the Householder vectors is very similar to the oper-ation required in Householder QR as described in x5.2.Tnorm = nTn;a + n22pr Tn;b + drn(Tc;a + Tc;b)21



Processor q owns row set � and column set � of lower triangular AFor j = 1 to n� 1� := � n fjg (� Remove j from active rows �)(� Generate Householder vector, v, from column j of A �)If j 2 � Thenq := AT�;jA�;jBinary collapse  =P q to processor owning Aj+1;jIf j + 1 2 � Then� = 2( + jAj+1;jjp)Aj+1;j := Aj+1;j + sign(Aj+1;j)pv� := A�;jBroadcast v� (and � ) to processors sharing rows �Else Receive v� (and � )� := � n fjg (� Remove j from active columns �)(� Get elements of vT to the correct processors �)If � = � Thenv� := v�Broadcast v� to processors sharing columns �Else Receive v�(� Compute Av �)rq� := AT�;�v�Binary collapse among processors sharing columns �to diagonal processor to form r� :=P rq�If � = � Thensq� := r� + A�;�v� (� excluding diagonal contribution �)Else sq� := A�;�v�Binary exchange among processors sharing rows �to form s� :=P sq�(� Compute vT s and generate w �)�q :=Pi2� visiBinary exchange among processors sharing columns �to form � :=P �q (and append � )w� := 2� (s� � �� v�)(� Get elements of wT to the correct processors �)If � = � Thenw� := w�Broadcast w� to processors sharing columns �Else Receive w�A�;� := A�;� � v�wT� �w�vT� (� Update the submatrix �)Fig. 10. Parallel Householder tridiagonalization for processor q.22



Tbcast = dcnTc;a + dcn22pr Tc;b:Unlike the models for LU and QR, we include the time for each stage of the broadcast.This is because the binary exchanges in the algorithm keep the processors tightly syn-chronized, which reduces the potential to overlap computation with communication.For square tori, transposing v and w just requires broadcasts from the diago-nal processors, but for non-square tori it is more complicated. We denote pmax =max(pr ; pc), and dmax = max(dr ; dc), with the obvious pmin and dmin counterparts.Transposition can be accomplished with dmin stages of a broadcast with messagelength about n=pmax, followed by dmax � dc stages of a binary exchange in whichthe message length doubles after each stage. We note that for non-square tori, somecopying of data is also required. The total time spent performing these operations isabout Ttrans = 2drnTc;a + dminn2pmax Tc;b + n2pmax (pmaxpc � 1)Tc;b:This formula is assymetric in rows and columns because the recursive doubling stagein the transpose need only occur if dr > dc. Otherwise, the last term in the expressionreduces to zero.Computing �Av is somewhat problematic since only the lower triangular portionof the matrix is stored. We denote this triangular portion as L1, and the portionof L1 below the diagonal as L2. We observe that �Av = LT1 v + L2v, which requirescommunication in both rows and columns. Our algorithm �rst performs a ddot todetermine the contribution from LT1 v. These values are combined and sent to theprocessors owning the diagonal matrix elements using precisely the opposite of thecommunication pattern used above for transposition. Next, the contribution fromL2v is computed using a daxpy, and these values are combined across rows using abinary exchange. As a side e�ect, the binary exchange synchronizes the processorswithin each row and a total of about (pc� 1)n2=2 redundant ops are performed. Aswith our implementation of QR factorization, for hypercubes there are asymptoticallymore e�cient alternatives to the binary exchange [15, 34], but our implementationdoes not use them. The calculation and communication time for this operation canbe approximated asT�Av�calc = n22pc (Tt;a + Td;a) + n36p (Tt;b + Td;b);T�Av�comm = (dr + dc)nTc;a + n22pmax (dmin + pmaxpc � 1)Tc;b + dcn22pr Tc;b:Forming vT s involves local computation, followed by a binary exchange among theprocessors sharing a set of column indices. This serves to synchronize the processorswithin each column, and requires a total of about (pr�1)n2=2 redundant ops. Also,the same local computations are repeated by each column of processors, implying anoverall additional (pc�1)n2 ops beyond those in the sequential algorithm. The timefor this computation and communication can be modeled asTdot�calc = nTt;a + n22pr Tt;bTdot�comm = drn(Tc;a + Tc;b):23



Each processor can now generate its own elements of w, using a dscal followed by adaxpy. As above, this calculation is duplicated pc times, resulting in about 2(pc�1)n2extra ops. The time spent in this step is aboutTgenw = n(Td;a + Ts;a) + n22pr (Td;b + Ts;b):Updating �A by �vwT � wvT is now a local operation performed by each processoron its own data. Each column of �A can be updated with two daxpys, so the time forthis operation can be modeled asTupdate = n2pc Td;a + n33pTd;b:The total time is modeled as the sum of the terms above. The predictions of themodel for an 8; 000�8; 000 matrix are plotted in Fig. 11, with the observed values forsquare tori included for comparison. In computing rates, we use the sequential opcount, which is about 6:83� 1011 for this problem.
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Fig. 11. Performance of the tridiagonalization code on the nCUBE 2.As expected, the model indicates that a square torus is better than row or columnmethods for this problem. The cusp in the model is due to the di�erent communicationpatterns that apply depending on the relative sizes of pr and pc. We note thatfor these problems, the model predicts a slight improvement in performance whendr = (d=2)�1, but the model neglects the additional copying required for non-squaretori. We can use the model to predict the optimal tradeo� between pr and pc ingeneral, but as in x5.1 and x5.2 no closed form expression exists.As in x5.1 and x5.2, to investigate scaled speedup we ran the code on problems inwhich the local memory requirements remained constant. The results are presentedin Table 5. 24



Table 5. Times for Householder tridiagonalization.Matrix Cube Mop/s Mop/s Scaled E�.Size Dim Observed per Proc. Speedup500 0 1.87 1.87 1.00 1.001,000 2 7.25 1.81 3.88 0.972,000 4 27.84 1.74 14.89 0.934,000 6 107.30 1.68 57.40 0.908,000 8 413.01 1.61 220.95 0.8616,000 10 1596.33 1.56 853.97 0.83On a single processor, the performance of the tridiagonalization code is about 5%less than that for LU or QR. This is a consequence of exploiting the symmetry of thematrix, and can be expected in other algorithms that work on symmetric matriceslike Cholesky factorization. The short columns in the rightmost portion of the lowertriangular matrix, and the short rows at the top result in many short vectors in theBLAS. Also, index calculations are more complex with a triangular matrix, addingsome overhead to the calculation.In addition, the performance of the tridiagonalization code scales less well thaneither LU or QR. The e�ciency on 1,024 processors is about 83%, while for QR andLU it was in the upper 90's. This is a consequence of three factors. First, the repeatedcomputations add about n2(7pc + pr)=2 ops to the sequential algorithm. Second,exploiting symmetry requires a greater amount of communication. And third, the twobinary exchanges e�ectively synchronize the processors, which reduces the potentialfor hiding communication with computation. The second factor will also inuenceother algorithms on symmetric matrices. Having said this, it is still true that thetridiagonalization code performs well, achieving greater than 75% of the peak BLASperformance on 1024 processors.6. Conclusions. We have presented analytical and empirical evidence that formany dense linear algebra algorithms, the torus{wrap mapping is better than row orcolumn mappings. The primary advantage of the torus{wrap is that it requires lesscommunication, leading to better scalability, but there are a number of additionaladvantages including better load balancing, reduced processor idle time, and shortermessage queues.After factoring a matrix, one typically wishes to use it, for example, to solvelinear systems or least{squares problems. This requires using the factored productsto modify one or more vectors. If only a few vectors are involved, then the op countis �(n2), an order of magnitude less than the factorization. In this case, since the costof the factorization dominates, a torus{wrap mapping for the factorization is likelyto give the best overall performance. In addition, algorithms exist for doing a singletriangular solve using the torus{wrap mapping that run in the asymptotically optimaltime of n2=p+ O(n) [5, 28].If many vectors must be modi�ed, then they can be combined to form a matrixwhich can be assigned to processors in a torus{wrap fashion. The same techniquesthat were employed in the factorization can now be used in the triangular solves, andgood performance should result. For instance, the LU factorization code described inx5.1 has been used to invert a matrix by solving n linear equations on the nCUBE 2at an overall computational rate of 1.96 Gop/s.Acknowledgements. We are indebted to Cleve Ashcraft and Andy Cleary forbringing the torus{wrap mapping to our attention, to Courtenay Vaughan for help25
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