THE TORUS-WRAP MAFPPING FOR DENSE MATRIX
CALCULATIONS ON MASSIVELY PARALLEL COMPUTERS”

BRUCE A. HENDRICKSON! AND DAVID E. WOMBLE#

Abstract.

Dense linear systems of equations are quite common in science and engineering, arising in bound-
ary element methods, least squares problems and other settings. Massively parallel computers will
be necessary to solve the large systems required by scientists and engineers, and scalable parallel
algorithms for the linear algebra applications must be devised for these machines. A critical step in
these algorithms is the mapping of matrix elements to processors. In this paper, we study the use
of the torus—wrap mapping in general dense matrix algorithms, from both theoretical and practical
viewpoints. We prove that, under reasonable assumptions, this assignment scheme leads to dense
matrix algorithms that achieve (to within a constant factor) the lower bound on interprocessor com-
munication. We also show that the torus—wrap mapping allows algorithms to exhibit less idle time,
better load balancing and less memory overhead than the more common row and column mappings.
Finally, we discuss practical implementation issues, such as compatibility with BLAS levels 1, 2, and
3, and present the results of implementations of several dense matrix algorithms. These theoretical
and experimental results are compared with those obtained from more traditional mappings.
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1. Introduction. Dense linear systems of equations are quite common in science
and engineering applications, appearing in boundary element methods, problems in-
volving all-pairs interactions and least squares problems, among others. The kernel
computation for these applications usually involves some factorization of the matrix to
transform it to a more convenient form. The factored matrix can then be used to solve
linear systems of equations, perform least squares calculations, determine eigenvectors
and eigenvalues, or whatever other computation the application requires [19].

For a dense n x n matrix, most of these factorization algorithms require ©(n?)
floating point operations and ©(n?) storage. Current sequential supercomputers can
store and operate on systems with tens of thousands of unknowns. For example, a
single processor CRAY Y-MP with 256 megawords of memory operating at its peak
theoretical speed of 333 million floating point operations per second (Mflop/s) can
compute the LU factorization of a 16,000 x 16,000 matrix in about 2.3 hours. Solving
substantially larger problems or sequences of moderately sized problems on even the
fastest single processor machines is prohibitively time consuming. It is clear from
the computational requirements that to solve such problems will require computers
capable of billions of floating point operations per second. This, in turn, will require
massively parallel computers based on scalable architectures. To effectively use these
machines, algorithms must be devised that scale well to large numbers of processors.

Efficient use of massively parallel computers is a subject of much current research,
and numerous papers have been published about dense linear algebra algorithms on
these machines. Because of its importance for solving linear systems, the LU factor-
ization (and the related triangular solve) has been the primary subject of this research
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[1,2,4,5, 11,12, 16, 17, 21, 26, 31, 32]. There have been far fewer papers concerned
with the efficient computation of the QR factorization, Householder tridiagonaliza-
tion, or the eigenvalue problem [7, 8 22, 37]. Fewer still have tried to address dense
matrix algorithms in general.

Early implementations of dense matrix algorithms, and in particular the LU fac-
torization, mostly used row or column decompositions in which entire rows or columns
of the matrix were assigned to individual processors [17, 18, 21, 26]. The columns
or rows that a processor owned were usually “wrapped” or scattered throughout the
matrix to obtain good load balancing. On computers with 64 to 128 processors, the
efficiencies of these algorithms were usually between 50% and 75% for the largest
problems that could be stored on the machines, but the algorithms did not scale
particularly well as the number of processors increased [17, 21].

An alternative method for assigning matrix elements to processors is the torus—
wrap mapping. Variants of this assignment scheme have been independently dis-
covered by several researchers, and consequently given a number of different names
including cyclic [23], scattered [15], grid [36], and subcube—grid [8], as well as torus—
wrap [30]. The mapping was first described by O’Leary and Stewart in a data-flow
context [29, 30], and the synergy between the torus—wrap mapping and the hyper-
cube topology was observed by Fox [14, 15]. Variants of the torus—wrap mapping
have been used in high performance LU factorization codes on a number of different
machines [3, 4, 6, 9, 27, 35, 36]. Assuming each matrix element is stored on only a
single processor, Ashcraft built on work by Saad to show that for LU factorization, the
torus—wrap mapping exhibits communication properties within a constant factor of
optimal [1, 32]. (Ashcraft has recently devised an algorithm with lower order commu-
nication that violates this nonduplication assumption, but it requires an impractical
factor of p'/? additional storage, where p is the number of processors [2].) Various
algorithms for QR factorization employing the torus—-wrap mapping have been de-
scribed that use Givens rotations [8], modified Gram—Schmidt [37] and Householder
reflections [22, 27]. A torus-wrap mapping algorithm for Householder tridiagonaliza-
tion is described in [7]. A triangular solve algorithm using this mapping that achieves
asymptotically optimal performance is presented in [5, 28]. Because of its scaling
properties, the torus—wrap mapping has been suggested as the basic decomposition
for parallel dense linear algebra libraries [13].

Despite the evident recent popularity of the torus—wrap mapping for a number
of different dense linear algebra implementations, a careful analysis of the strengths
and weaknesses of the mapping has been lacking. One purpose of this paper is to
provide such an analysis, including communication overhead, memory requirements
and load balancing issues. Our approach 1s to identify the critical computation and
communication components of dense matrix operations on distributed memory com-
puters and then to analyze the impact of different mappings on the performance of
these components. Thus, the results in this paper are more general than much of the
current literature, and we anticipate that our analysis will provide a basis for future
research in this area.

Another purpose of this paper is to explore the practical aspects of implementa-
tions of dense matrix algorithms using the torus—wrap mapping. Three algorithms
are actually implemented for this end, LU factorization, QR factorization and House-
holder tridiagonalization. Using these implementations, we compare the performance
of a range of torus—wrap mappings with that of the row—wrap and column—wrap map-
pings, and we examine the scalability of the torus—wrap mapping to large numbers



of processors using numerical results obtained on a 1,024-processor nCUBE 2. We
also present models of performance for these three implementations that allow us to
examine such effects as communication/computation overlap and the effect of vector
lengths on communications and on the BLAS operations. These models then allow
us to predict the optimal torus—wrap decompositions.

In §2, we characterize the basic operations required for dense matrix algorithms
and their implications in the parallel computing environment; deriving lower bounds
on required inter-processor communication. We define the torus-wrap mapping in
§3 and describe its relationship to more familiar decomposition schemes. In §4, we
discuss in more detail the properties of the torus-wrap decomposition, including its
communication requirements, scalability, and compatibility with the standard BLAS
routines. We present data from implementations of several different dense matrix al-
gorithms in §5. These results clearly show the advantages of the torus—wrap mapping.
Conclusions are presented in §6.

2. Dense linear algebra operations and communication. Nearly all dense
linear algebra algorithms consist of a sequence of fundamental operations that trans-
form a matrix into some more desirable form. The two most important such operations
are Gauss transformations and Householder reflections. These operations generally
dominate the computational effort in a dense linear algebra algorithm, so their efficient
execution is essential for good performance. On a message passing multiprocessor the
execution time of an algorithm can depend greatly upon its communication patterns,
so minimizing the communication for these fundamental operations is important for
achieving good parallel performance [23, 24, 33].

To understand the communication required to perform Gauss and Householder
transformations, consider Fig. 1, where A is an m X n matrix, u is an m—vector and
v an n—vector. Under either a Gauss transformation or a Householder reflection (or
a Gauss—Jordan transformation), each element of A is updated by the outer-product
of v and v; that is A;; — Aj;; + w;v;. The difference between the algorithms is in
the construction of w and v, which is a lower order operation in both computation
and communication. The outer—product update of an element of A depends upon
the element of u directly to its left and the element of v above it. The processor
that calculates the new value for A;; must know the old A;; as well as u; and vy,
which may require some communication. We will establish a lower bound on the total
communication volume for this operation, which is a subset of the communication
required to perform a Gauss or Householder transformation.

| o |

Fig. 1. Structure of Gauss and Householder transformations.

We denote by N(gq) the number of matrix elements owned by processor ¢, and let
p be the total number of processors. We will assume that
(i) each element of A (and of u and v) is owned by a single processor, and
(it) the matrix elements are balanced; that is, for each processor ¢, N(¢) > amn/p
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for some constant o > 0.

We define the communication volume, V¢, of an algorithm to be the total length of
all the messages the algorithm requires. For numerical algorithms, messages typically
consist of floating point numbers, so the lengths are most naturally measured in terms
of number of floating point values. The following theorem is a generalization of results
found in [32].

THEOREM 2.1. Under Assumptions (i) and (i1) above, the communication volume
required to execute a Gauss, Householder or Gauss—Jordan transformation is at least
2\ /apmn — (m +n).

Proof. Each element in the matrix needs the value of v above 1t and the value of
u to its left. Let ¢7 denote the number of processors owning elements of row ¢ and ¢
be the number of processors owning elements of column j. To transmit u; (or v;) to
all the processors in row ¢ (or column j) requires at least #; — 1 (or ¢; — 1) messages
of length 1, so the communication volume can be bounded by

n
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Now we denote by s} (and s;) the number of rows (and columns) of which processor
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Assumption (i) ensures that for each ¢, sjs; > N(q) > amn/p, so

P
Vo2 =(m+n)+ ) 2/amn/p

g=1
= 2/apmn — (m+n).0

COROLLARY 2.2. Under Assumptions (i) and (ii) above, the communication vol-
ume required to execute a Gauss, Householder or Gauss—Jordan transformation on a
square n X n matriz is at least 2n(,/ap —1).

Ashcraft has recently proposed an LU factorization algorithm that requires @(pl/?’nz)
communication volume, but it violates Assumption (¢) [2]. This algorithm is imprac-
tical in its current form, requiring an extra factor of p'/? storage.

The lower bound expressed in Theorem 2.1 is attainable, up to a constant factor.
For simplicity we let m and n be divisible by /p, and assume that m+n <y min(m,n)
for some constant y. If we assign each processor a dense rectangular block of the
matrix of size (m/,/p) x (n/\/p), then a = 1, and each row and each column will be
owned by only /p of the processors. The total communication volume involved in
broadcasting a row will be n(,/p — 1), and for a column m(,/p — 1), implying a total
of (n +m)(y/p —1) < vy/mnp — (m + n), which is within a constant factor of the

bound from Theorem 2.1.



We note that if each column (or row) of the matrix is owned by a single processor,
then a Gauss or Householder transformation requires the broadcast of that column
(or row) to all other processors. This involves a communication volume of m(p — 1)
(or n(p — 1)). Assuming again that m 4+ n < ymin(m, n) for some constant v, this
volume is at least (2/7)/mn(p — 1), which is larger than the lower bound by ©(,/p).

Finally, we observe that the results in this section are a consequence of the fact
that dense linear algebra operations can be formulated to require only a restricted
form of communication. Values must be exchanged within each row of the matrix and
within each column. Any operation that involves this communication pattern will be
amenable to a similar analysis.

3. The torus—wrap mapping. Most of the previous work on parallel dense
linear algebra has involved assigning elements of the m x n matrix A to processors
using columns, rows or blocks. In a column (or row) scheme, entire columns (or
rows) of the matrix are assigned to a single processor. One possibility is to have
columns 1 through n/p assigned to processor zero, columns n/p + 1 through 2n/p
assigned to processor one and so on. Since most matrix factorizations work from left
to right, decreasing the number of active columns, this scheme has the disadvantage
that processor ¢ has no work left to do after column (¢ + 1)n/p is processed. For this
reason, it is preferable to assign columns 1, p4+1, 2p+1, ... to processor zero, columns
2, p+2,2p+2,...to processor one, and so forth to form what is known as a column—
wrap mapping. Column-wrap (and row—wrap) mappings have been the most widely
used choice for dense linear algebra algorithms, but as noted in §2, row and column
methods require ©(,/p) more communication volume than necessary. For machines
with a small number of processors, the simplicity of these mappings may outweigh
the communication drawbacks, but for massively parallel machines this factor of ,/p
can be very important.

In block schemes, each processor is assigned a single dense rectangular submatrix.
Many different block mappings are possible involving differently shaped rectangular
submatrices and different assignments of blocks to processors. As mentioned in §2,
block schemes can come within a constant of achieving the lower bound on communi-
cation volume. However, they have the same problems with idle processors that the
nonwrapped row and column methods have. Hybrid block—column—wrap or block—row—
wrap mappings are also possible. In these mappings, instead of owning a scattered
set of single columns (or rows), a processor owns a scattered set of several adjacent
columns (rows).

An analogy with row and column methods suggests wrapping a block mapping
in both rows and columns. The result 1s what we will call the forus—wrap mapping.
As there are many different block mappings, there are correspondingly many torus—
wrap mappings. If the number of processors, p, can be factored as a product of
pr and p., then we can construct a block mapping in which the blocks are of size
(m/py) x (n/p;). For any appropriate p, and p. values, we get a block mapping
and 1its torus—wrap counterpart. We note that in the limiting cases the torus—wrap
mapping reduces to a row—wrap mapping (when p, = p and p, = 1), or a column-
wrap mapping (when p. = p and p, = 1). We call the special case in which p, = p,
a square torus—wrap mapping. If it is not the case that m 1s divisible by p, and n by
pe then some processors will own one more row and/or column than others.

Another choice in a block mapping occurs when deciding which blocks get assigned
to which processors. Because communication in dense linear algebra algorithms occurs
predominantly within rows or within columns, it is convenient to assign blocks in such
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Fig. 2. Processors owning matrix elements in a natural torus—wrap.

a way that communication among the set of processors owning a row (or column) is
efficient. With mesh architectures, this is achieved by constructing a set of blocks
that reflect the shape of the processor array. If the mesh is constructed as a rectangle
of p, X p. processors, then the blocks are of size (m/p,) x (n/p.), which are assigned
to processors in the natural way. The rows and columns are then wrapped to generate
the corresponding torus—wrap assignment. This constitutes what we will call a natural
torus—wrap mapping, and ensures that row (or column) communication occurs entirely
within rows (or columns) of the processor mesh. An example of the natural torus—
wrap is depicted in Fig. 2, where the mesh is of size 8 x 4, and the value displayed at
each location is the processor that owns the corresponding matrix entry.

For hypercubes, we can exploit the fact that a d—dimensional hypercube can be
viewed as the product of two hypercubes of dimensions d, and d., where d, +d. = d.
This is accomplished by dividing the bits of the processor identifier into two sets, b,
and b. of cardinality d, and d. respectively. The bits of b, can be associated with the
row numbering of the matrix elements, and those of b. with the column numbering.
That is, all the processors owning elements from a single row of A have the same
b, bits, and all processors with elements from a column have the same b, bits. This
assignment scheme ensures that communication within a row involves changing only
bits of b., while communication within a column involves only bits of b,. So each row
of the matrix lies within a subcube of dimension d., and each column in a subcube
of dimension d,. In this way, a total of p, = 2% processors are assigned elements of
each row, and p, = 29 processors are assigned elements of each column.

One method for assigning processor numbers on a hypercube is to take the row
number of a matrix element, subtract one, express the result modulo p,, and then
take the Gray code of the resulting d, bit number. (For a discussion of Gray codes, see
[15].) Performing the analogous calculation on the column bits, and assigning matrix
elements to the resulting processors generates the Gray—coded torus—wrap, which is
discussed in detail by Chu and George in [8]. An example corresponding to Fig. 2 is
depicted in Fig. 3. The advantage of the Gray—coded torus—wrap is that neighboring
elements of the matrix are owned by neighboring processors. More formally, a Gray—
coded torus—wrap embeds a p, by p. mesh into a hypercube.

Figures 2 and 3 indicate another way to define the torus—wrap mapping. The
assignment pattern of the leading p, by p. submatrix defines a tile, and the entire
matrix is covered by copies of this tile in the obvious way.

An important generalization of the torus—wrap mapping is the block—torus—wrap,
in which the matrix is first decomposed into a collection of blocks of size 61 x 6é5.
Each block 1s assigned to a single processor, in such a way that the distribution of
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Fig. 3. Processors owning matrix elements in a Gray—coded torus—

wrap.

blocks mirrors the distribution of elements in a torus—wrap mapping. We note that
the torus—wrap is a special case of the block—torus—wrap in which 6, = 6, = 1.
The block—torus is a natural generalization of block-row and block—column methods.
Using blocks instead of single elements has both advantages and disadvantages, as
will be discussed in the next section.

It is convenient to notice that for all the mappings considered above, each proces-
sor 1s assigned precisely the matrix elements that lie in the intersection of a particular
set of rows and columns. Bisseling and van de Vorst call mappings with this property
Cartesian [4]. Merely specifying a set of row indices and column indices for each
processor uniquely defines a Cartesian mapping. Under a block mapping, a processor
is assigned a consecutive set of row indices and a consecutive set of column indices.
In a torus—wrap mapping, the row indices assigned to a processor constitute a linear
sequence separated by p,., and the column indices a sequence with step size p.. In a
row (or column) mapping, each processor is assigned all of the column (or row) indices
and a subset of the row (or column) indices.

We conclude this section by observing that a matrix distributed among processors
in a torus—wrap format can be viewed as a permutation of a matrix distributed in a
block scheme. Specifically, a matrix A, distributed in a block—wrap format can be
treated as H/{Atﬂz, where Hf and II, are permutation matrices and A; is a matrix
distributed in a torus—wrap format. This equivalence allows for a different inter-
pretation of the torus—wrap mapping. As observed in [27], a standard factorization
algorithm on A; can be viewed as a factorization of A; in which the rows and columns
are eliminated in a permuted order. An important result of this observation is that
is possible to take advantage of the attractive properties of a torus—wrap mapping
without necessarily having to redistribute the matrix among processors. For exam-
ple, a block system can be solved by a routine that assumes a torus—wrapped system,
and the result is correct up to permutations. More precisely, Ab_lx = HgAt_lﬂfx,
so a block mapping can be made to perform like a torus—wrap mapping, without
redistributing the matrix, by merely permuting the right hand side and the solution
vectors.

4. Virtues of the torus—wrap mapping. The torus—wrap mapping has a
number of distinct advantages over the more conventional assignment schemes. These
virtues become increasingly important as the number of processors increases. Gener-
ally, the torus—wrap mapping requires less communication than row or column schemes
and it has excellent load balancing properties. These advantages will be discussed in
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detail in the following subsections, and their impact on performance of a collection of
linear algebra algorithms will be presented in §5. Many of these issues are familiar to
researchers who have used the torus—wrap mapping and have been touched upon in
a number of publications describing specific implementations.

4.1. Communication volume. The square torus—wrap mapping allows Gauss
and Householder transformations to be executed with a total communication volume
of ©(/mnp), which is within a constant factor of optimal. Row and column schemes
require about a factor of ,/p more communication. We note, however, that if the ma-
trix or the number of processors 1s small, message startup time dominates the message
transmission time so that this factor of |/p is not seen. Also, when p is small, the re-
duced communication volume may not compensate for the increased complexity of the
torus—wrap. The direction of high performance computing is towards large problems
and massive parallelism, so the factor of /p will become increasingly important.

Most linear algebra algorithms involve a sequence of about m Gauss or House-
holder transformations, where mn = min(m, n). This implies an overall communication
volume of ©(m./pmn) for torus—wrap, and @(pm/mn) for row and column mappings.
The number of floating point operations (flops) is typically ©(mmn), which, if bal-
anced, implies ©(mmn/p) per processor.

If we wish to solve larger problems by increasing the number of processors without
increasing the memory of each processor, then the largest problem we can solve has
mn = cp for some constant ¢. This implies that the number of flops per processor
is O(m) and the torus-wrap communication volume is ©(pm), while the row or col-
umn communication volume is ©(p!-®>m). All contemplated interconnection networks
for massively parallel machines have Q(p) wires, so the torus-wrap communication
requirements have the potential to scale well. However, no proposed network has
Q(p*®) wires, so row and column schemes will eventually be limited by communica-
tion. Similar but more detailed analyses for LU factorization can be found in [1, 4].

This advantage is not specific to Gauss and Householder transformations. The
proof of Theorem 2.1 can be applied to any operation that requires communication
within rows and columns, implying that such operations can be performed with near
optimal communication volume using a torus—wrap mapping.

4.2. Communication parallelism. Although helpful for scaling analyses, com-
munication volume may not be a particularly useful metric for performance modeling
because it ignores any overlap in the communication operations. It is often the case
that several messages can be transmitted simultaneously on different communication
channels. To correctly predict performance, the times required by these overlapping
messages should not be added. We define the effective communication volume of an
algorithm to be the total length of all the messages that are not overlapped. The
effective communication volume is a good estimate of the time required for communi-
cation operations when most messages are long so message startup time is negligible.
This is the case for most dense linear algebra algorithms on large matrices.

With a torus—wrap mapping, the transmission of a column involves p, overlap-
ping broadcasts to p. — 1 other processors. Assuming a logarithmic broadcast and a
message length of m/p,, this results in an effective communication volume of d.m/p, .
Similarly, the transmission of a row requires an effective volume of d,n/p.. When
d. = d, = d/2, the combined effective volume is d(m + n)/(2./p), but for the lim-
iting cases of row or column mappings, it is dn or dm respectively. If m and n are
about equal, the square torus—wrap mapping has an effective communication volume
of about a factor of \/p less than that of row or column mappings. When the matrix
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is not square, or the row and column communication loads are not exactly equal, a
nonsquare torus—wrap mapping may be best. This will be the case for some of the
examples we consider in §5.

Since it roughly approximates communication time, the effective communication
volume allows us to investigate the proportion of execution time devoted to commu-
nication. For dense factorizations of square matrices the sequential operation count
is usually ©(n?), so if the load is well balanced the time spent performing these op-
erations should be ©(n3/p). A dense factorization typically requires ©(n) Gauss or
Householder transformations, so the ratio of effective communication volume to par-
allel operation time is ©((d,p, + dcp.)/n). For row or column schemes, this implies
that the ratio of communication time to compute time grows as ©(dp/n), but for a
square torus it only grows as ©(d,/p/n). Assuming that each processor has finite
memory, n can only grow as ,/p. In this case, the relative cost of communication
scales as ©(d,/p) for row and column mappings, but as ©(d) for a square torus. The
proportion of time spent on communications grows much more slowly for a square
torus than for row or column mappings, allowing scalability to much larger machines.

For hypercubes, there are sophisticated broadcast schemes that manage to over-
lap communications more effectively than simple logarithmic broadcasts [24]. These
algorithms use all of the wires in a cube (or subcube) to perform a broadcast. Us-
ing these algorithms; the row and column transmissions involve a combined effective
communication volume of m/p, + n/p.. When n and m are about equal, a square
torus is still better than a row or column method by about a factor of /p/2.

4.3. Message queue overhead. Row or column schemes require broadcasts of
entire rows or columns of the matrix. Torus—wrap methods only require broadcasts of
subsets of rows and columns with lengths n/p, and m/p,. To exploit the advantages
of asynchronous communications, a processor that expects to receive a message must
have space reserved for it. The amount of reserved space is less for a square torus
than for a row or column mapping by a factor of about ,/p. This leaves more space
that can be devoted to other things, like storing matrix elements. Consequently,
the torus—wrap mapping allows larger problems to be solved than row or column
mappings.

With block—torus—wrap methods, sets of blocks are broadcast together. The to-
tal communication volume is unchanged, as is the effective volume, but since sets of
columns (or rows) are broadcast together, the number of startups is decreased and
the lengths of messages are increased by a factor of 63 (or ;). This reduces the total
communication time, but increases the amount of memory required for communica-
tion.

4.4. BLAS compatibility. Much work has been done developing a standard
set of basic linear algebra subprograms or BLAS, which are available as a high per-
formance library on many machines [10, 25]. The BLAS were devised with dense
vectors or matrices in mind, but with the torus—wrap mapping each row and column
is scattered. Although processors do not own any consecutive portion of the matrix,
the submatrix assigned to each processor is rectangular and can be stored in a dense
matrix format. For all the operations required for Gauss, Householder and Gauss—
Jordan transformations, this submatrix can be treated as dense, which allows the use
of levels one, two and three BLAS operations.

4.5. Load imbalance. To achieve optimal performance from a parallel com-
puter, it is important that each processor has nearly the same total amount of work
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to do; that 1s the computational load must be balanced. For most dense matrix al-
gorithms, the total number of floating point operations that have to be performed to
update matrix element A(¢, j) is proportional to min(é, j). We will define the load of
element A(4,j) as min(é, j) and the load on a processor as the total load of all the
elements it owns. Under a torus—wrap mapping, if A is an m x n matrix, the most
heavily loaded processor will be the one owning element A(m, n), and the least loaded
will be the processor that would own A(m + 1,n 4+ 1) if A were larger. We denote
the former processor by ¢ and the latter by s, and let their loads be W(g) and W (s)
respectively. We are interested in A = W(q) — W(s).

We observe that except for entries in the last row or last column of A, each element
owned by ¢ has a neighbor down and to the right that is owned by s. Similarly, with
the possible exception of elements in the first row or first column, each value owned by
s has a neighbor owned by ¢ to the upper left. Each such pair of elements contributes
a value of —1 to A. If we denote the number of pairs by N,, then

A= —Np + Wm,n(‘]) - Wl,l(s)’

where W; ;(x) is the load on processor z from elements in the row ¢ and elements in
the column j of the matrix.

We denote the first row partially owned by processor ¢ in the torus—wrap mapping
as rg, and the corresponding first column as ¢g. We assume for concreteness that
m > n; the other case is analogous. The values of N, and Wi i1(s) are easy to
compute. To compute W, »(¢q) we separately sum the contributions from elements
in the last row, elements in the last column that are above the diagonal, and the
remaining elements in the last column on or below the diagonal. Some algebra gives
the following result.

m—7Ty n—=«Cp
)= {m-r n—c¢ s
() = (o) o)

Wia(s) = Leo/pe] m/pr| + Lro/pr]0/pe] = Lo/pe]l70/pr],

Wonnle) = (50 1) + [ + B0 = 1) [

Np:(

|

In the limit as m, n, and p become large W, ; becomes negligible, as do 7o and ¢g, so
A approaches n?/(2p.) + n(m —n/2)/p, — mn/p. (If n > m the corresponding result
is A =m?/(2p,) + m(n —m/2)/p. — mn/p.) For a square matrix, this maximal load
imbalance reduces to n*(p, +p.—2)/(2p). So for a square matrix, a square torus—wrap
induces less load imbalance than a row—wrap or column—wrap by a about a factor of
/P/2. A similar conclusion is reached for parallel LU factorization by Bisseling and
van de Vorst in [4].

Assuming that each processor has finite memory, then for square matrices n can
grow as ,/p. Since the number of flops grows as n3, the run time should scale roughly
as n3/p, which is proportional to +/P- The maximum load imbalance scales as p. +p.,
which is p for row or column mappings, but ,/p for a square torus—wrap. Consequently,
the proportional load imbalance increases as ,/p for row or column mappings, but stays
constant for a square torus—wrap.

Similar results apply for a block—torus mapping. For simplicity in the analysis,
we assume that é; = 8; = 4, and that n and m are both divisible by 6. In this
case, we can generalize the previous analysis by counting blocks instead of single
elements. Letting the N, and W, ; notation now apply to entire blocks, N, scales
linearly with é because the workload imbalance associated with a pair of diagonally
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adjacent blocks increases as 63, but the number of blocks decreases as §?. Similarly,
Won,n increases by about a factor of ¢, while Wy ; increases by about a factor of 62/2.
Since the the contribution of Wi ; to A is negative, the growth in the load imbalance
with delta is at most linear. For large m, n and p, and small 6, the N, and Wy,
terms will dominate ; 1, so the load imbalance from a block-torus scheme with
square blocks will approach §{n?/(2p.)+n(m—n/2)/p, —mn/p}, where m > n. The
important conclusion 1s that if the block sizes are small, the maximal load imbalance
is proportional to the linear dimension of the blocks.

4.6. Processor idle time. Even if all the processors have the same total amount
of work to do, the overall calculation will be inefficient unless each processor always
has something to work on. Algorithms using Gauss or Householder transformations
usually begin by computing a function of the first column (or row) of the matrix; the
norm for Householder and the largest element for Gauss. If this first column (row)
is not distributed, as in a column (row) mapping, then the other processors need to
wait until this calculation is complete. This problem is exacerbated by using a block—
column (or block-row) approach to allow level three BLAS, since several columns
(rows) must be manipulated before the other processors have any work to do. A
torus—wrap mapping allows some parallelism in the processing of each column or row
which reduces this potential idle time problem. With a block—torus—wrap mapping,
the idle time at the beginning of the calculation grows linearly with é; or é».

Most factorizations eliminate the rows and/or columns of the matrix in order,
from left to right and top to bottom. As the factorization nears completion, only
processors that still own active matrix elements have work to do. With column
(or row) schemes, processors begin to drop out when there are p columns (rows)
remaining. Block methods are even worse. With the torus—wrap, however, all the
processors stay active until there are only p. columns (or p, rows) left to eliminate.
If the matrix has p more (fewer) rows than columns then a row—wrap (column—wrap)
mapping avoids this problem, but for the important special case of square and nearly
square matrices, the torus—wrap mapping allows greater parallelism near the end of
the computation. As at the beginning, with a block—torus—wrap the idle time at the
end of the calculation grows linearly with é; or 6».

5. Numerical results. In this section, we discuss the implementations of three
dense matrix algorithms, LU factorization, QR factorization, and Householder tridiag-
onalization. For each of these examples, we investigate the performance implications
of using different mapping schemes, both analytically and experimentally. All nu-
merical experiments were performed in double precision C on a 1,024 node nCUBE 2
hypercube at the Massively Parallel Computing Research Laboratory at DOE’s San-
dia National Laboratory.

Our algorithms require only very simple communication patterns consisting of
broadcast, collect, and binary exchange operations. We implemented each of these
functions in a simple, generic way so that the resulting code should run on any archi-
tecture. Although our timings given are for a specific computer, the broad conclusions
should be appropriate for other machines. For hypercubes there are asymptotically
more efficient communication algorithms as was alluded to in §4.2, but our implemen-
tations do not exploit them.

5.1. LU factorization. Our first example is LU factorization with partial piv-
oting of a dense n x n matrix A. This the most important factorization in linear
algebra as it is a very efficient method for solving systems of linear equations. There
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are several variants of LU factorization, each requiring 2n3/3 + O(n?) flops. Our al-
gorithm uses the column—oriented, kij version as described in [19]. The algorithm is
summarized in Fig. 4, where Roman subscripts denote integers and Greek subscripts
denote sets of integers.

Processor ¢ owns row set v and column set 3
For j=1ton
(* Find pivot row *)
If j € 3 Then
(* Compute maximum of entries in column j *)
! = maXeq |4 ;]
Binary exchange to compute v = max, v¢
s := index of row containing the entry ~

(* Generate update vector, v, from column j of A *)

If j € 3 Then
Avj = Aoy
Vo 1= Aaj

Broadcast column v, and s to processors sharing rows «
Else Receive v, and s

(* Exchange pivot row and diagonal row, and broadcast pivot row )
If j € « Then
Send wg = A;j g to processor owning A, 3
If s € « Then
Receive wg
usg 1= Asyﬁ
Broadcast row ug to processors sharing columns 3
Asyﬁ = wg
Else Receive ug
If j € « Then
Ajy@ = ug

If j €« and j € 8 Then
A(j,5) = A(4,4) v  (* Restore diagonal *)

a:=a\{j} (¥ Remove j from active rows #)
B:=8\{j} (* Remove j from active columns *)

Aap = Aap — vatlp

Fig. 4. Parallel LU factorization for processor q.

Our implementation of this algorithm incorporates double precision arithmetic
and uses a Gray—coded torus—wrap mapping. As presented, this algorithm can be used
with any Cartesian mapping, but in practice, block algorithms would be modified to
send fewer, larger messages. The algorithm can be easily modified for a block—torus—
wrap mapping, but since nCUBE only supports level one BLAS, we did not investigate
this possibility. Improvements in performance have been observed on other machines
using block algorithms [35]. To minimize the time spent waiting for the determination
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and broadcast of pivot elements our algorithm employs a compute—ahead technique.
The processors owning the next column in the matrix generate and send the pivot
information before updating the remainder of their elements.

The nCUBE 2 has 1,024 processors arranged in a ten dimensional hypercube.
Each processor has four Mbytes of memory, which must be divided between the op-
erating system, code, data and communication buffer. Using the optimal distribution
of data among the processors, we can allocate about 3.8 Mbytes for data storage in
our code. This means that the largest double precision, dense matrix that can be
factored in core is about 22,000 x 22,000. Factoring the Linpack benchmark matrix
of this size requires 3612 seconds (1.96 Gflop/s), using a processor decomposition in
which p, = 64 and p, = 16, which is the optimal decomposition of 1,024 processors
for this size problem as will be seen later in this section.

To investigate the effect of the different torus—wrap decompositions on scaling we
need to use a matrix that can be stored on fewer than 1,024 processors. We factored
an 8,000 x 8,000 matrix with different numbers of processors and the results are
presented in Table 1. We note that although we can store a matrix of size n = 11,000
on 256 processors, the communication buffer requirements of the nonoptimal row and
column distributions require that we reduce the size of the matrix, as was discussed

in §4.3.

Table 1. Run times on the nCUBE 2 for LU factorization of an 8,000
x 8,000 matrix.

256 processors 512 processors 1,024 processors

Pe Dr seconds Pe Dr seconds Pe Dr seconds
1 256 2568 1 512 2406 1 1,024 2394
2 128 1335 2 256 1064 2 512 953
4 64 930 4 128 624 4 256 483
8 32 s 8 64 462 8 128 307
16 16 719 16 32 396 16 64 237
32 8 706 32 16 372 32 32 207
64 4 729 64 8 376 64 16 201
128 2 806 128 4 412 128 8 215
256 1 996 256 2 506 256 4 260
512 1 712 512 2 364
1,024 1 589

We can model the performance to gain insight into the scaling properties and the
optimal balance between p. and p,.. There are four major contributions to the run
time of the LU factorization code: a pivot entry search and pivot column update, a
row broadcast, a column broadcast, and an outer—product update of the unfactored
submatrix. We will need the following values taken from the nCUBE 2 manuals for
our model.

Variable Description Microseconds
T, 4 message startup time 100.
Tep transmission time per double precision number 4.00
Tp.a startup time for pivot operations 16.3
To b computational time for pivot operations (per element) 1.955
T4,a startup time for a daxpy 11.0
Tap computational time for a daxpy (per element) 0.964

With these variables, the total time spent computing the outer—product updates of
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the unfactored portion of the submatrix using the column—oriented daxpy can be
modeled as
2 3
n n
_Td,a + —
c

Tas.
2p 3p b

Tupdate =
The time spent on pivot entry searches, which includes a local search and a binary
exchange by those processors containing part of a column, and pivot column updates
can be approximated by

2
n
Tpivot = nTp,a + ng,b + drn(QTc,a + 3Tc,b)a
r
where we recall that d, and d. are the dimensions of the subcubes to which columns
and rows are assigned, respectively. The time for a logarithmic broadcast of the pivot
row is about

nZ
Trow = dy (nTc at T, b) .
b 2p b

c

Finally, the time for a logarithmic broadcast of the pivot column is approximated by

2
Teotumn = dchc,a + Qn_Tc,b~
Pr
The total run time, Ty4¢47, 18 modeled by summing the four contributions above.

We note an important difference between the contributions to the overall run time
of the row broadcasts and the column broadcasts. If the processor holding column
j—+11s the first processor to complete 1ts portion of the broadcast of the pivot column,
then the search for the pivot and update of column j 4+ 1 can be overlapped with the
remaining stages of the broadcast of column j. When a Gray—coded torus—wrap
mapping is used on a hypercube, the processors holding column j + 1 are neighbors
of those owning column j. Consequently, a logarithmic broadcast can be structured
in such a way that the processors owning column j + 1 quickly receive column j and
then have no further participation in the broadcast. Thus the factor d. multiplies only
the startup time in the contribution to the total run time. The row broadcast, on
the other hand, cannot be overlapped with any computations (without destroying the
load balance of the algorithm) so that d, multiplies both the startup and transmission
time contributions to the total run time.

The data from Table 1 is shown graphically in Fig. 5, where instead of the run
time, the vertical axis is the Mflop/s rate achieved. To generate these values, we used
the number of flops required by the sequential algorithm, about 3.41 x 101!

We observe that the optimal distribution is not achieved at d. = d,. Qualitatively,
the major reason for this i1s the fact that column broadcasts can be overlapped with
computations while row broadcasts cannot. Ty pgase and Tpi00¢ also contribute to this
phenomenon since the startup time for column operations is reduced by increasing d.,
and the communication time required to find the pivot element (which is the dominant
term in Tpiyor) is reduced by decreasing d,.

This observation can be examined quantitatively by looking at the model. Specif-
ically, if we write T},14; in terms of n, d, d, and the timing constants, differentiate with
respect to d, and set the resulting expression equal to zero, we obtain the equation

Toy+T. AT, , + 6T, 1
92de <7p’b + ’b) — 9de <7 + ’b)) — (Td,a + (d— d, + —) Tc,b) =0.

2d nln2 In2
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Fig. 5. Performance of the LU factorization code on the nCUBE 2.

We cannot solve this equation in closed form, but, in practice, simple numerical
techniques can be used to compute the optimum value of d.. Here, we derive an
approximate expression for the optimum value of d.. First, we observe that errors in
the linear term involving d. have only a small effect in the final solution and replace
(d—d.+1/In2)T, ; with dT. ;/2. Second, we observe that for most cases of interest
22de=d 5, 9de /n 50 that the second term can be dropped from the expression. Now,
solving for d,. yields

d 1

Td,a + ch,b/Q
(2) d. = 5 + 5 log, <7 .

Tp,b + Tc,b

We note that even though this value is approximate, the predictions are close to the
observed optima as shown in Fig. 5. The predicted peak performances (for integer
values of d.) are 487 Mflop/s for d = 8 and d, = 3, 925 Mflop/s for d = 9 and d, = 3
and 1700 Mflop/s for d = 10 and d, = 4. We see from (2) that the optimum value
of d, is shifted from the value d/2 by an amount that depends on the startup time
for the daxpy operation, the computation time for the pivot search operation and the
amount of row communication that cannot be overlapped with computation, but this
shift is relatively small on the nCUBE 2 because the constants involved are of similar
magnitudes.

One way to improve the performance of the code for large d, would be to use the
BLAS to update rows (in the outer—product update) rather than columns. This would
have the effect of increasing the vector lengths for the BLAS calls and reducing the
number of startups. We did not incorporate this improvement into the code because
the optimum performance occurs for d, < d/2 and would not be affected by the
switch. This improvement will be discussed in more detail in §5.2 dealing with QR
factorization.
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As parallel machines are built with more and more processors, it becomes possible
to solve larger and larger problems. An important metric of parallel algorithms is how
they scale to larger problems on more processors [20]. We will assume the amount of
memory available to a processor remains constant, so the largest dense matrix that can
be stored on a machine has n? = ¢p for some constant c. We define scaled speedup to
be the ratio of computation rate to the single processor computation rate for problems
in which the number of matrix elements per processor remains constant. We note that
this definition of scaled speedup 1s based on holding the memory requirements on each
processor constant, not the workload on each processor. Because the LU factorization
of a dense matrix requires O(n?) flops but only O(n?) storage, holding the work load
per processor constant would result in lower scaled speedup values.

The results of a set of runs to determine scaled speedups are presented in Table 2.
The first column of the table gives the linear dimension of the square matrix, and the
second the dimension of the hypercube. The third column contains the values of d.
and d, that proved optimal. The fourth column shows the observed total number of
Mflops per second of execution time, where a flop count of 2n3/3 is used. The fifth
column divides the fourth by the number of processors. Scaled speedups are presented
in the sixth column. The last column presents efficiencies, which we define to be the
scaled speedup divided by the number of processors. We note that the efficiencies
greater than one in the second and third rows of the table are due to the fact that
the BLAS operations have greater efficiency with longer vectors.

Table 2. Times for LU factorizations of scaled matrices.
Matrix | Cube | dy : de Mflop/s Mflop/s Scaled Eff.
Size Dim Observed | per Proc. | Speedup

500 0 0:0 1.94 1.94 1.00 1.00

707 1 0:1 3.94 1.97 2.03 1.01
1,000 2 0:2 7.84 1.96 4.04 1.01
1,414 3 1:2 15.41 1.93 7.94 0.99
2,000 4 1:3 30.78 1.92 15.87 0.99
2,828 5 2:3 60.99 1.91 31.44 0.98
4,000 6 2:4 121.95 1.91 62.86 0.98
5,657 7 3:4 242.40 1.89 124.95 0.97
8,000 8 3:5 483.50 1.89 249.23 0.97
11,314 9 4:5 963.50 1.88 496.65 0.97
16,000 10 4:6 1917.19 1.87 988.24 0.96

In §4.1, we discussed the complexity of the communication volume and concluded
that use of the torus—wrap mapping results in better scaling of an algorithm than ei-
ther the row—wrap or the column—wrap mapping. This is born out by Fig. 6, where the
performance of row—wrap and column—wrap mappings are compared to the optimal
torus—wrap mapping for these scaled problems.

5.2. QR factorization. Our second example is Householder QR factorization
without pivoting of an m x n matrix A. After LU, QR is probably the most important
factorization in linear algebra, and is used in least squares problems, eigen—problems,
basis generation and other settings. The total flop count for this algorithm is 2n*(m—
n/3) + O(n?) for the usual situation in which m > n [19]. Our parallel algorithm is
outlined in Fig. 7 and is described in greater detail in [22]. Alternative QR algorithms
that use the torus—wrap mapping can be found in [8, 37].

As with the LU implementation described in §5.1, to minimize time spent waiting
for a Householder vector to be computed and broadcast, the processors that share the
next column to be processed generate and broadcast their elements of the Householder
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Fig. 6. Mflop/s/processor rates for LU factorization with different pro-
cessor mappings.

vector before updating the rest of their matrix elements. Run times for the same set
of problem sizes considered in §5.1 are presented in Table 3.

Table 3. Run times on the nCUBE 2 for QR factorization of an 8,000
x 8,000 matrix.

256 processors 512 processors 1,024 processors

Pe Dr seconds Pe Dr seconds Pe Dr seconds
1 256 3105 1 512 2612 1 1,024 2515
2 128 2087 2 256 1532 2 512 1324
4 64 1643 4 128 1042 4 256 779
8 32 1463 8 64 834 8 128 537
16 16 1428 16 32 756 16 64 436
32 8 1381 32 16 729 32 32 408
64 4 1384 64 8 713 64 16 381
128 2 1437 128 4 736 128 8 383
256 1 1559 256 2 814 256 4 418
512 1 996 512 2 507
1,024 1 715

The total run time for this algorithm can be modeled as the sum of the times for
computing Householder vectors, broadcasting Householder vectors, generating inner—
products and performing outer—product updates. In addition to those parameters
from §5.1, our model requires the following values from the nCUBE 2 manuals.

Variable Description Microseconds
Th,a startup time for a 2-—norm 13.0
Ths computational time for 2-norm (per element) 0.863
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Processor ¢ owns row set « and column set 3
For j=1ton
(* Generate Householder vector, v, from column j of A )

If j € 3 Then
(* Compute contribution to norm of column j *)
1= AL Ay
Binary collapse v = >~ 47 to processor owning A4; ;
If j € a Then

T =20y + 45, [\/7)
Ajji= A +sign(4; )7
Vo 1= Aaj
Broadcast v, (and 7) to processors sharing rows o
Else
Receive v, (and )

B:=8\{j} (* Remove j from active columns #)

rg :=vl A, (x Compute portion of dot—products *)

Binary exchange (with appended 7) among processors sharing
columns @ to compute rg 1= ng

Aap i =Aap —(2/T)vars (¥ Update the submatrix *)

a:=a\{j} (¥ Remove j from active rows #)

Fig. 7. Parallel Householder QR for processor q.

To generate a Householder vector the processor owning the top element must
know the vector’s 2-norm. The total time spent performing this task consists of the
time for the local computations followed by the time for a binary collapse to combine
the partial sums, which can be approximated by

n(2m —n)

Thorm =115y 4
et 2py

Tn,b + drn(Tc,a + Tc,b)~

The total time spent broadcasting Householder vectors can be modeled as

n(2m —n)

Theast = dchc at
’ 2py

Tep.

As with the LU factorization column broadcast, the generation of the next House-
holder vector overlaps with all but the first stage of the broadcast of the current one.
Thus the factor d. does not appear in the per element term of the broadcast.

The time for computing all the dot—products is the sum of the time required for
the numerics, Tgot— cqic, and the time for combining all the partial sums within each
column Tyot— comm- Although for hypercubes there are asymptotically more efficient
alternatives [15, 34], we perform this communication using a binary exchange which
requires redundant numerical operations. The gains from the more sophisticated
algorithms are of a low order and so insignificant for large problems, and by not ex-
ploiting hypercube specifics we can reach broader conclusions about the performance
of torus—wrap algorithms.

18



The numerical operations associated with the dot—products can be performed as a
daxpy within rows, or as a ddot within columns (which has about the same startup and
per—element cost as a daxpy). Our implementation dynamically chooses whichever
of these operations involves fewer startups. For simplicity of analysis, we ignore the
fact that the optimal choice can change during a run for nonsquare matrices, in which
case the dot—product terms are about

n . .,n 2m-—n n?(m—n/3
Tdot—cale = & HllIl(—, 7)Td,a + MTd,ba
2 Pe Pr 2p
d,n?
Tdot—comm = drnTc,a + %Tc,h

Finally, the outer—product updates on submatrices can be performed using daxpys
within either columns or rows. We again choose whichever leads to fewer startups, so
the total update time can be approximated as

n_..n 2m-n n?(m —n/3)

Tupdate = 7 Mmin T Td,a‘i‘
pdat 2 (pc Pr ) 2p

b

The data from Table 3 is shown graphically in Fig. 8, where the vertical axis is
the Mflop rate achieved. To compute rates, we used the sequential flop count, which
for this problem is about 6.83 x 10! flops.
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Fig. 8. Performance of the QR factorization code on the nCUBE 2.

The cusp in the curves is due to switching between a row oriented and a column
oriented application of the level one BLAS. We expect the model to overpredict per-
formance since by only including communication and BLAS it neglects any overheads.
In the extreme case of column—wrapping, the model clearly overestimates the overlap
of computation with communication. The model can be used to predict the optimal
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decomposition of processors among rows and columns by setting the derivative of the
expression for run time to zero. However, as in §5.1, no closed form expression results.
The peak performance is achieved when d,. 1s somewhat less than d. due primarily to
the greater communication within columns than within rows. A nonsquare torus also
allows for fewer BLAS startups.

Asin §5.1, we ran a sequence of factorizations in which the memory required per
processor remained constant, allowing us to compute scaled speedups. The results
are presented in Table 4. As before, the efficiencies greater than one are due to longer
vectors in the BLAS routines.

Table 4. Times for QR factorizations of square matrices.

Matrix | Cube | dy : de Mflop/s Mflop/s Scaled Eff.
Size Dim Observed | per Proc. | Speedup

500 0 0:0 1.97 1.97 1.00 1.00

707 1 0:1 3.98 1.99 2.02 1.01
1,000 2 0:2 7.95 1.99 4.04 1.01
1,414 3 0:3 15.83 1.98 8.05 1.00
2,000 4 1:3 31.42 1.96 15.97 1.00
2,828 5 1:4 62.76 1.96 31.90 1.00
4,000 6 2:4 124.56 1.95 63.31 0.99
5,657 7 2:5 249.06 1.95 126.59 0.99
8,000 8 3:5 494.32 1.93 251.24 0.98
11,314 9 3:6 989.71 1.93 503.03 0.98
16,000 10 3:7 1963.91 1.92 998.01 0.97

Computation rates per processor for this set of problems are plotted in Fig. 9,
comparing the optimal torus—wrap to row— and column-wrap mappings. As with
LU, the torus—wrap mapping allows for much greater scalability than row or column
schemes.

5.3. Householder tridiagonalization. Our third example, Householder tridi-
agonalization of a symmetric nxn matrix A, is used in eigenvector calculations of sym-
metric or Hermitian matrices. The best sequential algorithm requires 4n3/3 4+ O(n?)
flops, and n?/2 4+ O(n) storage [19]. An algorithm that fails to exploit the symmetry
of the matrix will require additional computation and memory, so it is better to store
and manipulate only a lower (or upper) triangular part of the matrix. This causes
problems for row or column oriented mappings since a particular row (or column) of
the matrix is now stored partially as a row and partially as a column. The same is-
sues arise with other algorithms for symmetric matrices, like Cholesky decomposition.
However, since a square torus—wrap mapping treats rows and columns symmetrically,
it 1s well suited to deal with this problem.

Our algorithm for square tori is outlined in Fig. 10. Each processor stores its
portion of the lower triangular part of A in a column major format. One property of
torus—wrap mappings as we have defined them is that for square tori the processors
owning diagonal matrix elements are assigned a set of row indices equal to their set of
column indices. This is also true for block torus—wrap mappings with square blocks,
but it is not generally true of Cartesian mappings. This property makes transposing
vectors easy, since these diagonal processors have the appropriate elements of both a
vector and its transpose. We exploit this convenience in our implementation, which
limits us to square tori. A similar algorithm is described in [7].

As evidenced by Fig. 10, exploiting symmetry makes this algorithm more compli-
cated than those for LU and QR. First a Householder vector, v, must be generated
and broadcast. The appropriate elements of the transpose of v (and later w) are then

20



2.00
# © 8 8 n @ o 0o g o g
& A A
o »
%
f) - AN
1.50 | <
o |
2 < A
2
Q i &
§ 1.00 |-
o | &
S o
LL 0.50 I | Torus-wrap
= 1 AN Col.-wrap
<& Row-wrap
0‘007\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 1 2 3 4 5 6 7 8 9 10

Fig. 9. Mflop/s/processor rates for QR factorization with different pro-
cessor mappings.

communicated to each processor. Next comes the calculation of s = Av, where A is the
remaining submatrix. This is followed by the computation of w = 2(s — (v! s)v/7)/T,
where 7 = ||v||?. Finally, an outer—product update of the matrix elements is per-
formed.

We implemented this algorithm on the nCUBE 2 and used the code to factor an
8,000 x 8,000, double precision matrix, which required 1653 and 556 seconds on cubes
of dimension eight and ten respectively.

The algorithm in Fig. 10 can be generalized to apply to non-square torus map-
pings, but this involves substantial complexity in performing the transpose operations
and the matrix—vector multiplications. Although we did not implement this more
general algorithm, we can develop a performance model to investigate the tradeoffs
associated with different mappings. Our model will require the parameters introduced
in the previous two sections and the following values from the nCUBE 2 manuals.

Variable Description Microseconds
T q startup time for a dscal 7.8
Tep computational time for dscal (per element) 0.554
T a startup time for a ddot 10.0
Tis computational time for ddot (per element) 0.984

Computing and broadcasting the Householder vectors is very similar to the oper-
ation required in Householder QR as described in §5.2.
n2
Thorm = nTn,a + Q_Tn,b + drn(Tc,a + Tc,b)
Pr
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Processor ¢ owns row set a and column set 3 of lower triangular A
For j=1ton—1
a:=a\{j} (* Remove j from active rows %)

(* Generate Householder vector, v, from column j of A )
If j € 3 Then
7= AZ;]»AQJ'
Binary collapse ¥ = >~ 47 to processor owning A;41 ;
If j+ 1€« Then
T =20y + |4j11,ilv7)
Ajyry = Ajga +sign(Aj ;)7
Vo 1= Anj
Broadcast v, (and 7) to processors sharing rows o
Else Receive v, (and 1)

B:=6\{j} (* Remove j from active columns =)

(x Get elements of v7 to the correct processors *)
If « = § Then

Vg 1= Vg

Broadcast vg to processors sharing columns g
Else Receive vg

(x Compute Av *)

rg = Agﬁva

Binary collapse among processors sharing columns g
to diagonal processor to form rg := 3" rg

If « = § Then
st :=7ra+ Aa pvg  (x excluding diagonal contribution *)

Else si := A, svg

Binary exchange among processors sharing rows «
to form s, 1= > sl

(x Compute vT's and generate w *)

M= Y iea Visi

Binary exchange among processors sharing columns g
to form n := > n? (and append 1)

Wy 1= %(5CY — Zu,)

(x Get elements of w? to the correct processors )
If « = § Then

Wg 1= Wa

Broadcast wg to processors sharing columns g
Else Receive wg

Aapg = Aap — vawg — wavg (* Update the submatrix =)

Fig. 10. Parallel Householder tridiagonalization for processor q.
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2
Theast = dchc,a + dc—nTc,Ir
2py

Unlike the models for LU and QR, we include the time for each stage of the broadcast.
This is because the binary exchanges in the algorithm keep the processors tightly syn-
chronized, which reduces the potential to overlap computation with communication.
For square tori, transposing v and w just requires broadcasts from the diago-
nal processors, but for non-square tori it is more complicated. We denote pp4r =
max(py, pe), and dpmqe = max(d,, d.), with the obvious pp, and dpy, counterparts.
Transposition can be accomplished with d,,;, stages of a broadcast with message
length about n/pmae, followed by dpar — d. stages of a binary exchange in which
the message length doubles after each stage. We note that for non-square tori, some
copying of data is also required. The total time spent performing these operations is

about

dpinn® n?

i, 4 —— (P T,
pmax pmax pC

Tirans = 2d7‘nTc,a +

This formula is assymetric in rows and columns because the recursive doubling stage
in the transpose need only occur if d, > d.. Otherwise, the last term in the expression
reduces to zero.

Computing Av is somewhat problematic since only the lower triangular portion
of the matrix is stored. We denote this triangular portion as L;, and the portion
of L1 below the diagonal as Ls. We observe that Av = Lfv + Lov, which requires
communication in both rows and columns. Our algorithm first performs a ddot to
determine the contribution from LT v. These values are combined and sent to the
processors owning the diagonal matrix elements using precisely the opposite of the
communication pattern used above for transposition. Next, the contribution from
Lov 1s computed using a daxpy, and these values are combined across rows using a
binary exchange. As a side effect, the binary exchange synchronizes the processors
within each row and a total of about (p. — 1)n?/2 redundant flops are performed. As
with our implementation of QR factorization, for hypercubes there are asymptotically
more efficient alternatives to the binary exchange [15, 34], but our implementation
does not use them. The calculation and communication time for this operation can
be approximated as

77,2 77,3
Ty = T+ Tua) + 2(Tyy + Tuy),
Av—cale 2pc( t, + d, )+ 6])( t,b + d,b)
n’ Pmazx dcn2
Tz = (d, d.)nT. 4 dmin - )T, T. .
Avcomm = (dr + de)nT o+ 2pmax( s e + 2p, "

Forming v” s involves local computation, followed by a binary exchange among the
processors sharing a set of column indices. This serves to synchronize the processors
within each column, and requires a total of about (p, — 1)n?/2 redundant flops. Also,
the same local computations are repeated by each column of processors, implying an
overall additional (p. — 1)n? flops beyond those in the sequential algorithm. The time
for this computation and communication can be modeled as

77,2

Tdot-cale = nﬂ,a + 5

T

Dr
Tdot—comm = drn(Tc,a + Tcyb).
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Each processor can now generate its own elements of w, using a dscal followed by a
daxpy. As above, this calculation is duplicated p. times, resulting in about 2(p.—1)n?
extra flops. The time spent in this step is about

2

n
Tgenw = n(Td,a + Ts,a) + 2]) (Td,b + Ts,b)~
Updating A by —vw” — wv” is now a local operation performed by each processor

on its own data. Each column of A can be updated with two daxpys, so the time for
this operation can be modeled as
2 3
n n
Tupdate = _Td,a + _Td,b~

Pe 3p
The total time 1s modeled as the sum of the terms above. The predictions of the
model for an 8,000 x 8,000 matrix are plotted in Fig. 11, with the observed values for
square tori included for comparison. In computing rates, we use the sequential flop
count, which is about 6.83 x 10" for this problem.

2000 |-
[ Model,d=8
[ ] Data,d=8
7777777777777 Model,d=10
T 0l Lo
% | LT T T T
T 4
9 1000 |-
LL I // \\\
= :
500 | //'/ h \~\
0 \ ! w | | . ‘ ‘ . —
0 1 2 3 4 5 6 7 8 ° 10

Fig. 11. Performance of the tridiagonalization code on the nCUBE 2.

As expected, the model indicates that a square torus is better than row or column
methods for this problem. The cusp in the model is due to the different communication
patterns that apply depending on the relative sizes of p, and p.. We note that
for these problems, the model predicts a slight improvement in performance when
d, = (d/2)—1, but the model neglects the additional copying required for non-square
tori. We can use the model to predict the optimal tradeoff between p, and p. in
general, but as in §5.1 and §5.2 no closed form expression exists.

Asin §5.1 and §5.2, to investigate scaled speedup we ran the code on problems in
which the local memory requirements remained constant. The results are presented

in Table 5.
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Table 5. Times for Householder tridiagonalization.

Matrix | Cube | Mflop/s Mflop/s Scaled Eff.
Size Dim Observed | per Proc. | Speedup

500 0 1.87 1.87 1.00 1.00
1,000 2 7.25 1.81 3.88 0.97
2,000 4 27.84 1.74 14.89 0.93
4,000 6 107.30 1.68 57.40 0.90
8,000 8 413.01 1.61 220.95 0.86
16,000 10 1596.33 1.56 853.97 0.83

On a single processor, the performance of the tridiagonalization code is about 5%
less than that for LU or QR. This is a consequence of exploiting the symmetry of the
matrix, and can be expected in other algorithms that work on symmetric matrices
like Cholesky factorization. The short columns in the rightmost portion of the lower
triangular matrix, and the short rows at the top result in many short vectors in the
BLAS. Also, index calculations are more complex with a triangular matrix, adding
some overhead to the calculation.

In addition, the performance of the tridiagonalization code scales less well than
either LU or QR. The efficiency on 1,024 processors is about 83%, while for QR and
LU it was in the upper 90’s. This is a consequence of three factors. First, the repeated
computations add about n?(7p. + p,)/2 flops to the sequential algorithm. Second,
exploiting symmetry requires a greater amount of communication. And third, the two
binary exchanges effectively synchronize the processors, which reduces the potential
for hiding communication with computation. The second factor will also influence
other algorithms on symmetric matrices. Having said this, it is still true that the
tridiagonalization code performs well, achieving greater than 75% of the peak BLAS
performance on 1024 processors.

6. Conclusions. We have presented analytical and empirical evidence that for
many dense linear algebra algorithms, the torus—wrap mapping is better than row or
column mappings. The primary advantage of the torus—wrap is that it requires less
communication, leading to better scalability, but there are a number of additional
advantages including better load balancing, reduced processor idle time, and shorter
message queues.

After factoring a matrix, one typically wishes to use it, for example, to solve
linear systems or least—squares problems. This requires using the factored products
to modify one or more vectors. If only a few vectors are involved, then the flop count
is ©(n?), an order of magnitude less than the factorization. In this case, since the cost
of the factorization dominates, a torus—wrap mapping for the factorization is likely
to give the best overall performance. In addition, algorithms exist for doing a single
triangular solve using the torus—wrap mapping that run in the asymptotically optimal
time of n?/p+ O(n) [5, 28].

If many vectors must be modified, then they can be combined to form a matrix
which can be assigned to processors in a torus—wrap fashion. The same techniques
that were employed in the factorization can now be used in the triangular solves, and
good performance should result. For instance, the LU factorization code described in
§5.1 has been used to invert a matrix by solving n linear equations on the nCUBE 2
at an overall computational rate of 1.96 Gflop/s.
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