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Abstract:Developing parallel software for unstructured problems continues to be a di�cultundertaking, particularly for distributed memory machines. Framework and librarysupport are limited for non-standard applications and developers are often forced tocode from scratch. This is particularly true for complex, unstructured applications.In this paper, we show that this needn't always be the case. We describe a setof simple primitives which can be combined to provide solutions to a variety ofunstructured parallel computing problems. Speci�cally, we show how a small set oftools can yield e�cient parallel algorithms for particle modeling, crash simulationsand transferring data between two independent grids in multiphysics simulations.The use of such tools allows the application developer to program at a higher levelwithout sacri�cing performance.1 IntroductionAs has long been the case, the greatest impediment to the use of parallel computersis the di�culty of writing parallel software. This di�culty is particularly acute fordistributed memory computers. One way to reduce this burden is to build uponexisting parallel tools and utilities. The construction of appropriate parallel librarieshas been a major focus of activity within the parallel computing community. A key�This work was funded by the Applied Mathematical Sciences program, U.S. Department ofEnergy, O�ce of Energy Research and performed at Sandia, a multiprogram laboratory operatedby Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE under contract numberDE-AC-94AL85000.ySandia National Labs, Albuquerque, NM 87185-1110. Email fbah, sjplimpg@cs.sandia.gov.1



2challenge in this activity is in identifying the most appropriate abstraction levelfor the library interface. At the lowest level, message passing standards like MPI,PVM and Open-MP are robust and portable interfaces. But they provide only veryprimitive functionality, leaving a huge burden to the programmer. At the otherextreme, some high level frameworks reduce the e�ort of the programmer to merescript writing. This allows for rapid development of parallel codes, but it is not apanacea. Good frameworks are an enormous undertaking to develop and generallysupport only a very limited class of applications. Users with non-mainstream needscan �nd frameworks to be too restrictive and limited.Middle ground between these two extremes can be found in the many parallelutility libraries for linear algebra (e.g. [15, 1]), partitioning (e.g. [6, 16]) and othercommon kernel operations. Although we personally prefer this library approach toparallel software development, it is not without its problems. A key challenge forthe developers of parallel libraries is the design of easy to use and e�cient interfaces.For instance, a linear algebra library which presumes the matrices are assigned toprocessors in a complicated manner can be di�cult for applications programmers touse. Another important question is the range of functionality that can be capturedby libraries. Can libraries be exible and powerful enough to address complex ornontraditional applications?We believe the answer is yes, and in this paper we show how a few simpleparallel primitives can be easily combined to build e�cient, high level function-ality. The primitives that we use are su�ciently simple to obviate the interfacechallenges. But, as we will show, their combination can provide e�cient solutionsto complex problems. Speci�cally, we provide parallel algorithms for the followingthree problems in scienti�c computing, which are described in more detail later.1. In molecular dynamics and smoothed particle hydrodynamics, physical sys-tems are modeled as a set of particles interacting via short-range forces. Avariety of parallel algorithms have been devised for such systems, but dynamicload balancing challenges remain.2. Crash simulations, like virtual car safety studies, are built from two principlecomputational operations. First is a �nite element analysis to determine thestresses, strains and material response of the entities in the simulation. Secondis the detection of grid intersection, which identi�es entities that have come incontact with each other. These two computational steps have quite di�erentload balancing needs, which makes the development of scalable parallel crashalgorithms di�cult.3. When performing multiphysics computations, it is sometimes necessary tointerpolate data from one grid onto a second grid. There are e�cient serialalgorithms for this problem, but they require an understanding of the geomet-ric intersection properties of the two grids. Speci�cally, given a node in thesecond grid, determine which (if any) element of the �rst grid it lies within. Inparallel, when the two grids are partitioned independently among processors,this determination can be di�cult to accomplish.



3In x2 we will introduce a set of simple parallel tools which will prove su�cientto parallelize these complex applications. Details of the parallel algorithms will bepresented in xx3{5.2 Parallel PrimitivesTo address the applications described above, we will rely on several simple parallelkernel operations. For simplicity of use, we want these kernels to have simpleinterfaces, but as we will show in the subsequent sections, they have su�cient powerwhen combined properly to solve complex problems.Primitive I. Recursive coordinate bisectioning (or RCB) is an old andunsophisticated load balancing strategy �rst proposed by Berger and Bokhari [2].It works on entities in a geometric domain by recursively slicing the domain orthog-onal to a coordinate axis, creating P partitions with an equal number (or weight)of entities contained within each. Although not a particularly e�ective static parti-tioning method, this simple algorithm has a number of under-appreciated features,particularly when used as a dynamic load balancer.� It is fast and e�cient to parallelize. (See, e.g. [5] or [10]).� The boundary of each subdomain is a rectangular parallelepiped.� The entire partition can be concisely described by the set of P � 1 cuttingplanes.� New points (and extended entities) can be added to the partition e�cientlyby following the recursive sequence of cuts.� Small changes in the locations of entities induce only an incremental changein the partition.All of these properties will prove to be useful to us in the applications discussedbelow.Primitive II. A processor which owns a set of entities needs to identify allother entities which interact with those it owns. In the general case of arbitrarydecompositions, this can be a challenging problem. In the case where the interactionpattern is known, but ownership of entities is dynamic, an e�cient, general-purposealgorithm has been devised by P�nar and Hendrickson [8]. However, for the commonsituation in which interaction is a function of geometric proximity, this neighboridenti�cation problem is greatly facilitated by the recursive coordinate bisectioningdecomposition. For each entity a processor owns, construct a bounding box whichis large enough to contain all the possible other entities it overlaps. By following thesequence of RCB cuts, identify all the processors that could own items overlappedby this entity. Then share the relevant information with all of these processors.Primitive III. A common situation in unstructured parallel computationsis that each processor has a (sparse) set of messages to send to a known set ofrecipients, but does not know what or from whom it will receive. Determiningwho I will receive from given the knowledge of who I will send to is a keystep. An e�cient protocol to complete this communication operation is essential.We address this need by the algorithm in Fig. 1.In steps (1){(3) of this algorithm, the number of messages being sent to each



4 (1) Form P -length 0/1 vector marking who I send to(2) Reduce-scatter vector over all P processors(3) nrecvs = vector(q)(4) For each processor I have data for,send message containing size of the data(5) Receive nrecvs messages with sizes coming to me(6) Allocate space & post asynchronous receives(7) Synchronize(8) Send all my data(9) Wait until I receive all my dataFigure 1. A parallel algorithm for unstructured communication for processor q.processor are summed, so each processor learns the number of messages it willreceive. With this information, in steps (4) and (5) each processor can tell itsrecipients about the data it wants to send. The data can then be exchanged insteps (6){(9).3 Particle SimulationsMolecular dynamics simulations are commonly used to model the mutual interac-tions of large numbers of atoms or molecules to study biological systems or materialproperties. Typically, classical Newtonian physics is employed. The non-Coulombicforces are of short range and so can be modeled by particles interacting only withnear neighbors. Smoothed particle hydrodynamics and related mesh-free methodsare used to simulate uid motion or solids undergoing deformation. Again, particlesonly interact if they are geometrically near each other.As particles move, the set of interacting partners changes dynamically, whichcan lead to load imbalance. The most e�cient parallelizations of large-scale sim-ulations utilize a spatial decomposition of the domain. That is, each processor isresponsible for a region of space, and handles the calculations associated with allthe particles currently in its region. Among the possible variants of spatial decom-positions, several authors have used recursive coordinate bisectioning. Pilkingtonand Baden used RCB as one method for performing SPH simulations [7]. Plimp-ton, et al. used RCB for the more complex version of SPH in which the particle'sinteraction spheres can grow dynamically, and also for coupling SPH with struc-tures simulations [10]. Srinivasan, et al. have applied RCB to the parallelization ofmolecular dynamics simulations [13].The basic structure behind each of these parallelizations is broadly the sameand fairly straightforward. Here we describe [10] to emphasize the utilization ofour primitives. Particles whose interaction region extends beyond their processor'ssubdomain need to be communicated to the relevant processors. This determinationcan be facilitated by the simple geometry of the RCB subdomains and by the easeof determining which processor's subdomains intersect a bounding box around the



5particle's interaction region. At this point a processor knows what data it has tosend, but not what it needs to receive, so the unstructured communication kernel isrequired. As particles move about, the load may need to be periodically rebalanced.The incremental nature of RCB ensures that a new decomposition will be similarto the current one, so little data will need to be exchanged before continuing.This basic algorithm can be enhanced in several ways. One worth noting isto employ persistent data structures (commonly called neighbor lists in moleculardynamics) to preserve the set of possible interaction pairs for multiple timesteps.By greatly reducing the work required to identify interactions, this can signi�cantlyimprove overall performance. More details can be found in the aforementionedreferences and in Plimpton [12].4 Crash SimulationsTransient dynamics simulations are widely used to model low speed crash and im-pact phenomena. They are most commonly solved using explicit methods on La-grangian grids. A prototypical example is the virtual crash-worthiness analysesperformed by car manufacturers. The car is modeled by a �nite element meshwhich deforms upon impact. As the car bumper deforms, it can hit the radiatorwhich will induce new physics which must be captured in the simulation. In thecomputation of the deforming mesh, this contact is observed when a mesh nodepasses through a face of a �nite element. When this happens, new forces must beadded into the simulation to model the interaction between the contacting objects.The two dominant operations in crash simulations are the �nite element analysisand the detection of contacts.The parallelization of unstructured grid �nite element simulations is a wellstudied problem. The basic idea is to divide the mesh among processors in such away that the inter-processor boundaries are kept small. This minimizes the amountof communication required in the explicit updates. Although the mesh will move, ifits topology doesn't change then a single decomposition can be used for the durationof the simulation.Contact detection has very di�erent computational characteristics. Contactis fundamentally a geometric property, and topologically distant parts of the meshcan come into contact. The contact problem changes dynamically as the calculationproceeds. These properties argue for a dynamic, geometric partitioning strategy forcontact detection. Here, we describe the use of recursive coordinate bisectioning forthis problem. We have implemented our approach in the PRONTO code [14]. Ourparallel contact detection algorithm is sketched in Fig. 2 and described in greaterdetail in [10, 3].In steps (1) and (2) we are updating the recursive coordinate decompositionfrom the previous timestep. The incremental nature of RCB keeps this operatione�cient. In step (3) we exploit the concise description of an RCB decomposition.Recall that a contact occurs when a mesh node passes through a face. Unlikenodes, faces have �nite extent, and so can intersect several RCB subdomains. Instep (4) we make sure that all each processor knows about all the faces which



6 (1) Send contact data to old RCB decomposition(2) Update RCB to rebalance(3) Share RCB cut info with all processors(4) For all my facesIf face extends beyond my sub-domainDetermine which processors it overlaps(5) Send overlapping faces to nearby processors(6) Find contacts within my sub-domainFigure 2. A parallel algorithm for contact detection.intersect its subdomain and so might be in contact with its nodes. This step exploitsthe geometric simplicity of RCB subdomains, and the ease of determining whichsubdomains intersect a bounding box around the surface. In step (5) we utilize theunstructured communication primitive to exchange information e�ciently. Finally,in step (6) each processor can invoke the (quite complex) serial code for contactdetection as a local computation.Note that with our approach, the contact detection operation uses a com-pletely di�erent parallel decomposition than the �nite element calculation. So ateach timestep, data is transferred back and forth between these two decomposi-tions. Within the same code we have parallelized a version of smoothed particlehydrodynamics to allow the simulation of uid/structure interactions. Our SPHparallelization uses yet a third decomposition, also based upon recursive coordinatebisectioning as described in x3.To test the performance of our approach to contact detection we constructeda set of problems of varying sizes which were all based upon the geometry depictedin Fig. 3. This model depicts a tilted aluminum block moving downwards at highvelocity and crushing an aluminum shipping container. As the container crumples,complex folding and buckling behavior is exhibited, which provides a stringent testof the contact detection routines. The model exploits bilateral symmetry.We ran a set of these models on varying numbers of processors in such a waythat the number of �nite elements per processor remained a constant 3800. We ranthe code on the ASCI Red, Intel parallel computer at Sandia National Labs. Atthe time these runs were done, ASCI Red had 200 Mhz Pentium Pro processorsand a proprietary communication network with 10{20 microsecond latencies andbandwidth of about 300 megabytes per second. Our results are depicted in Fig. 4as elapsed time per timestep. The lower curve is �nite element computation time;the middle curve includes both �nite element and contact detection time; and theupper curve is total CPU time. The data show almost perfect scalability out to3600 processors.One additional implementation detail is worth mentioning. As with neighborlists which were mentioned in x3, the use of persistent data structures enhances theperformance of our contact detection routine. Instead of performing a completesearch for contacts each timestep, we can keep a list of face/node pairs which are
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Figure 3. Simulation of a crushed shipping container from initial impactto �nal state after 3.2 milliseconds.near each other and only search in within this list. Every few timesteps the listneeds to be regenerated via a full contact search. This idea consumes space, but inour experiments it halved the average time for contact detection [9].Prior to our work, no parallelization of these types of computations had ex-hibited scalability beyond a few tens of processors. This parallel code has enableda number of simulations which were previously intractable, a few of which are de-scribed in [10].5 Grid TransferWhen performing multi-physics simulations like uid-structures interactions, a keyoperation is transferring information between the di�erent physics models. Forinstance, the uid will exert a force on the structure, and the deformation of thestructure will change the geometry for the uid. Another example in which theintersection between the simulations is 3D instead of 2D arises in thermal-structuralanalysis. The temperature will e�ect the material properties, but simultaneously thematerial properties e�ect the thermal conductivity. For sophisticated simulationsthe di�erent physical phenomena may be modeled with di�erent meshes, each ofwhich may be adapting over time.To transfer information between physics modules it is necessary to determinethe geometric intersection between the grids. Speci�cally, to determine the temper-ature of a node of the structures mesh, you must �rst determine the thermal �niteelement it lies inside, and then do interpolation from the nodes of that thermalelement. Various serial algorithms for this geometric kernel have been proposed.However, parallelization of this operation is di�cult when the two meshes aredistributed across processors. If the simulations are adaptive then the meshes willbe periodically redistributed to preserve load balance. Thus, no assumptions can be
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Figure 4. Average CPU time per timestep on the ASCI Red computer tocrush a container meshed at varying resolutions.made about which processor owns the thermal element that a particular structuralnode needs to know about.We have developed a parallel rendezvous algorithm for this problem which usesrecursive coordinate bisectioning as an intermediate decomposition. The algorithmis sketched in Fig. 5. More details can be found in [11].(1) Compute box that bounds thermal & structural mesh intersection.(2) Create rendezvous decomposition via RCB on the thermal mesh.(3) Send element geometry from thermal to rendezvous decomposition.(4) Find which rendezvous processor's subdomain has each structural node.(5) Send node geometry from structural to rendezvous decomposition.(6) Clone thermal elements which overlap into nearby RCB sub-domains.(7) Find which thermal element each structural node is inside.(8) Send element/node pairings from rendezvous to thermal decomposition.(9) Interpolate solutions from thermal nodes to structural nodes.(10) Send structural node solutions from thermal to structural decomposition.Figure 5. A parallel algorithm for grid transfer.In steps (1) and (2) we create a new decomposition for the problem using RCB.



9We send the geometric information from both the thermal and structural meshesto this rendezvous decomposition in steps (3){(5), The determination of where tosend data exploits the compact representation of the RCB decomposition and theease of adding new points to an existing decomposition. The data transfers use theunstructured communication primitive from Fig. 1. In step (6) we determine whichprocessors need to know about possibly overlapping thermal elements. This mirrorsstep (5) of the contact detection algorithm in Fig. 2 and again exploits the ease ofdetermining intersections with RCB. The geometric analysis is now reduced to acollection of independent serial computations which are performed in step (7). Theoutput of this determination is sent back to the thermal decomposition in step (8).There, the actual numerical interpolations are performed and the answers are sentto the structural decomposition in step (10), using our unstructured communicationkernel yet again.As with the previous two examples, performance of this algorithm can beenhanced by persistent data structures. One way in which this can occur is if thegeometry does not change between two timesteps. In this case, the element/nodepairings of step (8) can be stored between timesteps. Steps (1-8) can then beskipped and only the interpolation and communication of steps (9-10) performed.An intermediate option can be exploited if the meshes move only a small amount.The full search in step (7) can be replaced by a faster, more localized search.To test our algorithm, we used a simple problem whose size was easy to vary.We used two regular 3D hexahedral meshes of equal size, but slightly rotated andtranslated from each other. We decomposed the thermal mesh into regular 3Dbricks, but we partitioned the structural mesh in a quasi-2D fashion into longcolumns. These choices of decompositions insure that all the data exchanges inthe algorithm are irregular in nature and require each processor to send its data tomany others.Fig. 6 shows run times for a scaled-size problem running on 1 to 1024 proces-sors of ASCI Red. The two meshes were successively doubled in di�erent dimensionsas processors were added so that there were always 8000 elements (and nodes) ofeach mesh per processor. On this plot perfect scalability of the algorithm would thusbe a horizontal line. For the full algorithm the run time rises from about 0.3 secondper timestep to nearly 1.0 second per timestep. Since the on-processor computa-tions (search and interpolation) scale nearly perfectly (about 0.1 seconds/timestep),the growth in total time is due primarily to communication and to a lesser extenton the logarithmic dependence of the RCB operation on grid size. On the largestproblems, an immense volume of data is moving between large numbers of proces-sors in an irregular pattern; the communication bandwidth of even the ASCI Redmachine eventually saturates and the algorithm runtime increases.The lower curve in Fig. 6 is the time to perform the interpolation on timestepswhen the meshes do not move relative to each other. Again there is a modest risein runtime from 0.03 to 0.08 sec/timestep on the largest problems, due to thecommunication saturation. However, the most important result for these timingsis that the grid transfer operation can be performed on extremely large meshesvery rapidly on the ASCI Red machine { in less than 1/10 of a second on typicaltimesteps when searches are not necessary, and in under 1 second even when the
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Figure 6. CPU time for performing a grid transfer operation between pairsof varying sized grids. Each data point represents grids with 8000 elements per pro-cessor. Circles represent the full algorithm timing; squares are for just interpolationand subsequent solution communication.entire search operation must be redone (e.g. due to mesh adaptation or motion).This is likely to be a very small fraction of the time needed to solve the physicsequations of interest each timestep on two separate multi-million element meshes.6 ConclusionsWe have shown how a simple set of parallel kernels can be used to e�ciently par-allelize several unstructured algorithms that arise in complex applications. By us-ing these kernels, application developers are able to program at a higher level ofabstraction, reducing development and debugging e�ort. Although low level im-plementation details are beyond the scope of this paper, we have written thesekernel operations as a set of library routines with simple interfaces and a varietyof options. For instance, our implementation of the communication operation fromFig. 1 allows for �xed or variable sized entities, data transfers to be bu�ered or not,and preservation of the computed communication pattern. It is our belief that welldesigned and constructed libraries are a key to addressing the software challenge onparallel machines.
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