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Enhancing Data Locality 
by Using Terminal Propagation 
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Abstract 

Terminal propagation is a method developed in the 
circuit placement community for adding constraints to 
graph partitioning problems. This paper adapts and 
expands this idea, and applies it to the problem of 
partitioning data structures among the processors of a 
parallel computer. We show how the constmints in ter- 
minal propagation can be used to encourage partitions 
in which messages are communicated only between ar- 
chitecturally nea.r processors. We then show how these 
constraints can be handled in two important parti- 
tioning algorithms, spectral bisection and multilevel- 
KL. We compare the quality of partitions generated 
by these algorithms to each other a.nd to partitions 
generated by more familiar techniques. 

1 Introduction 

To perform a computa.tional task on a parallel com- 
puter it is first necessary to partition the task into 
pieces and to ma.p the pieces to different processors. In 
many calculations the underlying computational struc- 
ture can be conveniently modeled as a gra.ph in which 
vertices correspond to computational tasks and edges 
reflect data dependencies. The pa.rtit.ioning and map- 
ping problems can then be addressed by assigning pro- 
cessor labels to vertices of the graph so that the cor- 
responding assignment of tasks to processors leads to 
efficient execution. 

Graph partitioning in this context has been an ac- 
tive area of research recently, and many new and effec- 
tive stra.tegies have been developed. Much less atten- 
tion, however, has been paid to the ma.pping problem. 
When the mapping probEem has been considered, it has 
typically been addressed as a post-processing problem 
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in which the pieces of a a given partitioning must be 
assigned to processors in an intelligent fashion. 

This primary emphasis on partitioning is justified 
by the impact a partition has on communication within 
a parallel computer. The number of graph edges cut 
in a partition typically corresponds to the volume of 
communication in the parallel application, and, since 
communication is expensive, minimizing this volume 
is extremely important in achieving high performance. 
Mapping, in contrast, does not affect communication 
volume. Furthermore, with current parallel hardware, 
the cost of an isolated message between architecturally 
distant processors is only marginally greater than that 
of a message between nearest neighbors. 

Nevertheless, mapping quality is still very impor- 
tant. A message between dista.nt processors must tra- 
verse many wires, which are rendered unavailable to 
transmit other messages. Conversely, if each message 
consumes only a small number of wires, more messages 
can be sent at once. It is in this competition for wires 
that a good mapping can be distinguished from a bad 
one. More formally we say that a good mapping is one 
that reduces message congestion and thereby preserves 
communication bandwidth. Many scientific computing 
applications of interest, for example those employing 
an iterative sparse solver kernel, have a structure in 
which many messages simultaneously compete for lim- 
ited communication bandwidth, and good mappings 
are especially important in these cases. 

In such problems the simple, two-phased approach 
in which the mapping is decoupled from the partition- 
ing may be effective. But this is intuitively not optimal 
because it does not allow for trading-off between parti- 
tion and mapping quality. Ideally, the partitioning and 
mapping should be generated together in such a way 
that some aggregate cost metric is minimized. Wal- 
shaw, et al. [21] describe one way of performing this 
coupling, and show that it can significantly reduce the 
run time of applications. Here we apply a very differ- 
ent approach to address the same problem. 

This paper describes a general framework for cou- 
pling recursive partitioning schemes1 to the mapping 

1 Most partitioning methods are recursive, but some, e.g. the 
greedy method described in [6], are not. The method described 
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problem and shows how to apply it to two important 
algorithms, multilevel-I<L and spectral bisection. Our 
approach is based upon an idea taken from the circuit 
placement community known as term.inal propagation 
in which the result of one partitioning step in the re- 
cursion is used to constra.in subsequent steps. The 
constraints effectively transmit mapping information 
between partitioning-problems. 

As a simple illustration consider the mesh depicted 
in the left side of Fig. 1, and to the right its partition 
into four sets using the popular spectral bisection al- 
gorithm [17]. The mesh was first sliced horizontally, 
and then the two halves were divided independently. 
Although the interfaces between the regions are quite 
small, the region just above the horizontal cut is adja- 
cent to all the others. Consequently, this decomposi- 
tion can not be mapped to a hypercube or mesh topol- 
ogy in such a way that all communication is between 
neighboring processors. 

Figure 1: Simple mesh (left) and its spectral bisection 
decomposit ion (right). 

However, if we partitiorl the same mesh using 
the terminal propagation variant of spectral bisection 
which we describe in $5.2, we obtain one of the two 
decomposit ions depicted in Fig. 2. Here we perform 
two cuts exactly a.s before, but in the third cut we 
include constraints to encoura.ge a. partition in which 
only neighboring processors need communicate In 
both cases, the interfaces remain small, but the re- 
sulting decomposit ion ca.n now be ma.pped optimally 
to a hypercube or mesh 

In the next section we describe the terminal prop- 
agation idea, showing how it couples recursive parti- 
tioning and mapping. In $3 we review a.n important 
partitioning algorithm from the circuit community and 
show how it can include terminal propa.gation. In 54 
we extend this technique to iricorporate it in a mul- 
tilevel pa.rtitioning a.p&oach An- enhanced spectral 

in this paper does not. apply to these non-recursive methods. 

Figure 2: Two decomposit ions of the simple mesh 
produced by spectral terminal propagation. 

partitioning algorithm including terminal propagation 
is described in $5. We present experimental results 
obtaine‘d with these new methods in $6. 

2 Terminal propagation 

Most of the graph partitioning algorithms being 
used today were developed by researchers in the cir- 
cuit placement community. When placing circuit ele- 
ments on a chip, it is important to keep wire lengths 
as short as possible. This saves valuable space on the 
chip and helps keep transmission delays low. One im- 
portant methodology for positioning circuit elements 
involves partitioning the graph which describes the 
circuit. Typically, the circuit is partitioned into two 
pieces of approximately equal size with few wires cross- 
ing between them. The chip area is similarly divided, 
and the two circuit halves are placed in the two chip 
halves. This process is now repeated recursively on 
each half-problem. Since few wires cross between the 
two halves, most wires are localized and so kept short. 

This simple approach has an important shortcom- 
ing. Since the two halves are completely decoupled, 
there is no longer any mechanism to minimize the 
length of the wires which cross between them. For in- 
stance, consider dividing the circuit and chip area into 
quarters as shown in Fig. 3. In the first step, we divide 
the circuit in half, assigning one part to the left half of 
the chip and the other to the right half. Next we divide 
the left half circuit again, assigning the resulting pieces 
to the upper and lower left quadrants. Now consider a 
wire that was cut in the first partition, and assume its 
left endpoint is located in the lower left quadrant (at, 
for exa.mple, point 1). Clearly, it would be preferable 
from the point of view of minimizing wire length if its 
right endpoint were a.ssigned to the lower right quad- 
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rant at point 2 rather th,an the upper right quadrant 
at point 3, but simple partitioning algorithms are too 
shortsighted to recognize this, 

Figure 3: The basic motivation for terminal propa- 
gation in the circuit layout context. 

It was to address this myopia that Kernighan and 
Dunlop introduced the concept of termina.1 propaga- 
tion in [5]. Their approa.ch was intimately coupled with 
the popular partitioning algorithm due to Kernighan 
and Lin [15], but we describe it here more generally 
to allow adaptation of the underlying idea to other re- 
cursive partitioning algorithms. The ba.sic idea of ter- 
minal propagation is to associate wit,11 ea.ch vertex in 
the subgraph being pa.rtitioned a value which reflects 
its net desire or preferen,ce to be in the top qua.dra.nt 
instead of the bottom quadrant. Note that this prefer- 
ence is a function only of edges that connect the vertex 
to vertices which are not in the current subgraph. The 
name terminal propagation comes from circuit layout 
applications in which there are additional constraints 
of this type which come from the wires which con- 
nect to the boundary of the chip at specified loca- 
tions. These ternzin,als impose preferences upon how 
subgraphs should be partitioned, and these preferences 
are propagated through the recursive partitioning pro- 
cess. 

An analogous problem arises in pa.rallel computing. 
Consider a graph describing a. computa,tion which we 
want to partition among processors. The usual man- 
ner for addressing this problem involves dividing the 
graph into two pieces, and assigning them to halves 
of the parallel machine. We ca.n apply t*his approach 
recursively until each processor is assigned a unique 
piece of the graph. Unfortunately, this approa.ch does 
not include any consideration of architectural distance 
between processors. Since edges bet(ween subproblems 
are ignored in the recursion, messages may end up 
traversing many wires. In the language of the previous 
section, mapping is decoupled from partitioning. This 

is the same problem tha:t occurs in circuit placement, 
which motivates our use of termina,l propa.ga.tion. 

In the pa.rallel computing context we need a slightly 
different but closely related interpretation of the termi- 
nal propagation which we depict in Fig. 4. The quad- 
rants now represent processors or sets of processors of 
(for exa.mple) a hypercube or a Z-dimensional mesh 
architecture. The (sets of) processors can be identi- 
fied by a 2 bit code and the number of wires neces- 
sary to traverse between two processors is the number 
of bits in which their processor identifiers differ. As- 
sume we have already partitioned the graph into two 
pieces and assigned them to left and right halves of 
the computer, and that we have similarly divided the 
left half-graph into top and bottom quadrants. When 
partitioning the right half-graph between processors 
10 and 11 we would like messages to travel short dis- 
tances. The mapping shown in the left hand figure is 
better since it results in a total message distance of 
2 x 1 + 2 = 4 whereas the mapping in the right hand 
figure induces a total cost of 2 x 2 + 1 = 5. 

PO0 
I 

PlO 

PO1 

PO0 

Pll 

PlO 

Figure 4: The terminal propa.ga.tion idea in the par- 
allel computing context. 

Phrasing this argument in terms of preference val- 
ues, since the vertex in question has two neighbors in 
the lower left quadrant and one in the upper left, its 
preference to be in the lower right quadrant will be 1. 
If the edges to these external vertices had weights, the 
preference values would be scaled appropriately. Now, 
instead of partitioning to minimize just the number 
of edges crossing between the upper and lower right 
quadrants, we minimize the sum of the number of cross 
edges and the unsatisfied preferences. 

This objective function can be phrased alge- 
braically. When working on a subproblem, we con- 
struct a preference value for each vertex based upon 
the edges which connect it to vertices in other sub- 
problems. Say we are deciding whether to pIace vertex 
i in one partition or the other, and i is connected to a 
vertex j which is not in the current subproblem. The 
edge between i and j contributes a value to the pref- 
erence equal to we(eij)(& - Ol), where we(eij) is the 
weight of the edge, 131 is the architectural distance be- 
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tween i and j if i is placed in the first partition and 
D2 is the architectural distance between i and j if i is 
placed in the second partition. If desired, we can also 
scale the vector of preferences to a.djust in our metric 
the relative importa.nce of architectural locality versus 
communication volume. 

With this setup we can now state the problem for- 
mally. Let G  = (V, E) be a graph with vertices v E V 
and edges eij E E. We allow either edges or vertices 
to have positive weights associated with them, which 
we denote by W,(V) and we(eij) respectively. We will 
use n (and m) to denote the number of vertices (and 
edges) in the graph. Assume we want to divide V into 
two subsets VI and Vz, and that we have a a vector $ of 
preferences for the vertices of V to be in VI. The cost 
associated with a pa.rtition now has two components. 
First, every edge eij E El crossing between VI and Vz 
contributes a va.lue of W,(Q). Second, for each vertex 
in VI with a negative preference we add the magnitude 
of the preference to the cost, and similarly for each ver- 
tex in Vz with a positive preference. Our goal is to find 
a partition of the vertices into two sets of nearly equal 
size in which this combined cost function is minimized. 

Unfortunately, this problem is NP-hard, so an ef- 
ficient, general algorithm is unlikely to exist. In the 
next two sections we will describe two heuristics for 
this problem that generalize popular techniques for the 
unconstrained partitioning problem. 

3 The algorithm of Kernighan/Lin and 
Fiduccia/Mattheyses 

3.1 Standard KL/FM 

In 1970, Kernigha.n a.nd Lin proposed a heuristic 
for partitioning gra.phs based upon greedy exchange of 
vertices to reduce the number of edges cut by a par- 
tition [15]. Their ba.sic a.pproach has been enhanced 
and improved through the years, most significantly by 
Fiduccia and Mattheyses who devised a linear time 
varia.nt 171. This a.pproa,ch to partitioning is often re- 
ferred to as KL/FM after these authors. Most of the 
work on this algorithm, including the above two pa- 
pers, was motivated by the circuit placement problem. 

The KLJFM algorithm is a technique for improving 
a.n initia,l, perhaps random, partition. The key notion 
is tha.t of the gailz of a vertex, the net reduction in 
cuts which would ensue if the vertex were moved to 
the other partition. The basic step is selecting and 
moving a vertex with the highest gain value. 

There a.re two details which add complexity and 
considerable power to this very simple idea. First, 
in order to keep sets from becoming unbala.nced, only 

moves between equal sized sets or from the larger to 
the smaller are allowed. Second, the algorithm contin- 
ues trying to move vertices even if doing so makes the 
partition temporarily worse. The hope is that this re- 
duction in quality will be compensated for by a larger 
improvement later on. This was the key insight of 
Kernighan and Lin’s paper and makes the approach 
superior to a simple greedy algorithm. 

The algorithm thus consists of two nested loops as 
depicted in Fig. 5. In the inner loop, vertices whose 
movement would maximally improve the partition are 
selected, subject to set size constraints. Once a ver- 
tex is moved, the gain values of all its neighbors are 
updated. A particular vertex is allowed to move just 
once during each pass through the outer loop. The 
best partition encountered in this sequence of moves is 
recorded, and the outer loop resets the current parti- 
tion to this best partition. 

Best Partition := Current Partition 
Until No better partition is discovered 

Compute all initial gains 
Until Termination criteria reached 

Select vertex to move 
Perform move 
Update gains of all neighbors of moved vertex 
If Current balanced & better than Best Ther 

Best Partition := Current Partition 
End Until 
Current Partition := Best Partition 

End Until 

Figure 5: An algorithm for refining graph partitions. 

The main contribution of Fiduccia and Mattheyses 
was to cast Kernighan and Lin’s algorithm in the form 
depicted in Fig. 5, and to show how each pass through 
the outer loop could be performed in linear time if edge 
weights were integers. The key idea is to compute all 
gains at the beginning of the outer loop and store them 
in an efficient data structure. Move selection and gain 
value updates can then be performed in constant time. 
Within the inner loop, gain values are never computed 
from scratch, but rather are changed incrementally. 

3.2 KL/FM with Terminal Propagation 

The paper by Kernighan and Dunlop which in- 
troduced the concept of terminal propagation [5] de- 
scribed a simple enhancement to KL/FM that al- 
lows inclusion of terminal propagation considerations. 
There are a. number of details in their paper which are 
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relevant to circuit placement problems, but here we graphs, with KL/FM refinement being applied to some 
merely extract the essential idea. partitions of the intermediate graphs. 

First we add an additional, special vertex to each 
partition which is not allowed to switch partitions. 
Now for each normal vert,ex in the subproblem with 
positive preference to be in partition 1, we add an edge 
to the special vertex in partition 1 with a weight equal 
to this preference. Otherwise, we add an edge to the 
special vertex in partition 2 with a weight equal to the 
negative of this preferenae. Now when the KL/FM 
algorithm is run, the external edge information is in- 
ternalized in the connections to the special vertices. 

(1) Until graph is small enough 
graph := coarsen(graph) 

Another, more elegant approach is possible when 
using a Fiduccia/Ma.ttheyses type implementation in 
which gain values are only computed once and are up- 
dated incrementa.lly thereafter. The preferences are 
included in the initia.1 ga.in calculations while the rest 
of the code remains unchanged. Specifica.lly, if a ver- 
tex is in set 1 and its preference is positive, the initial 
gain should include a contribution equal to the nega- 
tive of the preference. If tha.t same vertex is initially 
in set 2, the initial gain s#hould include a term equal 
to the the preference. Similar considera.tions apply to 
vertices with negative preferences. The a.dvanta.ge of 
this second approach is tha.t the ba.sic KL/FM loop 
need not be modified at all. In contrast, the first ap- 
proach requires code to handle special vertices which 
are not allowed to move, and a.dditional stora,ge for all 
the edges incident to the specia.1 vertices. 

(2) 

(3) 

Partition graph 

Until graph = original graph 
graph := uncoarsen(graph) 
partition := uncoarsen(partition) 
locally refine partition if desired. 

Figure 6: A multilevel algorithm for graph partition- 
ing. 

It is important that the small graphs represent their 
larger counterparts as accurately as possible. In the 
partitioning context, there are two properties we would 
like to preserve the in construction of the smaller 
graphs: the cost of a partition should be accurately 
preserved, and so should the set sizes so that a bal- 
anced partition of the small graph is also a balanced 
partition of the larger graph. These properties are pre- 
served by the algorithm discussed here and in [13]. 

4 Multilevel-KL 

4.1 Standard Multilevel-KL 

The primary shortcoming of the KL/FM algorithm 
is that it enacts only local modifications to a parti- 
tion. Although it is quite effective a.t finding local min- 
imums, its solution may be quite far from the global 
optimum. This is particula.rly true for la.rge graphs. 

The key mechanism in the construction of a small 
graph is an operation known as edge contraction. In 
this step, two vertices joined by an edge are merged, 
and the resulting vertex is given edges to the union 
of the neighbors of the two merged vertices. The new 
vertex is assigned a weight equal to the sum of the 
weights of its constituent vertices. Edge weights are 
not changed unless both merged vertices are adjacent 
to the same neighbor. In this case, the new edge that 
represents the two original edges is assigned a weight 
equal to the sum of the weights of the edges it replaces. 
So, for example, contracting one edge of a triangle with 
unit edges and vertex weights would yield a graph with 
a vertex of weight one and a vertex of weight two, 
joined by an edge of weight two. 

One possible remedy is to initialize KL/FM with a 
partition generated by a.nother algorithm, for example 
the spectral bisection method discussed iu $5.1. An al- 
ternate approach, suggested independently by several 
authors [2, 131 is to apply KL/FM on different scales. 
One way to think of this is a,s an algebraic multigrid 
technique in which KL/F:M serves as t,he smoother. 

Such a multilevel-KL algorithm consists of three 
phases, as sketched in Fig.. 6. First, a sequence of suc- 
cessively smaller graphs is genera.ted from the original 
graph. Next, the smallest graph in t.he sequence is pa.r- 
titioned using some technique. This partition is then 
propa.gated back t,hrough the sequence of intermediate 

The attractive feature of this contraction step is 
that it preserves cut and set sizes in a weighted sense. 
A partition of a small graph implies a partition of a 
larger gra.ph since each vertex in the small graph is 
merely an amalgamation of vertices of the larger one. 
The total weight of small graph edges that are cut in 
the partition will be precisely equal to the total weight 
of the edges cut in the larger graph. Similarly, the 
total weight of vertices in each of the two small graph 
sets is exactly equal to the weight of the vertices in the 
corresponding partition of the large graph. 

To construct a small graph from a larger one we 
need to contract a number of edges. Ideally, these 
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edges will be well distributed throughout the large 
graph so the overall shape of the small graph will be 
similar to that of its la.rger counterpart. One way to 
do this is to select a maximal set of edges that share no 
vertices. Such a set is known as a ma.xima.1 matching, 
and can be easily genera.ted in linear time. 

5.1 Standard Spectral Bisection 

4.2 Multilevel-KL with Terminal Propa- 
gation 

One way to describe a partition is to assign a value 
of +l to all the vertices in one set and a value of -1 
to all the vertices in the other. If we denote the value 
assigned to vertex i by z(i), then the simple function 
(49 - +))V4 1s equal to 1 if vertices i and j are in 
different partitions and 0 otherwise. This allows us to 
write the partitioning problem as 

The multilevel approach ca.n be enhanced to in- 
clude terminal propagation in a fairly straightforward 
way. Since we are a.pplying KL/FM on the smaller 
graphs, we can apply the terminal propa.gation variant 
of KL/FM. There are only two issues that need to be 
addressed. First, what partitioner should be used on 
the smallest gra.ph? And second, how a.re preferences 
generated for small graphs? 

Minimize f(z) = a C w(edj)(4i) - 43l>” (1) 
e<jEE 

Subject to 

(b) x(i) = fl. 

One suitable a.nswer to the first question is the spec- 
tral bisection a.lgorithm with terminal propagation de- 
scribed in $5.2. An a.lternate approa.ch would be to use 
the original Kernignan and Lin strategy of applying 
KL/FM to random initia.1 pa.rtitions. If the smallest 
graph is small enough, this should work well. 

Constraint (a) is an algebraic way of saying that each 
partition must have about half the total vertex weight. 
We do not specify it as a precise equality since it may 
not be possible to divide the vertices into two sets of 
precisely equal weight. 

The second question, how to produce preferences 
for small graphs, is also easily answered. Consider 
a vertex of a small gra.ph, which is a union of large 
graph vertices. The small graph vertex will generally 
be connected to some set of vertices not in the current 
subproblem. It is the tota. pull of these edges which 
determines the preference for the vertex. But this total 
pull is just the sum of preferences of the large gra.ph 
vertices which comprise the sma.11 gra.ph. Hence, when 
contracting an edge, the resulting vertex should be as- 
signed a preference which is equal to the sum of the 
preferences of the two original vertices. 

Recasting the partitioning problem this way does 
not make it any easier to solve. However. it does iden- 
tify a possible approximation that will lead to a much 
simpler problem. Rather than insisting that all X’S be 
exactly kl, we allow them to take on any value and 
consequently replace constraint (b) with a norm con- 
dition on the vector L of values r(i). Once we solve the 
resulting continuous problem, we ca.n find the fl vec- 
tor which is nearest to the continuous optimum, and 
use this to partition the graph. Although this strategy 
does not guarantee that the optimal solution will be 
found, it works well in practice. 

More forma.lly, we a,pproximate (1) by the following. 

5 Spectral bisection with terminal 
propagation 

Minimize f(z) = a c zue(eaj)(z(i) - x(j))” (2) 
e;jEE 

Subject to 

An importa.nt class of pa.rtitioning algorithms 
known as spec2ral nzeUlods uses eigenvectors of a matrix 
associated with the graph to genera.te a partition. This 
surprising connection dates back to work in the early 
70s by Fiedler [8, 91 and Donath and Hoffman [3, 41. A 
particular spectral method tha.t ha.s come to be known 
as spectral bisection gained widespread acceptance in 
the parallel computing community following the work 
of Pothen, Simon and Liou [16] a.nd Simon [17]. In this 
section we briefly rederive the spectral bisection algo- 
rithm for weighted graphs developed in [la], and then 
show how it can be modified to incorpora,te termina.1 
propagation const,ra.ints. 

(a) Cwv(i)z(i) = 0 

(b) c%(i)’ = n. 

We have replaced the previous constraint (b) with a 
normalization which is appropriate for the fl problem. 
We have a.lso changed constraint (a) to a strict equality, 
since this can be achieved in the continuous problem. 

The next step is an algebraic transformation of the 
objective function. It is not ha.rd to show that 

1 w(e;j)(z(i) - ~(j))~ = 2Ls 
e,jEE 
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where L is the Laplacian matrix of the graph defined 
by 

1 

c e,kEEwe(eik> if i = j 
L(i,j) = -w(eij) if eij E E 

0 Otherwise. 

The Laplacian matrix has a number of nice properties. 
It is symmetric, so it has a complete set of orthonormal 
eigenvectors, and it is positive semidefinite. Because 
the sum of all the values in a row is zero, the constant 
vector is an eigenvector with eigenvalue zero. If the 
graph is connected, all other eigenvalues a.re positive. 
Eq. (2) can now be rewritten in matrix terms as 

Minimize f(x) = f2T Lz (3) 
Subject to 

(4 w;x = 0 

(b) xTx = 12. 

With a change of variables we ca.n reduce (3) to a 
form in which we will recognize it as a standard eigen- 
problem. First define s(i) = m  and l(i) = l/s(i). 
Let y = Diag(s)x, a.nd let A = Diag(2)TLDiag(2). 
Since the z values are relaxations of fl, the appropri- 
ate normalization for the y vector is $y = ci we(i), 
which we denote by w,. With this nota.tion, we can 
recast (3) as follows. 

Minimize f(y) = iyTAy (4) 

Subject to 

(a) sTy=O 

(b) yTy = wv. 

It is straightforward to verify that s is an eigenvector 
of A with eigenvalue zero. A is symmetric and pos- 
itive semi-definite. Furthermore, if the graph is con- 
nected, s is the only eigenvector with a zero eigenvalue. 
(See [12] for proofs of these properties.) 

Now denote the eigenvalues and corresponding nor- 
malized eigenvectors of A by Xi and ui respectively, 
where the eigenva.lues are indexed in increasing value. 
The solution to (4) can be expressed as a linear com- 
bination of the u(‘s, where const.ra.int (a) excludes 
an contribution from ~1. Subject to the constraints, 
it is now easy to see that yTAy is minimized when 
y= Jiiug. 

Thus the solution to (4) is a multiple of the second 
eigenvector of A. This vector ca.n be easily transformed 
to find the solution to (a), which ca,n be used to find a 
nearby discrete point which pa.rtitions the graph. The 
whole procedure is sketched in Fig. 7. The second 
eigenvector of a Lap1acia.n matrix is often known as a 

Fiedler vector in recognition of the pioneering work of 
Miroslav Fiedler [8, 91. 

Form L, the Laplacian matrix of the graph 
Generate A = Diag(t)LDiag(t) 
Compute y = second lowest eigenvector of A 
Generate 2 = Diag(t)y 
Find median value y among entries in x 
Partition 1 = vertices with x value 2 y 
Partition 2 = vertices with 5 value > y. 

Figure 7: The weighted spectral bisection algorithm 

The dominant cost of this spectral bisection algo- 
rithm is the calculation of an eigenvector of L. The 
traditional approach to this problem is the Lanczos 
algorithm [lo], a,n iterative method in which each it- 
eration is dominated by a matrix-vector multiplica- 
tion. Barnard and Simon have described a multilevel 
eigensolver that can significantly speed up the stan- 
dard spectral bisection algorithm [l]. 

5.2 Spectral Bisection with Terminal 
Propagation 

In [lg, 191 Van Driessche and Roose show how to 
modify the standard spectral bisection algorithm to in- 
clude certain kinds of constraints. The original motiva- 
tion for their work was reduction of data movement in 
a dyna.mic repartitioning, but their basic idea can also 
be applied to the constraints associated with terminal 
propagation. As with the standard spectral technique, 
the basic idea is to construct a discrete optimization 
problem and then to relax the discreteness constraint. 

In the standard derivation (1) we began with an al- 
gebraic formulation of the exact partitioning problem. 
We now need to enhance the objective function to in- 
clude terminal propagation considerations. If d(i) is 
the preference for a vertex to be in the set denoted 
by $1 which will define to be, say, VI, then the new 
problem we want to solve is 

Minimize f(x) = i c w,(eaj)(x(i) - x(j))” 
a 

GjEE 

-f c d(i)x(i) 
1EV 

Subject to 

(a) C wv(i)x(i) M  0 
iEV 

(b) x(i) = fl. 

(5) 

We now make the sa.me approximation as in the stan- 
dard spectra.1 bisection problem, replacing constraint 
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(b) by a normalization condition to obtain 6 Results 

Minimize f(x) = azTLx - id’, (6) 
Subject to 

(a> uJ,Tx = 0 

(b) ~‘2 = n. 

We now make the same variable transformation 
used to take us from (3) to (4). Letting h = Diag(t)d 
and multiplying the objective function by 4, we have 

Minimize f(y) = yTAy - 2hTy (7) 
Subject to 

(a> ST?/ = 0 

(b) yTy = wu. 

Unfortunately, the solution to (7) is not as simple 
as the solution to (4), its standard counterpart. We 
introduce Lagrange multipliers 17 and p, and look for 
stationary points of t,he function 

The algorithms described in the previous sections 
have been implemented in Chaco 2.0 [ll], and we re- 
port some experimental results here. All the runs were 
performed a Sun Sparcstation 20 with a 50MHz clock 
and 64 Mbytes of RAM. We will describe results from 
four different algorithms: 
MLKL: the multilevel-KL method from $4.1, 
MLKLTP: the multilevel-KL algorithm with termi- 
nal propagation described in $4.2, 
SKL: spectral bisection from g5.1 combined with a 
pass of standard KL/FM from $3.1, and 
STPKL spectral bisection with terminal propagation 
as presented in $5.2 combined with the terminal prop- 
agation version of KL/FM discussed in $3.2. 
For the spectral algorithms we solved to residual tol- 
erances of 10e3, and we used a variant of Barnard and 
Simon’s multilevel eigensolver for standard spectral bi- 
section. For multilevel-KL and the multilevel eigen- 
solver, the smallest graph had at most 200 vertices. 

J’(Y,v,P) = yTAy--hTy+9(sTy)+~(w, -Y~Y). (8) 

Setting the partia.l derivative of F with respect to 71 
or ~1 yields the two constra.int equa.tions. Taking the 
derivatives with respect to the components of y, we 
obtain 

2Ay - 2h + qs - 2/~y = 0. (9) 

We can calculate q by left multiplying (9) by sT. 
Since s is orthogonal to y and s is a. zero eigenvector 
of A, we discover that v = 2sTh/w,. We now define 

We monitored four metrics of partitioner quality. 
First was the number of edges cut, which corresponds 
closely to the total communication volume. Second 
was hops in which we multiply each cut edge by the 
architectura.1 distance between the two processors own- 
ing the endpoints. Third was messages which is the 
total number of messages required in a step of an iter- 
ative solver using the decomposition. The final metric 
was the time required to produce the decomposition. 

g=h-es, 
WV (10) 

Our first example graph is barthb, a 2D finite ele- 
ment grid with triangular elements containing 15606 
vertices, and 45878 edges’ The results of partitioning 
and mapping this graph to a 6-dimensional hypercube 
a.re presented in Table 1. 

which allows us to rewrite (9) as 

&=m+g. (11) 

This extended eigenproblem. must be solved subject to 
the constraints in (7). Although this problem gener- 
ally has multiple solutions, Van Driessche and Roose 
have shown that the solution which minimizes the ob- 
jection function is always the y vector associa.ted with 
the smallest possible value for p [18]. As with the 
standard spectra.1 bisection approach, once a solution 
to (11) is computed, it is transformed back to a solu- 
tion of (6), from which a nearby discrete solution can 
be found. 

Table 1: Results of different partitioning algorithms 
on the barth5 mesh for a 6-dimensional hypercube. 

An efficient, Lanczos based procedure for solving 
the extended eigenproblem ca.n be found in [14, 181, 
but is too lengthy to include here. 

As expected, terminal propagation significantly im- 
proves the data locality as evidenced by the significant 
reduction in hops. The average distance a datum has 
to travel is reduced from 1.7 to 1.1 in both algorithms. 

2This, and and other meshes, can be obtained via anonymous 
ftp to riacs.edu in the directory /pub/grids. 
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This comes at the cost of a modest increase in com- 
munication volume as reflected by the increase in the 
cuts metric, as well as an increase in number of mes- 
sages. The time required to perform the partitioning is 
slightly increased by the use of terminal propagation. 

Next, we partitioned the ocean mesh among the pro- 
cessors of a 10 x 20 mesh. This is a 3D finite difference 
grid of the world’s oceans comprised of about 143K 
vertices and 410K edges. The results are presented in 
Table 2. Note that for this problem, we need to be 
able to bisect into two sets of unequal size. This is 
straightforward to do with the multilevel-KL method, 
and a generalization to this case of spectral bisection 
with terminal propagation is described in [18]. 

Table 2: Results of different partitioning a,lgorithms 
on the ocean mesh for a 10 x 20 grid. 

Again we observe that terminal propagation signifi- 
cantly improves locality, reducing t,he a.verage number 
of wires traversed by a message from 2.7 to 1.3 in the 
multilevel-KL algorithm, and from 2.7 to 1.2 in the 
spectral method. As before this locality is pa.id for by 
an increase in communication volume. However, un- 
like the previous problem the number of messa.ges is 
significantly reduced by terminal propagation. Since 
communication is local and meshes have ma.ny fewer 
processors in their neighborhood tha.n hypercubes, this 
result isn’t surprising. For this problem, the spectral 
terminal propa.gation algorithm wa.s significa,ntly faster 
than its standard counterpart. 

From these and similar experiments we make several 
observa.tions. 

l Terminal propaga.tion is an effective approach 
for coupling recursive applications of partition- 
ing with the desire to restrict communication to 
nearby processors. This is evidenced by the fact 
that the cuts and hops values are very similar 
in all the tables where terminal propagation was 
used, while the cuts and startups are only mod- 
estly larger than those obta.ined by tra.ditional al- 
gorithms which ignore interprocessor distances. 

l For the fairly nice graphs associated with scientific 
computing, the multilevel-KL algorithm produces 
partitions at least a.s good as spectral-i-KL, both 

with and without terminal propagation, while re- 
quiring significantly less time. 

l For meshes, and for large hypercubes, termi- 
nal propagation usually results in fewer messages 
needing to be sent. 

l We have also observed that Lanczos with termi- 
nal propagation is typically somewhat faster than 
standard Lanczos, although we do not understand 
why. 

7 Conclusion 

We have described a general method for coupling 
the partitioning and mapping problems in such a way 
that contention for communication links is significantly 
reduced. In applications where many messages are si- 
multaneously competing for limited bandwidth, this 
approach may significantly improve performance. The 
general idea can undoubtedly be applied to a wide va- 
riety of recursive partitioning methods. Here we have 
focused on two techniques which are currently popular 
in the parallel computing community. The approach 
presented is sufficiently flexible to allow for the user to 
weight the rela.tive importance of cuts and hops and 
hence trade off communication volume and message 
congestion. More generally, we believe there are likely 
to be other important ideas which ca.n be adapted from 
from the circuit placement community to assist with 
parallel computing. 

The techniques described in this paper can be ex- 
tended in several ways. The KL/FM terminal propa- 
gation algorithm ca,n be generalized to work on more 
than two sets at once. This leads to a similar general- 
ization of the multilevel scheme. (Both generalizations 
are implemented in Chaco 2.0.) The spectral termi- 
nal propa.ga.tion method can also be extended to work 
on four sets at once [20], and in principle it can be ex- 
tended to work on eight sets simultaneously as well. 
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