
Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

Enhancing Data Locality
by Using Terminal Propagation

Bruce Hendrickson* Robert Lelandt Rafael Van Driesschel

Abstract

Terminal propagation is a method developed in the
circuit placement community for adding constraints to
graph partitioning problems. This paper adapts and
expands this idea, and applies it to the problem of
partitioning data structures among the processors of a
parallel computer. We show how the constmints in ter-
minal propagation can be used to encourage partitions
in which messages are communicated only between ar-
chitecturally nea.r processors. We then show how these
constraints can be handled in two important parti-
tioning algorithms, spectral bisection and multilevel-
KL. We compare the quality of partitions generated
by these algorithms to each other a.nd to partitions
generated by more familiar techniques.

1 Introduction

To perform a computa.tional task on a parallel com-
puter it is first necessary to partition the task into
pieces and to ma.p the pieces to different processors. In
many calculations the underlying computational struc-
ture can be conveniently modeled as a gra.ph in which
vertices correspond to computational tasks and edges
reflect data dependencies. The pa.rtit.ioning and map-
ping problems can then be addressed by assigning pro-
cessor labels to vertices of the graph so that the cor-
responding assignment of tasks to processors leads to
efficient execution.

Graph partitioning in this context has been an ac-
tive area of research recently, and many new and effec-
tive stra.tegies have been developed. Much less atten-
tion, however, has been paid to the ma.pping problem.
When the mapping probEem has been considered, it has
typically been addressed as a post-processing problem

‘Sandia National Labs, Albuquerque, NM 87185-1110.
Email : bah@cs.sandia.gov.

t Sandia National Labs, Albuquerque, NM 87185-1109.
Email : leland@cs.sandia.gov

1Dept. Computer Sciences, Katholieke Universiteit Leuven,
Belgium.
Email : Ftafael.VanDriessche@cs.kuleuven.ac.be.

in which the pieces of a a given partitioning must be
assigned to processors in an intelligent fashion.

This primary emphasis on partitioning is justified
by the impact a partition has on communication within
a parallel computer. The number of graph edges cut
in a partition typically corresponds to the volume of
communication in the parallel application, and, since
communication is expensive, minimizing this volume
is extremely important in achieving high performance.
Mapping, in contrast, does not affect communication
volume. Furthermore, with current parallel hardware,
the cost of an isolated message between architecturally
distant processors is only marginally greater than that
of a message between nearest neighbors.

Nevertheless, mapping quality is still very impor-
tant. A message between dista.nt processors must tra-
verse many wires, which are rendered unavailable to
transmit other messages. Conversely, if each message
consumes only a small number of wires, more messages
can be sent at once. It is in this competition for wires
that a good mapping can be distinguished from a bad
one. More formally we say that a good mapping is one
that reduces message congestion and thereby preserves
communication bandwidth. Many scientific computing
applications of interest, for example those employing
an iterative sparse solver kernel, have a structure in
which many messages simultaneously compete for lim-
ited communication bandwidth, and good mappings
are especially important in these cases.

In such problems the simple, two-phased approach
in which the mapping is decoupled from the partition-
ing may be effective. But this is intuitively not optimal
because it does not allow for trading-off between parti-
tion and mapping quality. Ideally, the partitioning and
mapping should be generated together in such a way
that some aggregate cost metric is minimized. Wal-
shaw, et al. [21] describe one way of performing this
coupling, and show that it can significantly reduce the
run time of applications. Here we apply a very differ-
ent approach to address the same problem.

This paper describes a general framework for cou-
pling recursive partitioning schemes1 to the mapping

1 Most partitioning methods are recursive, but some, e.g. the
greedy method described in [6], are not. The method described

565
1060-3425/96 $5.00 0 199’6 IEEE

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

problem and shows how to apply it to two important
algorithms, multilevel-I<L and spectral bisection. Our
approach is based upon an idea taken from the circuit
placement community known as term.inal propagation
in which the result of one partitioning step in the re-
cursion is used to constra.in subsequent steps. The
constraints effectively transmit mapping information
between partitioning-problems.

As a simple illustration consider the mesh depicted
in the left side of Fig. 1, and to the right its partition
into four sets using the popular spectral bisection al-
gorithm [17]. The mesh was first sliced horizontally,
and then the two halves were divided independently.
Although the interfaces between the regions are quite
small, the region just above the horizontal cut is adja-
cent to all the others. Consequently, this decomposi-
tion can not be mapped to a hypercube or mesh topol-
ogy in such a way that all communication is between
neighboring processors.

Figure 1: Simple mesh (left) and its spectral bisection
decomposit ion (right).

However, if we partitiorl the same mesh using
the terminal propagation variant of spectral bisection
which we describe in $5.2, we obtain one of the two
decomposit ions depicted in Fig. 2. Here we perform
two cuts exactly a.s before, but in the third cut we
include constraints to encoura.ge a. partition in which
only neighboring processors need communicate In
both cases, the interfaces remain small, but the re-
sulting decomposit ion ca.n now be ma.pped optimally
to a hypercube or mesh

In the next section we describe the terminal prop-
agation idea, showing how it couples recursive parti-
tioning and mapping. In $3 we review a.n important
partitioning algorithm from the circuit community and
show how it can include terminal propa.gation. In 54
we extend this technique to iricorporate it in a mul-
tilevel pa.rtitioning a.p&oach An- enhanced spectral

in this paper does not. apply to these non-recursive methods.

Figure 2: Two decomposit ions of the simple mesh
produced by spectral terminal propagation.

partitioning algorithm including terminal propagation
is described in $5. We present experimental results
obtaine‘d with these new methods in $6.

2 Terminal propagation

Most of the graph partitioning algorithms being
used today were developed by researchers in the cir-
cuit placement community. When placing circuit ele-
ments on a chip, it is important to keep wire lengths
as short as possible. This saves valuable space on the
chip and helps keep transmission delays low. One im-
portant methodology for positioning circuit elements
involves partitioning the graph which describes the
circuit. Typically, the circuit is partitioned into two
pieces of approximately equal size with few wires cross-
ing between them. The chip area is similarly divided,
and the two circuit halves are placed in the two chip
halves. This process is now repeated recursively on
each half-problem. Since few wires cross between the
two halves, most wires are localized and so kept short.

This simple approach has an important shortcom-
ing. Since the two halves are completely decoupled,
there is no longer any mechanism to minimize the
length of the wires which cross between them. For in-
stance, consider dividing the circuit and chip area into
quarters as shown in Fig. 3. In the first step, we divide
the circuit in half, assigning one part to the left half of
the chip and the other to the right half. Next we divide
the left half circuit again, assigning the resulting pieces
to the upper and lower left quadrants. Now consider a
wire that was cut in the first partition, and assume its
left endpoint is located in the lower left quadrant (at,
for exa.mple, point 1). Clearly, it would be preferable
from the point of view of minimizing wire length if its
right endpoint were a.ssigned to the lower right quad-

566

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

rant at point 2 rather th,an the upper right quadrant
at point 3, but simple partitioning algorithms are too
shortsighted to recognize this,

Figure 3: The basic motivation for terminal propa-
gation in the circuit layout context.

It was to address this myopia that Kernighan and
Dunlop introduced the concept of termina.1 propaga-
tion in [5]. Their approa.ch was intimately coupled with
the popular partitioning algorithm due to Kernighan
and Lin [15], but we describe it here more generally
to allow adaptation of the underlying idea to other re-
cursive partitioning algorithms. The ba.sic idea of ter-
minal propagation is to associate wit,11 ea.ch vertex in
the subgraph being pa.rtitioned a value which reflects
its net desire or preferen,ce to be in the top qua.dra.nt
instead of the bottom quadrant. Note that this prefer-
ence is a function only of edges that connect the vertex
to vertices which are not in the current subgraph. The
name terminal propagation comes from circuit layout
applications in which there are additional constraints
of this type which come from the wires which con-
nect to the boundary of the chip at specified loca-
tions. These ternzin,als impose preferences upon how
subgraphs should be partitioned, and these preferences
are propagated through the recursive partitioning pro-
cess.

An analogous problem arises in pa.rallel computing.
Consider a graph describing a. computa,tion which we
want to partition among processors. The usual man-
ner for addressing this problem involves dividing the
graph into two pieces, and assigning them to halves
of the parallel machine. We ca.n apply t*his approach
recursively until each processor is assigned a unique
piece of the graph. Unfortunately, this approa.ch does
not include any consideration of architectural distance
between processors. Since edges bet(ween subproblems
are ignored in the recursion, messages may end up
traversing many wires. In the language of the previous
section, mapping is decoupled from partitioning. This

is the same problem tha:t occurs in circuit placement,
which motivates our use of termina,l propa.ga.tion.

In the pa.rallel computing context we need a slightly
different but closely related interpretation of the termi-
nal propagation which we depict in Fig. 4. The quad-
rants now represent processors or sets of processors of
(for exa.mple) a hypercube or a Z-dimensional mesh
architecture. The (sets of) processors can be identi-
fied by a 2 bit code and the number of wires neces-
sary to traverse between two processors is the number
of bits in which their processor identifiers differ. As-
sume we have already partitioned the graph into two
pieces and assigned them to left and right halves of
the computer, and that we have similarly divided the
left half-graph into top and bottom quadrants. When
partitioning the right half-graph between processors
10 and 11 we would like messages to travel short dis-
tances. The mapping shown in the left hand figure is
better since it results in a total message distance of
2 x 1 + 2 = 4 whereas the mapping in the right hand
figure induces a total cost of 2 x 2 + 1 = 5.

PO0
I

PlO

PO1

PO0

Pll

PlO

Figure 4: The terminal propa.ga.tion idea in the par-
allel computing context.

Phrasing this argument in terms of preference val-
ues, since the vertex in question has two neighbors in
the lower left quadrant and one in the upper left, its
preference to be in the lower right quadrant will be 1.
If the edges to these external vertices had weights, the
preference values would be scaled appropriately. Now,
instead of partitioning to minimize just the number
of edges crossing between the upper and lower right
quadrants, we minimize the sum of the number of cross
edges and the unsatisfied preferences.

This objective function can be phrased alge-
braically. When working on a subproblem, we con-
struct a preference value for each vertex based upon
the edges which connect it to vertices in other sub-
problems. Say we are deciding whether to pIace vertex
i in one partition or the other, and i is connected to a
vertex j which is not in the current subproblem. The
edge between i and j contributes a value to the pref-
erence equal to we(eij)(& - Ol), where we(eij) is the
weight of the edge, 131 is the architectural distance be-

567

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

tween i and j if i is placed in the first partition and
D2 is the architectural distance between i and j if i is
placed in the second partition. If desired, we can also
scale the vector of preferences to a.djust in our metric
the relative importa.nce of architectural locality versus
communication volume.

With this setup we can now state the problem for-
mally. Let G = (V, E) be a graph with vertices v E V
and edges eij E E. We allow either edges or vertices
to have positive weights associated with them, which
we denote by W,(V) and we(eij) respectively. We will
use n (and m) to denote the number of vertices (and
edges) in the graph. Assume we want to divide V into
two subsets VI and Vz, and that we have a a vector $ of
preferences for the vertices of V to be in VI. The cost
associated with a pa.rtition now has two components.
First, every edge eij E El crossing between VI and Vz
contributes a va.lue of W,(Q). Second, for each vertex
in VI with a negative preference we add the magnitude
of the preference to the cost, and similarly for each ver-
tex in Vz with a positive preference. Our goal is to find
a partition of the vertices into two sets of nearly equal
size in which this combined cost function is minimized.

Unfortunately, this problem is NP-hard, so an ef-
ficient, general algorithm is unlikely to exist. In the
next two sections we will describe two heuristics for
this problem that generalize popular techniques for the
unconstrained partitioning problem.

3 The algorithm of Kernighan/Lin and
Fiduccia/Mattheyses

3.1 Standard KL/FM

In 1970, Kernigha.n a.nd Lin proposed a heuristic
for partitioning gra.phs based upon greedy exchange of
vertices to reduce the number of edges cut by a par-
tition [15]. Their ba.sic a.pproach has been enhanced
and improved through the years, most significantly by
Fiduccia and Mattheyses who devised a linear time
varia.nt 171. This a.pproa,ch to partitioning is often re-
ferred to as KL/FM after these authors. Most of the
work on this algorithm, including the above two pa-
pers, was motivated by the circuit placement problem.

The KLJFM algorithm is a technique for improving
a.n initia,l, perhaps random, partition. The key notion
is tha.t of the gailz of a vertex, the net reduction in
cuts which would ensue if the vertex were moved to
the other partition. The basic step is selecting and
moving a vertex with the highest gain value.

There a.re two details which add complexity and
considerable power to this very simple idea. First,
in order to keep sets from becoming unbala.nced, only

moves between equal sized sets or from the larger to
the smaller are allowed. Second, the algorithm contin-
ues trying to move vertices even if doing so makes the
partition temporarily worse. The hope is that this re-
duction in quality will be compensated for by a larger
improvement later on. This was the key insight of
Kernighan and Lin’s paper and makes the approach
superior to a simple greedy algorithm.

The algorithm thus consists of two nested loops as
depicted in Fig. 5. In the inner loop, vertices whose
movement would maximally improve the partition are
selected, subject to set size constraints. Once a ver-
tex is moved, the gain values of all its neighbors are
updated. A particular vertex is allowed to move just
once during each pass through the outer loop. The
best partition encountered in this sequence of moves is
recorded, and the outer loop resets the current parti-
tion to this best partition.

Best Partition := Current Partition
Until No better partition is discovered

Compute all initial gains
Until Termination criteria reached

Select vertex to move
Perform move
Update gains of all neighbors of moved vertex
If Current balanced & better than Best Ther

Best Partition := Current Partition
End Until
Current Partition := Best Partition

End Until

Figure 5: An algorithm for refining graph partitions.

The main contribution of Fiduccia and Mattheyses
was to cast Kernighan and Lin’s algorithm in the form
depicted in Fig. 5, and to show how each pass through
the outer loop could be performed in linear time if edge
weights were integers. The key idea is to compute all
gains at the beginning of the outer loop and store them
in an efficient data structure. Move selection and gain
value updates can then be performed in constant time.
Within the inner loop, gain values are never computed
from scratch, but rather are changed incrementally.

3.2 KL/FM with Terminal Propagation

The paper by Kernighan and Dunlop which in-
troduced the concept of terminal propagation [5] de-
scribed a simple enhancement to KL/FM that al-
lows inclusion of terminal propagation considerations.
There are a. number of details in their paper which are

568

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

relevant to circuit placement problems, but here we graphs, with KL/FM refinement being applied to some
merely extract the essential idea. partitions of the intermediate graphs.

First we add an additional, special vertex to each
partition which is not allowed to switch partitions.
Now for each normal vert,ex in the subproblem with
positive preference to be in partition 1, we add an edge
to the special vertex in partition 1 with a weight equal
to this preference. Otherwise, we add an edge to the
special vertex in partition 2 with a weight equal to the
negative of this preferenae. Now when the KL/FM
algorithm is run, the external edge information is in-
ternalized in the connections to the special vertices.

(1) Until graph is small enough
graph := coarsen(graph)

Another, more elegant approach is possible when
using a Fiduccia/Ma.ttheyses type implementation in
which gain values are only computed once and are up-
dated incrementa.lly thereafter. The preferences are
included in the initia.1 ga.in calculations while the rest
of the code remains unchanged. Specifica.lly, if a ver-
tex is in set 1 and its preference is positive, the initial
gain should include a contribution equal to the nega-
tive of the preference. If tha.t same vertex is initially
in set 2, the initial gain s#hould include a term equal
to the the preference. Similar considera.tions apply to
vertices with negative preferences. The a.dvanta.ge of
this second approach is tha.t the ba.sic KL/FM loop
need not be modified at all. In contrast, the first ap-
proach requires code to handle special vertices which
are not allowed to move, and a.dditional stora,ge for all
the edges incident to the specia.1 vertices.

(2)

(3)

Partition graph

Until graph = original graph
graph := uncoarsen(graph)
partition := uncoarsen(partition)
locally refine partition if desired.

Figure 6: A multilevel algorithm for graph partition-
ing.

It is important that the small graphs represent their
larger counterparts as accurately as possible. In the
partitioning context, there are two properties we would
like to preserve the in construction of the smaller
graphs: the cost of a partition should be accurately
preserved, and so should the set sizes so that a bal-
anced partition of the small graph is also a balanced
partition of the larger graph. These properties are pre-
served by the algorithm discussed here and in [13].

4 Multilevel-KL

4.1 Standard Multilevel-KL

The primary shortcoming of the KL/FM algorithm
is that it enacts only local modifications to a parti-
tion. Although it is quite effective a.t finding local min-
imums, its solution may be quite far from the global
optimum. This is particula.rly true for la.rge graphs.

The key mechanism in the construction of a small
graph is an operation known as edge contraction. In
this step, two vertices joined by an edge are merged,
and the resulting vertex is given edges to the union
of the neighbors of the two merged vertices. The new
vertex is assigned a weight equal to the sum of the
weights of its constituent vertices. Edge weights are
not changed unless both merged vertices are adjacent
to the same neighbor. In this case, the new edge that
represents the two original edges is assigned a weight
equal to the sum of the weights of the edges it replaces.
So, for example, contracting one edge of a triangle with
unit edges and vertex weights would yield a graph with
a vertex of weight one and a vertex of weight two,
joined by an edge of weight two.

One possible remedy is to initialize KL/FM with a
partition generated by a.nother algorithm, for example
the spectral bisection method discussed iu $5.1. An al-
ternate approach, suggested independently by several
authors [2, 131 is to apply KL/FM on different scales.
One way to think of this is a,s an algebraic multigrid
technique in which KL/F:M serves as t,he smoother.

Such a multilevel-KL algorithm consists of three
phases, as sketched in Fig.. 6. First, a sequence of suc-
cessively smaller graphs is genera.ted from the original
graph. Next, the smallest graph in t.he sequence is pa.r-
titioned using some technique. This partition is then
propa.gated back t,hrough the sequence of intermediate

The attractive feature of this contraction step is
that it preserves cut and set sizes in a weighted sense.
A partition of a small graph implies a partition of a
larger gra.ph since each vertex in the small graph is
merely an amalgamation of vertices of the larger one.
The total weight of small graph edges that are cut in
the partition will be precisely equal to the total weight
of the edges cut in the larger graph. Similarly, the
total weight of vertices in each of the two small graph
sets is exactly equal to the weight of the vertices in the
corresponding partition of the large graph.

To construct a small graph from a larger one we
need to contract a number of edges. Ideally, these

569

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

edges will be well distributed throughout the large
graph so the overall shape of the small graph will be
similar to that of its la.rger counterpart. One way to
do this is to select a maximal set of edges that share no
vertices. Such a set is known as a ma.xima.1 matching,
and can be easily genera.ted in linear time.

5.1 Standard Spectral Bisection

4.2 Multilevel-KL with Terminal Propa-
gation

One way to describe a partition is to assign a value
of +l to all the vertices in one set and a value of -1
to all the vertices in the other. If we denote the value
assigned to vertex i by z(i), then the simple function
(49 - +))V4 1s equal to 1 if vertices i and j are in
different partitions and 0 otherwise. This allows us to
write the partitioning problem as

The multilevel approach ca.n be enhanced to in-
clude terminal propagation in a fairly straightforward
way. Since we are a.pplying KL/FM on the smaller
graphs, we can apply the terminal propa.gation variant
of KL/FM. There are only two issues that need to be
addressed. First, what partitioner should be used on
the smallest gra.ph? And second, how a.re preferences
generated for small graphs?

Minimize f(z) = a C w(edj)(4i) - 43l>” (1)
e<jEE

Subject to

(b) x(i) = fl.

One suitable a.nswer to the first question is the spec-
tral bisection a.lgorithm with terminal propagation de-
scribed in $5.2. An a.lternate approa.ch would be to use
the original Kernignan and Lin strategy of applying
KL/FM to random initia.1 pa.rtitions. If the smallest
graph is small enough, this should work well.

Constraint (a) is an algebraic way of saying that each
partition must have about half the total vertex weight.
We do not specify it as a precise equality since it may
not be possible to divide the vertices into two sets of
precisely equal weight.

The second question, how to produce preferences
for small graphs, is also easily answered. Consider
a vertex of a small gra.ph, which is a union of large
graph vertices. The small graph vertex will generally
be connected to some set of vertices not in the current
subproblem. It is the tota. pull of these edges which
determines the preference for the vertex. But this total
pull is just the sum of preferences of the large gra.ph
vertices which comprise the sma.11 gra.ph. Hence, when
contracting an edge, the resulting vertex should be as-
signed a preference which is equal to the sum of the
preferences of the two original vertices.

Recasting the partitioning problem this way does
not make it any easier to solve. However. it does iden-
tify a possible approximation that will lead to a much
simpler problem. Rather than insisting that all X’S be
exactly kl, we allow them to take on any value and
consequently replace constraint (b) with a norm con-
dition on the vector L of values r(i). Once we solve the
resulting continuous problem, we ca.n find the fl vec-
tor which is nearest to the continuous optimum, and
use this to partition the graph. Although this strategy
does not guarantee that the optimal solution will be
found, it works well in practice.

More forma.lly, we a,pproximate (1) by the following.

5 Spectral bisection with terminal
propagation

Minimize f(z) = a c zue(eaj)(z(i) - x(j))” (2)
e;jEE

Subject to

An importa.nt class of pa.rtitioning algorithms
known as spec2ral nzeUlods uses eigenvectors of a matrix
associated with the graph to genera.te a partition. This
surprising connection dates back to work in the early
70s by Fiedler [8, 91 and Donath and Hoffman [3, 41. A
particular spectral method tha.t ha.s come to be known
as spectral bisection gained widespread acceptance in
the parallel computing community following the work
of Pothen, Simon and Liou [16] a.nd Simon [17]. In this
section we briefly rederive the spectral bisection algo-
rithm for weighted graphs developed in [la], and then
show how it can be modified to incorpora,te termina.1
propagation const,ra.ints.

(a) Cwv(i)z(i) = 0

(b) c%(i)’ = n.

We have replaced the previous constraint (b) with a
normalization which is appropriate for the fl problem.
We have a.lso changed constraint (a) to a strict equality,
since this can be achieved in the continuous problem.

The next step is an algebraic transformation of the
objective function. It is not ha.rd to show that

1 w(e;j)(z(i) - ~(j))~ = 2Ls
e,jEE

570

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

where L is the Laplacian matrix of the graph defined
by

1

c e,kEEwe(eik> if i = j
L(i,j) = -w(eij) if eij E E

0 Otherwise.

The Laplacian matrix has a number of nice properties.
It is symmetric, so it has a complete set of orthonormal
eigenvectors, and it is positive semidefinite. Because
the sum of all the values in a row is zero, the constant
vector is an eigenvector with eigenvalue zero. If the
graph is connected, all other eigenvalues a.re positive.
Eq. (2) can now be rewritten in matrix terms as

Minimize f(x) = f2T Lz (3)
Subject to

(4 w;x = 0

(b) xTx = 12.

With a change of variables we ca.n reduce (3) to a
form in which we will recognize it as a standard eigen-
problem. First define s(i) = m and l(i) = l/s(i).
Let y = Diag(s)x, a.nd let A = Diag(2)TLDiag(2).
Since the z values are relaxations of fl, the appropri-
ate normalization for the y vector is $y = ci we(i),
which we denote by w,. With this nota.tion, we can
recast (3) as follows.

Minimize f(y) = iyTAy (4)

Subject to

(a) sTy=O

(b) yTy = wv.

It is straightforward to verify that s is an eigenvector
of A with eigenvalue zero. A is symmetric and pos-
itive semi-definite. Furthermore, if the graph is con-
nected, s is the only eigenvector with a zero eigenvalue.
(See [12] for proofs of these properties.)

Now denote the eigenvalues and corresponding nor-
malized eigenvectors of A by Xi and ui respectively,
where the eigenva.lues are indexed in increasing value.
The solution to (4) can be expressed as a linear com-
bination of the u(‘s, where const.ra.int (a) excludes
an contribution from ~1. Subject to the constraints,
it is now easy to see that yTAy is minimized when
y= Jiiug.

Thus the solution to (4) is a multiple of the second
eigenvector of A. This vector ca.n be easily transformed
to find the solution to (a), which ca,n be used to find a
nearby discrete point which pa.rtitions the graph. The
whole procedure is sketched in Fig. 7. The second
eigenvector of a Lap1acia.n matrix is often known as a

Fiedler vector in recognition of the pioneering work of
Miroslav Fiedler [8, 91.

Form L, the Laplacian matrix of the graph
Generate A = Diag(t)LDiag(t)
Compute y = second lowest eigenvector of A
Generate 2 = Diag(t)y
Find median value y among entries in x
Partition 1 = vertices with x value 2 y
Partition 2 = vertices with 5 value > y.

Figure 7: The weighted spectral bisection algorithm

The dominant cost of this spectral bisection algo-
rithm is the calculation of an eigenvector of L. The
traditional approach to this problem is the Lanczos
algorithm [lo], a,n iterative method in which each it-
eration is dominated by a matrix-vector multiplica-
tion. Barnard and Simon have described a multilevel
eigensolver that can significantly speed up the stan-
dard spectral bisection algorithm [l].

5.2 Spectral Bisection with Terminal
Propagation

In [lg, 191 Van Driessche and Roose show how to
modify the standard spectral bisection algorithm to in-
clude certain kinds of constraints. The original motiva-
tion for their work was reduction of data movement in
a dyna.mic repartitioning, but their basic idea can also
be applied to the constraints associated with terminal
propagation. As with the standard spectral technique,
the basic idea is to construct a discrete optimization
problem and then to relax the discreteness constraint.

In the standard derivation (1) we began with an al-
gebraic formulation of the exact partitioning problem.
We now need to enhance the objective function to in-
clude terminal propagation considerations. If d(i) is
the preference for a vertex to be in the set denoted
by $1 which will define to be, say, VI, then the new
problem we want to solve is

Minimize f(x) = i c w,(eaj)(x(i) - x(j))”
a

GjEE

-f c d(i)x(i)
1EV

Subject to

(a) C wv(i)x(i) M 0
iEV

(b) x(i) = fl.

(5)

We now make the sa.me approximation as in the stan-
dard spectra.1 bisection problem, replacing constraint

573

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

(b) by a normalization condition to obtain 6 Results

Minimize f(x) = azTLx - id’, (6)
Subject to

(a> uJ,Tx = 0

(b) ~‘2 = n.

We now make the same variable transformation
used to take us from (3) to (4). Letting h = Diag(t)d
and multiplying the objective function by 4, we have

Minimize f(y) = yTAy - 2hTy (7)
Subject to

(a> ST?/ = 0

(b) yTy = wu.

Unfortunately, the solution to (7) is not as simple
as the solution to (4), its standard counterpart. We
introduce Lagrange multipliers 17 and p, and look for
stationary points of t,he function

The algorithms described in the previous sections
have been implemented in Chaco 2.0 [ll], and we re-
port some experimental results here. All the runs were
performed a Sun Sparcstation 20 with a 50MHz clock
and 64 Mbytes of RAM. We will describe results from
four different algorithms:
MLKL: the multilevel-KL method from $4.1,
MLKLTP: the multilevel-KL algorithm with termi-
nal propagation described in $4.2,
SKL: spectral bisection from g5.1 combined with a
pass of standard KL/FM from $3.1, and
STPKL spectral bisection with terminal propagation
as presented in $5.2 combined with the terminal prop-
agation version of KL/FM discussed in $3.2.
For the spectral algorithms we solved to residual tol-
erances of 10e3, and we used a variant of Barnard and
Simon’s multilevel eigensolver for standard spectral bi-
section. For multilevel-KL and the multilevel eigen-
solver, the smallest graph had at most 200 vertices.

J’(Y,v,P) = yTAy--hTy+9(sTy)+~(w, -Y~Y). (8)

Setting the partia.l derivative of F with respect to 71
or ~1 yields the two constra.int equa.tions. Taking the
derivatives with respect to the components of y, we
obtain

2Ay - 2h + qs - 2/~y = 0. (9)

We can calculate q by left multiplying (9) by sT.
Since s is orthogonal to y and s is a. zero eigenvector
of A, we discover that v = 2sTh/w,. We now define

We monitored four metrics of partitioner quality.
First was the number of edges cut, which corresponds
closely to the total communication volume. Second
was hops in which we multiply each cut edge by the
architectura.1 distance between the two processors own-
ing the endpoints. Third was messages which is the
total number of messages required in a step of an iter-
ative solver using the decomposition. The final metric
was the time required to produce the decomposition.

g=h-es,
WV (10)

Our first example graph is barthb, a 2D finite ele-
ment grid with triangular elements containing 15606
vertices, and 45878 edges’ The results of partitioning
and mapping this graph to a 6-dimensional hypercube
a.re presented in Table 1.

which allows us to rewrite (9) as

&=m+g. (11)

This extended eigenproblem. must be solved subject to
the constraints in (7). Although this problem gener-
ally has multiple solutions, Van Driessche and Roose
have shown that the solution which minimizes the ob-
jection function is always the y vector associa.ted with
the smallest possible value for p [18]. As with the
standard spectra.1 bisection approach, once a solution
to (11) is computed, it is transformed back to a solu-
tion of (6), from which a nearby discrete solution can
be found.

Table 1: Results of different partitioning algorithms
on the barth5 mesh for a 6-dimensional hypercube.

An efficient, Lanczos based procedure for solving
the extended eigenproblem ca.n be found in [14, 181,
but is too lengthy to include here.

As expected, terminal propagation significantly im-
proves the data locality as evidenced by the significant
reduction in hops. The average distance a datum has
to travel is reduced from 1.7 to 1.1 in both algorithms.

2This, and and other meshes, can be obtained via anonymous
ftp to riacs.edu in the directory /pub/grids.

572

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

This comes at the cost of a modest increase in com-
munication volume as reflected by the increase in the
cuts metric, as well as an increase in number of mes-
sages. The time required to perform the partitioning is
slightly increased by the use of terminal propagation.

Next, we partitioned the ocean mesh among the pro-
cessors of a 10 x 20 mesh. This is a 3D finite difference
grid of the world’s oceans comprised of about 143K
vertices and 410K edges. The results are presented in
Table 2. Note that for this problem, we need to be
able to bisect into two sets of unequal size. This is
straightforward to do with the multilevel-KL method,
and a generalization to this case of spectral bisection
with terminal propagation is described in [18].

Table 2: Results of different partitioning a,lgorithms
on the ocean mesh for a 10 x 20 grid.

Again we observe that terminal propagation signifi-
cantly improves locality, reducing t,he a.verage number
of wires traversed by a message from 2.7 to 1.3 in the
multilevel-KL algorithm, and from 2.7 to 1.2 in the
spectral method. As before this locality is pa.id for by
an increase in communication volume. However, un-
like the previous problem the number of messa.ges is
significantly reduced by terminal propagation. Since
communication is local and meshes have ma.ny fewer
processors in their neighborhood tha.n hypercubes, this
result isn’t surprising. For this problem, the spectral
terminal propa.gation algorithm wa.s significa,ntly faster
than its standard counterpart.

From these and similar experiments we make several
observa.tions.

l Terminal propaga.tion is an effective approach
for coupling recursive applications of partition-
ing with the desire to restrict communication to
nearby processors. This is evidenced by the fact
that the cuts and hops values are very similar
in all the tables where terminal propagation was
used, while the cuts and startups are only mod-
estly larger than those obta.ined by tra.ditional al-
gorithms which ignore interprocessor distances.

l For the fairly nice graphs associated with scientific
computing, the multilevel-KL algorithm produces
partitions at least a.s good as spectral-i-KL, both

with and without terminal propagation, while re-
quiring significantly less time.

l For meshes, and for large hypercubes, termi-
nal propagation usually results in fewer messages
needing to be sent.

l We have also observed that Lanczos with termi-
nal propagation is typically somewhat faster than
standard Lanczos, although we do not understand
why.

7 Conclusion

We have described a general method for coupling
the partitioning and mapping problems in such a way
that contention for communication links is significantly
reduced. In applications where many messages are si-
multaneously competing for limited bandwidth, this
approach may significantly improve performance. The
general idea can undoubtedly be applied to a wide va-
riety of recursive partitioning methods. Here we have
focused on two techniques which are currently popular
in the parallel computing community. The approach
presented is sufficiently flexible to allow for the user to
weight the rela.tive importance of cuts and hops and
hence trade off communication volume and message
congestion. More generally, we believe there are likely
to be other important ideas which ca.n be adapted from
from the circuit placement community to assist with
parallel computing.

The techniques described in this paper can be ex-
tended in several ways. The KL/FM terminal propa-
gation algorithm ca,n be generalized to work on more
than two sets at once. This leads to a similar general-
ization of the multilevel scheme. (Both generalizations
are implemented in Chaco 2.0.) The spectral termi-
nal propa.ga.tion method can also be extended to work
on four sets at once [20], and in principle it can be ex-
tended to work on eight sets simultaneously as well.

Acknowledgements

Hendrickson and Leland were supported by the
Applied Ma.thematical and Computer Sciences pro-
gram, U.S. Depa.rtment of Energy, Office of Energy
Resea.rch, and work at Sandia National Laboratories,
operated for the U.S. DOE under contract No. DE
AC04-76DP00789. Van Driessche was supported by
the Belgian Incentive Program “Information Technol-
ogy”-Computer Science of the Future (IT/IF/S), and
by the Belgian Programme on Interuniversity Poles of

573

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

Attraction (IUAP 17), initiated by the Belgian State,
Prime Minister’s Office for Science, Technology and
Culture. The scientific responsibility for this paper
rests with its authors.

References

PI

PI

131

PI

[51

El

[71

PI

M

[lOI

illI

S. T. BARNARD AND K. D. SIMON, A fast mul-
tilevel implementation of recursive spectral bisec-
tion for partitioning unstructured problems, in
Proc. 6th SIAM Conf. Parallel Processing for Sci-
entific Computing, SIAM, 1993, pp. 711-718.

T. BUI AND C. JONES, A heuristic for reduc-
ing fill in sparse matrix factorization, in Proc.
6th SIAhiI Conf. Parallel Processing for Scientific
Computing, SIAM, 1993, pp. 445-452.

W. DONATH AND A. HOFFMAN, Algorithms for
partitioning of graphs an,d computer logic based on
eigenvectors of con,nection matrices, IBM Techni-
cal Disclosure Bulletin, 15 (1972), pp. 938-944.

-, Lower boun.ds for the partitioning of graphs,
IBM J. Res. Develop., 17 (1973), pp. 420-425.

A. E. DUNLOP AND B. W. KERNIGHAN, A proce-
dure for placement of standard-cell VLSI circuits,
IEEE Trans. CAD, CAD-4 (1985), pp. 92-98.

C. FARHAT AND H. SIMON, TOP/DOMDEC -
a software tool for mesh partitioning and parallel
processing, Tech. Rep. RNR-93-011, NASA Ames
Research Center, Moffett Field, CA 94035, June
1993.

C. M. FIDUCCIA AND R. M. MATTHEYSES, A
linear time heuristic for impror%,g network par-
titions, in Proc. 19th IEEE Design Automa,tion
Conference, IEEE, 1982, pp. 175-181.

M. FIEDLER, Algebraic con.nectivity of graph.s,
Czechoslovak hlath. J., 23 (1973), pp. 298-305.

-, A property of eigenvectors of nonnegative
symmetric matrices and its application to graph
theory, Czechoslovak Ma.th. J., 25 (1975), pp. G19-
633.

G. GOLUB AND C. VAN LOAN, Matrix Computa-
tions, Second Edition, Johus Ilopkins University
Press, Baltimore, MD, 1989.

B. HENDRICKSON AND R. LELAND, The Chaco
user’s guide, version 2.0, Tech. Rep. SANDSI-
2692, Sandia National Laboratories, Albu-
querque, NM, October 1994.

WI

P31

P41

iI51

Df4

P71

PI

WI

PO1

WI

-, An improved spectral graph partitioning al-
gorithm for mapping parallel computations, SIAM
J. Sci. Comput., 16 (1995).

-j A multilevel algorithm for partitioning
graphs, in Proc. Supercomputing ‘95, ACM, De-
cember 1995. To appear.

B. HENDRICKSON, R. LELAND, AND R. VAN
DRIESSCHE, Enhancing data locality by using ter-
minal propagation, tech. rep., Sandia National
Laboratories, Albuquerque, NM, May 1995.

B. KERNIGHAN AND S. LIN, An efJicient heuris-
tic procedure for partitioning graphs, Bell System
Technical Journal, 29 (1970), pp. 291-307.

A. POTHEN, H. SIMON, AND K. LIOU, Partition-
ing sparse matrices with eigenvectors of graphs,
SIAM J. Matrix Anal., 11 (1990), pp. 430-452.

H. D. SIMON, Partitioning of unstructured prob-
lems for parallel processing, in Proc. Conference
on Parallel Methods on Large Scale Structural
Analysis and Physics Applications, Pergammon
Press, 1991.

R. VAN DRIESSCHE AND D. ROOSE, A spectral al-
gorithm for constrained graph partitioning I: The
bisection case, TW Report 210, Dept. Computer
Science, Katholieke Universiteit Leuven, Belgium,
October 1994.

-7 Dynamic load balancing with a spectral bi-
section algorithm for the constrained graph parti-
tioning problem, in High-Performance Computing
and Networking, no. 919 in Lecture Notes in Com-
puter Science, Springer, 1995, pp. 392-397. Proc.
International Conference and Exhibition, Milan,
Italy, May 1995.

-, A spectral algorithm for constrained graph
partitioning II: The bisection case, tech. rep.,
Dept. Computer Science, Katholieke Universiteit
Leuven, Belgium, 1995. In preparation.

C. WALSHA~V, M. CROSS, M. EVERETT,
S. JOHNSON, AND K. MCMANUS, Partitioning &’
Mapp2n.g of Unstructured Meshes to Parallel Ma-
chine Topologies, in Proc. Irregular ‘95: Parallel
Algorithms for Irregularly Structured Problems,
A. Ferreira and J. Rolim, eds., vol. 980 of LNCS,
Springer, 1995, pp. 121-126.

574

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

