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Chapter 1

Samba: A Detailed Memory
Management Unit (MMU) for SST
Simulator

1.1 Overview of Samba

The Memory Management Unit (MMU) is one of the most important parts of any modern computing system.
It can be thought of as the hardware support for virtual memory, which enforces access permissions, and
manages the translation of processes’ virtual addresses into real memory physical addresses. The operating
system (OS) allocates the physical memory in a small granularity frames that can be accessed by processes
with appropriate permissions. Each process has the illusion of having an entire memory space, however, the
actual addresses issued by the process, (‘virtual addresses’), are translated into the physical frame address
allocated by the OS through virtual memory.

MMU

Core

Memory

1 Virtual address

2 Obtain 
translation

3 Issue the access
using the physical
address

Figure 1.1. Simple Illustration of an MMU

Figure 1.1 depicts the role of an MMU in the system. Initially, a process running on a core issues a
request using a virtual address to the MMU, which in turn checks if it has a cached translation of the virtual
address. If the MMU does not have a cached version of translation, it will consult the page table, which is
created by the OS. Once the translation is obtained and the permissions of access are checked, the obtained
physical address will be used to forward the request to the memory sub-system.

Accessing the memory to obtain a translation for each memory request can be very expensive. For this
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reason, the MMU has internal caches to speed up the translation lookup process. The MMU caching struc-
tures are typically called Translation-Lookaside Buffers (TLBs) and Page Table Walking Caches (PTWCs).
To better understand the difference between TLBs and PTWC, Figure 1.2 shows the process of performing
a page table walk to obtain the translation.

Page offsetOffset in PTE 
Frame

Offset in PMD 
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Offset in PUD 
Frame

Offset in PGD 
Frame

0111220212930383947

CR3

Sign 
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+
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Physical Page
Frame Nubmer

Figure 1.2. Illustration of the page table walk process.

Initially, if the translation is not found in the local cache of the MMU, a page table walk is triggered.
The page table itself is organized as a radix tree of four levels (for x86-64 systems). The page table walking
process starts with using the address of the root page of the page table, which is located in the CR3 register
(for x86-64 systems). As shown in Figure 1.2, the page table walker derives the address of the next level
through specific bits in the virtual address, to be used to index the current level. Finally, the leaf of the page
table contains the translation (the corresponding physical address and the associated permissions). This
process presents several candidates for caching. For instance, caching the translations from each level can
help reducing the average number of requests to complete the translation process. As an example, if we can
find the content of the PMD, we can use it to access the PTE frame, hence obtaining the translation with
only a single memory access, instead of four.

PTWCs are the structures used to accelerate the page walking process through caching translations from
different levels, while TLBs are used to cache the translations from the leaf of the page table, i.e, the actual
translations.

Note that the page table walking process also depends on the page size, where using huge pages (2MB
or 1GB) will require fewer page table walk steps to obtain the final translation.

1.1.1 Why is Modeling an MMU Important?

The performance of the MMU unit is critical, as it lies on the critical path of every memory subsystem access.
Accordingly, MMU’s structures, such as TLBs, are designed to be extremely fast and energy efficient, hence
their small sizes. As mentioned earlier, the smallest granularity the OS deals with is physical frames with
typical sizes of 4KB. Using 4KB pages brings flexibility in managing memory and exploiting the heterogeneity
of pages’ access pattern. This becomes more obvious in multi-socket systems and heterogeneous memory
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architectures. On the other hand, the use of 4KB pages can increase pressure on the MMU compared to
using 2MB or 1GB pages.

The performance of the MMU may become a bottleneck for applications with poor temporal locality,
e.g., data analytics. A poor MMU design can incur at least one memory access to obtain the translation for
each memory request. For huge memory footprint applications, where PTWCs are ineffective, each memory
access can require up to four dependent memory accesses before proceeding. With the advent of potentially
very dense emerging NVM technologies, such as 3D XPoint by Intel/Micron, and the continuously growing
memory needs of applications, the design of the MMU is becoming considerably more challenging and critical
to full system performance.

1.1.2 What Analyses can the Samba Model Support?

• The Configuration of TLB Structures: Samba enables varying the number of levels of TLBs, the
size of each TLB structure, the number of entries of each page supported page size on each level, the
associativity of each TLB structure, the maximum number of requests per cycle, the access latency
and the maximum number of outstanding misses of each structure.

• The Configuration of Page Table Walking Caches: Samba enables varying the size of any
PTWC, the associativity, the access latency and the maximum number of concurrent page table walking
processes.

• The Impact of using an Arbitrary Page Size on MMU Performance.

The details of how to use Samba and vary its parameters will be discussed in the next sections.
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Chapter 2

Samba Specification (Version 1.0)

In this chapter, we detail the specifications of the Samba SST element and model. First, Samba is im-
plemented as an element of the Structural Simulation Toolkit (SST) simulator [2]. In the Samba source
directory, there are four main classes:

• TLB Class: The TLB class is defined inside TLBUnit.h and implemented in TLBUnit.cpp. The TLB
class is used to define TLB structures with the specified parameters. Each TLB instance models a
single TLB hardware structure.

• PageTableWalker Class: The PageTableWalker class is defined inside PageTableWalker.h and im-
plemented in PageTableWalker.cpp. The PageTableWalker class is used to define the Page Table Walker
and the Page Table Walk Caching structures with the specified parameters. Note that the Page Table
Walker class supports multiple concurrent requests, hence modeling parallel page table walkers.

• TLBhierarchy Class: The TLBhierarchy class is defined inside TLBhierarchy.h and implemented in
TLBhierarchy.cpp. The TLBhierarchy class can be used to instantiate a private hierarchy of TLBs and
Page Table Walkers. Each core or accelerator in the system will have its own private hierarchy. For
instance, TLBhierarchy object can represent the MMU of an accelerator, IOMMU, or a private MMU
of a specific core.

• Samba Class: The Samba class is defined inside Samba.h and implemented in Samba.cpp and lib-
Samba.cpp. The Samba class is mainly used to instantiate TLB hierarchies in the simulation, however,
a single Samba component can have multiple TLBhierarchy objects. It is the analyst’s decision to have
a Samba object for each core, or, instead, to have a single Samba object with multiple TLB hierarchies.

To put things together, Figure 2.1 depicts the architecture of Samba.

As mentioned earlier, a Samba object is the main container that either includes one TLBhierarchy
object, similar to the one shown in Figure 2.1, or multiple TLBhierarchy objects. The main ports to the
TLBhierarchy object are the following:

� cpu to mmu: This interface can be used to connect the MMU unit to a cpu core interface to the
memory system, e.g., ariel core’s cache link, through a link.

� mmu to cache: This interface can be used to connect the MMU unit to the cache hierarchy, so it
forwards the translated memory requests. As an example, connecting to the L1 cache’s high network 0
interface, through a link.

� ptw to mem: This interface is used to connect the MMU’s page table walker to the cache hierarchy
or memory directly. Mainly used to obtain the translation through walking the page table. Depending
on the design, this can be connected to the memory directly, tiny dummy caches then L3 cache, or to
a self-link with fixed delay.
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Figure 2.1. The architecture of Samba.

In the next section, we will study the details of each class and its parameters.

2.0.3 Examples of Samba Usage

In this section, we discuss the details of Samba units through examples. First, assume we want to build a
two-level TLB hierarchy with the following specifications:

� TLB-L1: 32-entries for 4KB translation entries, with 4-way associativity. 8-entries for 2MB translation
entries, with 8-way associativity.

� TLB-L2: 1024-entries for 4KB translation entries, with 16-way associativity. 256-entries for 2MB
translation entries, with 16-way associativity.

� Page Table Walking Caches: For simplicity, we will model 4 caches with same configuration of 32-entries
size and 4-way associativity, for each cache

� OS default page size: 4KB

Below is a code snippet to demonstrate the different parameters of each unit. Each parameter options has
a comment describing it.

# Instantiating a samba instance

mmu = sst.Component("mmu0", "Samba")

# Adding the parameters for the Samba unit

mmu.addParams({

"os_page_size": 4, # This represents the default OS allocated page size in KBs, you can choose

whatever page size you want

"corecount": 1, # This basically determines the number private TLB hierarchies for this Samba

instance
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"levels": 2, # This tells Samba to instantiate to two levels of TLB, you can vary it if you

want to examine deeper TLB hierarchies

"clock": "2GHz", # This determines the clock frequency feeding this Samba unit

# L1 TLB

"sizes_L1": 2, # This determines the number of page sizes supported of the translation entries

in L1 TLB

"page_size1_L1": 4, # This determines the first supported page size in the L1, in KBs

"page_size2_L1": 2048, # This determines the second supported page size in L1, in KBs

"size1_L1": 32, # This determines the number of entries supported for the first page size in L1

TLB

"size2_L1": 8, # This determines the number of entries supported for the second page size in L1

TLB

"assoc1_L1": 4, # This determines the associativity for the entries of the first page size in

L1 TLB

"assoc2_L1": 8, # This determines the associativity for the entries of the second page size in

L1 TLB

"latency_L1": 4, # This determines the latency (cycles) of accessing the L1 TLB structure

"max_width_L1": 3, # This determines the number of requests can be processed per cycle in L1 TLB

"max_outstanding_L1": 5, # This determines the maximum number of outstanding misses that can be

handled in parallel for L1 TLB

"parallel_mode_L1": 1, # This option is specific for L1 TLB, which allows L1 TLB hits to be

serviced back in the same cycle, thus modeling a realistic parallel L1 TLB check and cache

access

# L2 TLB

"sizes_L2": 2, # This determines the number of page sizes supported of the translation entries

in L2 TLB

"page_size1_L2": 4, # This determines the first supported page size in the L2, in KBs

"page_size2_L2": 2048, # This determines the second supported page size in L2, in KBs

"size1_L2": 1024, # This determines the number of entries supported for the first page size in

L2 TLB

"size2_L2": 256, # This determines the number of entries supported for the second page size in

L2 TLB

"assoc1_L2": 16, # This determines the associativity for the entries of the first page size in

L2 TLB

"assoc2_L2": 16, # This determines the associativity for the entries of the second page size in

L2 TLB

"latency_L2": 10, # This determines the latency (cycles) of accessing the L2 TLB structure

"max_width_L2": 2, # This determines the number of requests can be processed per cycle in L2

TLB, note that there are no benefits from having this larger than the max outstanding

misses of the previous level

"max_outstanding_L2": 3, # This determines the maximum number of outstanding misses that can be

handled in parallel for L2 TLB

# Page Table Walking Caches

"size1_PTWC": 32, # The PTEs’ cache size is 32 entries

"assoc1_PTWC": 4, # The PTEs’ cache associativity

"size2_PTWC": 32, # The PMDs’ cache size is 32 entries

"assoc2_PTWC": 4, # The PMDs’ cache associativity

"size3_PTWC": 32, # The PUDs’ cache size is 32 entries

"assoc3_PTWC": 4, # The PUDs’ cache associativity

"size4_PTWC": 32, # The PGDs’ cache size is 32 entries

"assoc4_PTWC": 4, # The PGDs’ cache associativity

"latency_PTWC": 10, # This is the access latency (cycles) for accessing the page table walk

caches in parallel

"self_connected": 1, # This means that the page table walker will substitute fixed latency

instead of actually accessing the memory to do the page walks

"page_walk_latency": 200, # This is the fixed memory latency (in nanoseconds) for each page

table walk memory access

# Note: the page_walk_latency is ignored if the page table walker is not self-connected (connected

through ptw_to_mem to to the memory or cache hierarchy
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"max_outstanding_PTWC": 4, # this determines the number of concurrent page table walk requests,

i.e., parallel page table walkers

"max_width_PTWC": 2, # this represents the maximum number of requests can be processed per

cycle, i.e, parallel checking of PTWCs

});

In the next section, we will study an example of the performance sensitivity to Samba’s parameters.
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Chapter 3

Application Performance Sensitivity
to Samba Parameterization

In this chapter, we will vary different parameters for the Samba unit and study how this affects the perfor-
mance.

3.1 Methodology

We run our simulation using the SST simulator [2] modified to integrate the Samba model. We use XS-
Bench [3] miniapp as a case study for our demo. In our run, we simulate 8 cores with 2GHz frequency, while
running 8 threads from XSBench for 100,000 Cross Section Lookups, with the small input set. The memory
footprint generated by the run is roughly 227.5MB. For our cores, we model an issue width of 3 instructions
and a maximum of 16 outstanding memory requests. Our default configurations for MMU is using 4KB
translation with 32-entry and 4-way associativity L1 TLB, 1536-entry with 12-way associativity L2 TLB,
and a PTWCs of 32-entry and 4-way associativity each. We also model the TLBs with a width of 3 requests
per cycle and maximum outstanding misses of 2. The TLB access latency is 4 and 10 cycles for L1 and L2,
respectively. The PTWC access latency is 10 cycles.

3.1.1 Page Size and L1 TLB Size
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Figure 3.1. The impact of page size and L1 TLB size on performance.

15



As described above, Samba supports different page sizes and number of entries for each page size. Fig-
ure 3.1 shows the impact of performance of different page sizes while varying their corresponding number of
entries.

We can observe that the L1 TLB size impact on performance differs on the page size used in the system.
For instance, when using 4KB pages, the relative execution time goes from 206.9% at 8-entries down to
176.3% for 512-entries. In contrast, for 2MB pages, the relative execution time goes 136.2% at 8-entries to
about 100% for 128-entries and larger. While using 1GB pages brings a performance overhead of about 0%
(100% relative execution time), for any number of entries larger than or equal to 8.

Using large pages increases the memory reach. For instance, using 8-entries of 4KB pages only covers
translations for 32KB memory footprint. In contrast, a 2MB 8-entries L1 TLB covers a 16MB memory
footprint. Using 1GB 8-entries L1 TLB is sufficient to cover 8GB of the memory footprint. For our run, the
memory footprint is 227.5MB, which explains why using 1GB pages makes the MMU overhead negligible;
about 100% L1 TLB hit rate. For the 2MB pages, as we would expect, 128-entries is sufficient to cover the
whole memory footprint (227.5MB) of our run, hence minimizing the MMU overhead. Finally, a 4KB pages
poorly benefits from increasing the number of entries, due to the inability to cover large percentage of the
memory footprint.

While using 1GB or 2MB pages may look appealing and a straight forward solution, this comes at the
cost of significant performance overhead when dealing with multi-socket system or heterogeneous memory
architecture in general [1]. In summary, using large pages limits allocating physical memory based on the
access proximity. The trade-offs of using large pages are worth further study that is beyond the scope of this
report, however, Samba enables such kind of studies.

3.2 The Impact of Parallel Miss Handling Capacity of L1 TLB
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Figure 3.2. The impact of the capacity of handling concurrent TLB
misses on performance.

Modern processor systems allow multiple outstanding memory requests to be handled in parallel. Accord-
ingly, Samba models handling concurrent misses at each level of its Units. Figure 3.2 shows the performance
sensitivity of varying the number of the allowed outstanding misses at the L1 TLB. We change this value
for all units in the MMU hierarchy to avoid being throttled by lower level units.

We can observe that increasing the number of misses can be handled in parallel has significant impact on
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performance. However, there is a point where a larger window of parallel misses handling does not provide
any performance gain. Specifically, in the figure, we can see that beyond 16 parallel misses handling, there
are no additional performance gains. The reason behind this is that our core model can handle a maximum
of 16 memory requests in parallel before stalling.

Note that allowing a large number of parallel misses complicates the MMU design and affects the power
budget negatively. Accordingly, Samba enables studying the performance trade-offs for different numbers of
allowed concurrent misses, and if it is worth it to design larger windows.

3.2.1 The Impact of Page Table Walking Caches (PTWCs) on Performance

PTWCs allow skipping steps from the page table walking process through caching entries form different
levels of the page table. To study its impact on performance, we vary the size of every PTWC from 8 up to
1024. Figure 3.3 shows the performance sensitivity due to using larger PTWC caches.
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Figure 3.3. The impact of the capacity of the PTWCs on performance.

We can observe that increasing the PTWC can improve the performance, but with similar scalability to
increasing the L1 TLB size. The performance improves from 203.8% relative execution at 8-entries down to
164.8% at 1024-entries.
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Chapter 4

Conclusion

In conclusion, we have presented Samba as a detailed Memory Management Unit (MMU) model for SST
simulation framework. We explained the options and paramaters can be configured and how would this affect
the performance. Finally, we used the XSBench mini-app as a short case study to show how application
performance can vary with differing configurations of Samba’s components. We hope that Samba will be
used to evaluate the impact of MMU on future system for different workoads.
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