
SANDIA REPORT
SAND2013-3180
Unlimited Release
Printed April, 2013

A Simulation Infrastructure for
Examining the Performance of
Resilience Strategies at Scale

Kurt B. Ferreira, Scott Levy, Patrick G. Bridges,

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2013-3180
Unlimited Release
Printed April, 2013

A Simulation Infrastructure for Examining the
Performance of Resilience Strategies at Scale

Kurt B. Ferreira on .e iasrrfe d ga@kb v

Scalable System Software Department
Sandia National Laboratories

P. O. Box 5800
Albuquerque, NM 87185-1319

Scott Levy and Patrick G. Bridges u. m densc .slevy | bridges u@

University of New Mexico
Department of Computer Science

Mail stop: MSC01 1130
1 University of New Mexico

Albuquerque, NM 87131-0001

Abstract

Fault-tolerance is a major challenge for many current and future extreme-scale systems, with
many studies showing it to be the key limiter to application scalability. While there are a
number of studies investigating the performance of various resilience mechanisms, these are
typically limited to scales orders of magnitude smaller than expected for next-generation
systems and simple benchmark problems. In this paper we show how, with very minor
changes, a previously published and validated simulation framework for investigating appli-
cation performance of OS noise can be used to simulate the overheads of various resilience
mechanisms at scale. Using this framework, we compare the failure-free performance of this
simulator against an analytic model to validate its performance and demonstrate its ability
to simulate the performance of two popular rollback recovery methods on traces from real

3

HPC workloads, showing how performance can vary dramatically both with scale and the
communication behavior of the application.

4

Introduction and Background

Reliability is a key challenge in the design of future extreme-scale high performance
computing (HPC) systems. As these systems continue to grow dramatically in size and
complexity, they are becoming less reliable. In fact, failures are predicted to go from the
current state of several failures per day [17,27–29,31] to multiple failures per hour [7].

Fault-tolerance for HPC systems and distributed systems in general has been studied for
several decades. Although many techniques have been proposed, checkpoint/restart remains
the most commonly used technique [6]. The prevalence of checkpoint/restart is due to a
number of factors: failure is a relatively rare event, checkpointing is easy to integrate in an
application’s computation because applications are generally self-synchronizing, and appli-
cation state can be saved and restored much more quickly than a given system’s mean time
to interrupt (MTTI). These factors have kept the overheads of traditional checkpoint/restart
on current systems relatively low.

The assumptions on which checkpoint/restart rests are unlikely to be true in future gen-
eration systems, however [8, 20, 27], prompting a wide range of recent research optimize
rollback/recovery protocols. These optimizations range from memory-based coordinated
checkpointng schemes [19, 21, 30] to asynchronous checkpointing schemes with message log-
ging [1, 2, 11,12,24].

All of these techniques involve complex trade-offs, and understanding these trade-offs at
the scales expected in next-generation systems is vital to evaluating their suitability. Unfor-
tunately, it has been difficult to evaluate proposed resilience methods at the scales expected
on future systems, and so their true overheads are not known. Additionally, evaluations
have generally been limited to microbenchmarks rather than production workloads. Both of
these are because system time on leadership-class machines is difficult to obtain, and future
systems are expected to be much larger than any machine currently in existence.

In this work, we show how the performance of new resilience techniques can be simulated
at large scale on production workloads through minor changes to an existing validated sim-
ulation framework. In particular, we show that novel resilience techniques can generally be
accurately modeled as detours in a simulator originally designed for investigating the impact
of OS noise (or jitter) on application performance. We demonstrate this approach by vali-
dating it against an analytic coordinated checkpointing model [3]. We also show how it can
be used to evaluate the performance of two popular rollback/recovery methods in scenarios
that were previously not easy to evaluate – showing that the application’s communication
behavior can have a dramatic impact on a method’s efficiency. Due to space limitations, we
focus our evaluation in this paper on failure-free performance. However, the framework is
also capable of simulating performance in a faulty environment.

The organization of this paper is as follows: in the following section we describe the
design and implementation of our contributions to this exiting simulation framework as well
as how we evaluate its performance. In Section we validate the failure-free performance pre-

5

diction capabilities of this framework against a simple analytic model. In this section we also
evaluate the performance of two popular rollback/recovery methods on real production HPC
workloads, showing how an application’s communication properties can significantly influ-
ence efficiency. We discuss related work in Section . We conclude in Section , summarizing
our contributions and discussing avenues of future research.

Approach

Overview

To evaluate the impact of resilience mechanisms on HPC applications at scale, we aug-
ment LogGOPsim, a previously published [15] and freely available [32] simulator. LogGOPsim
is based on the popular LogP model. LogP and its variants have a long history of accu-
rately predicting the performance of large-scale parallel applications and algorithms. The
simulation framework consists of three major components: a trace collector, a schedule gen-
erator, and an optimized LogGOPS discrete-event simulator. The trace collector records the
actual MPI communication of the target application. The schedule generator uses the MPI
traces to generate a schedule that captures the control- and data-flow of the application
while preserving the happens-before relationships within the application. The LogGOPS
discrete-event simulator reads the generated schedule, performs a full LogGOPS simulation
and reports the end times for each process.

This validated simulation framework was developed to simulate applications at scale.
It has the ability to extrapolate traces collected on smaller scale systems. This allows for
the simulation of platforms larger than those currently in existence while keeping the same
communication characteristics (equivalent to weak-scaling of the application). This powerful
framework has been shown to be capable of simulating a single collective operation over up
to 10 million processes and applications on up to 64 thousand processes on a single CPU. It
has been used to evaluate the performance of collective communications [16] and the impact
of OS noise [14] on large-scale applications. A detailed study of the simulation framework
and its functionality is presented in [15].

The key insight that allows us to use the LogGOPsim simulator is that resilience mech-
anisms (e.g., writing checkpoints, restart, rework) can be modeled as CPU detours : cycles
used for something besides the application, similar to OS noise. One key difference between
OS noise and these resilience detours that our work must address is that “noise” events must
be replayed synchronously with the application communication/computation pattern rather
than in the asynchronous manner of typical OS noise.

6

Libsolipsis

We model resilience in LogGOPsim using a new library, libsolipsis that generates CPU
detours based on a specified resilience mechanism and the application’s communication pat-
tern. The library links to the application using the MPI profiling layer, intercepting all
MPI calls. The output of this library is a per-process detour file that can be provided as
input to LogGOPsim. The detour files contain the timestamp and the duration of each of
the resilience detours. Detours generated by this library might include writing a checkpoint,
writing a message log entry, or simulating a failure1.

For the purpose of this work, we focus on the libraries’ ability to emulate failure-free
performance of two popular resilience mechanisms: coordinated checkpointing and asyn-
chronous checkpointing with message logging [6]. We focus on these on these two methods
because coordinated checkpoint/restart is currently the most popular approach and asyn-
chronous checkpointing has been proposed as a low-overhead checkpoint option for future
extreme-scale systems.

For asynchronous checkpointing with message logging, our library writes the timestamp
and the duration of the local checkpoints. In addition, the library must handle the logging of
messages to stable storage. For pessimistic message logging [6], we modify the CPU overhead
parameter (o in the LogGOPS model) for send operations (os) to account for the write to
stable storage. For optimistic message logging, we write the time and duration of writing to
the message log, if any, in the detour file. The LogGOPsim simulator uses a single detour file
to simulate asynchronous checkpointing across all of the nodes in the system.

For coordinated checkpoint/restart, the library only writes the timestamp and the dura-
tion of each checkpoint taken by the application. When the simulation is run, we use the
“---noise-cosched” option of the LogGOPsim simulator. This option ensures all detour
files are co-scheduled on all processors, thereby simulating coordinated checkpoint/restart.

Although we only present failure-free performance of resilience mechanisms here, the
library can also simulate node failure. To simulate failure, the library generates failure times
for each node from a random distribution based on a per-node mean time between failure
(MTBF). When a failure is generated, the library adds a detour event that includes the the
time required to restart from the last checkpoint and the time required for rework (i.e., the
time since the last checkpoint). The LogGOPsim simulator will ensure that all communication
in the trace file that depends on the failed node will be delayed until the node has “recovered”.
The library can also simulate hybrid or hierarchical approaches (e.g., [12]) that apply one
resilience approach within node clusters and a different resilience approach between the
clusters.

1In the case of a failure, the duration of the detour includes both the restart and rework time on the
failed node.

7

Test Environment

To validate the performance of this simulation framework and to motivate the importance
of this framework, we evaluated the performance of two widely used rollback/recovery based
mechanisms. We present results for: two key HPC applications, CTH [5], a shock physics
simulation code, and LAMMPS [22, 26], a molecular dynamics simulation code; and one
microbenchmark HPCCG [25], a conjugate gradient solver. All of these applications were
developed at Sandia National Laboratories. They represent important HPC modeling and
simulation workloads. They use different computational techniques, are frequently run at
very large scale, sometimes for weeks at a time, and are key simulation applications for
the US Department of Energy. These applications also contain easily-adaptable checkpoint
mechanisms that will be used in this work.

The application and resilience traces for this work were collected by running these three
applications on 128 nodes of a Cray XE6 machine. The simulations were run on the same
platform. For the simulation runs, we use the LogGOPS parameters as measured using the
netgauge benchmark [13,33] on the XE6 platform. In the case of coordinated checkpointing,
we simulate an aggregate filesystem bandwidth of 256 GB/s. For the asynchronous case, each
node can write to the filesystem at 2 GB/s. Finally, for all of the results in this paper, we
simulate a low-noise environment (e.g., the BlueGene/L [4,34] family of supercomputers) by
only injecting detours arising from the resilience mechanisms.

Results

We demonstrate this approach in two different ways: First, we validate the simulation
framework described in the previous section against a simple analytic model of coordinated
checkpoint performance. Second, we demonstrate its ability to simulate the impact of dif-
ferent resilience strategies on system performance in failure-free cases at scales and using
workloads that were previously challenging to evaluate.

Validation Against an Analytic Model

We first validate the failure-free coordinated checkpointing performance of this simulation
framework against a simple analytic model. Equation 1 presents a simple failure-free analytic
model of application performance with coordinated checkpointing and shared stable storage.
The total wall clock time is computed as the time required to solve the problem without
interruption plus the time to take each of the required checkpoints.

Tw = Ts +
Ts
τ
× δ (1)

8

Tw is the wall clock time, in this case without failures, Ts is the solve time of the application
without any resilience mechanism, τ is the checkpoint interval [3], and δ is the checkpoint
commit time (time to write one checkpoint). For coordinated checkpointing to shared stable
storage, we can express the checkpoint commit time as:

δ =
N ∗ ||cavg||

β
(2)

where N is the number of nodes, ||cavg|| is the average checkpoint size per node, and β is
the aggregate write bandwidth to stable storage.

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
.)

Nodes

simulation
model

 100

 150

 200

 250

 300

 350

 400

 450

128
256

512
1K 2K 4K

Figure 1. Comparison of the the analytic model described
in Equation 1 with the simulator for coordinated checkpoint-
ing to stable storage in a failure-free environment. Both the
model and the simulator use identical values for Ts, τ , and δ

Figure 1 compares this simple model with the output of the simulator. The model and
the simulator use identical values for Ts, τ , and δ. For the simulator, we use the LogGOPS
parameters as measured on a Cray XE6 platform using netgauge. The simulation data
is based on a communication trace from CTH. In the figure we see that the simulation
framework wall clock time differs by approximately 10% for these parameters. Overall,
however, the simulator accurately matches the shape of the performance curve of this simple
model with relatively low error. This suggests that the simulation framework can be used
to accurately predict application performance of resilience mechanisms at scale.

Rollback/Recovery Performance at Scale

Because resilience interacts with application communication and computation, different
resilience mechanisms may have unexpected performance impacts on applications at scale.

9

We note that this is similar to the previously unexpected impact of OS noise LogGOPsim was
originally designed to study. In this section, we demonstrate the use of the modified simula-
tion framework to analyze such interactions for two popular rollback/recovery mechanisms
for real application traces at non-trivial scales.

Specifically, we measure the failure-free performance at scale of coordinated checkpointing
to shared stable storage with uncoordinated checkpointing to node-local storage for LAM-
MPS, CTH, and HPCCG. The metric we use for this evaluation is application efficiency.
Efficiency is defined as the percentage of time spent in the application performing computa-
tion for the problem. This excludes time spent on the resilience mechanism, rework, dealing
with failures, etc. For example, suppose we have an application whose solve time is 90 time
units without interruption. If the addition of a resilience mechanism causes the application’s
time-to-solution to increase to 100 time units, the efficiency of the application would be
90
100
× 100, or 90%.

In our tests, we take significantly more checkpoints than would we expected at these
scales. The reasoning behind this is that we intend to use the simulator to evaluate the
influence of scale and communication patterns on application performance. This may give
us some insight into application performance in a large-scale, failure-prone environment. We
also keep the checkpoint interval constant independent of node count. Lastly, the coordinated
checkpointing checkpoints are written to a shared store with an aggregate checkpoint commit
bandwidth of 256GB/sec. For uncoordinated checkpointing we assume each node has a
checkpoint commit bandwidth of 2GB/sec.

Figure 2 shows the efficiency of these two resilience techniques using production workloads
LAMMPS and CTH, and the microbenchmark HPCCG. Each of the techniques in these
figures are using the same checkpoint interval and checkpoint size per process. For the
coordinated checkpointing results in Figure 2(a), we assume all checkpoints are written to
shared a shared stable storage which has an aggregate commit bandwidth of 256GB/sec. For
the uncoordinated results in Figure 2(b), we assume each node has a checkpoint bandwidth of
2GB/sec. For the coordinated results, we see the predictable dip in efficiency at larger node
counts. This dip occurs for all applications and is generally independent of an applications
communication pattern. This dip in efficiency is due to the fact that the nodes write to
shared storage. As node counts increase, so does data being concurrently written to the
shared storage, therefore performance is degraded. In ranges outside of those specified here,
efficiency drops precipitously, rapidly approaching 0% efficiency.

The uncoordinated results in this figure are more interesting. First, the overheads of the
uncoordinated approach are much higher at smaller node counts than coordinated. Also, the
applications communication pattern greatly influences the efficiency of this technique. For
example, CTH, which does a good deal more bulk data transfer and collective communica-
tion, sees much lower efficiency than HPCCG. And both of these workloads do much more
communication and collective communication than LAMMPS, which sees nearly constant
overheads from this uncoordinated approach over the range tested.

These results point directly to the importance of this simulation framework as a number

10

of factors must be considered when determining the most efficient resilience technique. In
previous work, scale is typically the only factor considered. As we can see, both scale and
an application communication behavior must also be considered.

Related Work

Significant effort has been devoted to developing strategies that reduce the overhead of
traditional coordinated checkpointing as systems grow larger. However, evaluation of these
approaches has been on systems that are significantly smaller than even today’s largest
systems. Our approach allows for a more thorough evaluation of how these proposed im-
provements scale as systems grow toward exascale.

Many approaches have been proposed that eliminate the coordination overhead by al-
lowing processes to checkpoint independently. For example, Bosilca et al. [1] propose an
elaborate solution using uncoordinated checkpointing and pessimistic message logging. They
evaluate their approach on a 130-node system and present results for applications running
on 9, 16 and 25 nodes. The authors extend this work to use sender-based message logging
in [2]. Their evaluation is conducted on a 32-node cluster. Guermouche et al. [11] leverage
send-determinism to reduce the number of messages that must be logged. They evaluate
their approach on several systems, the largest of which is composed of 1024 nodes.

A common problem in coordinated checkpointing is contention for access to the global
filesystem. Many solutions to reduce this contention have been proposed. Moody et al. [19]
propose multi-level checkpoints. This approach stores the most recent checkpoints on the
compute nodes. Older checkpoints are moved to global filesystem. They show that, in most
cases, recovery from the failure of a single node can be accomplished with local checkpoint
data. To evaluate the effectiveness of their approach they use several systems, the largest of
which was composed of 1024 nodes.

Our approach builds upon efforts to understand the effects of system noise. Hoefler
et al. [14] use the LogGOPsim simulator to explore the effect of recorded system noise on
the performance of several scientific applications. Ferreira et al. [9] inject synthetic noise
in a low-noise environment to characterize the effect of frequency and duration of noise
events on several production workloads. Although these efforts form the foundation of our
contribution, we model a distinct set of behaviors in distributed systems.

Conclusions and Future Work

In this work, we presented a novel method for simulating the impact of resilience tech-
niques on production workloads running on large-scale systems. In particular, we showed
that the behavior of resilience techniques can be accurately modeled as detours in a simula-
tor originally designed for investigating the impact of OS noise on application performance.

11

We validated the predictive ability of this simulation framework by comparing it to an an-
alytic coordinated checkpointing model [3]. Finally, we used this framework to evaluate the
performance of two popular rollback/recovery methods on production HPC workloads. Our
results illustrate that the communication properties of an application can significantly alter
the impact of resilience strategies on application efficiency. For example, the effect of using
uncoordinated checkpointing on the efficiency of LAMMPS is significantly different than its
impact on the efficiency of CTH.

While the results in this work are important, there are several avenues of promising future
work. First, while the coordinated and uncoordinated checkpoint strategies considered in
this work are important data points, there are a number of optimizations to these approaches
that attempt to significantly improve application performance [8, 10–12, 18, 19, 23, 24]. Inte-
grating these approaches into libsolipsis will be important for evaluating the efficiency of
resilience mechanisms at scale. Second, in this work we focused solely on failure-free appli-
cation performance. Evaluating performance in the presence of failures will be key to deter-
mining the proper resilience strategy for extreme-scale systems. Third, we need to evaluate
performance for the larger scale systems expected in the future. Additionally, LogGOPsim
allows us to investigate how various LogP model parameters can influence performance. This
might provide insight on which architectural features would improve performance of future
systems. Lastly, libsolipsis is in the process of public release at Sandia National Labo-
ratories. Once this process is complete, we hope the LogGOPsim developers see the merit of
this work and decide to distribute it with their simulation framework.

12

E
ff
e
c
ie

n
c
y
 (

%
)

Nodes

CTH
LAMMPS

HPCCG

 0

 20

 40

 60

 80

 100

128
256

512
1K 2K 4K

(a) Coordinated Checkpointing

E
ff
e
c
ie

n
c
y
 (

%
)

Nodes

CTH
LAMMPS

HPCCG

 0

 20

 40

 60

 80

 100

128
256

512
1K 2K 4K

(b) Uncoordinated Checkpointing

Figure 2. Coordinated and Uncoordinated checkpointing
efficiency (the percent of time spent performing work for
the application and and not the resilience mechanism) us-
ing the simulator for CTH, LAMMPS, and HPCCG. Each of
these mechanisms is using the same checkpoint interval and
checkpoint size per process. These simulations show perfor-
mance an environment where checkpointing needs to be done
frequently. For coordinated checkpointing checkpoints are
written to a shared aggregate checkpoint commit bandwidth
of 256GB/sec. For uncoordinated checkpointing we assume
each node has a checkpoint commit bandwidth of 2GB/sec.
We see from these simulations that coordinated checkpoint-
ing has a significant negative impact on application efficiency
the grows as systems increase in size. We also see that asyn-
chronous checkpointing has a significant negative impact on
application efficiency for CTH and HPCCG. Although the
trend suggests that the rate of decrease in efficiency tapers
off for very large systems, there is a significant decrease in effi-
ciency for systems that are larger than the small systems that
are typically available for evaluation. In contrast, LAMMPS
exhibits only nominal decreases in application efficiency.

14

References

[1] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak, Cecile
Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic Magniette,
Vincent Neri, and Anton Selikhov. MPICH-V: Toward a scalable fault tolerant mpi
for volatile nodes. In Conference on High Performance Networking and Computing
(SC2002), pages 1–18, Baltimore, MD, november 2002.

[2] Aurélien Bouteiller, Franck Cappello, Thomas Herault, Géraud Krawezik, Pierre
Lemarinier, and Frédéric Magniette. MPICH-V2: a fault tolerant MPI for volatile
nodes based on pessimistic sender based message logging. In Proceedings of the 2003
ACM/IEEE conference on Supercomputing, New York, NY, USA, 2003. ACM.

[3] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Gener. Comput. Syst., 22(3):303–312, 2006.

[4] Kei Davis, Adolfy Hoisie, Greg Johnson, Darren J Kerbyson, Mike Lang, Scott Pakin,
and Fabrizio Petrini. A performance and scalability analysis of the bluegene/l architec-
ture. In Proceedings of the 2004 ACM/IEEE conference on Supercomputing, page 41.
IEEE Computer Society, 2004.

[5] Jr. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M. McGlaun,
S. V. PetneY, S. A. Silling, P. A. Taylor, and L. Yarrington. CTH: A software family
for multi-dimensional shock physics analysis. In Proceedings of the 19th International
Symposium on Shock Waves, pages 377–382, July 1993.

[6] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[7] Keren Bergman et al. Exascale computing study: Technology challenges in
achieving exascale systems. http://www.science.energy.gov/ascr/Research/CS/

DARPAexascale-hardware(2008).pdf, September 2008.

[8] Kurt Ferreira, Rolf Riesen, Patrick Bridges, Dorian Arnold, Jon Stearley, James H. Laros
III, Ron Oldfield, Kevin Pedretti, and Ron Brightwell. Evaluating the viability of process
replication reliability for exascale systems. In Scott Lathrop, Jim Costa, and William
Kramer, editors, SC. ACM, November 2011.

[9] Kurt B Ferreira, Patrick Bridges, and Ron Brightwell. Characterizing application sen-
sitivity to os interference using kernel-level noise injection. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, page 19. IEEE Press, 2008.

15

[10] Kurt B. Ferreira, Rolf Riesen, Ron Brightwell, Patrick G. Bridges, and Dorian Arnold.
Libhashckpt: Hash-based incremental checkpointing using GPUs. In Proceedings of the
18th EuroMPI Conference, Santorini, Greece, September 2011 [to appear].

[11] Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, and Franck Cap-
pello. Uncoordinated checkpointing without domino effect for send-deterministic MPI
applications. In International Parallel Distributed Processing Symposium (IPDPS),
pages 989–1000, may 2011.

[12] Amina Guermouche, Thomas Ropars, Marc Snir, and Franck Cappello. HydEE: Failure
containment without event logging for large scale send-deterministic mpi applications.
In IPDPS, pages 1216–1227. IEEE Computer Society, 2012.

[13] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm. Netgauge: A Network Perfor-
mance Measurement Framework. In Proceedings of High Performance Computing and
Communications, HPCC’07, volume 4782, pages 659–671. Springer, Sep. 2007.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence of System
Noise on Large-Scale Applications by Simulation. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’10), Nov. 2010.

[15] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim - Simulating Large-Scale
Applications in the LogGOPS Model. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pages 597–604. ACM, Jun.
2010.

[16] T. Hoefler, C. Siebert, and A. Lumsdaine. Group Operation Assembly Language - A
Flexible Way to Express Collective Communication. In ICPP-2009 - The 38th Interna-
tional Conference on Parallel Processing. IEEE, Sep. 2009.

[17] Andy A Hwang, Ioan A Stefanovici, and Bianca Schroeder. Cosmic rays don’t strike
twice: understanding the nature of dram errors and the implications for system design.
In Proceedings of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems, pages 111–122. ACM, 2012.

[18] Dewan Ibtesham, Dorian Arnold, Patrick G. Bridges, Kurt B. Ferreira, and
Ron Brightwell. On the viability of compression for reducing the overheads of
checkpoint/restart-based fault tolerance. 2012 41st International Conference on Parallel
Processing, 0:148–157, 2012.

[19] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing system. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’10), pages 1–11, 2010.

[20] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Maria Ruiz
Varela, Rolf Riesen, and Philip C. Roth. Modeling the impact of checkpoints on next-
generation systems. In 24th IEEE Conference on Mass Storage Systems and Technolo-
gies, pages 30–46, September 2007.

16

[21] J. S. Plank, Y. B. Kim, and J. J. Dongarra. Algorithm-based diskless checkpointing for
fault tolerant matrix operations. In Twenty-Fifth International Symposium on Fault-
Tolerant Computing. Digest of Papers, pages 351–360, Pasadena, CA, USA, June 1995.
Los Alamitos, CA, USA : IEEE Comput. Soc. Press, 1995.

[22] Steven J. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Jour-
nal Computation Physics, 117:1–19, 1995.

[23] Rolf Riesen, Kurt Ferreira, Dilma Da Silva, Pierre Lemarinier, Dorian Arnold, and
Patrick G. Bridges. Alleviating scalability issues of checkpointing protocols. In Pro-
ceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 18:1–18:11, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[24] Thomas Ropars, Amina Guermouche, Bora Uçar, Esteban Meneses, Laxmikant V. Kalé,
and Franck Cappello. On the use of cluster-based partial message logging to improve
fault tolerance for mpi hpc applications. In Emmanuel Jeannot, Raymond Namyst, and
Jean Roman, editors, Euro-Par (1), volume 6852 of Lecture Notes in Computer Science,
pages 567–578. Springer, 2011.

[25] Sandia National Laboratory. Mantevo project home page. https://software.sandia.
gov/mantevo, Apr. 10 2010.

[26] Sandia National Laboratory. LAMMPS molecular dynamics simulator. http://lammps.
sandia.gov, Apr. 10 2013.

[27] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-
performance computing systems. In International Conference on Dependable Systems
and Networks (DSN), June 2006.

[28] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale computers.
Journal of Physics: Conference Series, 78(1):012022, 2007.

[29] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors in the wild:
a large-scale field study. In Proceedings of the eleventh international joint conference on
Measurement and modeling of computer systems, pages 193–204. ACM, 2009.

[30] L. M. Silva and J. G. Silva. An experimental study about diskless checkpointing. In
24th EUROMICRO Conference, pages 395 – 402, Vasteras, Sweden, August 1998. IEEE
Computer Society Press.

[31] Vilas Sridharan and Dean Liberty. A study of dram failures in the field. In Proceedings
of the International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 76:1–76:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

[32] T. Hoefler. LogGOPSim - A LogGOPS (LogP, LogGP, LogGPS) Simulator and Simu-
lation Framework. http://www.unixer.de/research/LogGOPSim/, Apr. 10 2013.

17

[33] T. Hoefler. Netgauge - a network performance measurement toolkit. http://www.

unixer.de/research/netgauge/, Apr. 10 2013.

[34] The BlueGene/L Team. An Overview of the BlueGene/L Supercomputer. In 2002
ACM/IEEE conference on Supercomputing (Supercomputing ’02), pages 1–22. IEEE
Computer Society Press, 2002.

18

DISTRIBUTION:

1 MS 1319 Kurt Ferreira , 1423

1 MS 0899 Technical Library, 9536 (electronic copy)

1 MS 0359 D. Chavez, LDRD Office, 1911

19

v1.37

