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Abstract. We present a preconditioning technique, called support-graph preconditioning, and
use it to analyze two classes of preconditioners. The technique was first described in a talk by Pravin
Vaidya, who did not formally publish his results. Vaidya used the technique to devise and analyze a
class of novel preconditioners. The technique was later extended by Gremban and Miller, who used
it in the development and analysis of yet another class of new preconditioners. This paper extends
the technique further and uses it to analyze a class of existing preconditioners, modified incomplete
Cholesky. The paper also contains a presentation of Vaidya’s preconditioners, which was previously
missing from the literature.
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1. Introduction. This paper presents new applications of a technique for con-
structing and analyzing preconditioners called support-graph preconditioning. Prede-
cessors of support-graph methods can be found in the work from the late 80s by Notay,
Beauwens, and collaborators in which graph-theoretic notions (principally paths) are
used in the analysis of preconditioners [2, 3, 15, 16, 17]. These insights were extended
by Vaidya [20], who described his work in a talk in 1991 but did not publish a pa-
per. Vaidya used support-graph techniques to design a family of novel preconditioners
based on spanning trees in graphs. Later, Gremban, Miller, and Zagha [9, 10] extended
the technique and used it to construct another family of preconditioners. This paper
explains the technique, extends it further, and uses it to analyze a class of known
preconditioners for model problems. Specifically, we use the extended technique to
analyze certain modified incomplete Cholesky (MICC) preconditioners (see [12]).

The principal goal of this paper is to bring these techniques to the attention of
a wider community of researchers. By doing so, we hope to encourage further work
in this promising area. The primary original content of this paper, analyzing known
preconditioners using the support-graph technique, serves several purposes. First, it
shows that the techniques are more widely applicable than previously appreciated.
Second, we feel that the new proofs provide useful insights into these preconditioners;
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these insights can be used to improve the preconditioners and to guide heuristics for
the construction of additional preconditioners.

A secondary goal of this paper is to provide a complete presentation of the
support-graph technique and of Vaidya’s preconditioners. Vaidya’s important con-
tribution has never been published. Although most of the theory that he uses is
presented in Gremban’s Ph.D. thesis [10], Vaidya’s preconditioners have not been
described in any published form. We seek to rectify this situation. Our complete pre-
sentation of the support-graph technique is necessary since some important portions
of the theory are missing from Gremban’s thesis. Specifically, we present a formal
proof of the congestion-dilation lemma and we state stronger versions of some impor-
tant lemmas. We also provide detailed constructions and complete proofs for Vaidya’s
preconditioners, which are missing from his 1991 manuscript.

The support-graph technique analyzes a preconditioner B for a matrix A by
splitting both A and B into A = A1 + A2 + · · · + Am and B = B1 + B2 + · · · + Bm.
Proving that τBi −Ai is positive semidefinite for all i shows that τB −A is positive
semidefinite and hence that the largest finite generalized eigenvalue of the matrix
pencil (A,B) is bounded by τ . The bound on the smallest generalized eigenvalue is
proved by bounding the largest eigenvalue of (B,A) in the same way. The splittings
of A and B are guided by their underlying graphs; often this allows us to reduce a
complex problem to many problems with simple structures.

This paper has three main parts. The first part of the paper, sections 2 and
3, describes support-graph theory. The second part of the paper, sections 4 and 5,
describes the preconditioners of Vaidya and of Gremban and Miller. The third part
of the paper, section 6, describes support-graph analysis of MICC. Our conclusions
from this research are presented in section 7.

1.1. A summary of the results. This subsection summarizes the results in
this paper. We start with a brief discussion of the strengths and weaknesses of the
preconditioners of Vaidya and of Gremban and Miller. We also discuss the significance
of our condition-number estimates for MICC.

Vaidya proposed two classes of preconditioners. The first class, maximum-weight
spanning-tree preconditioners, guarantee a condition-number bound of O(n2) for any
n × n sparse diagonally dominant symmetric matrix. They can be constructed and
factored at insignificant cost using relatively simple graph algorithms.

Vaidya’s second class of preconditioners is based on maximum-weight spanning
trees augmented with a few extra edges. They can be constructed at insignificant
cost using a slightly more complex algorithm than the first class. The cost of factor-
ing these preconditioners depends on how many edges are added to the tree. Vaidya
proposes that the factorization cost be balanced with the iteration costs, and he pro-
vides balancing guidelines for some classes of matrices. This class of preconditioners
guarantees that the work in the linear solver is bounded by O(n1.75) for any sparse
diagonally dominant Stieltjes matrix, and by O(n1.2) for diagonally dominant Stieltjes
matrices whose underlying graphs are planar.

The strengths of Vaidya’s preconditioners, especially of his second class, are that
they are general, easy to construct, and provide good condition-number bounds. For
example, the work required to solve a model Poisson problem in two dimensions using
Vaidya’s preconditioner is O(n1.2). This compares favorably with the O(n1.25) work
required for a solver based on a modified incomplete Cholesky factorization. Coupled
with the facts that Vaidya’s preconditioners are guaranteed to work well on irregular
problems, and that the only numerical assumption they make is that the matrix is a
diagonally dominant Stieltjes matrix, these are impressive results.
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The main weaknesses of Vaidya’s preconditioners are that they require a high-
quality direct solver to factor the preconditioner, that balancing the preconditioner-
factorization costs and the iteration costs may be a nontrivial task, and that they are
not guaranteed to parallelize well.

The preconditioners that Gremban and Miller proposed are multilevel precondi-
tioners. They are based on a hierarchical partitioning of the matrix, so they may be
quite expensive to construct. The cost of preconditioning in every iteration is small,
and the preconditioners parallelize well. The condition number of the preconditioned
system is similar, for model problems, to the condition numbers offered by modified
incomplete factorizations.

Thus, even on model problems, these preconditioners do not offer convergence
rates as good as those of other multilevel preconditioners, like multigrid precondition-
ers. On the other hand, they are guaranteed to parallelize, so they may be prefer-
able to incomplete factorizations on some computers. Gremban and Miller do not
present condition-number bounds for important classes of matrices other than regular
grids with constant coefficients. For such problems their preconditioned systems have
condition-number bounds of O(n log n).

Our results of the condition-number bounds for modified incomplete factorizations
are well known, but our proof provides a new perspective on why these methods work.

2. Basic support graph theory. This section describes the basic linear-algebra
tools that Vaidya and Gremban and Miller have developed to analyze their pre-
conditioners. These preconditioners are for diagonally dominant Stieltjes matrices,
symmetric, diagonally dominant matrices with nonpositive off-diagonals. Vaidya and
Gremban and Miller extended some of their results to symmetric diagonally dominant
matrices with mixed off-diagonals. These extensions are specific to the precondition-
ers that they propose; their extensions and preconditioners are described in sections
4 and 5. Our own extensions are presented in section 3.

The number of iterations of the conjugate gradient method for the solution of
systems of linear equations Ax = b is bounded above by the square root of the spectral
condition number κ(A) of A. (The actual number of iterations can be significantly
smaller in some cases.) The condition number is the ratio of the extreme eigenvalues
of A, κ(A) = λmax(A)/λmin(A). The conjugate gradient method can be used to
solve consistent linear systems with a singular coefficient matrix A (in floating-point
arithmetic, it helps to orthogonalize the search directions against the null space if A
is singular). In such cases, the number of iterations is proportional to the square root
of the ratio of the extreme positive eigenvalues. When a preconditioner B is used in
the conjugate gradient method, the number of iterations is proportional to the square
root of the ratio of the extreme finite generalized eigenvalues of the pencil (A,B),
defined below.

Definition 2.1. The number λ is a finite generalized eigenvalue of the matrix
pencil (A,B) if there exists a vector x �= 0 such that Ax = λBx and Bx �= 0. We
denote the set of finite generalized eigenvalues by λf (A,B).

Henceforth whenever we refer to an eigenvalue of a matrix pencil, we mean a
finite generalized eigenvalue.

To bound the amount of work in the preconditioned conjugate gradient method,
we need to bound the finite eigenvalues of (A,B). We need to prove two bounds:
an upper bound on maxλf (A,B) and a lower bound on minλf (A,B). We will
prove the upper bound directly and the lower bound by proving an upper bound
on maxλf (B,A) = 1/minλf (A,B). We therefore only need to show how to prove
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upper bounds on the maxλf (A,B), since the lower bound is proved in essentially the
same way for the matrix pencil (B,A).

2.1. The support lemma: Bounding eigenvalues of matrix pencils. The
main tool that we use to bound maxλf (A,B) is the so-called support of (A,B), which
is the smallest number τ such that τB − A is positive semidefinite. Informally, we
think of τ as the number of copies of B required to “support” the action of A. If τ is
small, B supports A well; if τ is large, B supports A weakly. We denote the support
of (A,B) by σ(A,B),

σ(A,B) = min{τ : τB −A is positive semidefinite} .

If there is no τ for which τB −A is positive semidefinite, then we take σ(A,B) = ∞.
The following lemma shows that the support of a pencil bounds its eigenvalues.

The lemma is used implicitly by Vaidya without a proof. Gremban and Miller state the
lemma and give a proof [10, Lemma 4.4]. We state it under a weaker hypothesis than
Gremban and Miller, which is nevertheless strong enough for Gremban and Miller’s
proof. A more general version of this lemma can be found in Axelsson [1, Theorem
10.1].

Lemma 2.2 (support lemma [10]). If λ ∈ λf (A,B) where B is positive semidefi-
nite and null(A) ⊆ null(B), then λ ≤ σ(A,B).

Some matrix pencils do not have a finite support σ(A,B). Let

A =

(
2 −1

−1 1

)
and let B =

(
1 0
0 0

)
.

We have λf (A,B) = {1}, but τB−A has a negative eigenvalue for all τ . (Lemma 2.12
shows how to bound the extreme eigenvalues in some of these cases.) If a matrix pencil
has finite support, however, then the support lemma is tight.

Lemma 2.3. If σ(A,B) is finite, then

σ(A,B) ∈ λf (A,B) .

Proof. The matrix σ(A,B) ·B −A has a zero eigenvalue since the eigenvalues of
τB −A are continuous in τ . Therefore, there is a nonzero vector x such that

(σ(A,B) ·B −A)x = 0

or

Ax = σ(A,B) ·Bx .

We use the support lemma to prove an upper bound τ on maxλf (A,B) by proving
that τB − A is positive semidefinite. Much of the rest of the theory consists of tools
to prove that a matrix is positive semidefinite.

2.2. The splitting lemma: Proving semidefiniteness by decomposition.
One way to prove that a matrix is positive semidefinite is to split it into a sum of ma-
trices and prove that each term is positive semidefinite. This lemma too was implicitly
used by Vaidya and stated and proved by Gremban and Miller [10, Lemma 4.7].

Lemma 2.4 (splitting lemma). Let Q = Q1+Q2+· · ·+Qm, where Q1, Q2, . . . , Qm

are all positive semidefinite. Then Q is positive semidefinite.
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We first use the splitting lemma to reduce the problem of preconditioning sym-
metric diagonally dominant matrices to the problem of preconditioning symmetric
matrices with zero row sums.

Lemma 2.5. Let A be a symmetric diagonally dominant matrix and let A′ be
the matrix with the same off-diagonal entries but with zero row sums. Let B′ be a
preconditioner for A′ such that both βB′ −A′ and αA′ −B′ are positive semidefinite
and α, β ≥ 1. Let B = B′ + A − A′ be a preconditioner for A (B has the same
off-diagonal entries as B′ and the same row sums as A). Then βB −A and αA−B
are positive semidefinite.

Proof. We have

βB −A = β(B′ + A−A′) −A

= (βB′ −A′) + (β − 1)(A−A′) .

Both terms in the last sum are positive semidefinite: the first by the hypothesis,
and the second since it is a nonnegative scalar multiple of a diagonal matrix with
nonnegative entries. Similarly,

αA−B = αA− (B′ + A−A′)

= (αA′ −B′) + (α− 1)(A−A′)

is positive semidefinite.
The conditions α, β ≥ 1 do not limit the applicability of the lemma since the

condition number is 1 or more. Therefore, if either α or β is less than 1, we scale B′

without changing αβ, which is our bound on the condition number of the precondi-
tioned system.

Using this lemma, we assume from now on that both A and B have zero row
sums.

2.3. The congestion-dilation lemma: Splitting by paths in the graph.
Vaidya and Gremban and Miller split τB − A in a special way to prove that it is
positive semidefinite. We assume that A and B are symmetric. Given a symmetric
matrix A, we define its underlying graph.

Definition 2.6. The underlying graph GA = (VA, EA) of an n-by-n symmetric
matrix A is a weighted undirected graph whose vertex set is VA = {1, 2, . . . , n} and
whose edge set is EA = {(i, j) : i �= j, Ai,j �= 0}. The weight of an edge (i, j) is Ai,j.
The weight of a vertex i is the sum of elements in row i of A.

Let GA be the undirected weighted graph underlying −A and GB the graph
underlying −B. Since both A and B have zero row sums, the graph structure and the
edge weights determine the matrices exactly, since all the vertex weights are 0. If the
off-diagonal elements of A and B are all negative, then the edge weights in GA and
GB are positive. Vaidya and Gremban and Miller interpret such graphs as resistive
networks where the edge weight is the conductance of a resistor. They split τB−A into
(τB1−A1)+(τB2−A2)+ · · ·+(τBm−Am) such that each Ai corresponds to exactly
one edge in GA, and each Bi corresponds to a path in GB (by path we always refer
to a simple path). Both the Ai’s and the Bi’s have nonpositive off-diagonals and zero
row sums. Each Ai represents the entire weight of one edge, and each corresponding
Bi represents a path that can contain fractions of edge weights. The endpoints of the
path represented by Bi are the endpoints of the edge represented by Ai. An example
of such a splitting is shown in Figure 2.1. Both Vaidya and Gremban and Miller use
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Fig. 2.1. A graph representation of a splitting of A = A1 + · · ·+A4 and B = B1 + · · ·+B4 such
that each Ai represents a single edge and each Bi is a path that supports the edge Ai. This splitting
proves that maxλf (A,B) ≤ σ(A,B) ≤ 4 since the worst congestion-dilation product is 2 · 2 = 4.

the congestion-dilation lemma, which they neither state nor prove, to show that each
term τBi −Ai is positive semidefinite.

We prove the congestion-dilation lemma in three steps.
Lemma 2.7. Let

A =

⎛
⎜⎜⎜⎜⎜⎝

a 0 · · · 0 −a
0 0 0
...

. . .
...

0 0 0
−a 0 · · · 0 a

⎞
⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎝

a −a
−a 2a −a

· · ·
−a 2a −a

−a a

⎞
⎟⎟⎟⎟⎠

be (k + 1)-by-(k + 1) matrices with a > 0. Then kB −A is positive semidefinite.
Proof. We prove that kB −A is positive semidefinite by showing that the matrix

C = (1/a)(kB −A) =

⎛
⎜⎜⎜⎜⎝

k − 1 −k 1
−k 2k −k

· · ·
−k 2k −k

1 −k k − 1

⎞
⎟⎟⎟⎟⎠

is positive semidefinite.
We show by induction that C is positive semidefinite by performing symmetric

Gaussian elimination on rows/columns 2 through k − 1. The inductive claim is that
after we eliminate row and column i (or before we eliminate i + 1, when i = 1), the
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matrix C becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + k/i −k/i 1
2k

3k/2

ik/(i− 1)
−k/i (i + 1)k/i −k

−k 2k
. . . −k

1 −k k − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The claim is true before we eliminate row and column 2, since in that case i = 1.
Assume that the claim is true after we eliminate i but before i+1. The elimination of
row and column i+ 1 modifies three entries in C: C11, Ci+2,i+2, and C1,i+2 = Ci+2,1.
The new values are

C11 = −1 +
k

i
− (−k/i)(−k/i)

(i + 1)k/i
= −1 +

k

i + 1
,

Ci+2,i+2 = 2k − −k · −k

(i + 1)k/i
=

k(i + 2)

i + 1
,

and

C1,i+2 = 0 − −k(−k/i)

(i + 1)k/i
=

k

i + 1
,

which proves the inductive claim.
Therefore, after we eliminate row k the 2×2 submatrix consisting of the first and

last row and column becomes

(
−1 + k/k 1 − k/k
1 − k/k −1 + k/k

)
= 0

and the remainder of the matrix is positive diagonal, so C is positive semidefi-
nite.

The combinatorial interpretation of Lemma 2.7 is that A represents a single edge
with weight a and B represents a path with the same endpoints that consists of edges
of weight a. The lemma states that the support of A in B is k, the dilation of the
edge in the path, or simply the length of the path.

The next lemma is slightly more general.
Lemma 2.8. Let

A =

⎛
⎜⎜⎜⎜⎜⎝

a 0 · · · 0 −a
0 0 0
...

. . .
...

0 0 0
−a 0 · · · 0 a

⎞
⎟⎟⎟⎟⎟⎠
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and

B =

⎛
⎜⎜⎜⎜⎝

b −b
−b 2b −b

· · ·
−b 2b −b

−b b

⎞
⎟⎟⎟⎟⎠

be (k + 1)-by-(k + 1) matrices with a > 0, b > 0. Then (k · a/b)B − A is positive
semidefinite.

Proof. This case reduces by scaling to Lemma 2.7.
This lemma states that in the more general case in which the weight of the edge

represented by A and the weight of the edges of the path represented by A are not the
same, the support is the dilation k multiplied by the ratio a/b of the edge weights.

Finally, we state and prove the full congestion-dilation lemma.
Lemma 2.9 (congestion-dilation lemma). Let

A =

⎛
⎜⎜⎜⎜⎜⎝

a 0 · · · 0 −a
0 0 0
...

. . .
...

0 0 0
−a 0 · · · 0 a

⎞
⎟⎟⎟⎟⎟⎠

be a (k + 1)-by-(k + 1) matrix with a > 0 and let

B =

⎛
⎜⎜⎜⎜⎝

d1 −b1
−b1 d2 −b2

· · ·
−bk−1 dk −bk

−bk dk+1

⎞
⎟⎟⎟⎟⎠

be a matrix with zero row sums, and with di, bi > 0 for all i. Then (k ·a/min(bi))B−A
is positive semidefinite.

Proof. Let b = min(bi). We split B into

B = B1 + B2 =

⎛
⎜⎜⎜⎜⎝

b −b
−b 2b −b

· · ·
−b 2b −b

−b b

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

d1 − b −b1 + b
−b1 + b d2 − 2b −b2 + b

· · ·
−bk−1 + b dk−1 − 2b −bk + b

−bk + b dk − b

⎞
⎟⎟⎟⎟⎠ .

The matrix B2 is symmetric, diagonally dominant, and has nonpositive off-diagonals,
so it is positive semidefinite. We have

(k · a/min(bi))B −A = (k · a/b)B −A

= [(k · a/b)B2] + [(k · a/b)B1 −A] .
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The first term is positive semidefinite since B2 is positive semidefinite, and the second
term is positive semidefinite by Lemma 2.8. Therefore, the sum is positive semidefi-
nite.

The combinatorial interpretation of the congestion-dilation lemma is that
a/min(bi) is the congestion of the edge represented by A in the path represented
by B, and k is the dilation of the edge. In the example depicted in Figure 2.1 the
congestion of the edge A3 in the path B3 is 2 and the dilation is 2, for example.

The proof shows that the congestion-dilation bound k · (a/min(bi)) on σ(A,B)
is tight only when all the edges along the path have the same weights; at the other
extreme when one edge has small weight b and the rest have very large weights, the
actual support σ(A,B) is closer to a/b than to k · (a/b).

The support, splitting, and congestion-dilation lemmas are the only linear-algebra
tools that Vaidya uses in his construction. Given a diagonally dominant Stieltjes
matrix A, Vaidya constructs a preconditioner B whose underlying graph GB consists
of a subset of the edges of GA and the same set of vertices. Vaidya uses the lemmas
above to bound the condition number of the preconditioned system. He splits GB into
paths that support each edge of GA. Since GB is a subset of GA, GA supports the
edges of GB with paths of length 1 and unit congestion, so the smallest eigenvalue of
(A,B) is at least 1. The bound that Vaidya obtains, therefore, is the worst congestion-
dilation product for the edges of GA. The specific constructions that Vaidya proposes
are described in section 4.

The support, splitting, and congestion-dilation lemmas are analytical tools that
are used to bound the condition number of a preconditioned system. Hence, they
can also be used when one can prove that a low congestion-dilation embedding exists
but cannot construct it explicitly. Gremban and Miller show how to construct and
analyze preconditioners for some problems; they use congestion-dilation condition-
number bounds using implicit embeddings [10, Theorem 5.1].

2.4. The clique-star lemma. Gremban and Miller introduce another way of
bounding the support of one simple matrix by another. The matrix A being supported
represents a fully connected subgraph, or a clique, of size k, and the supporting matrix
B represents a k-edge star whose endpoints coincide with the members of the clique.

Lemma 2.10 (clique-star lemma). Let

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 (k − 1)a −a · · · −a
0 −a (k − 1)a · · · −a
...

. . .
...

0 −a −a · · · (k − 1)a

⎞
⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎝

kb −b −b · · · −b
−b b 0 · · · 0
−b 0 b · · · 0
...

. . .
...

−b 0 0 · · · b

⎞
⎟⎟⎟⎟⎟⎠

be (k + 1)-by-(k + 1) matrices with a > 0, b > 0. Then (k · a/b)B − A is positive
semidefinite.
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Proof. Let C = (k · a/b)B −A. We have

1

a
C =

⎛
⎜⎜⎜⎜⎜⎝

k2 −k −k · · · −k
−k k − (k − 1) 1 · · · 1
−k 1 k − (k − 1) · · · 1
...

. . .
...

−k 1 1 · · · k − (k − 1)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

k2 −k −k · · · −k
−k 1 1 · · · 1
−k 1 1 · · · 1
...

. . .
...

−k 1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

.

After one step of symmetric Gaussian elimination on the first row and column,
the matrix (1/a)C becomes

⎛
⎜⎜⎜⎜⎜⎝

k2 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

,

which is clearly positive semidefinite. Hence, C is positive semidefinite.
This lemma provides a stronger bound on the support than the bound that results

from splitting the clique into edges and the star into 2-edge paths that support the
edges.

2.5. Gaussian elimination and action support: Preconditioning in a
larger space. Gremban and Miller construct their preconditioners in a space of
higher dimension (or on a graph with more vertices) than the original matrix. They
introduced a few more linear-algebra tools into the support-graph theory to deal with
this generalization.

The next lemma, stated under a stronger hypothesis by Gremban and Miller [10,
Lemma 4.9], shows that λf (A,B) is invariant under nonsingular transformations that
are applied to both A and B. Their proof holds for this more general statement.

Lemma 2.11. If G and H are nonsingular matrices (not necessarily symmetric),
then

λf (A,B) = λf (GAH,GBH) .

We define the action support σ̄(A,B) of (A,B) as

σ̄(A,B) = min
{
τ : xT (τB −A)x ≥ 0 for all x such that Ax �= 0 and Bx �= 0

}
.

Roughly speaking, σ̄(A,B) measures how well B supports A outside their null spaces.
Gremban and Miller do not use this lemma but use a similar one that is tailored more
precisely to their technique. We state and prove here the more general case, which is
a stronger version of the support lemma.

Lemma 2.12. If λ ∈ λf (A,B), where A �= 0, B �= 0 are symmetric positive
semidefinite, then λ ≤ σ̄(A,B).
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Proof. Let τ = σ̄(A,B). Note that the assumption A �= 0 implies τ > 0.
Assume for contradiction that there is a λ ∈ λf (A,B) such that λ > τ , and let
ε = λ− τ > 0. Let y be an eigenvector corresponding to λ. We have Ay = λBy, and
thus yT (A − λB)y = 0. By definition of λf (), By �= 0. If By �= 0 and Ay = 0, then
λ = 0 < τ , a contradiction. So neither Ay nor By can be zero. By the definition of τ
we have

0 ≤ yT (τB −A)y

= yT ((λ− ε)B −A)y

= yT (λB −A)y − yT (εB)y

= −yT (εB)y .

Since B is symmetric positive semidefinite and By �= 0, yTBy > 0. So −yT (εB)y < 0,
which is a contradiction.

These two lemmas allow us to use a preconditioner in a space of higher dimension
than the original matrix. We embed the original k-by-k matrix A11 in an n-by-n
matrix A, where n is the order of the preconditioner B.

A =

(
A11 0

0 0

)
, B =

(
B11 B12

BT
12 B22

)
.(2.1)

We cannot use congestion-dilation arguments directly to bound σ(B,A); the under-
lying graph of A has n−k disconnected vertices, so paths in A cannot support all the
edges of B.

Instead, we use Lemma 2.11 to reduce (2.1) to a simpler case,

A =

(
A11 0

0 0

)
, B̃ =

(
B̃11 0

0 B̃22

)
(2.2)

using Gaussian elimination on the last n − k rows and columns of B. Note that the
Gauss transformations must also be applied to A, but they have no effect on it. We
complete the analysis of (2.2) using Lemma 2.12. For any τ , the space Rn can be
decomposed into two orthogonal subspaces that are invariant under τA−B. Vectors
in one subspace V1 (represented in the standard basis) have nonzeros only in the first
k elements, and vectors in the other subspace V2 have nonzeros only in the last n− k
elements. The subspace V2 is contained in the null space of A. Therefore, to prove
that maxλf (B,A) is bounded by τ , we only need to show that xT (τA−B)x ≥ 0 for
x ∈ V1, which is equivalent to showing that τA11 −B11 is positive semidefinite.

We will see in section 5 how Gremban and Miller use this technique to analyze
the condition number of their preconditioners. The main drawback of this technique
is that the elimination of the last n − k rows and columns of B can significantly fill
the leading k-by-k block of B. Unless B is particularly simple, this fill is difficult to
analyze. We propose in the next section an alternative technique that leads to a sim-
pler analysis of some preconditioners, since it does not require a complete elimination
of the trailing block of B.

3. Support-graph theory: Extensions. We now describe new tools that
extend the support-graph theory developed by Vaidya and Gremban and Miller.
(Lemma 2.12, too, is an extension of a result of Gremban and Miller’s). In particu-
lar, these tools enable or simplify the analysis of preconditioners with both positive
and negative off-diagonal entries using support-graph theory. The results presented
in section 3.2 were also derived independently by Guattery [11].
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3.1. Stepwise Gaussian elimination. The first technique allows us to analyze
support graphs that are larger than A, like Gremban and Miller’s preconditioners, but
without performing a complete elimination of the extra vertices that are in B but not
in A. Our technique relies on the following two lemmas. The first lemma is a version
of Lemma 2.11 but for action support rather than eigenvalues.

Lemma 3.1. Let G be a nonsingular matrix. Then σ̄(A,B) = σ̄(GTAG,GTBG).
Proof. Let τ = σ̄(A,B). By the definition of σ̄(A,B) we have

xT (τGTBG−GTAG)x = (Gx)T (τB −A)(Gx) ≥ 0

for all x such that A(Gx) �= 0 and B(Gx) �= 0. But A(Gx) �= 0 if and only if
(GTAG)x �= 0, and similarly for GTBG. Therefore, we have

xT (τGTBG−GTAG)x ≥ 0

for all x such that GTAGx �= 0 and GTBGx �= 0, so σ̄(GTAG,GTBG) ≤ τ = σ̄(A,B).
The opposite inequality is proved in the exactly the same way.

The second lemma shows that we can subtract certain positive semidefinite ma-
trices from A without increasing σ̄(A,B). Subtracting a positive semidefinite matrix
C from A makes A easier to support, provided C’s null space includes A’s.

Lemma 3.2 (shifting lemma). Let A, B, and C be positive semidefinite matrices
such that null(A) ⊆ null(C). Then

σ̄(A− C,B) ≤ σ̄(A,B) .

Proof. Let τ = σ̄(A,B). By the definition of σ̄(A,B) we have

xT (τB −A)x ≥ 0

for all x such that Ax �= 0 and Bx �= 0. Therefore, we also have

xT (τB − (A− C))x = xT (τB −A)x + xTCx ≥ 0

for all x such that Ax �= 0 and Bx �= 0. Assume for contradiction that

xT (τB − (A− C))x < 0

for some x such that (A − C)x �= 0 and Bx �= 0. Since xTCx ≥ 0 for all x, we must
have

xT (τB −A)x < 0 ,

so Ax = 0. But null(A) ⊆ null(C) implies Cx = 0, contradicting (A − C)x �= 0.
Hence,

σ̄(A− C,B) ≤ τ = σ̄(A,B) .

These lemmas allow us to reduce (2.1) to (2.2) in a series of phases. In each phase,
we perform one or more steps of Gaussian elimination on A, followed by a subtraction
of a negative semidefinite matrix from A (addition of a positive semidefinite matrix).
After all of these steps are complete, we prove a bound on the action support of the
resulting matrices. These lemmas allow us to then retrace the steps that we have
taken, performing transformations that reverse the effects of elimination steps and
subtracting positive semidefinite matrices, all without changing the bound on the
action support. Thus, the bound that we prove on the matrices after this series of
transformations is also a bound on the original matrix and preconditioner.
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3.2. Positive off-diagonal elements. Positive off-diagonal entries in B require
a modification to the splitting strategy. Recall that the “canonical” use of the splitting
lemma is to split τB−A into (τB1−A1)+· · ·+(τBm−Am), where the Bi’s are positive
semidefinite. When the congestion-dilation lemma is used, the Bi’s are usually paths
of negative edges and the Ai’s are negative edges, all with zero row sums (positive row
sums can be handled separately as shown in Lemma 2.5). When B has positive off-
diagonal entries, this strategy must be modified. One way to prove an upper bound
on σ̄(A,B) in this case using the congestion-dilation framework is to support both A
and the positive edges of B with the negative edges of B. We split τB −A into

τB −A = (τB1 −A1) + · · · + (τBm −Am)

+(τBm+1 + τBm+k+1) + · · · + (τBm+k + τBm+2k) ,

where each of Bm+k+1 through Bm+2k represents a single positive edge, and B1

through Bm+k represent paths of negative edges. Thus, B1 through Bm support
edges of A, while Bm+1 through Bm+k support the positive edges of B.

An important point is that, in this case, increasing τ does not necessarily make all
the terms positive semidefinite. Indeed, if τBm+j + τBm+k+j is indefinite or negative
definite, then it remains so for all τ ≥ 0. In other words, each positive edge of B must
be supported by a path with support at most 1.

We can make the analysis simpler when the preconditioner B can be represented as
B = A−R, where R is also positive semidefinite. Some common preconditioners that
are produced by an incomplete factorization process can be represented in this way,
as explained in section 6. The following lemma shows how to simplify the analysis.

Lemma 3.3. Let B = A−R such that A, B, and R are positive semidefinite. If
σ̄(R,A) = τ ′ < 1, then κ(B−1A) ≤ 1/(1 − τ ′).

Proof. Let τ = 1/(1 − τ ′). The matrix

τB −A = τA− τR−A

= (τ − 1)A− τR

=
τ ′

1 − τ ′
A− 1

1 − τ ′
R

is positive semidefinite since σ̄(R,A) = τ ′, so σ̄(A,B) ≤ τ . We also have σ̄(B,A) ≤ 1,
since A−B = A− (A−R) = R is positive semidefinite.

In such cases, the lemma can be interpreted as an application of the strategy
described in the previous paragraph. We use a τ ′ fraction of the negative edges of B
to support the positive edges. The negative edges of B are exactly the edges of A.
Therefore, we use a 1−τ ′ fraction of each edge of A to support itself, giving a support
bound of 1/(1 − τ ′).

4. Vaidya’s preconditioners. In this section we describe the two families of
combinatorial preconditioners developed by Vaidya [20]. Vaidya’s first family applies
to all symmetric, diagonally dominant matrices; the second family applies only to
diagonally dominant Stieltjes matrices, but Vaidya suggests that it can be extended
to all symmetric diagonally dominant matrices. We begin the discussion by assuming
that A is an n-by-n diagonally dominant Stieltjes matrix and describe the extension to
symmetric diagonally dominant matrices later. Let m be the number of off-diagonal
nonzeros in A. If A has rows with positive row sums we increase the diagonal elements
of the preconditioner B so that A and B have the same row sums. As shown in
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A B V1 V2

V3 V4

B′

Fig. 4.1. A graph GA, a spanning tree GB of GA (middle), and a spanning tree augmented
with extra edges (GB′ , right). The augmentation is performed by cutting the tree into subgraphs
V1, . . . , V4 of roughly equal size, and adding the heaviest edge between each pair of subgraphs.

Lemma 2.5 in section 2, this transformation does not change the condition-number
bounds (although it may change the condition number itself).

Both families use preconditioners B whose underlying graphs GB are subgraphs of
GA (using the same set of vertices and a subset of the edges), so we can always support
an edge of GB by the corresponding edge of GA. Therefore, the congestion-dilation
bound for σ(B,A), and hence for maxλf (B,A), is 1.

Vaidya’s first preconditioner is constructed by finding a maximum-weight span-
ning tree T in GA. In other words, T is a connected graph with no cycles (i.e., a
spanning tree), and the total weight of its edges is maximal among all spanning trees
of GA. As illustrated in Figure 4.1, the preconditioner B is the diagonally dominant
Stieltjes matrix whose underlying graph is GB = T , and whose row sums are identical
to those of A.

Let us analyze the congestion and dilation in T for an edge e of GA. Since T is a
maximum-weight spanning tree, there is exactly one path in T between the endpoints
of e. Furthermore, all the edges along the path have edges at least as heavy as e.
There are at most m/2 edges in GA, where n is the order of A, so T is split into at
most m/2 paths. We allocate a 2/m fraction of the weight of each edge of T to every
path, so the congestion of an edge-path pair is at most 2/m. The maximum length
of a path is n − 1, so the dilation is at most n − 1. Hence, the congestion-dilation
product for edge-path pairs is at most m(n−1)/2 = O(mn). By Lemmas 2.4 and 2.9,
σ(A,B) ≤ O(mn), and by Lemma 2.2, λ ≤ O(mn) for any λ ∈ λf (A,B). Since the
smallest positive eigenvalue of (A,B) is at least 1, we have λf (A,B) ⊆ [1, O(mn)].

Computing B takes at most O(m log n) work, using an efficient minimum-weight
spanning-tree algorithm. Since the underlying graph of B is a tree, B can be factored
in time O(n) without producing any fill. Consequently, the costs associated with
constructing and factoring B are insignificant relative to the cost of the iterative
linear solver, and the cost of applying it in every iteration is O(n), which is no more
expensive than multiplying by A.

The maximum-weight spanning-tree preconditioners can be extended to handle
any symmetric diagonally dominant matrix by taking GB to be a maximum-weight
basis for GA rather than a maximum-weight spanning tree [4]. A maximum-weight
basis is a generalization of the maximum spanning tree; see [7, section 17.4 and
Problem 17-2] for background. We omit the details from this paper.

Vaidya’s second family of preconditioners achieves a better condition number, but
it is also more expensive to compute and apply. The construction, also illustrated in
Figure 4.1, starts with the same maximum-weight spanning tree T . Let t be an integer
parameter. We decompose GA into a set of t subgraphs V1, V2, . . . , Vt such that each
subgraph is spanned by a connected subgraph of T and has at most m/t vertices. We
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form GB by adding to T the heaviest edge between Vi and Vj for all i and j. We add
nothing if there are no edges between Vi and Vj or if the heaviest edge is already in
T ; note that if Vi and Vj are connected by an edge in T , they remain connected by
the same edge in GB , since GB is formed by simply adding edges to T . To analyze
this preconditioner, we need the additional assumption that no row in A has more
than d + 1 nonzeros for some constant d, which implies that m ≤ dn. The details
of the partitioning of T into Vi’s is given in [6, 4]. A more sophisticated partitioning
algorithm, in which the quality of the decomposition is given by the average row
density rather than the maximum row density, is given by Spielman and Teng [19].
We decompose the augmented tree GB into a set of paths as follows. If both endpoints
of an edge e ∈ GA are in the same Vi, we use the single path in T that connects them.
If one endpoint belongs to Vi and the other to Vj , the path uses T to get from one
endpoint of e to the heaviest edge that connects Vi to Vj , then the path uses this
edge, and finally it uses T to get to the other endpoint of e. Again, the edges along
a path are all at least as heavy as the edge that is supported by the path. Since the
paths now have length at most 1+(2dn/t), and since each edge in GB carries at most
d2n/t paths, the condition number of (A,B) is bounded by O(n2/t2).

What is the cost of factoring B? Let us denote the endpoints of the edges that
connect Vi with the other Vj ’s by Ui. Since the Vi’s are disjoint, we have Ui ∩Uj = ∅.
We begin the factorization of B by eliminating all the degree-1 and degree-2 vertices
in B, until all the remaining vertices have degree greater than 2. This phase, which we
refer to as contraction, requires only O(n) work and generates only O(n) fill elements.
Once this is done, what remains of each Vi is a tree with no vertices of degree 1 or 2,
and whose leaves are all in Ui (these are leaves in Vi but not in B or A). It follows
that the number of nonleaf vertices in Vi is at most |Ui|. Hence, the total number of
vertices in the contracted graph is at most 2(|U1| + · · · + |Ut|). We now factor the
contracted graph, exploiting whatever structure it has; for example, if it is planar, we
can use nested dissection to factor it. Hence, the total cost of factoring B is O(n)
plus the cost of factoring the contracted graph.

In the worst case, each subgraph Vi has a connection to all others and has (t− 1)
vertices in Ui. In this case, the contracted graph has no more than 2 · t(t−1) vertices,
so factoring it requires at most O((t2)3) work.

When GA is planar, GB is planar and so is the contracted graph. Furthermore,
when GA is planar, the contracted graph has only O(t) vertices. This can be proved
by contracting each Vi to a single vertex, which still preserves planarity. Since GB has
at most one edge between Vi and Vj , these edges do not disappear and are not merged
into other edges in the contraction process. This supercontracted planar graph has
only t vertices, so it has only O(t) edges. But each one of the edges between the original
subgraphs Vi, Vj is still represented in the supercontracted graph, so there are only
O(t) of them in B, which proves that there are only O(t) vertices in |U1|+ · · ·+ |Ut|.
The factors of a matrix whose underlying graph is a planar graph with O(t) vertices
have O(t log t) nonzeros and the factorization can be performed in O(t3/2) time.

The following lemma summarizes the discussion above. The result is used in
Vaidya’s manuscript but without a proof.

Lemma 4.1. The cost of factoring the augmented maximum-weight spanning-
tree preconditioner B is O(n + t6) when A is a general diagonally dominant Stieltjes
matrix, and O(n+ t1.5) when A is planar. The factors of B have O(n+ t4) nonzeros
in the general case, and O(n + t log t) when A is planar.

The choice of t should balance the costs of constructing and factoring B with the
cost of the iterations, which is determined by both the condition number and the cost
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of applying B. The cost of constructing B is again insignificant. If A has no special
nonzero structure (beyond a bound of d + 1 nonzeros per row), then the optimal
t is Θ(n0.25). Factoring the preconditioner costs O(t6) = O(n1.5). The number of
iterations is bounded by O(

√
n2/t2) = O(n/t), and the cost of every iteration is

O(n + t4), so the total cost is O(n2/t + nt3) = O(n1.75). When A is planar, the cost
of factoring B is O(n+ t1.5), and the cost of every iteration is O(n+ t log t). The cost
is minimized near n2/t = t1.5, or t = n0.8. The total cost to solve the linear system is
O(n1.2), versus O(n1.75) in the general case.

Vaidya analyzes other cases using other estimates of work and fill during the
factorization of various classes of sparse matrices. Vaidya does not show, however,
bounds for regular meshes and finite-element grids in three dimensions that are better
than the O(n1.75) bound that applies to all bounded-degree graphs.

Vaidya also proposes a recursive scheme that uses the same idea to solve the
system Bz = r that must be solved in every iteration. That is, instead of factoring
the preconditioner B and performing two triangular solves in every iteration, Vaidya
proposes to construct a preconditioner for B that is even sparser than B, and to solve
Bz = r iteratively. Similar ideas have been proposed in other contexts, such as domain
decomposition solvers where an iterative solver can be used within each subdomain,
leading essentially to a multilevel preconditioner. Vaidya does not analyze this idea
in any detail.

One potential disadvantage of Vaidya’s preconditioners is that they are not guar-
anteed to parallelize. The maximum-weight trees that are constructed may have a
large diameter. The large diameter of the trees creates long chains of dependences in
the triangular factors, and these chains limit the parallelism that is available within
each iteration of the solver.

Chen and Toledo present experimental results with Vaidya’s preconditioners in [6].

5. The preconditioners of Gremban and Miller. This section presents sup-
port trees, the family of preconditioners that Gremban and Miller developed. We again
assume that A is symmetric and diagonally dominant, and that its off-diagonal en-
tries are all nonpositive. (Gremban and Miller also show a technique to convert a
problem with a symmetric diagonally dominant matrix to a larger problem in which
the matrix has only nonpositive off-diagonals.) We will again assume that A and the
preconditioner both have zero row sums.

Like Vaidya’s method, Gremban and Miller’s approach is essentially a graph al-
gorithm that constructs GB′ given GA. However, Gremban and Miller construct a
graph GB′ with more vertices than GA, so GA is augmented with additional discon-
nected vertices so that both graphs use the same vertex set. In matrix terms, the
construction embeds A as the leading block of a larger zero matrix,

A′ =

(
A 0
0 0

)
and B′ =

(
B11 B12

BT
12 B22

)
.(5.1)

Gremban and Miller use the congestion-dilation lemma to bound σ(A′, B′). However,
there is no way to route all the edges of GB′ in GA′ , since GA′ is not connected.
In other words, σ(B,A) is infinite. Gremban and Miller, therefore, develop and use
Lemmas 2.11 and 2.12 to eliminate the extra vertices in GB′ . Once these nodes are
eliminated, they use the congestion-dilation lemma to bound σ(B11−B12B

−1
22 BT

12, A),
which provides a lower bound on the smallest positive finite eigenvalue of (A,B).

The construction of GB′ , illustrated in Figure 5.1, is based on a hierarchical
decomposition of GA. The algorithm removes from GA a set of edges, known as
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B

A

Fig. 5.1. An illustration of the preconditioners of Gremban and Miller. A is partitioned
hierarchically, and the vertices of B represent subgraphs in that partition. The circled vertex of B
represents the subgraph of A consisting of the two circled vertices. The weight of an edge of B is
the sum of the weights of the edges of A that connect the subgraph to the rest of A.

a separator, that breaks it into a small number of subgraphs G1, G2, . . . , Gk. The
algorithm then recursively partitions each Gi until the graph is decomposed into
single vertices. The separator is chosen so that all the Gi’s have roughly the same
number of vertices and such that the total weight of the separator is small. A variety
of graph-partitioning algorithms can be used to find good edge separators (see, for
example, [8]). The process is repeated until each subgraph consists of a single vertex.
The graph GB′ , which is a tree, is constructed using this hierarchical decomposition.
The algorithm assigns to each subgraph in the decomposition a vertex of GB′ . That
is, GB′ has one vertex that represents all of GA, a vertex for each subgraph of GA in
the first level of the decomposition, and so on, down to vertices that represent single
vertices of GA, which are the smallest subgraphs in the decomposition. A leaf of GB′

represents a single vertex of GA, and is considered to be the same as that vertex of
GA. The matrices A′ and B′ are ordered accordingly. A vertex that represents a
subgraph Gi in the decomposition is connected by edges to the subgraphs of Gi in the
decomposition Gi1 , Gi2 , . . . , Gi� , and to the subgraph that contains Gi in the previous
level of the decomposition. The weight that is assigned to the edge that connects Gi

to, say, Gi1 is the total weight of the edges that connect Gi1 to the remainder of the
graph.

This construction makes it easy to prove a fairly low upper bound on maxλf (A,B).
We route each edge e of GA′ along the unique path in GB′ that connects its endpoints.
Each edge in this path allocates a weight of w to support e, where w is the weight of e.
This is always possible since if the path uses the edge between vertices that represent
Gi and Gi1 in the decomposition, then e is part of the separator that divides Gi1

from the rest of the graph, so the w is included in the weight of each edge in the
path. If every subgraph in the decomposition is split into at least k subgraphs whose
sizes differ by at most a constant factor, the length of the path is O(logk n), where
n is the order of A. It follows that the congestion-dilation product is bounded by
O((w/w) · logk n) = O(logk n), which provides an upper bound on maxλf (A,B).

Proving a lower bound on minλf (A,B) is more difficult. As explained above, the
bound results from applying the congestion-dilation lemma to the Schur complement
S = B11−B12B

−1
22 BT

12 and to A. Specifically, Gremban and Miller prove upper bounds
on the weights of the edges of S (which is a dense matrix) and show how to route them
in A. For regular n1/d × · · · × n1/d grids in d dimensions with uniform edge weight,
Gremban and Miller essentially perform a symbolic elimination to bound the entries
of S. The bound that is obtained on σ(S,A) is O(d2n), leading to an overall condition
number bound O(n log n) for fixed d. They also prove similar bounds for somewhat
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more general classes of matrices using some additional graph-theoretic tools. These
classes of matrices do not subsume, however, matrices that represent planar graphs
or finite element meshes.

Since GB′ is guaranteed to be a tree with diameter O(log n), factoring B′ and
applying the factors in every iteration requires only O(n) work and O(log n) parallel
steps. The cost of computing GB′ depends on the graph-partitioning algorithm that
is used and may be substantial in practice.

Gremban and Miller also show how to convert a problem with a symmetric diag-
onally dominant matrix to a problem with a symmetric diagonally dominant matrix
with nonpositive off-diagonals, so that their technique can be used. The graph of the
modified problem has twice as many vertices and edges as the original graph. The
modified graph represents each vertex of the original graph with two vertices and each
edge with two edges. The transformation preserves separators, so if the original graph
has a special structure that guarantees small separators, then the modified graph also
has good separators and the same algorithm can be used to find them.

Gremban and Miller describe numerical experiments that show that their method
outperforms a diagonal-scaling preconditioner and an incomplete Cholesky precondi-
tioner. On matrices that represent two-dimensional meshes, Gremban and Miller’s
preconditioner performs fewer iterations and solves systems faster the other precon-
ditioners. On a three-dimensional problem, Gremban and Miller’s preconditioner re-
quires more iterations than incomplete Cholesky, but it leads to faster solution times
on a vector computer.

6. Analysis of incomplete factorizations. The convergence rates of various
incomplete factorization preconditioners have been studied extensively, starting with
the work of Gustafsson [12]. For MICC (the method we will analyze below), Gustafs-
son’s analysis required a perturbation of the diagonal of the matrix. This limitation
was removed in later work by Beauwens [2, 3], Notay [16], and others. The somewhat
more challenging rank deficient case was also addressed by Notay [15, 17].

In this section, we present another analysis of the performance of modified in-
complete factorization preconditioners on model problems. Our results are not new,
and in fact are special cases of some of the results alluded to above. But we hope that
the simplicity of the analysis (particularly as it easily handles rank deficiency) serves
to illustrate the utility of the tools we have developed. We should also note that
Guattery [11] has performed a somewhat similar analysis of unmodified incomplete
factorizations.

Let B = LLT be a level-0 modified incomplete factorization of a diagonally dom-
inant Stieltjes matrix A. The incomplete factor L has the same nonzero structure as
the lower triangle of A, and B has the same row sums as A. We can write B = A−R,
where R consists of the fill elements that are dropped during the factorization plus the
diagonal modification that is performed in order to maintain the row sums. Since the
elements that are dropped are always negative and since A and B have the same row
sums, R is a diagonally dominant Stieltjes matrix with zero row sums. A modified
incomplete factorization of a model problem is shown in Figure 6.1.

We first analyze the MICC factorization for a two-dimensional model problem, a
Laplace equation with Neumann boundary conditions on a regular grid.

Consider the regular grid depicted by the solid lines in Figure 6.1. If we perform an
elimination of the vertices in the natural order and discard all fill, then the discarded
values will correspond to the dashed diagonals in the figure. If A is the Laplacian
matrix and B the MICC preconditioner, then B = A − R, where R is the matrix
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Fig. 6.1. An incomplete-factorization preconditioner for a model problem with zero row sums
(left). The model problem has the same underlying graph but without the positive dashed edges. The
(complete) Cholesky factor of this matrix is the incomplete Cholesky factor of the model problem.
The figure on the right shows the two paths that route each positive edge.

of these discarded values. Using Lemma 3.3 we can bound κ(B−1A) by supporting
R with A. The sketch on the right in Figure 6.1 shows how each entry of R can be
supported by two paths of length 2 within A. If we were to divide the weight of each
A edge evenly, using half to support the R edge above it or to the left and half to
support the R edge below it or to the right, we would support every R edge exactly.
Unfortunately, this gives τ ′ = 1 in Lemma 3.3, which does not give a finite bound on
κ(B−1A). Rather, we must realize that this even division underutilizes the A edges
along the boundary of the grid, and use an uneven division that varies from the upper
left to the lower right.

We can formalize this discussion to prove the following result.
Theorem 6.1. Let A represent a Laplace equation with Neumann boundary con-

ditions (i.e., zero row sums) discretized on a
√
n-by-

√
n grid, as shown in Figure 6.1.

Let B be a MICC factorization of A with no fill, using the natural (row-wise) ordering
of the grid. Then κ(B−1A) ≤ 2

√
n− 2.

Proof. We denote by (i, j) the vertex in row i and column j of the grid, and by
(i, j) ↔ (k, l) an edge connecting the vertices (i, j) and (k, l). It is easy to see that B
consists of the edges of A plus edges with weight +1/2 that connect vi,j with vi+1,j−1,
as shown in Figure 6.1. Also, the construction of a modified incomplete factorization
ensures that B has the same row sums as A, namely zero.

Using Lemma 3.3, κ(B−1A) ≤ (1/(1−σ̄(R,A))), where R = A−B is the (positive
semidefinite) matrix of dropped fill elements, the diagonal dashed lines in the figure.
Thus we must use A to support the edges of R. Each R edge is supported by two
paths of length 2 in A, as shown in Figure 6.1.

More formally, we split A and R as follows. The matrix A is split into 2(
√
n−1)2

submatrices with the following edge sets, each a path of length 2:

π∧(i, j) = {(i, j) ↔ (i, j + 1), (i, j) ↔ (i + 1, j)} for each i <
√
n, j <

√
n ,

and

π∨(i, j) = {(i, j) ↔ (i, j − 1), (i, j) ↔ (i− 1, j)} for each i > 1, j > 1 .

Except along the boundary, each edge of A is divided between one π∧ submatrix
and one π∨ submatrix. The weight of an edge in π∧(i, j) that is allocated to that
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submatrix in the splitting is

w∧(i, j) =
2
√
n− 2

2
√
n− 3

− i + j − 1

2
√
n− 3

,

and the weight allocated to π∨(i, j) is

w∨(i, j) =
i + j − 3

2
√
n− 3

.

By Lemma 2.8, the submatrix π∧(i, j) supports exactly a w∧(i, j) fraction of the R
edge (i, j+1) ↔ (i+1, j), and the submatrix π∨(i+1, j+1) supports a w∨(i+1, j+1)
fraction of the same edge. Since

w∧(i, j) + w∨(i + 1, j + 1) =
2
√
n− 2

2
√
n− 3

,

we can apply Lemma 3.3 with τ ′ = (2
√
n− 3)/(2

√
n− 2) to conclude that

κ(B−1A) =
1

1 − τ ′
= 2

√
n− 2 .

We now show that this splitting of A is feasible; that is, that the contribution of
each A edge to the paths that support R edges is not more than its weight. Each
A edge contributes to either one π submatrix (if it is on the boundary of the grid)
or to two (if it is in the interior). The total contribution of an interior edge, say
(i, j) ↔ (i, j + 1), is

w∧(i, j) + w∨(i, j + 1) =
2
√
n− 2

2
√
n− 3

− i + j − 1

2
√
n− 3

+
i + (j + 1) − 3

2
√
n− 3

=
2
√
n− 3

2
√
n− 3

= 1 .

The contribution of a boundary edge is at most

max

{
2
√
n− 2

2
√
n− 3

− 1 + 1 − 1

2
√
n− 3

,

√
n +

√
n− 3

2
√
n− 3

}
=

2
√
n− 3

2
√
n− 3

= 1 .

It is easy to see that the same condition-number upper bound holds for the same
model problem but with Dirichlet or mixed boundary conditions. The only difference
in the structure of A between the Neumann boundary condition case and the Dirichlet
or mixed case is that row sums for vertices on the boundary of the grid may be positive.
Since B has the same row sums as A, they both can be split into a zero-row-sum matrix
and a positive diagonal matrix. The diagonal parts of A and B support each other
with support 1. The zero-row-sum parts are similar to the case that we analyzed,
except that the positive edges in B may be smaller than 0.5 but never greater. Hence,
it is easier to support them, so the same bound holds. That is, we use Lemma 2.9
rather than Lemma 2.8 in the proof above.

The following theorem formalizes this result.
Theorem 6.2. Let A represent a model Laplace equation with nonnegative row

sums discretized on a
√
n-by-

√
n grid, as shown in Figure 6.1. Let B be a MICC

factorization of A with no fill. Then κ(B−1A) ≤ 2
√
n− 2.

Similar analyses can be performed for three-dimensional model problems, al-
though the bookkeeping is somewhat more tedious. The bounds we have obtained
this way are O(n1/3) for Dirichlet boundary conditions and O(n2/3) for Neumann
boundary conditions. We omit the details from this paper.
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7. Conclusions. Support-graph theory has already motivated the design of sev-
eral novel families of preconditioners. Vaidya’s preconditioners, in particular, are more
general and guarantee lower condition-number bounds than modified incomplete fac-
torizations, a widely used class of preconditioners. We show in this paper that the
same theory can be used to prove tight condition-number bounds for MICC precon-
ditioners on model problems.

Significant work has been done on support-graph preconditioning besides the re-
sults presented in this paper. Guattery used support-graph theory to bound the
condition number of incomplete factorizations without diagonal modification [11].
Howle and Vavasis generalized the preconditioners of Gremban and Miller to com-
plex systems [13]. Reif proposed and analyzed Vaidya-like preconditioners, including
recursive variants [18]. Chen and Toledo conducted an experimental evaluation of
Vaidya’s preconditioners [6]. Boman and Hendrickson formulated a general theory of
support for symmetric positive definite matrices; the conjection-dilation arguments
that we used in this paper are a special case of their theory [5]. Boman et al. gener-
alized the Vaidya preconditioners presented in this paper to all symmetric diagonally
dominant matrices [4]. Spielman and Teng [19] improve Vaidya’s preconditioners for
diagonally dominant Stieltjes matrices by using sharper spectral bounds, by improv-
ing the tree-partitioning algorithm, and by exploiting a sophisticated spanning-tree
construction algorithm. Maggs et al. show how to construct a Gremban and Miller-like
preconditioner for any symmetric diagonally dominant matrix [14].

We believe that support-graph theory provides a new, largely unexploited tool for
the analysis and design of preconditioners. We hope that this paper serves to make
the techniques more accessible to the numerical analysis community and to stimulate
further work in this promising area.
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