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SUMMARY

Terrorist attacks using an aerosolized pathogen have gained credibility as a national security concern
after the anthrax attacks of 2001. Characterizing the attack quickly—by estimating the number of
people infected, the time of infection, and a representative dose received—is crucial to planning a
medical response. We use a Bayesian approach, based on a short time series of diagnosed patients, to
estimate a joint probability density for these parameters. We first test the formulation with idealized
cases and then apply it to realistic scenarios, including the Sverdlovsk anthrax outbreak of 1979.
We also use simulated outbreaks to explore the impact of model error, as when the model used for
generating simulated epidemic curves does not match the model subsequently used to characterize the
attack. We find that in all cases except for the smallest attacks (fewer than 100 infected people), 3–5
days of data are sufficient to characterize the outbreak to a specificity that is useful for directing an
emergency response. We conclude by demonstrating how a probabilistic characterization can be used
to design an allocation schedule for scarce resources in the aftermath of an attack. Copyright c© 2009
John Wiley & Sons, Ltd.
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1. Introduction

The anthrax attacks of 2001 [1] raised the credibility of aerosolized pathogens being used in a
bioterror attack. Early warning, in the form of an anomalous increase in syndromes detected by
public health monitoring networks [2] or alternatively via detection by environmental sensors,
holds the highest potential for reducing casualties. However, syndromic surveillance can only
provide heightened awareness; it results neither in definitive evidence of an attack nor in
identification of the pathogen. Further, environmental sensors may not always capture the
introduction of an aerosolized pathogen into a population; examples include small releases
that do not travel far, coarse particulate formulations that precipitate easily, and releases in
areas which are not well instrumented. In these cases, the first intimation of an attack (i.e.,
identification of the pathogen, confirmation that the outbreak was not being caused by natural
causes, etc.) will follow the diagnosis of the first few patients, but by then the disease may
have established itself in the population. Characterizing the release (henceforth referred to
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2 J. RAY ET AL

as the bioterror, or BT, attack) by computing the number N of people infected, the time τ
of infection, and a representative dose D received by the infected individuals has important
ramifications in planning a response, as underscored by the “Dark Winter” exercise [3]. The
inferred characteristics can serve as initial conditions for ensembles of predictive epidemic
simulations that guide the optimal allocation of medical resources under uncertainty.

Inferring the characteristics of an outbreak can be challenging. Data for inference consist
of the time each diagnosed patient became symptomatic, known to within a finite time
interval, and perhaps the location of each patient’s residence and place of work. The time
at which each patient’s symptoms first appear is related to the genesis of the outbreak via
the incubation period, typically modeled as a random variable whose probability distribution
may be dependent on the dose received. For relevance to response planning and consequence
management, inferences should be drawn early in the outbreak—from a 3–5 day time series
of patient data, for instance. We also note that the incubation period distribution used for
inference may be a poor model for the particular instance of the disease. This mismatch, and
the paucity of data in a short observational period, suggest that the inferred characteristics
will be rather approximate and that quantifying uncertainty in the characterization will be a
key requirement of the inference process.

Few studies have used statistical methods to characterize the genesis of a partially observed
epidemic. Walden & Kaplan [4] introduced a Bayesian formulation for estimating the size
and time of a bioterror attack and tested it on a low-dose (less than ID25, the dose at
which a person has a 25% probability of incurring the disease) anthrax release corresponding,
approximately, to the Sverdlovsk anthrax outbreak [5] of 1979. Their formulation incorporated
an incubation period model developed by Brookmeyer et al. [6] and demonstrated the use of
prior distributions on N to reduce uncertainty in the inferred characteristics. Brookmeyer &
Blades [7] used a maximum likelihood approach, along with the anthrax incubation model
in [6], to infer the size of the 2001 anthrax attacks [1] before estimating the reduction in
casualties due to the timely administration of antibiotics. Both [4] and [7] developed similar
expressions for the likelihood function, i.e., the probability of observing a patient time series
given an attack at time τ with N infected people. The incubation period model in [6] was not
dose-dependent, and hence no doses were inferred in these two studies.

Significantly more effort has been spent in characterizing the incubation period of
inhalational anthrax. Most work has been experimental, with non-human primates subjected
to anthrax challenges [8–13]. Brookmeyer et al. [6], on the other hand, used data from the
Sverdlovsk outbreak to fit a log-normal distribution of incubation periods valid at low doses;
their more recent work, based on a competing risks formulation, includes dose-dependence [14].
Wilkening [15] compares four dose-dependent models for the incubation period distribution,
one of which (termed Model D) is structurally identical to Brookmeyer’s [14], with updated
parameters. Compared to Model D, Wilkening’s Model A2 provides slightly better agreement
with the spatial and temporal distribution of anthrax cases observed in Sverdlovsk. Yet
experimental results by Ivins et al. [12] and Brachman et al. [13] show significant departures
from the results of both models, especially in the 103–104 spore dose range (see Fig. 1). Thus
both A2 and D must be considered approximate, though useful, predictive tools. In this study,
we will explore the impact of model error by using Model D to simulate epidemic curves arising
from BT attacks while using Model A2 for inference. A more detailed discussion of the anthrax
incubation period models is provided in Section 2.2.

The issue of dose-response functions—whether a person exposed to a number of spores will
actually contract the disease—will not be addressed in this study. We concentrate on inferring
the number of people who are actually infected, not merely exposed to the pathogen. The
problem of estimating the probability of infection from D spores was addressed by Brookmeyer
et al. [14] as well as by Glassman [16] and Druett et al. [17]. Haas [18] has established that
exposure to low doses can still pose a statistically significant risk to large populations.
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A BAYESIAN APPROACH FOR ESTIMATING BIOTERROR ATTACKS 3

The BARD [19] effort also seeks to identify (provide early warning of) a BT attack from
the presentation of symptoms. The observables consist of respiratory visits to emergency
departments, as might be obtainable from syndromic surveillance systems such as RODS [20].
The model that relates these observables to the testing of competing hypotheses (normal
morbidity versus a BT attack-generated spatiotemporal morbidity pattern) of the outbreak
includes a Gaussian dispersion plume [21] and Wilkening’s A2 model [15]. However, BARD’s
use in an urban context is only approximate since Gaussian plumes are suited mainly for open
spaces [21]. In the tests documented in [19], BARD was used to detect outbreaks with over
900 pre-diagnosed cases but performed poorly for small outbreaks. The paper by Legrand
et al. [22] investigates simulated anthrax outbreaks with a view of inferring the location and
time of release and the quantity released. It was demonstrated that about 15 diagnosed patients
were sufficient to infer the characteristics of the release with enough accuracy to make an
appreciable impact on a targeted prophylaxis campaign. They also investigated the effect
of model uncertainty, i.e., when the model used for inference is at variance with the model
used for generating the synthetic data. The effect of a Gaussian plume model (versus a more
sophisticated Gaussian puff model) on the accuracy of inferences was also investigated.

In this study, we develop a Bayesian formulation for inferring BT attack characteristics in
the form of probability distributions for N , τ , and D, using data from the first 3–5 days of an
outbreak. Note that we infer a single representative dose (of anthrax) for the entire infected
population, rather than a distribution (e.g., a mean and an interquartile range). This is driven
by the tests performed in [22] where an inference approach based on a spatially variable dose
performed no better than an older, single-representative-dose version of the inference technique
presented in this paper. The observables consist of the number of patients who show symptoms
and are diagnosed by a certain point in time. The approach is intended to be used within the
context of medical resource planning in the aftermath of a BT attack. We therefore rely on
simple temporal input data, reducing the complexity of data collection and the potential
for significant observational errors [22]. All tests are performed with anthrax as the pathogen.
Compared to [4] and [19], we introduce a new degree of detail to outbreak data and its analysis.
Unlike [4], we consider dose-dependent incubation periods and populations infected by a broad
range of doses, commensurate with atmospheric dispersion, and infer a representative dose for
the population. Since aerosol releases in confined spaces can lead to high doses (comparable
to or greater than ID50), the inferred dose serves as a useful indicator of the indoor versus
outdoor nature of the release. Model uncertainty is examined here in order to assess how large
an error one might encounter under realistic conditions. We also explore how the accuracy and
uncertainty of estimates are affected by the size of the outbreak, the dose received, and the
frequency with which patient data is collected. Further, we identify correlations between the
inferred parameters of the attack, demonstrating realistic cases in which scarce data might
support multiple characterizations. These characterizations were not explored in [4, 19]. We
then use our method to analyze the Sverdlovsk outbreak of 1979 [5].

In the final section of this study, we solve a problem of optimization under uncertainty,
using the probabilistic characterization of the BT attack to guide the allocation of scarce
medical resources. In particular, we use the joint posterior distribution of N, τ , and D, and
the resulting predictive distributions of subsequent symptomatics, to guard against an over- or
under-allocation of resources. Efficient allocation is especially important if further BT attacks
are expected. We present some proof-of-concept results, then conclude with a discussion of how
more realistic assumptions can be incorporated into the optimization approach, thus creating
a useful tool for an emergency manager.
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4 J. RAY ET AL

2. The Inverse Problem

2.1. Formulation

We now formulate a Bayesian parameter estimation problem for the characteristics of a BT
attack. A detailed derivation can be found in [23]; we reproduce a summary here.

Consider a time series of infected patients {ti, ni}, i = 0 . . .M , where ni is the number of
people developing symptoms in the time interval (ti−1, ti]. For simplicity, we let the intervals
be of uniform length ∆t = ti − ti−1. We will consider two values of ∆t, 6 hours and 24 hours,
to explore the impact of time resolution in the observations. At time t0 the first patient(s)
become symptomatic; given the finite resolution of our time series, we allow that this patient
may have developed symptoms anytime between t0 and t−1 = t0 − ∆t. M is the total length
of the time series and is expected to be small, e.g., 3–5 days. We seek a probabilistic model
for these observables, conditioned on an attack that infects N people at time τ with a uniform
dose of D spores. By convention, we set t0 to zero, and thus τ , the time of infection, is always
negative.

The dose-dependent incubation period is described by its cumulative distribution function
(CDF) C(T, D), where T , the incubation period, is the time elapsed since infection. The
probability of an infected individual developing symptoms in the interval (ti−1, ti] is thus

{C(ti − τ, D) − C(ti−1 − τ, D)}. Let L =
∑M

i=0 ni be the total number of people who have
developed symptoms by the end of the observation period tM . Then N −L infected people are
still asymptomatic; the probability of someone remaining asymptomatic at tM is the survival
probability, Psurv(tM − τ, D) = 1−C(tM − τ, D). Since the incubation times of each individual
are conditionally independent given N , τ , D and the disease model, the probability of the
entire time series {ti, ni} obeys a multinomial distribution with M +2 outcomes. One outcome
corresponds to remaining asymptomatic at tM ; the M + 1 others correspond to developing
symptoms in a preceding time interval. The resulting conditional probability distribution is
given by the following expression:

P
(

{ti, ni}M
i=0|N, τ, D

)

=
N !

(N − L)!
∏M

i=0 ni!
× {Psurv(tM − τ, D)}N−L

×
M
∏

i=0

(C(ti − τ, D) − C(ti−1 − τ, D))
ni

≡ L (N, τ, D) . (1)

In the last line of this equation, we rewrite the probability of the observables as a likelihood
function L(N, τ, D). We then use Bayes rule to obtain the posterior probability of the attack
parameters:

p
(

N, τ, log10(D)|{ti, ni}M
i=0

)

∝ L(N, τ, D)πN (N)πτ (τ)πD(log10(D)). (2)

Note that we have written the posterior density in terms of log10(D) rather than D; this is in
keeping with [15, 16, 24], where response to infection is generally modeled as a function of the
log-dose. Here πN , πτ , and πD are prior densities on N , τ , and log10(D). Presuming a lack of
additional information (and without any reason to believe the contrary), we use broad uniform
priors on all three parameters. The joint posterior density can then be marginalized to obtain
individual probability density functions (PDFs) for N , τ and log10(D). Integrals yielding these
marginal densities are evaluated using the VEGAS algorithm [25], an iterative adaptive Monte
Carlo method implemented in the GNU Scientific Library [26].
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2.2. Anthrax incubation models

This section briefly reviews two mathematical models of the incubation period of inhalational
anthrax. One of these models is used in the inference procedure. The second is used to simulate
anthrax attacks in Sec. 3.2 where we investigate the effect of model uncertainty, i.e., the
uncertainty in the inference when the model used for inference is an inexact representation
of the processes that generate the data. We also present a comparison of the models versus
experimental results (mostly from non-human primates) to provide an estimate of the accuracy
(and applicability to humans) of both the models. These models are from Wilkening [15]; details
of their derivation can be found in [15,27]. In both the models, the time of onset of symptoms
in a person exposed instantaneously to D anthrax spores is considered to be a random variable,
described by its cumulative distribution function (CDF).

The CDF for Wilkening’s Model D is given by [15, 27]

CModelD(T, D) =

∫ T

0

F (T − s; D, λ, θ)g(s)ds, (3)

which is a convolution of F (T ; D)—the probability that at least one spore out of a dose of D
spores will germinate into a vegetative anthrax cell by time t—and g(s), which is the PDF of
the time s taken, post-germination, to reach a bacterial load at which symptoms appear. F
and g are defined as

F (T ; D, λ, θ) =
1

p

(

1 − exp

(

− Dλ

λ + θ
Q(T )

))

, where

Q(T ) = 1 − exp (−(λ + θ)T ) , (4)

p = 1 − exp

(

− Dλ

θ + λ

)

(5)

and

g(s) =
1√

2πσss
exp

(

−1

2

log2(s/Ms)

σ2
s

)

. (6)

The probability of showing symptoms in infinite time, denoted p, is also called the attack rate.
These distributions depend on a number of parameters:

• Nthresh, a threshold bacterial load in a person that causes symptoms;
• t2, the bacterial load doubling time in a given medium (e.g., mediastinal lymph nodes

where the spores germinate), which can be obtained from in vitro laboratory experiments;
• tM , which is the time required to reach a bacterial load of Nthresh

tM = tlag +
t2

log(2)

Nthresh

D

;
• tlag, a lag time in bacterial growth experiments (typically 1 hour);
• σ2

s , the variance of the log of the time required to reach the symptomatic bacterial load;
• θ, the probability rate of clearance of a spore (by the immune system), specified in terms

of probability of clearance per spore per day;
• λ, the probability rate of germination of a spore, specified in terms of probability of

germination per spore per day.

In the present models, Ms, the median time to symptoms, is set to tM . The values of the
parameters for Model D are θ = 0.109 day−1, λ = 8.79 × 10−6 day−1, tlag = 1 hour,
t2 = 2.07 hour, Nthresh = 109 and σs = 0.544 day−1.
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Sartwell [28] found that the incubation period for a number of diseases was log-normally
distributed, which is at odds with Eq. 3. Wilkening’s Model A2 captures this alternative by
assuming a log-normal distribution,

CModelA2(T, D) =
1

2

[

1 + erf

(

ln(T/T0)√
2S

)]

, S = 0.804 − 0.079 log10(D), (7)

where T0, the median incubation time, is obtained by solving an integral equation derived from
Eq. 3

0.5 =

∫ T0

0

F (T0 − s; D, λ, θ)g(s)ds.

However, in solving for T0, Wilkening used a slightly different set of parameters: θ =
0.11 day−1, λ = 8.84 × 10−6 day−1, tlag = 1 hour, t2 = 2.06 hour, and σs = 0.542 day−1.
The reason for the slight change in parameters as well as the difference between Models A2
and D is discussed below.

Parameters in Eqs. 3 and 7 were obtained by fitting the models to the median incubation
periods observed in experiments with non-human primates (performed by Henderson et al. [8]
and Friedlander et al. [11]) and to the data from the Sverdlovsk anthrax outbreak. The average
dose in the Sverdlovsk outbreak, however, had to be inferred from atmospheric dispersion
models and the probability of exhibiting symptoms (in infinite time) given a dose of D
spores. This is the procedure adopted by Wilkening [15]. Using Glassman’s model [16] for
the probability of infection, one obtains an average dose of 2.4 spores. Alternatively, if one
employs Eq. 5 (which is similar in form to Druett’s [17] and was used by Brookmeyer in [14])
one obtains a dose of 300 spores. Wilkening retained both possibilities and incorporated them
into separate models. Model D is based on a dose of 300 spores at Sverdlovsk while A2 assumes
2.4 spores.

In Fig. 1, we plot the median incubation period predicted by Models A2 and D as a function
of dosage D. The dosage at Sverdlovsk, estimated as 2.4 spores (represented by •) is used
to calculate parameters for Model A2 (solid line); the alternative estimate of 300 spores
(represented by a filled ∇) is used for Model D (dashed line). Studies by Henderson [8] with
2.1×105, 3.9×105 and 7.6×105 spores (represented as filled ⋄) and Friedlander with 3.5×105

spores (represented by filled △) were also used to calculate the parameters of both models.
Studies by Ivins et al. [12] (unfilled △) and Gleiser et al. [10] (unfilled 2) were conducted
with very few primates and consequently are plotted only for reference. Primate experiments
by Brachman [13] simulated the effect of prolonged regular exposure to low doses, as might
be the case in a contaminated wool-sorting mill. The primates experienced extended periods
during which they received no spores at all. The dose was defined as the total number of spores
inhaled and was generally low, between 1000 and 10,000 spores. We plot the resulting ranges
of incubation periods observed at various dosages, also for reference.

We see that the tests by Gleiser et al. and Ivins et al. agree with both models, which in
turn agree with each other. However, significant differences arise when D <

∼ 103 spores. (Note
that the vertical axis is logarithmic.) Brachman’s tests show median incubation periods which
are at odds with the models’ predictions; however the mode of infection (a continuous low-level
infection process spread over days or months) was very different from the rapid (timescale of an
hour) challenge one would expect in a BT attack. Both models show a “kink” at D ≈ 103; this
is because they are evaluated with a lower value of λ (1.3 × 10−6 day−1), corresponding to a
primate ID50 of 55,000 spores, for comparison with primate results at the high dose limit, while
the low dose predictions were developed with a human ID50 of 8600 spores for comparison with
Sverdlovsk data. To the best of the authors’ knowledge, this is the sum total of experimental
data obtained from anthrax challenges of non-human primates where incubation times were
measured. We have omitted a study by Klein et al. [29] in which an incubation period increase
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Figure 1. The median incubation period (in days) for anthrax as a function of dose D. The solid line
is Model A2, which assumes a dose of 2.4 spores at Sverdlovsk; the dashed line is Model D, which
assumes 300 spores. The solid symbols are median incubation periods obtained from experimental
investigations or from Sverdlovsk data. The filled circle (Sverdlovsk; Wilkening Model A) refers to both
Models A1 and A2, though only Model A2 is used in the current study. Symbols which are not filled
denote experiments where the population of primates was too small to draw statistically meaningful
results. The experiments by Brachman et al. [13] are shown by vertical lines between symbols. In these
experiments, only the lower and upper bounds of the incubation period were provided. These ranges

were not used for determining model parameters and are only provided for reference.

was observed with increasing doses, because only one primate was subjected to each dose,
making the behavior statistically unreliable.

2.3. Inference of attack parameters with ideal cases

In this section we test the Bayesian estimation procedure described above. We use Wilkening’s
Model A2, described in Sec. 2.2, to simulate symptomatic times for inhalational anthrax
outbreaks of different sizes. The same model is used for inference; that is, there are
no systematic errors between the inference and data-generation models. Thus, posterior
uncertainties may be ascribed to (1) incomplete observation of the outbreak, specifically finite
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8 J. RAY ET AL

Table I. Time series obtained from six different outbreaks, simulated with the parameters {N, τ, D}
as noted at the bottom of the table. The table has been divided into 24-hour sections, where the ni

in each section are summed to produce the low-resolution time series (24-hour resolution) used to
investigate the effect of temporal resolution. Time is measured in days and dose in spores.

time Simulation A Simulation B Simulation C Simulation D Simulation E Simulation F

0.00 1 1 1 1 2 1
0.25 0 2 2 7 13 7
0.50 0 1 1 12 18 24
0.75 1 1 1 39 39 29
1.00 2 2 2 50 38 60
1.25 0 3 3 77 64 96
1.50 1 2 3 77 84 153
1.75 2 1 1 98 116 164
2.00 1 1 2 126 130 193
2.25 1 1 2 162 137 223
2.50 2 3 3 146 141 258
2.75 3 1 4 148 160 302
3.00 2 1 3 149 190 299
3.25 1 3 3 163 175 312
3.50 1 1 2 181 182 304
3.75 1 1 3 162 201 335
4.00 2 1 2 165 200 373
4.25 1 5 5 177 238 340
4.50 1 4 4 169 202 327
4.75 3 2 2 217 216 332
5.00 1 1 1 167 217 350
5.25 1 3 4 182 237 321
5.50 1 1 5 163 207 316
N 100 100 100 10,000 10,000 10,000
τ -0.75 -2.25 -2.25 -0.5 -1.0 -1.25
D 1 100 10,000 1 100 10,000

time resolution ∆t and a short time series, and (2) the probabilistic character of disease
incubation. We investigate how the quality of the inference varies with the size of the outbreak
and the dose received. We also investigate whether a higher-resolution time series spanning a
given observation period performs significantly better than a lower-resolution one.

In Table I, we list time series at 6-hour resolution: the number of patients showing
symptoms collected over 6-hour intervals obtained from 6 simulated outbreaks, henceforth
called Simulations A–F. Each infected patient received an identical dose D. N indicates the
number of people infected and τ is the time of attack, measured in days prior to the exhibition
of symptoms in the first diagnosed patient.

We use the procedure outlined in Sec. 2.1 to develop posterior PDFs for N , τ , and log10(D)
in Simulations A–F. Figs. 2, 3, and 4 plot the resulting marginal densities for {N, τ, log10(D)}.
These are conditioned on the 6-hour resolution time series listed in Table I. In Table II, we
summarize the maximum a posteriori (MAP) estimates and 90% posterior credibility intervals
(CIs) for N , τ , and log10(D) obtained with 5 days of data. We see that the marginal MAP
estimate of N (the value of N corresponding to the peak of p

(

N |{ti, ni}M
i=0

)

) is generally close
to the correct value after 5 days of data (see Table II). Even with 3 days of data, the PDFs in
Figs. 2, 3, and 4 are quite informative. Increasing the length of the observation period to 5 days
usually sharpens the PDF, reflecting a reduction in uncertainty. This trend holds true for small

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; volume:1–39
Prepared using simauth.cls



A BAYESIAN APPROACH FOR ESTIMATING BIOTERROR ATTACKS 9

attacks (N = 102) as well as for large ones (N = 104). An exception is Simulation F, which
will be discussed below. The marginal MAP estimate of the time of attack τ is also close to
the correct value, except for the small-N low-dose Simulation A. Larger attacks (Simulations
D, E, and F) have narrower PDFs for τ compared to Simulations A, B, and C. Higher values
of ni in Eq. 1 (which generally result from large N attacks) provide structure in L and allow
a more accurate estimation of the attack.

The dose D is the most difficult parameter to infer. PDFs for Simulations A, B and C in
Figs. 2 and 3 show that it is virtually impossible to estimate the dose for small (N = 102)
attacks; appreciable posterior probability is spread over 5 orders of magnitude. Table II
confirms that MAP estimates of the dose in these small attacks are incorrect. Larger attacks
(N = 104) yield more informative PDFs for D. Note that the sensitivity of C(T, D) to D is
rather small for Model A2 (see the expression for S in Eq. 7), suggesting that dependence of
the likelihood function on D will be weak unless ni or M is large.

Simulations D, E, and F (Figs. 3 and 4) demonstrate how early observations of an outbreak
may support multiple hypotheses, and at times favor a “wrong” hypothesis over the correct
one. For instance, Simulation D exhibits peaks in p(N) at N ≈ 4 × 103 and N ≈ 104.
Peaks in the PDF of log10(D) occur at 1 spore and between 104 and 105 spores. For this
simulation, both marginal PDFs overwhelmingly favor a large N , low-dose attack, which
is the correct characterization. A similar ambiguity is observed in Simulation E. Marginal
PDFs in Simulation F (Fig. 4) are much more strongly bimodal, however. In Fig. 5 we plot
the joint posterior density p(N, log10(D)) to examine correlations among these parameters; it
clearly shows two distinct islands—one corresponding to a large-N low-dose attack, and the
other corresponding to a small-N high-dose attack. Up to Day 5, the data favor the wrong
hypothesis (a larger, low-dose attack) over the correct one. Note also that the large low-dose
attack corresponds to larger (i.e., later) values of τ , as evidenced by the posterior density p(τ)
for Days 3–5 (Fig. 4, right column). With more data (Day 6 and 7), the correct values for
{N, τ, log10(D)}are recovered, with peaks at N ≈ 104, τ ≈ −1.2, and log10(D) ≈ 4. However,
such a long observation period would not be relevant for consequence planning purposes. We
stress that a Bayesian analysis is free to identify competing hypotheses, and that the degree
of belief assigned to each is determined by the data and the prior information. In a partially
observed attack, the MAP estimate may be erroneous, especially if data are scarce. One possible
remedy is the use of informative priors for N , τ , and/or log10(D) instead of the broad uniform
priors used here. Otherwise, natural ambiguities may remain and should be accounted for in
consequence management plans based on these inferences.

Coarser time resolution (∆t = 24 hours instead of 6 hours) was investigated in [27] and
generally yielded only a mild degradation in the smoothness of the PDFs. In simulations
where a multimodal PDF evolves into a unimodal PDF over time (e.g., Simulations D, E, and
F), evolution is more rapid when the observations are collected in 6-hour intervals.

To summarize, solution of the inference problem successfully provides N and τ for small
and large attacks. After 5 days of observations, the error in the MAP estimate for N (versus
the true value) is less than 50% for small attacks (100 infected people) and less than 5% for
large attacks (10,000 infected people). The same holds true for τ , except the errors are smaller
than for N . D can be estimated only for large attacks (errors less than about 25%). This may
be due to the low sensitivity of the early symptomatic patient stream to dose, an observation
that was also made by Legrand et al. [22] where they characterized an anthrax BT attack with
a low-dose incubation period model, without too much error. Posterior PDFs are sharper for
large attacks and for high-dose attacks. Higher temporal resolution may smooth the PDFs
slightly. When conditioning on a short time series, the Bayesian method may suggest multiple
hypotheses, supported to differing degrees by the data. In some simulations, e.g., Simulation
F, the data might initially support the wrong hypothesis, but the correct characterization is
recovered as more data become available.
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Figure 2. Posterior PDFs for N (top), τ (middle), and log D (bottom) based on the time series
for Simulation A (left) and Simulation B (right), as tabulated in Table I. Data are collected at
6-hour intervals in both simulations. The correct values for {N, τ, log10(D)}in Simulation A are
{102,−0.75, 100}; in Simulation B they are {102,−2.25, 102}. In both simulations, PDFs are reported

after 3-, 4- and 5-day observational periods (dotted, dashed, and solid lines respectively).
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Figure 3. Posterior PDFs for N (top), τ (middle), and log D (bottom) based on the time series
for Simulation C (left) and Simulation D (right), as tabulated in Table I. Data are collected at
6-hour intervals in both simulations. The correct values for {N, τ, log10(D)}in Simulation C are
{102,−2.25, 104}; in Simulation D they are {104,−0.05, 100}. In both simulations, PDFs are reported

after 3-, 4- and 5-day observational periods (dotted, dashed, and solid lines respectively).
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Figure 4. Posterior PDFs for N (top), τ (middle), and log D (bottom) based on the time series
for Simulation E (left) and Simulation F (right), as tabulated in Table I. Data are collected at
6-hour intervals in both simulations. The correct values for {N, τ, log10(D)}in Simulation E are
{104,−1.0, 102}; in Simulation F they are {104,−1.25, 104}. In both simulations, PDFs are reported
after 3-, 4- and 5-day observational periods (dotted, dashed, and solid lines respectively), but
Simulation F also includes PDFs at Day 6 (solid lines with unfilled squares) and at Day 7 (solid

lines with unfilled circles).
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Table II. Simulations A–F; MAP estimates and 90% credibility intervals (in parentheses) for N , τ , and
log10(D), conditioned on the high-resolution time series at Day 5. The number in the curly brackets

{} is the correct value.

Simulation N τ log10(D)

A 70, (39.45 – 123.3) -1.75, (-2.90 – -1.04 ) 0.0, (0.18 – 4.12)
{100} {−0.75} {0}

B 110, (65.7 – 148.4) -2.0, (-3.1 – -1.33) 0.00, (0.14 – 3.97)
{100} {−2.25} {2}

C 150, (88.78 – 194.7) -1.75, (-2.85 – -1.22) 0.0, (0.153 – 4.13)
{100} {−2.25} {4}

D 9800, (9439 – 10,350) -0.50, (-0.85 – -0.44) 0.00, (0.024 – 1.03)
{10, 000} {−0.50} {0}

E 10,200, (8396 – 10,890) -0.9, (-1.41 – -0.67) 1.75, (0.87– 3.23)
{10, 000} {−1.00} {2}

F 18,500, (10,500 – 19,290) -0.5, (-0.99 – -0.34) 0.75, (0.16 – 3.84)
{10, 000} {−1.25} {4}

3. Inference of Attack Parameters Under Variable Doses

In this section we conduct eight tests corresponding to more realistic conditions. In the first
four (Simulations I, Ia, II, and IIa) we relax the assumption of a constant dose D; instead, the
infected people receive a range of doses commensurate with atmospheric dispersion. However,
the disease is still assumed to evolve per Wilkening’s Model A2, with the same model providing
C(T, D) to the inference procedure. In the second set of tests (Simulations III, IIIa, IV,
and IVa), we retain distributed doses and additionally relax the second assumption: data
are generated with Model D, while the inference procedure still uses Model A2 to evaluate
the incubation period distribution. This mismatch introduces a degree of realism into the
inference process since the host-pathogen interaction for humans and anthrax will seldom be
characterized accurately.

In order to obtain a realistic distribution of doses in a geographically distributed population,
we first simulate an explosive point release of spores at a height of 100 meters with a Gaussian
plume model, thus exposing different numbers of people to varying doses as described in
Appendix I. We see from Fig. 15 that given a quantity of spores, the number of people infected
depends on the total population in the domain, the orientation of the plume, and the population
distribution. A release does not lead to many infected people if the high concentration isopleths
of the plume miss the localized regions of high population density.

The series of symptomatic times arising from such a simulated attack will reflect the
evolution of inhalational anthrax in an infected population that receives a range of doses.
These data will be “fit” using the model described in Sec. 2.1, which assumes a uniform dose
for all infected individuals. The uniform dose thus inferred is, in a sense, a representative dose
for the entire infected population; however, it is not rigorously linked to the median or mean of
the actual distribution of doses. To avoid confusion, we therefore refer to the inferred (uniform)
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Figure 5. The joint probability density p(N, log10(D)) obtained after 5 days of data for Simulation F.
We clearly see a dual characterization—a larger low-dose attack and a smaller high-dose attack.

dose as the “representative” dose.

Tables III and IV list the time series obtained from all eight simulations. The time series
have a resolution of 6 hours, with successive 24-hour intervals indicated in the tables. As noted
in Appendix I, these simulations correspond to two choices of population size (pexposed = 103

for Simulations Ia, II, IIIa and IV; pexposed = 104 for Simulations I, IIa, III and IVa) combined
with two choices of plume orientation (θ = 170◦ for Simulations I, Ia, III and IIIa; θ = 125◦

for Simulations II, IIa, IV and IVa). The latter orientation directs the plume over a more
population-dense region. Tables III and IV also report quantiles of the dose distribution
D1, D25, D50, D75, and D99. That is, 1% of the population receives a dose of D1 spores or
less, 75% of the population receives less than D75 spores, and D99 is near the maximum dose.
In Fig. 16 (Appendix I), we plot dose distributions corresponding to the simulations listed in
Tables III and IV. Note that while the doses may easily span two orders of magnitude, about
80% of the infected people lie within a one-decade range of doses. The inferred representative
dose D may reflect this range, and thus for limited verification purposes, we will compare D
to the actual median dose D50. Estimating a single D is, of course, a source of model error,
adding to the uncertainty caused by incomplete observations and the inherent stochasticity of
the data. This model error is not expected to diminish with additional data, and one of the
aims of this investigation is to quantify it.

3.1. Inference of attack parameters without incubation model mismatch

We begin with results from Simulations Ia, I, II, and IIa—i.e., eliminating the assumption that
each infected person receives the same dose of anthrax spores, but simulating and inferring
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Table III. Time series obtained from eight simulated outbreaks with variable doses. Simulations I, Ia,
II, and IIa are simulated using Wilkening’s Model A2, with the attack parameters—N , τ , and the
dose distribution—indicated at the bottom of the table. Simulations III, IIIa, IV and IV are simulated
using Wilkening’s Model D. D̄ is the average dose for the N infected individuals. The table has been
divided into 24-hour sections, where the values ni in each section can be summed to produce the
low-resolution time series used to investigate the effect of temporal resolution. The dose distribution
is represented by its quantiles D1, D25, D50, D75, and D99; x% of the population receives a dose of

Dx or less. Table IV continues the time series from Day 5 to Day 8.

Time (days) Sim. Ia Sim. I Sim. II Sim. IIa Sim. IIIa Sim. III Sim. IV Sim. IVa

0.0 1 3 2 5 1 1 1 3
0.25 2 3 2 8 1 8 5 14
0.50 0 6 1 8 0 20 6 36
0.75 4 12 5 27 1 16 13 81
1.00 1 14 7 46 3 9 12 77
1.25 2 26 12 57 2 18 14 94
1.50 2 28 9 85 2 28 13 123
1.75 6 49 16 94 1 30 13 132
2.0 6 57 9 133 2 37 17 129
2.25 5 65 20 134 2 27 15 159
2.50 7 68 12 139 4 41 17 126
2.75 6 53 18 163 2 39 14 149
3.0 11 80 15 138 3 34 9 131
3.25 8 62 15 180 2 32 14 129
3.50 9 89 21 140 3 25 16 136
3.75 8 106 16 164 6 33 12 100
4.00 17 70 20 180 4 27 14 125
4.25 12 65 21 136 5 33 11 104
4.50 9 87 8 147 3 33 6 110
4.75 3 87 8 151 5 23 11 106
5.0 6 76 7 127 6 23 15 90
N 318 2989 454 4537 161 1453 453 4453
τ -1.5 -1.5 -1.5 -1.25 -0.75 -0.75 -0.75 -0.5
D̄ 2912.8 2776.8 13,870.5 13,150.4 3603.5 3660.77 16,941 16,532

D1 × 10−2 0.53 0.65 1.39 1.32 3.41 2.65 3.1 3.0
D25 × 10−3 1.23 1.15 3.96 3.47 1.99 2.13 9.8 9.45
D50 × 10−4 0.29 0.26 1.34 1.24 0.33 0.35 1.65 1.57
D75 × 10−4 0.41 0.39 1.91 1.87 0.48 0.48 2.09 2.07
D99 × 10−4 0.83 0.87 5.79 5.91 0.92 0.95 6.74 6.52

disease progression with Wilkening’s Model A2.

Figs. 6, 7, 8, and 9 show posterior PDFs for {N, τ, log10(D)} conditioned on the time series
in Tables III and IV. Table V reports the MAP estimates and the 90% CIs for {N, τ, log10(D)}
after 5 days of data. Since the true doses are distributed, we use the log of the median dose,
log10(D50), as a reasonable value for comparison to the posterior log10(D).

First consider Figs. 6 and 7, corresponding to Simulations Ia and I. These attacks have
similar dose distributions but differ by an order of magnitude in N . In both simulations,
the MAP estimate of τ nearly coincides with the true value after only 3 days of data. In
Simulation Ia, the MAP estimate of N deviates from the true value by approximately 20%,
but the 90% CIs bracket the correct N quite easily. In Simulation I, the PDF for N initially
favors an inaccurate characterization (a peak at N ≈ 4000) but by Day 5, assumes a bimodal
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Table IV. Continuation of Table III beyond Day 5. Time series obtained from 4 simulated outbreaks
with variable doses. Simulations I, Ia, II, and IIa are simulated using Wilkening’s Model A2, with
the attack parameters—N , τ , and the dose distribution—indicated at the bottom of the table. D̄ is
the average dose for the N infected individuals. The table has been divided into 24-hour sections,
where the values ni in each section can be summed to produce the low-resolution time series used to
investigate the effect of temporal resolution. The dose distribution is represented by its quantiles D1,

D25, D50, D75, and D99; x% of the population receives a dose of Dx or less.

Time (days) Simulation Ia Simulation I Simulation II Simulation IIa

5.25 9 70 16 129
5.50 8 91 8 109
5.75 10 79 9 147
6.00 9 86 12 126
6.25 8 82 13 108
6.50 7 55 9 114
6.75 7 69 7 90
7.0 6 75 8 96
7.25 8 61 6 88
7.50 4 67 6 77
7.75 6 65 8 75
8.00 2 62 6 69
N 318 2989 454 4537
τ -1.5 -1.5 -1.5 -1.25
D̄ 2912.8 2776.8 13,870.5 13,150.4

D1 × 10−2 0.53 0.65 1.39 1.32
D25 × 10−3 1.23 1.15 3.96 3.47
D50 × 10−4 0.29 0.26 1.34 1.24
D75 × 10−4 0.41 0.39 1.91 1.87
D99 × 10−4 0.83 0.87 5.79 5.91

shape with a peak close to the correct characterization. Dose is the most difficult parameter to
estimate in Simulation Ia—the marginal PDF of log10(D) remains rather broad at all times.
In the larger-N Simulation I, however, the posterior on log10(D) at least indicates that the
attack is not a low dose (i.e., D50 ≤ ID25) event. Also in Simulation I, conditioning on the high
resolution time-series provides more structure to the PDF; the posterior densities on log10(D)
and even on τ are more prominently bimodal, indicating that inference is inconclusive, and
more observations will be required to obtain a unique characterization. For reference, both
Figs. 6 and 7 include a further set of PDFs conditioned on data through Day 7; MAP estimates
from these posteriors generally show even closer agreement with the true values of log10(D50)
and N .

Inference is considerably less challenging in Simulations II and IIa, corresponding to Figs. 8
and 9. Because the doses are higher (D50 > ID50), the variance of the incubation period
distribution is smaller. The time of attack τ is captured with only 3 days of data, as is a
representative log10(D) for the large N attack (Simulation IIa). With 5 days of data, MAP
estimates for N are close to the correct values in both simulations, as is the MAP estimate
of log10 D in Simulation II. Here, conditioning on the higher-resolution time series yielded
little gain over the lower-resolution time series. In Simulation II, MAP estimates of τ based
on 6-hour data are in fact inaccurate on Days 3 and 4, recovering the correct characterization
after 5 days of data.

In general, therefore, many of the behaviors discussed in Sec. 2.3 are repeated in the present
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Simulation N τ log10(D)

Ia (6-hr resolution) 400, (233.6 – 581.9) -1.5, (-2.00 – -0.795) 3.0, (0.37 – 3.99)
Ia (24-hr resolution) 400, (230.4 – 582.2) -1.5, (-2.04 – -0.78) 2.75, (0.32 – 4.00)

{318} {−1.5} {3.46}

I (6-hr resolution) 4100, (2334 – 4439) -1.4, (-1.57 – -0.64) 4.00, (0.715 – 4.147)
I (24-hr resolution) 4000, (2281 – 4358) -1.4, (-1.59 – -0.70) 4.00, (0.91 – 4.173)

{2989} {−1.5} {3.41}

II (6-hr resolution) 400, (305.5 – 981.6) -1.5, (-1.98 – -1.08) 4.25, (0.68 – 4.72)
II (24-hr resolution) 400, (327.0 – 984.7) -1.6, (-2.10 – -1.03) 4.25, (0.36 – 4.69)

{454} {−1.5} {4.13}

IIa (6-hr resolution) 3900, (3686 – 4340) -1.3, (-1.48 – -1.14) 4.25, (4.05 – 4.72)
IIa (24-hr resolution) 4000, (3709 – 4433) -1.5, (-1.55 – -1.18) 4.25, (4.04 – 4.72)

{4537} {−1.25} {4.09}

Table V. Simulations I, Ia, II, IIa; MAP estimates and 90% credibility intervals (in parentheses) for
N , τ , and log10(D) conditioned on data through Day 5. Correct values for N and τ are in { }. The

inferred representative dose is compared with log10(D50), also in { }.

simulations. The representative dose D is difficult to estimate for small N attacks, while the
time τ is always easy to infer. We can bound the size N of the attack quite accurately for all
simulations. MAP estimates of N obtained from 5 days of data are always within 20% of the
correct value. Further, the 90% CIs at Day 5 for N , τ , and log10(D) almost always bracket the
true attack parameters. Finer temporal resolution ∆t may better capture the evolution of the
outbreak, but has a relatively minor impact on summaries of the posterior; MAP estimates
obtained from the low and high-resolution time series are similar, as are the 90% CIs. Thus,
while the errors incurred in fitting variable-dose data with a constant-dose inference model are
not negligible, the current formulation provides a reasonable and useful characterization of the
BT attack.

3.2. Inference of variable dose attack with incubation model mismatch

We now proceed to Simulations III, IIIa, IV, and IVa. As noted above, these simulations
introduce a systematic difference between the simulated evolution of the disease in infected
persons and the model used to interpret the observed data. We simulate BT attacks using
Wilkening’s Model D (i.e., sampling the incubation period distribution in Eq. 3), but infer
the attack parameters using Model A2. As in Sec. 3.1, the infected population receives a
distribution of doses (see Appendix I) but the model used in the inference process assumes a
constant dose.

Figs. 10 and 11 show posterior PDFs for {N, τ, log10(D)} conditioned on the time series in
Table III. As described in the preceding section, finer resolution in the time series does not have
a great impact on the posterior, and hence we only plot PDFs resulting from daily observations
in each case. Several features are worth highlighting. First, the dose is identified much more
closely in Simulations IV and IVa, where both N and log10(D) are higher, than in Simulations

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; volume:1–39
Prepared using simauth.cls



18 J. RAY ET AL

Size of attack (N)

p(
N

)

200 400 600 8001000
0

0.002

0.004

0.006

Day 03
Day 04
Day 05
Day 07

Size of attack (N)

p
(N

)

200 400 600 8001000
0

0.002

0.004

0.006

Day 03
Day 04
Day 05
Day 07

Time of attack ( τ)

p(
τ)

-4 -3 -2 -1 0
0

0.2

0.4

0.6

0.8

1

Day 03
Day 04
Day 05
Day 07

Time of attack ( τ)

p(
τ

)

-4 -3 -2 -1 0
0

0.2

0.4

0.6

0.8

1

1.2
Day 03
Day 04
Day 05
Day 07

log 10(D)

p(
lo

g
1

0
(D

)
)

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Day 03
Day 04
Day 05
Day 07

log 10(D)

p(
lo

g
1

0(
D

)
)

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Day 03
Day 04
Day 05
Day 07

Figure 6. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Simulation Ia, as tabulated in Tables III and IV. Lower-resolution data (collected in 24-hour
intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Correct
values for {N, τ, log10(D)} are {318,−1.5, 3.46}, where the “correct” representative dose is taken to be
log10(D50). In both simulations, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 7. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series for
Simulation I, as tabulated in Tables III and IV. Lower-resolution data (collected in 24-hour intervals)
yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Correct values
for {N, τ, log10(D)} are {2989,−1.5, 3.41}, where the “correct” representative dose is taken to be
log10(D50). In both simulations, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 8. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Simulation II, as tabulated in Tables III and IV. Lower-resolution data (collected in 24-hour
intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Correct
values for {N, τ, log10(D)} are {454,−1.5, 4.13}, where the “correct” representative dose is taken to be
log10(D50). In both simulations, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 9. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series for
Simulation IIa, as tabulated in Tables III and IV. Lower-resolution data (collected in 24-hour intervals)
yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Correct values
for {N, τ, log10(D)} are {4537,−1.25, 4.09}, where the “correct” representative dose is taken to be
log10(D50). In both simulations, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.

Copyright c© 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; volume:1–39
Prepared using simauth.cls



22 J. RAY ET AL

III and IIIa. Indeed, p(log10(D)) in the low-dose small-N Simulation IIIa remains broad at all
times. In Simulation III, after only 3 days of data, we observe a dual characterization of the
outbreak: N ≈ 700 and, to a larger extent, N ≈ 2000. However, p(N) becomes unimodal as
additional data become available. In fact, PDFs for all three parameters in all four simulations
are unimodal by Day 5. The resulting MAP estimates and 90% CIs for {N, τ, log10(D)} are
reported in Table VI. In contrast to Sec. 3.1, MAP estimates for N and τ are not within 20%
of the true values. With the exception of Simulation IIIa, N is smaller than it should be, and
in all simulations τ is more negative than it should be.

A qualitative explanation for these discrepancies is advanced as follows. Since Model A2
predicts shorter incubation periods than Model D (recall Fig.1), the epidemic curve as
simulated with Model D will rise more slowly that predicted by Model A2. When these data
are interpreted using Model A2, it is reasonable to expect the posterior to compensate for
the slower rise by underestimating N , i.e., by suggesting a smaller outbreak. Simultaneous
estimation of D and τ raises a few additional complications, however. Recall that the posterior
of D is centered quite close to its true value in Simulations IV and IVa, and to a lesser extent
in Simulation III. But in the likelihood function, this dose enters the wrong model. Using a
“correct” dose in Model A2 is akin to using a much larger dose in Model D; both situations
yield shorter incubation periods. Now draw a parallel with Simulation F in Sec. 2.3. There, we
found that a large-dose small-N attack and a small-dose large-N attack gave rise to very similar
patient data during the first five days of an outbreak. Moreover, we found that N and τ were
positively correlated (and that both were negatively correlated with D): the small-N mode
of the posterior also favored more negative τ , i.e., attacks that occurred approximately one
day earlier. The very same correlations affect inference in the present simulations. Incubation
model mismatch is roughly equivalent to an overestimation of D, which is compensated for by
underestimating N and τ .

In summary, Table VI shows that MAP estimates for N are typically within a factor of two
below the true result and that τ is estimated roughly a day too early.

4. The Sverdlovsk Anthrax Outbreak of 1979

We now address the characterization of the Sverdlovsk anthrax outbreak. It is suspected that
on 2 April 1979, a high-grade anthrax formulation was accidentally released from a military
facility in Sverdlovsk (today, Yekaterinburg), Russia. The resulting outbreak lasted 42 days,
and patient data were collected on a daily basis [5]. Characterizing the Sverdlovsk case presents
significant challenges. It corresponds to a low-dose “attack” infecting fewer than 100 people.
Wilkening [15] estimates that the average dose was either around 2–3 spores, based on his
Model A, or around 300 spores based on his Model D; Meselson [5] estimates 100–2000 spores
as the likely dose. The first patient presented symptoms on 4 April 1979. Around 12 April,
tetracycline was administered around Sverdlovsk; around 15 April, people were vaccinated.
Prophylactic measures may have prevented the onset of symptoms in some people and increased
the incubation period in others. Further, the available data almost certainly contain some
recording errors. Errors in the data, the effect of prophylaxis (which is not modeled in our
likelihood function), and the small size of the infected population are expected to stress our
inference procedure.

In Fig. 12 we plot the posterior densities of N and τ based on the data in [5]. Model A2 is
used for inference. After 9 days of data, the time of release was easy to infer: the MAP estimate
of τ is −2 (i.e., 2 April 1979) and the 90% CI for τ is [−3.22,−1.38]. PDFs for the dose (omitted
here) were indeterminate; the 90% CI for log10(D) spans [0.18, 3.5], and moreover the average
dose at Sverdlovsk is unknown. The MAP estimate for N centers around 50, though the earlier
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Figure 10. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on daily time
series for Simulation IIIa (left) and Simulation III (right). Correct values for {N, τ, log10(D)} are
{161,−0.75, 3.52} (Simulation IIIa) and {1453,−0.75, 3.54} (Simulation III), where the “correct”
representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-, 4-,

and 5-day observational periods (dotted, dashed and solid lines respectively).
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Figure 11. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on daily time
series for Simulation IV (left) and Simulation IVa (right). Correct values for {N, τ, log10(D)} are
{453,−0.75, 4.22} (Simulation IV) and {4453,−0.5, 4.20} (Simulation IVa), where the “correct”
representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-, 4-,

and 5-day observational periods (dotted, dashed and solid lines respectively).
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Simulation N τ log10(D)

IIIa (6-hr resolution) 170, (130.1 – 243.6) -1.5, (-2.3 – -0.86) 2.0, (0.23 – 3.74)
IIIa (24-hr resolution 170, (125.1 – 238.8) -1.5, (-2.4 – -0.94) 2.5, (0.255 – 3.78)

{161} {−0.75} {3.52}

III (6-hr resolution) 780, (722 – 945.5) -1.7, (-2.03 – -1.42) 4.25, (4.02 – 4.723)
III (24-hr resolution 760, (701 – 891.7) -1.6, (-1.91 – -1.31) 4.25, (4.04 – 4.724)

{1453} {−0.75} {3.54}

IV (6-hr resolution) 330, (297.2 – 668.6) -1.7, (-2.23 – -1.40) 4.5, (1.4 – 4.72)
IV (24-hr resolution) 330, (296.3 – 705.3) -1.7, (-2.26 – -1.38) 4.5, (1.45 – 4.72)

{453} {−0.75} {4.22}

IVa (6-hr resolution) 2900, (2728 – 3056) -1.5, (-1.90 – -1.1) 4.5, (4.275 – 4.725)
IVa (24-hr resolution) 2900, (2741 – 3064) -1.5, (-1.97 – -1.26) 4.5, (4.275 – 4.725)

{4453} {−0.5} {4.20}

Table VI. Simulations III, IIIa, IV, and IVa: MAP estimates and the 90% credibility intervals (in
parentheses) for N , τ , and log10(D) conditioned on data through Day 5. Correct values for N and τ

are in { }. The “correct” representative dose is taken to be log10(D50), also in { }.

PDFs underestimate N . The 90% CI for N after 9 days of data is [41.15, 66.49]. Thus by 13
April (i.e., Day 9, the start of the prophylaxis campaign and 2 days before the vaccination
campaign), the PDF of N strongly suggests that the outbreak will affect fewer than 200
people. In comparison, 70 people are believed to have died [5, 6] and 80 are believed to have
been infected [6], though the true number is unknown. However, approximately 59,000 people
in the Chkalovskiy raion were impacted by the medical interventions; 80% were vaccinated at
least once [5].

Guillemin [30] documents the public health response undertaken by the Soviet authorities
once the Sverdlovsk epidemic was detected, illustrating the difficulties and pitfalls faced by
medical responders when the origin and the extent of an epidemic are unknown. Indeed, Soviet
authorities held that the epidemic was caused by infected meat and spent considerable effort
searching for it. The response also engaged many medical personnel and officials from outside
Sverdlovsk. Yet by Day 4 (8 April 1979) it was clear that the epidemic was small (Fig. 12, left)
and could be handled by local authorities. (Sverdlovsk was a military-industrial city with a
population of 1.2 million [5].) Guillemin [30] also describes efforts to decontaminate buildings
and trees by hosing them down with disinfectants; yet with knowledge of τ (Fig. 12, right)
and meteorological conditions, the bounds of the affected region could have been established
(as Meselson did in 1994 [5]) and the public health response suitably targeted. A quantitative
model and an inferential capability could therefore have been of assistance in 1979. These
lessons are equally applicable to contemporary bioterror scenarios.
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Figure 12. PDFs of N (left) and τ (right) for the Sverdlovsk outbreak.

5. Optimal Allocation of Resources During an Anthrax Attack

In this section we demonstrate how the posterior distribution of the release parameters (as
calculated in the previous sections) may be used to allocate scarce resources in the aftermath of
an attack. Note that we do not seek to promote a particular resource allocation policy; rather
we wish to show, in general, how a probabilistic characterization of a BT attack may be used to
allocate resources and hedge against misallocation due to uncertainty in future demands. For
the purposes of our study, “resources” will refer to medical personnel and equipment that are
difficult to gather and transport, rather than easily transportable products such as antibiotics.
Thus the resources of interest are those that are necessary for treating symptomatic patients,
e.g., those required to perform thoracentesis and similar surgical procedures that were widely
required in the 2001 anthrax attacks [1, 31]. These are usually not available in great excess in
most urban centers, and we target situations involving catastrophic attacks where mobilization
of national or regional resources may be required. We do not consider resources required for the
prophylactic treatment of people who may have been exposed, where antibiotic treatment alone
can be highly effective. Further, we will pay particular attention to the schedule of allocation
of the resources rather the size of the total allocation. Since the total demand for resources is
uncertain, it is likely that resources will be supplied in steps over the duration of an epidemic
rather than granted outright.

Overall, our approach uses the posterior distribution to pose a problem of optimization
under uncertainty. With any number of days of data, the joint posterior of N , τ , and log10(D)
is given by Eq. 2. We simulate M samples from this distribution to yield an ensemble of
attack parameters, and for each member of the ensemble—each triple (N, τ, log10(D))—we then
simulate Q realizations of the future patient time series {ti, ni}, i.e., the number of people who
become symptomatic on a daily basis. The entire set thus comprises K ≡ MQ samples from
the posterior predictive distribution of the epidemic curve. An example is given in Figure 13.
The left side shows 900 samples from the posterior predictive distribution, following three
days of data; the right side shows sampled epidemic curves following seven days of data. These
ensembles reflect uncertainty in the scope of the outbreak that an emergency manager would
have to address. Note that longer observation of an outbreak (e.g., seven days of data) results
in a narrower posterior and a corresponding reduction in the predicted spread of scenarios.

A key task facing the emergency manager is to allocate scarce resources in order to minimize
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the number of deaths in a population that has been attacked. To demonstrate an allocation
methodology in this context, we will make a number of simplifying assumptions. More
complicated mortality-rate models and additional constraints, beyond those considered below,
are certainly possible; indeed, a large number of additional constraints would likely specify
any specific response scenario. However, these constraints can be added without changing the
overall structure or principle of our optimization problem. We discuss a few of these in Sec. 5.4.;
see [32] for a more complete consideration of these issues along with more computational
results. For the current demonstration, we adopt the following assumptions and notation:

1. There has been a single attack, i.e., one release of the anthrax spores on one target.
2. We have δ days of data. To be clear, the datum on each day is the number of people who

became symptomatic on that day. Patients may not come to the hospital on the first day
they become symptomatic; the day of initial symptoms is elicited from the patients when
they arrive. Given these data, we sample the posterior predictive distribution to generate
K scenarios, corresponding to the number of people who will arrive at the hospital for
the next T days. Denote these predictions by N j

k , which is the number of people who
become symptomatic on day j in scenario k.

3. Patients symptomatic on day j who have access to medical personnel and equipment
are assumed to have a mortality rate hj . Patients who do not have access to ‘resources’
(for instance, patients without access to procedures like pleural drainage) are assumed
to have a higher mortality rate uj > hj .

4. Assume hj < hj−1. In other words, those who show symptoms later in the attack have
a better chance of successful treatment, because having heard news of the attack, they
will tend to seek treatment sooner once they start to feel ill. This assumption is useful
to eliminate multiple optimal solutions to the problem posed in Sec. 5.1. In practice,
successive hj may differ only by a small ǫ.

5. Similarly, assume uj < uj−1.
6. Let rj be the allocation of resources on day j and let R be the total quantity of resources

available.
7. Assume that one unit of resource can be used to treat one person.
8. For simplicity, assume no delays in shipping resources to the target.

We determine the best allocation of resources {rj} using a “least-regret” [33] optimization
strategy. The strategy consists of two phases, outlined as follows. First, with δ days of data,
we simulate K scenarios from the posterior predictive distribution. Each scenario k∗, e.g., a
set {N j

k} for k = k∗, is a possible time series of future symptomatic patients. Supposing that
scenario k∗ represents actual knowledge of the future, we can compute the optimal allocation
of resources for t > δ and the corresponding time series of patient deaths. We repeat this
computation for all K scenarios, thus solving K optimization problems. These optimization
problems are precisely formulated in Sec. 5.1. In the second phase, we must determine a single
allocation schedule {rj} given posterior uncertainty in the patient time series. This overall
allocation schedule may not perform as well, for each individual scenario, as the corresponding
optimal allocation schedule calculated in the first phase. But we seek to minimize the expected

deviation between the minimum number of deaths in each scenario (calculated in the first
phase) and the actual number of deaths given {rj}. This “least-regret” optimization problem
is precisely formulated in Sec. 5.2.

The least-regret procedure yields a complete allocation schedule {rj} for the entire time
interval of interest. The entire schedule can be used for estimating future transportation and
resource requirements; one “ships” the amount specified for the current day. On the next day,
the posterior distribution is updated with data from an extra day’s observation of the epidemic.
The optimization procedure described above is repeated, with R reduced by the size of the
allocation just made. Since we expect the posterior predictive distribution to narrow with time,
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the range of optimal allocations will also narrow and the least-regret solution should improve.

5.1. Optimal Resource Allocation

Given scenario k and predictions N j
k , we wish to minimize the number of deaths Dk by

computing an allocation schedule rk
j . Using the model described above, the number of patients

showing symptoms on day j who will ultimately die in spite of treatment is hjr
k
j ; the number

who will die untreated is uj(N
j
k − rk

j ). Resource allocations must be non-negative and their
sum cannot exceed R. In addition, we do not want to supply more resources than can be used.
Thus rk

j ≤ N j
k . We can now write our resource allocation problem as follows:

minimize Dk

rk
1 . . . rk

T , Dk

subject to:
∑T

j=1 rk
j ≤ R

rk
j ≥ 0

rk
j ≤ N j

k

Dk =
∑T

j=1 hjr
k
j +

∑T

j=1 uj(N
j
k − rk

j ).

(8)

This is a standard linear programming problem that can easily be solved by many existing
algorithms. The number of variables is T + 1 and will typically be less than 50. There are
2T + 1 inequality constraints and 1 equality constraint. Thus, even though there may be a
large number (K) of these problems to solve, each problem is tiny and the entire set can be
solved very quickly. Let D∗

k denote the optimal number of deaths obtained for the kth scenario.
Also, let

rmax
j = max

k
{rk

j }.
This is the maximum allocation under any scenario on day j. We will use it as a constraint in
the least-regret problem below.

5.2. Least-Regret Allocation

As noted above, the least-regret problem is to find a resource allocation schedule that minimizes
the deviation between the optimal number of deaths and the actual number of deaths, averaged
over the posterior predictions. Using a squared error to measure the deviation, we obtain the
following:

minimize 1
2

∑K

k=1(Dk − D∗

k)2 + σ
∑T

j=1 r2
j

r1 . . . rT , D1 . . .DK

subject to:
∑T

j=1 rj ≤ R

rj ≥ 0
rj ≤ rmax

j

Dj
k ≥ hjN

j
k

Dj
k ≥ hjrj + uj(N

j
k − rj)

Dk =
∑T

j=1 Dj
k

(9)

The derivation of the constraint equations above is slightly non-intuitive. In the course of
solving the optimization problems, it becomes necessary to evaluate a broad range of resource
allocation schedules. For some of these schedules, there may be a certain day j when resources
are over-allocated—that is, rj > N j

k for some scenario k. Indeed, the optimal solution may
well over-allocate for some scenarios, yet still be the best overall schedule. In such a case, the
casualties on day j for scenario k are given by

Dj
k =

{

hjN
j
k if rj > N j

k

hjrj + uj(N
j
k − rj) if rj ≤ N j

k

.
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Here Dj
k is the number of people exhibiting symptoms on day j (in scenario k) who will

ultimately die. Such a piecewise-linear expression can lead to a difficult optimization problem.
Instead, we incorporate the daily deaths as a constraint in the optimization problem

Dj
k ≥ hjN

j
k

Dj
k ≥ hjrj + uj(N

j
k − rj)

and evaluate the deaths in a scenario k as the sum of daily deaths, i.e., Dk =
∑T

j=1 Dj
k. A

quick check will show that the first expression will prevail when rj > N j
k and the second

otherwise. We also include a cost of resource allocation σ
∑T

j=1 r2
j in the objective function

(else, in the absence of any penalty for overallocation, the optimization process has no reason
not to allocate all the available resources to alleviate the current attack). Depending upon the
value of σ, one may conserve resources to a lesser or greater degree. This feature may be useful
in several contexts; these are discussed further in Sec. 5.4. The resulting optimization problem
is far larger than the one in Sec. 5.1, but it is a convex quadratic program and thus relatively
easy to solve.

5.3. Results

Now we apply the least-regret formulation to determine a resource allocation schedule given
uncertainty in the characterization of an outbreak. We will consider two circumstances, one in
which the resources are grossly insufficient and another in which they are available in excess.
In both circumstances, we will evaluate the posterior distribution and calculate the resulting
allocation schedule at two points in time during the course of the epidemic.

We simulate an anthrax attack using the approach described in Appendix I. 22384
individuals are infected with a range of doses (average dose: 1470 spores). The first
symptoms appear a day after infection. The (daily) time-series of symptomatics for the
first 10 days is {3, 123, 719, 2046, 2202, 2194, 2058, 1918, 1656}; note that this reflects the
epidemic curve obtained from a population that received a range of doses, as opposed to
a uniform “representative” dose. We then simulate from the joint posterior distribution of
(N, τ, log10(D)), given in Eq. 2, using Markov chain Monte Carlo (MCMC). In particular, we
use a single-component random-walk Metropolis sampler [34]. Convergence of the MCMC
chain was verified by comparing marginal densities for N , τ and log10(D) against those
developed by the VEGAS algorithm. The MCMC chain was thinned, after some burn-in,
to yield M = 100 (N, τ, log10(D)) samples. Each of these samples was used to generate Q = 10
scenarios, resulting in a total of K = 1000 posterior predictive samples. Eq. 7 (Model A2)
was used for the incubation period distribution. We use h0 = 0.45 (5 out of the 11 patients
infected in the 2001 anthrax attacks died [31]) while u0 is set to 0.85 (there were 70 casualties
in Sverdlovsk, while 80 were detected with infection [5,6]). ǫ = 10−6. The posterior distribution
was simulated after 3 days and after 7 days of data. The linear and quadratic programming
problems in Sec. 5.1 and 5.2 were encoded in AMPL [35] and solved using the SNOPT optimization
routine [36]. As described above, we consider conditions of both scarce and excess resources.
The former corresponds to R = 104, less than half of the required amount, while the latter
corresponds to R = 5 × 104, i.e., excess by roughly a factor of two.

In Fig. 13 we plot the resource allocation schedules obtained after 3 days of data (left) and 7
days of data (right). In the upper row, we show the allocation obtained with excess resources,
i.e., R = 5 × 104; in the bottom, we show the allocation with scarce resources, R = 104.
In each of the plots we include an ensemble of posterior predictive scenarios as described
earlier. Overlaid on the scenarios is the average of the optimal allocations, 1

K

∑K

k=1 rk
j , plotted

with a thick solid line. We refer to this as the “average allocation.” The actual evolution of
the outbreak is plotted with triangles. Two least-regret allocation schedules are plotted—one
obtained with σ = 0 (unfilled circles) and one with σ = 20 (filled circles). One can easily show
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Figure 13. Ensemble of epidemic scenarios (gray region) obtained by sampling the posterior
distribution of (N, τ, log10(D)) constructed from 3 days (left) and 7 days (right) of observations. The
average of the optimal allocations (called the “average allocation”) is plotted as an unmarked solid
line. The least-regret allocation calculated with σ = 0 (i.e., no penalty for over-allocation) is plotted
with unfilled circles, while filled circles denote the least-regret allocation with σ = 20. The actual
evolution of the outbreak is plotted using triangles. The number of infected people is N = 22, 384. For
clarity, scenarios in the top and bottom deciles of the ensemble have not been plotted. Top: excess-
resources case, R = 5 × 104. Bottom: scarce-resources case, R = 104. The tendency of the method to
delay the allocation of resources is clearly visible. The top and bottom 5% of the scenarios were not

plotted to reduce clutter in the graphs.
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that as σ increases, the solution is completely dominated by the resource penalty and thus the
solution tends to (

∑

j ujN
j
k −D∗

k)ujN
j
k/(2σ) on day j. For intermediate values of σ, however,

a lowering/flattening of the peak resource allocation schedule can be expected.

When resources are in excess, following 3 days of data (upper-left plot in Fig. 13), the least-
regret allocation schedule with σ = 0 (unfilled circles) essentially envelops the scenarios, up
to a maximum integrated area dictated by R. Since resources are in excess and there is no
penalty for over-allocation, the optimization algorithm tries to accommodate all the scenarios
and succeeds in doing so. When over-allocation is penalized, the least-regret allocation (filled
circles) assigns fewer resources (with respect to the average allocation) in the immediate
future, but more resources later. We also see a perhaps fortuitous similarity between the
average allocation and the actual evolution of the epidemic. In the upper-right plot, we allocate
resources after 7 days of data are available. Due to the more informative posterior, the spread
of scenarios is narrower. Otherwise, the behaviors of the two least-regret allocation schedules
are qualitatively similar to those observed with 3 days of data.

Perhaps more interesting is the bottom row of plots in Fig. 13, which considers the case where
resources are scarce. We see that the average allocation is quite different from the evolution of
the scenarios; on a per-scenario basis, the formulation in Sec. 5.1 seeks to allocate resources
later in time. The least regret allocation (with σ = 0; unfilled circles), however, follows the
trend of the epidemic approximately, systematically under-allocating every day due to scarcity
of resources. Furthermore, with 3 days of data, the schedule assigns no resources to Day 4,
again due to scarcity. When a penalty for allocation is introduced (σ = 20; filled circles)
we see a flattening of allocation schedule in the early epoch, followed by a more generous
allocation later in the epidemic. Also, resources are immediately allocated on Day 4. While
the allocations developed with 3 days of data (bottom left) show a significant discrepancy
between allocation and demand, the performance of the allocation schedule improves as more
data become available. The plot on the bottom right (7 days of data; scarce resources) shows
that the least-regret allocation with σ = 0 is very close to the actual demand, and that the
schedule obtained with σ = 20 is not very far behind.

In Fig. 14 we compare the predicted performance of the least-regret allocation schedules. In
the absence of perfect knowledge of how the epidemic would evolve beyond the current day,
the allocation seeks to guard against the probability of outlier scenarios yielding a large set of
casualties. The overall impact of the two choices of allocation (least-regret versus the simple
average) can be evaluated by considering the number of deaths that occur in each case. These
are plotted as PDFs of casualties in excess of those caused by the optimal allocation for each
scenario, when resources are scarce. The PDFs were calculated empirically via kernel density
estimation from 1000 samples of (Dk − D∗

k) obtained from our scenarios, with allocations
computed with 3 and 7 days of data. The average allocation performs quite poorly, in that
it yields a very broad, long-tailed PDF—indicating a significant probability of extremely bad
outcomes. The least-regret allocations, on the other hand, result in PDFs that are concentrated
at the low end of the scale with fairly compact support, thus reducing the probability of
excess casualties. Introducing the penalty σ > 0 broadens the PDF and slightly increases
the probability of larger casualties; however, it remains smaller than that due to the average
allocation. In Fig. 14 (inset), we plot the PDFs following 7 days of data. They are qualitatively
similar to their 3-day counterparts, except that more information allows a better allocation
of resources, further reducing the probability of excess casualties. Indeed, the support of the
σ = 0 PDF extends only to 40 deaths in excess of the per-scenario optima.

Overall, it appears that the least-regret approach is far more robust and flexible than the
average allocation approach. It better mitigates excess casualties and provides a means of
smoothing allocations while reducing the expected number of deaths.
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Figure 14. PDFs of “excess” casualties—over the per-scenario optimal allocation of resources—when
resources are scarce. Resource allocations were performed using 3 days of data. We see that the average
allocation results in a low but broad PDF, resulting in a significant probability of a large number of
deaths over the optimal number. The least-regret allocation sharpens the PDFs significantly, thus
reducing the probability of an extremely bad outcome. Inset: PDFs of excess casualties after 7 days
of data. Compared to the allocations following 3 days of data, these densities are far sharper and
clustered at a smaller number of excess deaths. The effect of σ > 0 is to widen the range of the PDF,

resulting in a larger expected number of deaths.

5.4. Extensions

The approach described above can be easily extended to accommodate more realistic
constraints. These are discussed in [32], where substantial testing has also been performed.
Extensions include:

Stochastic optimization model. Other optimization models can be considered, including
more standard stochastic optimization with recourse models. In addition, other objective
functions can be formulated. Stochastic optimization models can rapidly become
extremely large, so we will probably be limited to only a few stages. See [32] for
preliminary results on how stochastic optimization may be used with the current
formulation within the context of resource allocation for two time-staggered BT attacks.
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Reuse of resources. Inevitably, a certain percentage of patients who receive treatment will
die, presumably at a particular rate. One can make more realistic use of the resources if
the possibility of resource reuse is taken into account. This constitutes a linear constraint
on the available resources and thus does not change the character of the optimization
problems. Similarly, we did not specifically take into account that a patient arriving on
day j may receive treatment on day j′ > j if the doctors think that this is be best use
of the resources. We do not think that this will have a significant effect on the results.

Multiple attacks. An important situation facing an emergency manager is the possibility
of multiple attacks. Although, from a certain point of view, it is immaterial whether a
life is saved in the first target or the second, there may be “social” constraints dictating
that both attack sites must get a proportional amount of the resources. One can devise
an “equilibration of pain” constraint that allows such an allocation. This constraint is
also linear and requires that the relative number of infected people treated at each target
should be approximately the same. Recall that the use of the parameter σ in the objective
function of Eq. 9 can be used in several ways. For example, although it could be used
to model a logistics constraint, it could also be used to limit the allocations in the first
attack as a hedge against a subsequent attack. Our results show immediately what the
effect of such a strategy would be on the total number of expected deaths.

Shipping delays. It is easy to constrain the optimal resource allocation problem (Sec. 5.1) so
that shipped resources reach the target after a fixed delay. In fact, the general resource
allocation problem, studied extensively in the operations research literature, can handle
multiple sources of resource and multiple destinations, each with different costs and times
of delivery. These problems are typically linear programming problems and can also be
easily solved and used within our least-regret framework.

Effect of delayed prophylaxis One could also include the effect of delaying the treatment
of patients, i.e., treating patients showing symptoms on day j on day j + 1 because of
a lack of resources. This requires a model for the (reduced) chances of recovery, given a
delay in treatment, created, perhaps, based on the discussion and data in [37].

6. Conclusions

We have developed a Bayesian approach to characterize BT attacks from a time series of
diagnosed patients. Our tests with anthrax show that an observation period of 3–5 days may
be sufficient to estimate the number of asymptomatic infected people, the time of infection, and
a representative dose, and to provide quantified uncertainty intervals around these estimates.
Note that since the data consist of the times of symptoms of diagnosed patients, the inference
can be performed only after the first patient is successfully diagnosed. Sensitivity studies
suggest that when the disease model is not accurate, we may arrive within a factor of two
of the size of the attack. The resolution of the time series of diagnosed patients has a small
impact if the disease model is accurate; otherwise, model errors dominate.

This Bayesian approach may be extended and improved in many ways. One extension is
to include hospital visit delay times in the analysis. While we have used the time at which
each patient became symptomatic to demonstrate our method, existing medical informatics
systems typically record the time of clinical encounter instead. The difference between the
two—the hospital visit delay—can be modeled in a Bayesian manner (see [38] for a model
of the hospital visit delay for inhalational anthrax) and included in the analysis. This would
capture the effect of the patients who have turned symptomatic, but have not yet reported
to the hospitals, on the inferred quantities. However, it would introduce an additional source
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of variability and require further sensitivity analysis. Improved medical informatics systems
that capture the time of symptoms would make our methodology more useful, eliminating the
variability introduced by hospital visit delays. A second source of delay — the time required to
perform tests, etc., that lead to a confirmed diagnosis — can be another source of uncertainty,
but could be modeled in a manner similar to the hospital visit delay and included in the
inference procedure. Another potential shortcoming of our approach is our inability to infer a
distribution of doses (commensurate with a spatially distributed population and atmospheric
dispersion); instead we rely on inferring a representative dose. However, the impact of this
“shortcoming” on the accuracy of the inference is unclear; the tests performed by Legrand
et al. [22] between their spatiotemporal inference technique (which, of course, included a fully
spatially distributed dosage pattern) and an older, single-representative-dose version of our
current approach [23] revealed no major differences in the quality of the inference. However,
unlike [22], our purely temporal approach cannot infer certain, mostly spatial, characteristics
of an aerosolized BT attack, e.g., the location and height of a release.

The ability to “fuse” disparate sources of data via prior distributions contributes significantly
to the robustness of Bayesian inference in data-starved environments. Informative prior
distributions for N and τ , drawn from syndromic surveillance data, may increase the efficiency
of the inference process. Also, the present approach can immediately be applied to other
noncontagious diseases, as well as to contagious diseases with long incubation periods, such
as smallpox, where secondary cases do not appear in the early time series of patient data. If
secondary cases are included, one could extend the current formulation into a non-stationary
Bayesian inference problem on a social/transportation network.

The importance of quantitatively characterizing a BT attack was explicitly identified in the
“Dark Winter” exercise [3]. (“Dark Winter” was a war-game/table-top exercise conducted in
2001 to assess the ability of key decision makers, e.g., the President of the United States, etc., to
respond to a smallpox BT attack. Participants included, among others, The Hon. Sam Nunn,
the former senator, The Hon. R. James Woolsey, the former Director of the Central Intelligence
Agency and General J. Titelli (U.S.A, retd). The “lessons learned” section of [3] lists the
information gaps that the participants faced when formulating the response to the ensuing
epidemic. (Estimates of the size of the problem at hand are often crucial in choosing between
competing response strategies, and this exercise was no exception.) Participants sought the
ability “. . . to immediately predict the likely size of the epidemic on the basis of the initial
cases; to know how many people were exposed.” Thus the primary utility of our inference
procedure is in the context of a response plan, especially when resources have to be husbanded
and used carefully (e.g., if more attacks are feared). To this end, we have demonstrated how
a probabilistic characterization—capturing the inevitable uncertainties in the severity and
timing of a BT attack—can guide the optimal allocation of scarce resources. Preliminary
results on how a similar approach can be used within the context of multiple attacks can
be found in [32]. Since our inference methodology is purely temporal, data requirements are
simple, thus reducing the opportunities for introducing significant measurement errors. For
example, a spatiotemporal approach would require the geographical location of each patient at

the instant of infection; in a mobile population, locations can be a significant source of error
since a detailed movement schedule of the infected patients is rarely available. In the absence
of such data, the location may be modeled probabilistically, and results from preliminary
work by the BARD group can be found in [39, 40]. The same technique was also used by
Legrand et al. [22] in their investigation into the spatiotemporal inference of BT attacks. A
discussion of the ambiguities and difficulties introduced by location data, within the context
of the Sverdlovsk outbreak, can be found in [30, 41]. Certainly a spatiotemporal approach,
correctly applied, has the potential to uncover more information (e.g., spatial information,
which can be critical for prioritizing prophylaxis [22], decontamination, etc.) from a partially
observed epidemic, but the simpler temporal approach considered here may constitute a more
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robust and practical tool for early response and resource allocation.
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APPENDIX

I. Methodology for Obtaining a Dose Distribution Consistent with Atmospheric Dispersion
over a Geographically Distributed Population

The spatial distribution of dosages due to atmospheric release of an aerosol can be modeled using a
simple Gaussian plume model [21]. An atmospheric release typically occurs over a domain with a non-
uniform population distribution; we can combine the plume model with the population distribution
to calculate the number of people exposed to a given dose. In this section, we describe a simple way
to obtain such a population-dosage distribution.

We consider a square domain, L km on each side; in this study, L = 10 km. The domain is divided
into N blocks per side; here N = 100. 25 population clusters are chosen in the form of Gaussian
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kernels A exp(−r2/R2), where r2 = |x − x0|2. The strength of the kernel A, its center x0, and its
length scale R are randomly sampled from independent uniform distributions. The population density
in any block, with its center at x, is a sum of the strengths of all the 25 kernels. The strengths of
the kernels are scaled to obtain a total population (in the domain) of Pdomain. The population in
a given block is obtained by multiplying the population density with the block area. This creates a
geographically distributed population.

The number of people exposed (i.e., who inhaled the aerosol, but may or may not develop symptoms)
and infected (i.e., who will develop symptoms) is dependent on the location and size of the release and
direction of the wind. We release 1013 spores at the origin, at a height of 100 meters. A wind speed of
4 m/s and a Pasquill stability class of “B” are assumed. Pasquill stability classes indicate atmospheric
stability; class B indicates a moderately unstable atmosphere with strong daytime insolation. Details
of Pasquill stability classes and atmospheric dispersion are in [21]. In our study, wind directions are
measured in degrees from due north; that is, a wind direction of zero degrees is a wind from due north,
90 degrees is a wind from the west, and a direction of 180 degrees is a wind from due south. The
release is assumed to be an explosive point release, and the concentration of the aerosol at any point
(x, y) on the ground and any time t is given by [21]

χ(x, y, t) =
2QT

(2π)3/2σx′σy′σz′

exp
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where (x′, y′) are Cartesian coordinates in a frame of reference where the x′-axis is aligned with the
wind. σx′ , σy′ and σz′ are coefficients dependent on x′ and on the Pasquill stability class. H is the
height of release and χ is the concentration of the aerosol in spores per unit volume. u is the wind
velocity. QT is the total number of spores released. The relation between x

′ and x is given by
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where θ is the wind direction. Assuming a breathing rate β of 30 liters a minute, one can obtain an
expression for the number of spores inhaled per unit time. Integrating to infinite time, one obtains
the total number of spores D inhaled by a person positioned at (x, y) (or at (x′, y′)):

D =
QT β
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The dosage assigned to a given block is decided by the location of its center. If we choose Model A2 to
simulate the BT attack, we use Glassman’s formula to model the probability a of showing symptoms
(in infinite time) given a dosage D [16]:

a(D) =
1
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»

1 + erf
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S
√

2

«–

(11)

where D0 = 8600 spores and S = 3.44. These correspond to a human ID50 of 8600 spores and a probit
slope of 0.67 [15, 16]. If Model D is chosen instead, we employ Eq. 5 to determine the probability of
infection given a dose D. Since the population in a block is known, we can then use the probability of
infection to calculate the number of people in the block who will proceed to develop symptoms over
time, per the incubation period model.

In this study, we use Pdomain = 3 × 106 and two plume directions, θ = 170◦ and 125◦. The two
releases result in, respectively, 686,068 and 1,869,741 exposed individuals, i.e., individuals who have
received a dose of one spore or more. The maximum doses observed in the two cases are 30,877 and
314,053 respectively. The dose range is divided into 100 equal bins and a histogram of the number
of people in each bin is developed for each of the cases. The histogram is then normalized to obtain
the “exposure” PDF, i.e, the PDF of the dose received by an individual in the exposed population.
Given the large population (Pdomain = 3 × 106), the PDF developed from a histogram with 100 bins
is quite smooth. Note that only a fraction of the exposed population will develop symptoms, with
an individual’s probability of being infected (and subsequently developing symptoms) being given by
Glassman’s relation (Eq. 11) or Eq. 5.

The “exposure” PDFs developed for θ = 170◦ and 125◦ are then used to sample from a smaller
exposed population of pexposed for each of the tests. Values of pexposed and θ used for the different cases
are in Table VII. Each exposed individual is then allowed to become infected with a dose-dependent
probability. The resulting infected sub-population yields the final dose distribution.
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Figure 15. Dosage plumes plotted over the population distribution for θ = 170◦ (left) and 125◦ (right).
We see on the right that the extremities of the plume extend into a high population density region.
Population density is measured in number of people per square kilometer. Thus we may expect a

substantial number of high-dosage cases, resulting in a higher average dosage D.

Table VII. The wind direction, θ, and the size of the exposed population, pexposed, used to generate the
infected population in various attacks. For Cases I, Ia, II, and IIa, Eq. 11 is used for the probability

of infection, while for Cases III, IIIa, IV, and IVa, Eq. 5 is used.

pexposed = 103 pexposed = 104

θ = 170◦ Case Ia, Case IIIa Case I, Case III
θ = 125◦ Case II, Case IV Case IIa, Case IVa

Dose distributions resulting from this process, for all the cases (viz. Cases Ia, I, II, IIa, IIIa, III, IVa
and IV) are depicted in Fig. 16. We plot the inverse CDF of doses—i.e., the abscissa is the fraction
of the infected population which receives a dose less than or equal to the ordinate. In each inset, we
also plot a histogram of the dose distribution. Note that while the doses may easily span two orders
of magnitude, about 80% of the infected people lie within a one-decade range.
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Figure 16. The inverse cumulative distribution of doses for Cases Ia, I, II, and IIa (left column) and
Cases IIIa, III, IV, IVa (right column). The abscissa is the fraction of the infected population which
receives a dose less than or equal to the ordinate. Inset: we plot histograms containing the number
of infected people in each dose bin. While the histograms have long tails, the bulk of the population

receives doses spanning one order of magnitude..
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