
SANDIA REPORT
SAND2017-5953
Unlimited Release
Printed June, 2017

Optimizing the Performance of
Sparse-Matrix Vector Products on
Next-Generation Processors
S.D. Hammond and C.R. Trott
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM, 87185

{sdhammo, crtrott}@sandia.gov

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy?s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2017-5953
Unlimited Release
Printed June, 2017

Optimizing the Performance of Sparse-Matrix Vector Products on

Next-Generation Processors

S.D. Hammond and C.R. Trott
MS 1318

Center for Computing Research
Sandia National Laboratories
Albuquerque, NM, 87185-1318

{sdhammo, crtrott}@sandia.gov

Matrix-vector products are ubiquitous in high-performance scientific applications and have a growing set of
occurances in advanced data analysis activities. Achieving high performance for these kernels is therefore
paramount, in part, because these operations can consume vast amounts of application execution time.

In this report we document the development of several sparse-matrix vector product kernel implementa-
tions using a variety of programming models and approaches. Each kernel is run on a broad set of matrices
selected to demonstrate the wide variety of matrix structure and sparsity that is possible with a single,
generic kernel. For benchmarking and performance analysis, we utilize leading computing architectures for
the NNSA/ASC program including Intel’s Knights Landing processor and IBM’s POWER8.

3

Acknowledgment

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

The machines used in this report for benchmarking and performance analysis are provided for research
evaluation by Sandia’s NNSA/ASC Advanced Architecture Test Bed project. We are very grateful to the
system admins and support team for their help in making this hardware available for benchmarking.

4

Contents

1 Optimizing the Performance of Sparse-Matrix Vector Products on Next-Generation Pro-
cessors 7

1.1 Background . 7

1.2 Implementation of CSR-SpMV Operations . 8

1.2.1 Base Implementation . 8

1.2.2 Direct OpenMP with Static Thread Scheduling . 9

1.2.3 Direct OpenMP with Dynamic Thread Scheduling . 9

1.2.4 Base Kokkos Implementation (Dynamic Execution Policy) . 9

1.2.5 Intel Math-Kernel Library (MKL) . 10

1.2.6 Direct OpenMP with Non-Zero Load Balancing Structure Detection 10

1.2.7 Kokkos with Non-Zero Load Balancing Structure Detection . 10

2 Case Study: Benchmarking SpMV Implementation Performance on Next-Generation
Processors 11

2.1 Hardware Resources . 11

2.1.1 Intel Xeon Phi 7250 (Knights Landing) Processor . 11

2.1.2 IBM POWER8 Processor . 11

2.2 Performance Metrics . 12

2.3 Performance Comparison . 12

3 Conclusion 14

4 Results from Intel Xeon Phi 7250 (Knights Landing) Processor (DDR4 Only) 15

5 Results from Intel Xeon Phi 7250 (Knights Landing) Processor (Cache Memory Mode) 17

6 Results from Intel Xeon Phi 7250 (Knights Landing) Processor (HBM Only) 20

7 Results from IBM POWER8 22

5

6

Chapter 1

Optimizing the Performance of
Sparse-Matrix Vector Products on
Next-Generation Processors

1.1 Background

Matrix-vector products are ubiquitous in high-performance scientific applications. In fact, many of the
earliest use of proto-computers were dedicated to the solution of systems of equations using these primitive
computational kernels. Most recently, the use of matrix-vector linear algebra primitives has been prevelent
in the domain of data analytics and machine learning – perhaps now the fastest growing sub-domain of high
performance computing.

The representation of matrices, and indeed vectors, can take many forms [4, 7, 8, 9]. The most natural,
although expensive form, is a dense representation in which every matrix element is represented by a stored
value. For applications that are relevant to Sandia, for instance, structural analysis, systems modeling,
radiation solvers, computation-fluid dynamics (CFD) etc., a high to very high proportion of these values are
represented by zeros. Encoding them into a dense formulation is wasteful and can consume vast amounts of
memory. It is not uncommon for non-zero terms to be present in much less than 1% of the matrix for problems
of interest. With this in mind, considerable attention has been paid to the design of efficient representation
of sparse matrices in which only non-zero values are stored, reducing memory consumption and improving
computation performance by focusing mathematical operations on only non-zero terms. Alternatives to
the use of fully sparse matrices, can also include block-based definitions which optimize element access and
operations for well defined block structures in the matrix, or, vector-based sparse matrices which optimize
for the storage of non-zero values commensurate with the use of structures to efficiently load and compute
over the elements in vector-processors.

Application codes and mathematics libraries, in particular, the Trilinos solver project [6], have settled
on the use of Compressed-Row Storage (CRS) format matrices over time, although, specialized use cases
for other formats do appear in many routines. In this format a sparse matrix is defined by an array of
coefficients, most commonly stored in IEEE 64-bit floating point format, an array of integer values which
represent column indices and an array of row offsets which define the start and end of a row. Sparse-matrix
vector products are executed by iterating over these arrays one row at a time, then performing iteration
through each of the elements found in a row. Parallelism can be added by breaking the execution over rows
into a discrete set of rows per executing thread.

Our benchmarking of SpMV routines within Sandia’s application portfolio has shown extensive use of
SpMV operations over CSR matrices with as much as 90% of the execution time being spent in this class of
routine. Common cases show that between 40-60% of complete application execution time is spent in SpMV
depending on domain area. With such a significant amount of time being spent in this class of operation,
it will come as no surprise to the reader that considerable effort has therefore been spent on analyzing the
behavior of these kernels and optimizing them for each computing platform of interest.

7

During 2016, anecdotal reports appeared in Sandia’s Center for Computing Research that the SpMV
operations provided by the Kokkos [5] and TPetra kernel [1] packages were operating slower than expected.
The kernels in use were written to utilize dynamic execution over rows such that threads would execute their
local allocation of rows and then attempt to steal any additional work from other threads when complete.
Dynamic execution was used because of a belief that the potentially random structure which any call to
sparse-matrix vector productions could present would cause load imbalance over the executing threads. For
instance, a single very dense row would require much longer to compute that a particularly sparse row.
Since the sparsity of the rows is potentially random and diverse, a dynamic execution in theory provides an
attempt to prevent load imbalance from underutilizing some threads.

In this Sandia technical report we show that, for next-generation processors, this design choice does in fact
make little sense since the use of dynamic execution can provide considerable overhead. The static structure
of the CRS matrix for the duration of the SpMV call presents, instead, an opportunity to utilize a simple static
load balance and have the threads use this work schedule to execute efficiently. This can significantly reduce
the overheads associated with SpMV execution while continuing to insulate the caller from experiencing
underutilization of the compute resources. We compare this approach to the prior dynamic execution kernel
from Kokkos (which was in turn used by TPetra), to several other implementations, including, the use
of a purely static, naive partition of rows over threads, the use of OpenMP [2] dynamic execution and
the use of a simple structure analyzing dispatch written in both Kokkos and direct OpenMP. The structure
analyzing kernel written directly in OpenMP provides the best possible performance, up to 9X over that of the
original kernel – a significant improvement on a kernel which is traditionally regarded as memory bandwidth
bound. This implementation with small modifications has subsequently been accepted for deployment in
the new KokkosKernels subpackage of Trilinos that will provide mathematical primitives for next-generation
computing platforms.

The remainder of this report is laid out as follows: the rest of Chapter 1 is dedicated to discussion of
SpMV implementations using a variety of programming models and libraries of interest to Sandia. In Chapter
2, we present benchmarking results from next-generation Intel Knights Landing (KNL) and IBM POWER8
processors. We conclude in Chapter 3 with a short review of the report. Additional data chapters/appendices
are provided for the reader to record the performance which has been achieved.

1.2 Implementation of CSR-SpMV Operations

1.2.1 Base Implementation

Listing 1.1. Base Implementation of a Sparse Matrix Vector Product

1 for(int row = 0; row < n; ++row) {

2 double sum = beta*ycoefs[row];

3

4 for(int i = matrixRowOffsets[row]; i < matrixRowOffsets[row+1]; ++i) {

5 sum += matrixCoefs[i]*xCoefs[matrixCols[i]];

6 }

7

8 yCoefs[row] = sum;

9 }

The base implementation of a sparse-matrix vector product using a CRS matrix is shown above. In this
implementation the code iterates over the rows the matrix in turn, processing the matrix-elements of each
row in the inner loop. The sparsity of the CRS definition can be seen in the use of the matrixCols array to
provide indirect access to the coefficients of the x vector. No parallelization is provided in this example but
we use this basic kernel defintion as the foundation for the implementations that follow.

8

The performance expectation of this implementation is that for each matrix coefficient that we plan
to process (each non-zero of the CRS matrix), we must load a minimum of 4-bytes for each column entry
and 8-bytes for each matrix coefficient. There is no reuse of the matrix elements ensuring we must load at
least 12-bytes for every non-zero entry in the matrix from memory. We may also need to load a further
8-bytes for each coefficient of the x vector however, such values may also be cached because in the case
where subsequent rows hit the same locations in the vector. It is not uncommon to find such behavior in
matrices which are diagonally dominant meaning we may load only a small number of new values for each
row and reuse them in subsequent rows. This observation provides a rough guidance that at a minimum
we will load 12-bytes from memory in order to calculate two floating-point operations (a multiply and an
addition which may be implemented in a single fused-multiply-add (FMA) operation). In the case where we
load the x values from memory this adds an additional 8-bytes, giving a total of 20-bytes per 2 floating-point
operations. This gives a bound of between 6 and 10-bytes per mathematical operation which far exceeds the
capability of modern memory systems. These are typically designed to provide in the order of 0.1 to 0.5 bytes
of memory bandwidth per floating-point operation of the processor. For this reason, we typically thing of
SpMV product performance as being heavily correlated with memory subsystem performance. It is important
for us to ensure strong streaming capability to maximize memory bandwidth (allowing prefetchers to stream
data from memory) which is achieved by having each processor core executing the operations above perform
the longest sequence which is possible – i.e. that when a processor executes the row j, it also performs the
operations for j + 1 subject to all processor cores executing roughly equivalent work. This observation will
become important later in our discussion.

1.2.2 Direct OpenMP with Static Thread Scheduling

In Section 1.2.1 we implemented a basic serial SpMV multiplication kernel. In this kernel updates to the y

vector are all independent by virtue of the fact the kernel processes each row independently. Since there is
no dependency between each row in this kernel, a naive parallel implementation can be formed by applying
an OpenMP parallel-for clause ahead of the outer for-loop (than iterates over rows). This creates a
parallel kernel which utilizes vendor-defined scheduling of iterations to threads. In all cases we have used,
this equates to a static decomposition of rows to threads in which the runtime takes the maximum number
of iterations (in this case rows of the matrix) and as close to evenly as possible divides these over executing
threads. The theory is that this creates approximately equal amounts of work which would be the case
if every row in this SpMV kernel had the same number of non-zero entries, however, due to the unknown
sparsity pattern of the CRS matrix being used, this cannot be guaranteed.

1.2.3 Direct OpenMP with Dynamic Thread Scheduling

An alternative to static scheduling (evenly dividing work over executing threads) is to form a series of work
chunks – in this case chunks of rows to be calculated over – and allow the threads to dynamically grab
a chunk to work on. This policy is implemented in our study by using the same OpenMP parallel-for

construct as with static scheduling but, instead, forcing the use of a dynamic work schedule. OpenMP-
compliant compilers provide this as part of their standard implementation. This may have the effect of
causing contention around the work queue and breaking the strong linear pattern for prefetchers which we
would like to see to improve memory bandwidth.

1.2.4 Base Kokkos Implementation (Dynamic Execution Policy)

The base Kokkos implementation used for this work provides a similar strategy – using dynamic work
allocation but instead perform a rough static scheduling of work chunks to executing threads so that they
can benefit from the near linear ordering of work items for as long as possible. Once each threads local work

9

is complete, they are free to steal work from neighboring threads. The Kokkos dynamic execution policy is
a custom implementation and does not call into the standard OpenMP dynamic schedule.

1.2.5 Intel Math-Kernel Library (MKL)

Intel provide the Math-Kernel Library (MKL) for use on X86-based processors. The MKL was initially
started as a collection of heavily optimized BLAS and LAPACK routines which provided superior math
primitives on Intel’s hardware. Since the initial released, the MKL has team has gradually added sparse
matrix support along since the traditional dense matrix/vector support found in BLAS and LAPACK. In
this report we utilize the Intel CRS sparse-matrix support and benchmark its performance.

1.2.6 Direct OpenMP with Non-Zero Load Balancing Structure Detection

In this implementation, we take a more aggressive approach to optimizing SpMV execution. Because the
structure of the matrix is easily discoverable and static for the duration of each SpMV call – and is very often
static for a large number of calls to SpMV in iterative solvers – we can perform a static load balancing of
work to threads using a custom function. Our custom balancer scans each row in the matrix and then decides
to allocate an approximately even number of non-zeros to each thread subject to the use of complete rows,
i.e. the work is allocated to threads in linear groups of rows so that each is given roughly the equivalent
number of non-zeros to process. This may mean parts of the matrix with denser rows will result in an
individual thread receiving fewer rows to execute but still roughly the same number of non-zeros. Since it is
the presence of non-zeros in the matrix that cause load imbalance, our approach should reduce thread idling
while ensuring that each thread maximizes the prefetching and linear-flow of the rows it is processing. Since
the work is statically mapped to threads there is no work stealing performed and no centralized work queue
at which contention can form relieving one of the main bottlenecks associated with dynamic execution. We
choose to make this implementation directly in OpenMP bypassing the use of Kokkos execution dispatch.

1.2.7 Kokkos with Non-Zero Load Balancing Structure Detection

In this version we take the OpenMP non-zero balanced version described above and perform a re-implementation
using Kokkos to control execution dispatch.

10

Chapter 2

Case Study: Benchmarking SpMV
Implementation Performance on
Next-Generation Processors

2.1 Hardware Resources

2.1.1 Intel Xeon Phi 7250 (Knights Landing) Processor

We utilize the Intel Xeon Phi 7250 (Knights Landing) many-core processor which is currently being installed
on the NNSA/ASC Trinity Advanced Technology System (ATS). This processor is the first in Intel’s Xeon
Phi to be self-hosted (i.e. it does not require an accompanying Xeon processor to load or manage the op-
erating system). It comprises of 34 dual-core ‘tiles’, each of which holds two, quad-hyperthreaded processor
cores connected to the interprocessor mesh network-on-chip via a 1MB shared L2 cache. The processor
cores operate at 1.4GHz in standard operation but drop to 1.2GHz when frequent dense vectorized math-
ematics operations are used to avoid thermal overload. The on-chip fabric operates at 1.7GHz to ensure
low-latency/high bandwidth inter-core communication. Each Knights Landing in use on Trinity provides
96GB of DDR4 main system memory arranged as 6 channels of 16GB. An additional 16GB of on-package
high-bandwidth MC-DRAM memory is provided that can yield over 5X more bandwidth but at a smaller
capacity. We typically use the term high-bandwidth memory (HBM) and MC-DRAM interchangeably to
refer to this memory store. The HBM can be used for direct memory allocation via specialized memory
allocation functions or, alternatively, as a cache for the DDR4 when booted into this special mode during
BIOS initialization.

For compilation of our codes we use the Intel 17 Update 1 compiler with -O3 -xMIC-AVX512 -fopenmp

optimization/code generation flags. Results reported with MKL are using the mathematics library that ship
with this compiler from Intel.

2.1.2 IBM POWER8 Processor

Sandia was the first DOE laboratory to deploy IBM’s POWER8 processor. Since its initial release several
variants of the design have been made available with tuning to suit slightly different markets and design
points. For this study, we make use of the latest IBM design for High Performance Computing – the
IBM S822LC. Each node comprises of two 8-core POWER8 designs running at a maximum frequency of
3.25GHz. The cores of the POWER8 are 8-way SMT giving the appearance of 64 hardware threads per
socket. There is a 512kB and 8MB L2 and L3 cache respectively per core and 64MB of shared L4 cache
per socket. Considerable off chip bandwidth is available to on-board Centar memory buffer chips that
orchestrate memory transactions to improve bandwidths and latencies. While the latest S822LC nodes at
Sandia feature 2 NVIDIA P100 GPUs per socket, connected via NVIDIA NVLINK high performance GPU
connection fabric, this study focuses solely on the performance offered by the IBM POWER8 processor. To

11

mitigate the effect of high NUMA effects between sockets, our benchmarking is limited to a single socket
as would be the case when running a single MPI rank per socket and utilizing explicit messaging passing
between sockets on the node and to further ranks off-node. We argue this is the fairest benchmarking of the
processor and the most representative of how our codes would use this hardware in a production setting.

For compilation of the benchmarks on POWER8 we use the GCC 5.4.0 compiler with -O3 -mcpu=power8

mtune=power8 -fopenmp optimization and code generation flags. MKL is not available on this platform so
results are not provided.

2.2 Performance Metrics

Historically we have compared the performance of processor designs using a floating-point operations per-
second metric (commonly referenced as GFLOP/s, TFLOP/s etc.). For each matrix element we count two
floating-point operations, the basic multiply of the element against the vector and then a floating-point
addition to add the contribution to the running sum.

2.3 Performance Comparison

Node Kokkos OMP-Stat OMP-Dyn OMP-NNZ Kok-NNZ MKL TPetra
KNL-DDR4 9.83 12.18 0.80 12.70 10.60 5.43 5.52
KNL-Cache 17.17 19.17 0.85 19.87 17.54 6.33 12.53
KNL-HBM 17.00 19.13 0.86 20.13 17.66 6.28 12.34
POWER8 7.29 8.67 0.79 10.17 7.97 N/A N/A

Table 2.1. Benchmarked SpMV Performance in GFLOP/s averaged
over the selected Sparse-Matrices from the University of Florida collec-
tion [3] and Sandia codes

Node Kokkos OMP-Stat OMP-Dyn OMP-NNZ Kok-NNZ MKL TPetra
KNL-DDR4 1.00 1.24 0.08 1.29 1.08 0.55 0.56
KNL-Cache 1.00 1.12 0.05 1.16 1.02 0.37 0.73
KNL-HBM 1.00 1.13 0.05 1.18 1.04 0.37 0.73
POWER8 1.00 1.19 0.11 1.40 1.09 N/A N/A

Table 2.2. Averaged Benchmarked SpMV Performance Speedup for
the selected Sparse-Matrices from the University of Florida [3] collection
and Sandia codes

Tables 2.1 and 2.2 present the benchmarked SpMV kernel performance from each of our implementations.
In the former we present the mean GFLOP/s achieved by matrix. For each matrix we benchmark the run
10 times and take the harmonic mean as the benchmark reports the computational rate. In the second
table we present an alternative view of the data as the speedup achieved. Note that the baseline for this
is the optimized Kokkos implementation which utilizes dynamic execution. For the KNL we show the
performance/speedup relative to the pre-existing TPetra implementation, noting that the inspection-based
implementation achieve in excess of 2X correlating with the reports of slow computational performance of
the existing kernels. We note that the fatest implementation is the kernel written directly in OpenMP (not

12

using Kokkos) which uses the static non-zero load balancing method. We attribute the use of OpenMP to
enabling additional optimization for the source code which is obscured by the use of the Kokkos abstraction
layers.

13

Chapter 3

Conclusion

Sparse-Matrix vector products occupy a significant number of the computing cycles at leading HPC cen-
ters such as Sandia National Laboratories. They are a vital component in solving complex scientific and
engineering problems, and have a growing place in large-scale data analytics calculations.

In this report we have provided benchmarked performance results for several implementations of the
basic SpMV algorithm. The motivation for this study was anecdotal reports of slower than expected kernel
performance which, this report shows, were indeed slower than some alternatives.

The conclusion of our report is that higher performance alternatives are available. As a result of this
work the optimized OpenMP non-zero balancing kernel has been adopted in the forthcoming Kokkos-Kernels
package being developed for mathematic primitives in the Trilinos framework. This kernel will provide high
performance for future releases of Trilinos that are being integrated into our production application portfolio.
We look forward to the reevaluation of solver performance once these newer kernels are successfully integrated.

14

Chapter 4

Results from Intel Xeon Phi 7250
(Knights Landing) Processor (DDR4
Only)

KK TPETRA MKL OMP-DYN OMP-STAT OMP-INSP KK-INSP
Andrews Andrews 9.91 5.65 3.6 0.37 12.39 12.45 11.02
ANSYS Delor64K 18.42 6.88 4.79 0.28 24.24 16.96 13.02
Bai olm2000 0.49 0.1 0.56 0.08 0.97 1 0.69
Bai rbsb480 1.47 0.27 1.19 0.42 1.73 1.9 1.34
Boeing bcsstk39 41.19 14.55 10.49 1.32 54.89 50.74 45.96
Boeing bcsstm34 2.14 0.38 1.53 0.54 3.01 3.07 2.18
Boeing crystm01 7.48 1.57 5.29 0.56 10.94 10.96 7.68
Boeing crystm02 17.61 4.45 10.54 0.64 24.78 24 17.53
Boeing crystm03 23.71 7.33 11.57 0.68 34.06 32.15 24.83
Boeing ct20stif 21.71 11.72 10.02 1.51 22.43 27.65 24.87
Boeing pwtk 11.11 11.16 11.52 1.38 11.9 12.1 11.07
Bourchtein atmosmodl 8.15 8.06 8.68 0.18 8.65 8.77 8.25
Bova rma10 19.05 12.4 8.58 1.5 24.33 41.69 27.69
Brethour coater1 1.6 0.29 1.2 0.27 2.4 2.31 1.66
Brethour coater2 13.38 2.98 8.38 0.6 18.56 18.35 13.41
DIMACS10 id2010 11.61 5.27 4.13 0.12 16.21 15.28 12.07
DIMACS10 italy osm 4.65 4.75 2.32 0.05 4.3 4.3 4.72
DIMACS10 ne2010 12.54 6.82 4.45 0.12 16.87 16.71 12.92
DIMACS10 road central 2.73 2.77 1.36 0.06 2.61 2.6 2.63
DIMACS10 vsp vibrobox scagr7-2c rlfddd 2.7 3.61 1.05 0.33 3.07 9.97 9.36
DNVS m t1 12.32 11.39 11.33 2.75 12.61 12.72 12.54
DNVS shipsec1 12.09 10.99 11.3 1.5 12.28 12.52 12.29
Dziekonski dielFilterV2real 10.58 10.67 6.17 1.10 10.13 10.72 10.62
FIDAP ex1 0.39 0.06 0.32 0.13 0.52 0.5 0.39
FIDAP ex10 4.55 0.82 3.38 0.52 6.38 6.41 4.61
FIDAP ex11 40.4 11.47 9.85 1.86 56.86 55.95 44.16
FIDAP ex15 6.81 1.42 4.49 0.39 9.99 10.13 6.99
FIDAP ex18 4.78 1.03 3.71 0.32 7.6 7.18 5.4
FIDAP ex25 2.12 0.39 1.7 0.46 3.03 3.01 2.18
Fluorem HV15R 11.81 11.76 11.19 3.99 11.66 11.87 11.87
Freescale memchip 6.88 7.01 3.5 0.14 5.93 5.52 7.31
GHS indef blockqp1 1.61 0.93 1.43 0.31 1.66 6.79 7.53
GHS indef bmw3 2 11.19 11.09 11.37 1.19 12 12.02 10.97
GHS indef brainpc2 2.43 1.03 1.9 0.18 2.76 6.73 6.22
GHS indef ncvxqp7 12.14 5.12 4.19 0.19 15 11.5 8.82
GHS psdef audikw 1 11.31 11.26 5.49 1.99 10.20 11.37 11.29
GHS psdef bmwcra 1 11.52 11.33 11.75 1.93 12.44 12.56 11.33
GHS psdef inline 1 10.77 10.66 5.93 1.94 9.62 10.94 10.78
GHS psdef ldoor 11.58 11.44 10.51 1.21 11.56 11.76 11.57
GHS psdef s3dkq4m2 12.98 10.98 11.46 1.41 13.85 13.94 13.46
GHS psdef wathen100 19.79 5.69 10.13 0.45 28.22 26.44 20.04
GHS psdef wathen120 20.28 6.9 10.21 0.45 30.53 28.49 21.59
Grund bayer04 7.82 2.16 5.22 0.22 12.12 5.78 4.34

15

Hamm bcircuit 9.6 3.91 3.84 0.16 14.17 14.04 10.69
Hamm hcircuit 8.92 4.94 2.78 0.14 11.39 11.97 8.80
HB bcsstk02 0.4 0.06 0.22 0.16 0.55 0.56 0.4
HB bcsstk13 6.38 1.25 4.53 0.91 9.59 9.53 6.75
HB lnsp 131 0.03 0 0.03 0.01 0.06 0.07 0.05
HB lnsp 511 0.2 0.04 0.2 0.06 0.35 0.36 0.25
HB mbeacxc 3.42 0.76 2.53 1.23 4.37 5.3 3.61
HB mbeaflw 3.41 0.75 2.54 1.23 4.3 5.3 3.62
HB orani678 4.03 1.14 2.56 0.82 5.56 5.46 3.84
Hollinger mark3jac020 3.89 0.75 2.57 0.16 5.56 5.66 4.10
IBM dc1 1.81 1.22 1.38 0.16 1.67 3.43 3.65
IBM EDA ckt11752 dc 1 8.48 3.39 4.11 0.19 12.34 10 7.75
IBM EDA trans4 1.81 1.22 1.39 0.15 1.67 3.44 3.6
IPSO TSC OPF 300 6.05 3.43 4.56 2.27 6.48 26.55 20.82
Janna Fault 639 10.27 10.27 10.69 1.19 10.52 10.54 10.24
Janna Hook 1498 11.27 11.21 11.21 1.02 11.37 11.39 11.23
Janna StocF-1465 9.80 9.74 9.44 0.39 10.03 7.64 9.45
JGD Homology m133-b3 8.76 5.92 3.78 0.1 13.75 13.33 10.19
JGD Homology n3c6-b7 3.92 0.71 2.92 0.21 5.62 5.29 3.98
JGD Homology n4c6-b6 16.49 7.28 7.23 0.2 23.63 23.14 17.71
JGD Homology shar te2-b2 8.30 5.15 3.65 0.07 11.67 11.69 8.93
JGD Kocay Trec13 30.46 7.83 11.25 9.16 39.49 43.52 35.98
JGD Relat relat9 8.29 8.19 1.71 0.08 7.5 1.47 0.87
JGD Trefethen Trefethen 20000 21.88 6.92 9.87 0.8 31.26 30.99 24.12
Koutsovasilis F1 11.41 11.14 4.32 1.73 8.07 11.87 11.46
LPnetlib lp osa 30 0.45 0.68 0.35 1.93 0.48 2.76 2.87
Meszaros bas1lp 17.86 6.92 6.4 2.81 24.1 31.99 24.75
Meszaros mod2 7.11 2.37 4.36 0.16 9.05 8.95 6.64
Meszaros model4 3.7 0.69 2.66 0.65 5.13 4.77 3.64
Meszaros stat96v1 34.04 7.46 10.17 2.51 44.49 44.32 33.82
Mittelmann pds-80 6.39 4.22 2.51 0.19 6.99 7.01 6.78
Norris torso2 18.18 9.87 8.17 0.19 26.52 25.83 20.07
Oberwolfach bone010 12.02 12.02 12.03 1.88 12.15 12.22 12.05
PARSEC SiNa 12.19 2.71 7.41 0.91 16.76 18.25 13.19
Rajat rajat16 5.00 3.39 2.95 0.2 5.82 9.02 7.45
Rajat rajat25 5.57 2.83 3.64 0.2 5.9 8.26 6.07
Rucci Rucci1 8.20 7.97 5.11 0.1 8.26 8.59 8.29
Sandia adder dcop 05 0.81 0.16 0.66 0.13 1.16 1.28 0.95
Sandia adder dcop 09 0.82 0.16 0.67 0.13 1.3 1.28 0.97
Schenk IBMNA c-26 2.41 0.41 1.87 0.2 3.67 3.1 2.25
Schenk nlpkkt240 10.38 10.53 10.42 0.8 10.39 10.42 10.44
Schmid thermal2 6.66 7.29 3.92 0.18 6.74 6.68 6.45
SNAP cit-Patents 3.36 3.09 0.68 0.12 1.99 0.92 0.64
SNL ASIC 320ks 6.65 5.83 4.26 0.13 8.36 15.13 13.64
SNL ASIC 680k 2.51 2.43 2.24 0.14 3.53 3.94 4.11
SNL MiniFE150 10.27 10.3 10.89 0.73 10.38 10.37 10.28
SNL NALU HeatCondEQS 9.93 9.86 5.48 0.71 8.37 8.29 9.91
TKK tube2 36.49 9.92 10.31 1.2 49.36 46.4 36.71
vanHeukelum cage10 8.84 2.17 6.1 0.37 13.46 11.72 8.18
vanHeukelum cage13 9.69 9.23 8.04 0.37 10.15 8.72 8.16
vanHeukelum cage14 8.43 8.5 6.72 0.48 8.32 7.55 8.48

Table 4.1: Benchmarked Sparse-Matrix Vector Product Calculation Speed
in GFLOP/s from a Single Socket POWER8 Processor (KK=Kokkos, TPE-
TRA=Original SpMV Kernel used in TPetra Solvers, MKL=Intel Math Ker-
nel Library, OMP-STAT=OpenMP Static Parallelism, OMP-DYN=OpenMP
Dynamic Parallelism, OMP-INSP=OpenMP with Non-Zero Load Balancing
across Threads, KK-INSP=Kokkos with Non-Zero Load Balancing across
Threads

16

Chapter 5

Results from Intel Xeon Phi 7250
(Knights Landing) Processor (Cache
Memory Mode)

KK TPETRA MKL OMP-DYN OMP-STAT OMP-INS KK-INS
Andrews Andrews 9.9 5.84 3.56 0.37 12.34 12.51 10.7
ANSYS Delor64K 18.29 8.43 5.05 0.29 24.77 17.080 13.01
Bai olm2000 0.49 0.09 0.55 0.08 0.97 1 0.69
Bai rbsb480 1.48 0.31 1.19 0.42 1.82 1.84 1.41
Boeing bcsstk39 44.57 20.15 14.08 1.31 57.75 53.47 46.87
Boeing bcsstm34 2.15 0.43 1.52 0.54 3 3.05 2.16
Boeing crystm01 7.36 1.8 5.48 0.56 10.67 10.91 7.59
Boeing crystm02 17.39 5.48 10.37 0.64 24.77 23.92 17.74
Boeing crystm03 23.67 8.54 11.35 0.68 33.76 31.8 24.62
Boeing ct20stif 41.28 20.39 12.77 1.51 46.05 46.75 36.09
Boeing pwtk 38.6 37.82 16.52 1.6 45.89 50.35 39.32
Bourchtein atmosmodl 19.26 18.52 10.03 0.2 27.73 24.97 19.01
Bova rma10 31.03 18.11 9.97 1.48 43.43 46.76 27.89
Brethour coater1 1.6 0.31 1.19 0.27 2.39 2.33 1.64
Brethour coater2 13.29 3.51 8.31 0.6 18.63 18.26 13.2
DIMACS10 id2010 11.49 5.15 4.11 0.14 16.10 15.19 11.93
DIMACS10 italy osm 6.7 8.47 2.34 0.06 7.46 7.47 6.71
DIMACS10 ne2010 12.55 6.78 4.39 0.14 16.72 16.67 12.75
DIMACS10 road central 4.60 4.75 1.36 0.07 4.61 4.66 4.60
DIMACS10 vsp vibrobox scagr7-2c rlfddd 2.64 3.55 1.05 0.33 2.97 9.95 9.22
DNVS m t1 43.56 36.32 15.23 2.97 46.4 51.56 48.41
DNVS shipsec1 41.16 33.16 15.59 1.65 44.64 48.6 45.51
Dziekonski dielFilterV2real 39.69 33.34 7.12 1.26 26.18 38.28 40.95
FIDAP ex1 0.39 0.08 0.32 0.13 0.52 0.53 0.39
FIDAP ex10 4.59 0.93 3.34 0.51 6.39 6.41 4.63
FIDAP ex11 41 14.35 12.73 1.86 56.93 56.05 44.78
FIDAP ex15 6.63 1.56 4.44 0.38 9.80 10.05 6.98
FIDAP ex18 4.8 1.16 3.7 0.33 7.63 7.2 5.25
FIDAP ex25 2.13 0.43 1.7 0.46 3.04 3.08 2.17
Fluorem HV15R 52.58 51.4 15.14 4.24 48.73 51.65 52.29
Freescale memchip 14.94 14.6 3.62 0.16 10.45 9.55 15.01
GHS indef blockqp1 1.59 0.92 1.4 0.31 1.63 6.72 7.44
GHS indef bmw3 2 37.18 36.80 14.93 1.49 45.35 46.02 37.26
GHS indef brainpc2 2.44 1.03 1.88 0.18 2.75 6.68 6.3
GHS indef ncvxqp7 11.93 5.07 4.10 0.19 15.18 11.46 8.70
GHS psdef audikw 1 43.85 47.66 6.27 2.47 23.53 45.98 49.31
GHS psdef bmwcra 1 37.63 38.00 16.33 2.14 48.96 51.04 38.61
GHS psdef inline 1 43.61 43.19 6.59 2.19 23.03 44.44 46.93
GHS psdef ldoor 46.83 45.28 14.21 1.47 42.82 48.98 47.07
GHS psdef s3dkq4m2 43.23 27.37 16.36 1.58 47.5 47.7 42.02
GHS psdef wathen100 19.91 7.22 9.9 0.45 28.06 26.3 19.99
GHS psdef wathen120 20.2 7.08 9.97 0.45 30.34 28.31 21.35
Grund bayer04 7.75 2.25 5.18 0.22 11.98 5.79 4.34

17

Hamm bcircuit 9.66 3.9 3.7 0.16 14.11 14.04 10.52
Hamm hcircuit 8.94 4.98 2.73 0.14 11.39 11.91 8.69
HB bcsstk02 0.4 0.08 0.22 0.16 0.47 0.57 0.41
HB bcsstk13 6.36 1.45 4.46 0.91 9.54 9.54 6.88
HB lnsp 131 0.03 0.01 0.03 0.01 0.06 0.06 0.05
HB lnsp 511 0.2 0.04 0.2 0.06 0.35 0.36 0.25
HB mbeacxc 3.4 0.8 2.54 1.21 4.34 5.33 3.59
HB mbeaflw 3.39 0.8 2.53 1.22 4.34 5.35 3.61
HB orani678 3.99 1.16 2.46 0.82 5.51 5.44 3.82
Hollinger mark3jac020 3.9 0.81 2.54 0.17 5.57 5.72 4.05
IBM dc1 1.79 1.21 1.38 0.19 1.65 3.36 3.56
IBM EDA ckt11752 dc 1 8.48 3.44 4.06 0.19 12.34 10 7.64
IBM EDA trans4 1.79 1.21 1.38 0.19 1.65 3.34 3.54
IPSO TSC OPF 300 5.98 3.46 4.76 2.26 6.39 26.43 20.6
Janna Fault 639 45.22 44.41 16.03 1.35 50.17 49.98 45.53
Janna Hook 1498 48.25 46.43 15.65 1.23 49.07 49.19 48.11
Janna StocF-1465 30.12 33.6 11.82 0.43 34.80 11.12 25.88
JGD Homology m133-b3 8.71 6.04 3.73 0.12 13.74 13.4 10.22
JGD Homology n3c6-b7 3.95 0.75 2.88 0.21 5.6 5.41 4.03
JGD Homology n4c6-b6 16.42 7.64 7.1 0.21 23.29 23.08 17.44
JGD Homology shar te2-b2 8.25 5.3 3.61 0.09 11.76 11.54 8.85
JGD Kocay Trec13 30.47 8.9 11.29 9.17 40.05 43.26 36.22
JGD Relat relat9 9.81 10.6 2.24 0.09 8.29 1.53 0.89
JGD Trefethen Trefethen 20000 21.54 7.34 9.81 0.79 30.03 29.98 24.02
Koutsovasilis F1 32.85 32.62 4.39 2.36 15.32 33.27 37.20
LPnetlib lp osa 30 0.45 0.65 0.34 1.93 0.45 2.76 2.85
Meszaros bas1lp 17.68 7.54 6.33 2.78 24.6 31.86 24.68
Meszaros mod2 7.07 2.41 4.35 0.16 9.01 8.9 6.61
Meszaros model4 3.69 0.76 2.64 0.65 5.2 4.77 3.64
Meszaros stat96v1 33.58 8.99 10.97 2.53 44.58 44.34 34
Mittelmann pds-80 6.24 4.32 2.51 0.21 6.87 7.01 6.61
Norris torso2 18.13 11.08 8.13 0.26 27 25.65 19.95
Oberwolfach bone010 52.17 51.89 16.82 2.19 52.2 53 52.19
PARSEC SiNa 12.24 3.4 7.4 0.91 16.83 18.3 13.43
Rajat rajat16 4.86 3.37 2.95 0.2 5.69 8.89 7.42
Rajat rajat25 5.44 2.78 3.56 0.2 5.87 8.09 5.94
Rucci Rucci1 11.38 12.67 5.08 0.11 14.64 14.35 11.47
Sandia adder dcop 05 0.81 0.17 0.66 0.13 1.27 1.29 0.95
Sandia adder dcop 09 0.73 0.16 0.67 0.13 1.3 1.3 0.96
Schenk IBMNA c-26 2.39 0.43 1.87 0.2 3.65 3.14 2.24
Schenk nlpkkt240 26.89 27.04 13.98 0.83 26.65 26 26.94
Schmid thermal2 10.8 14.92 4.06 0.21 12.85 12.45 11.53
SNAP cit-Patents 5.11 4.86 0.64 0.13 2.27 1 0.65
SNL ASIC 320ks 7.3 6.74 4.3 0.17 8.84 18.11 13.77
SNL ASIC 680k 3.22 3.22 2.22 0.17 3.91 5.01 4.88
SNL MiniFE150 47.72 45.05 14.65 0.8 49.05 49.37 47.04
SNL NALU HeatCondEQS 36.91 36.85 6.58 0.79 20.58 20.38 36.47
TKK tube2 35.9 12.48 12.58 1.19 49.09 46.63 36.26
vanHeukelum cage10 8.79 2.38 6.07 0.37 13.35 11.69 8.18
vanHeukelum cage13 24.4 23.85 9.72 0.5 28.23 22.18 17.93
vanHeukelum cage14 31.89 30 8.18 0.54 27 19.54 28.42
vanHeukelum cage15 33.32 30.9 8.23 0.58 25.01 19.06 32.76
vanHeukelum cage8 0.89 0.17 0.68 0.19 1.24 1.39 0.97
VanVelzen Zd Jac6 25.43 14.26 8.15 2.16 29.69 11.7 6.96
VDOL kineticBatchReactor 7 3.89 1.21 3.19 0.28 5.31 5.28 3.8
Williams cant 43.89 25.75 16.33 1.88 49.63 49.83 37.45
Williams mc2depi 9.35 8.57 5.48 0.12 15.58 15.48 11.91
Zaoul kkt power 11.48 11.68 2.24 0.21 4.58 13.17 13.7

18

Table 5.1: Benchmarked Sparse-Matrix Vector Product Calculation Speed
in GFLOP/s from a Single Socket POWER8 Processor (KK=Kokkos, TPE-
TRA=Original SpMV Kernel used in TPetra Solvers, MKL=Intel Math Ker-
nel Library, OMP-STAT=OpenMP Static Parallelism, OMP-DYN=OpenMP
Dynamic Parallelism, OMP-INSP=OpenMP with Non-Zero Load Balancing
across Threads, KK-INSP=Kokkos with Non-Zero Load Balancing across
Threads

19

Chapter 6

Results from Intel Xeon Phi 7250
(Knights Landing) Processor (HBM
Only)

KK TPETRA MKL OMP-DYN OMP-STAT OMP-INSP KK-INSP
Andrews Andrews 10.08 5.78 3.64 0.37 12.44 12.71 10.96
ANSYS Delor64K 18.40 8.45 5.10 0.3 24.98 17.10 13.17
Bai olm2000 0.49 0.09 0.55 0.08 0.95 0.99 0.7
Bai rbsb480 1.48 0.3 1.18 0.42 1.82 1.84 1.41
Boeing bcsstk39 44.39 20.28 14.26 1.32 57.2 55.24 47.39
Boeing bcsstm34 2.16 0.43 1.53 0.55 3.01 3.05 2.17
Boeing crystm01 7.57 1.81 5.4 0.56 10.92 10.86 7.58
Boeing crystm02 17.53 5.44 10.4 0.64 24.78 23.92 17.69
Boeing crystm03 23.61 8.5 11.41 0.68 34.01 32.18 24.35
Boeing ct20stif 41.76 20.49 12.84 1.52 46.24 46.66 36.85
Boeing pwtk 38.35 38.17 16.62 1.6 45.41 50.39 39.31
Bourchtein atmosmodl 19.19 18.52 10.09 0.2 27.82 24.83 18.94
Bova rma10 31.64 18.39 10.03 1.49 43.63 46.68 28.46
Brethour coater1 1.59 0.31 1.2 0.27 2.36 2.1 1.64
Brethour coater2 13.39 3.51 8.30 0.6 18.52 18.26 13.16
DIMACS10 id2010 11.57 5.27 4.12 0.14 16.06 15.3 12.1
DIMACS10 italy osm 6.74 8.52 2.34 0.06 7.45 7.43 6.73
DIMACS10 ne2010 12.59 6.88 4.41 0.14 16.73 16.75 12.96
DIMACS10 road central 4.58 4.75 1.36 0.07 4.60 4.63 4.60
DIMACS10 vsp vibrobox scagr7-2c rlfddd 2.64 3.58 1.05 0.33 3.01 9.91 9.36
DNVS m t1 43.7 36.57 15.34 2.95 46.14 51.94 49.14
DNVS shipsec1 42.03 33.24 15.67 1.66 45.17 48.98 46.3
Dziekonski dielFilterV2real 39.45 33.23 7.04 1.26 26.13 38.27 41.04
FIDAP ex1 0.39 0.08 0.32 0.13 0.53 0.53 0.38
FIDAP ex10 4.52 0.93 3.39 0.52 6.28 6.28 4.58
FIDAP ex11 40.46 14.35 12.83 1.84 55.86 56.21 45.05
FIDAP ex15 6.6 1.57 4.57 0.39 9.97 10.18 7.11
FIDAP ex18 4.78 1.15 3.7 0.33 7.68 7.16 5.26
FIDAP ex25 1.88 0.43 1.71 0.46 2.87 3.11 2.17
Fluorem HV15R 52.38 52.25 15.15 4.2 48.05 52.91 52.64
Freescale memchip 14.89 14.55 3.56 0.16 10.44 9.61 14.95
GHS indef blockqp1 1.6 0.93 1.42 0.31 1.65 6.73 7.54
GHS indef bmw3 2 37.20 36.94 15.01 1.49 45.21 45.86 37.03
GHS indef brainpc2 2.43 1.02 1.87 0.18 2.71 6.53 6.28
GHS indef ncvxqp7 11.88 5.12 4.15 0.19 14.9 11.55 8.85
GHS psdef audikw 1 43.54 47.25 6.27 2.46 23.47 45.63 49
GHS psdef bmwcra 1 37.62 38.11 16.59 2.13 49.15 50.91 38.51
GHS psdef inline 1 43.5 43.2 6.62 2.20 23.04 44.28 46.92
GHS psdef ldoor 46.63 45.33 14.23 1.47 42.49 48.8 46.96
GHS psdef s3dkq4m2 43.76 26.98 16.54 1.58 47.86 47.34 42.45
GHS psdef wathen100 19.98 7.16 9.88 0.45 27.58 26.38 19.97
GHS psdef wathen120 20.27 7.08 10 0.45 30.49 28.55 21.62
Grund bayer04 7.79 2.26 5.08 0.22 11.98 5.8 4.36

20

Hamm bcircuit 9.55 3.91 3.81 0.16 14.17 14.08 10.6
Hamm hcircuit 8.96 5.05 2.73 0.14 11.08 12 8.80
HB bcsstk02 0.4 0.08 0.22 0.16 0.54 0.56 0.4
HB bcsstk13 6.35 1.44 4.56 0.91 9.39 9.55 6.85
HB lnsp 131 0.03 0.01 0.03 0.01 0.06 0.07 0.04
HB lnsp 511 0.2 0.04 0.2 0.06 0.35 0.35 0.25
HB mbeacxc 3.42 0.79 2.55 1.23 4.33 5.28 3.6
HB mbeaflw 3.41 0.8 2.55 1.22 4.36 5.24 3.58
HB orani678 4.06 1.19 2.49 0.82 5.52 5.43 3.84
Hollinger mark3jac020 3.92 0.8 2.67 0.17 5.62 5.66 4.05
IBM dc1 1.78 1.21 1.37 0.19 1.64 3.35 3.55
IBM EDA ckt11752 dc 1 8.43 3.36 4.02 0.19 12.2 10.06 7.73
IBM EDA trans4 1.79 1.21 1.37 0.19 1.63 3.39 3.57
IPSO TSC OPF 300 6.09 3.49 4.8 2.29 6.45 26.51 20.83
Janna Fault 639 44.91 44.57 16.06 1.35 49.84 49.82 45.33
Janna Hook 1498 47.71 46.46 15.68 1.22 49.6 50.21 47.54
Janna StocF-1465 29.97 33.73 11.92 0.43 34.9 11.06 25.9
JGD Homology m133-b3 8.64 6.06 3.75 0.12 13.69 13.46 10.20
JGD Homology n3c6-b7 3.96 0.76 2.9 0.21 5.63 5.38 4.02
JGD Homology n4c6-b6 16.48 7.69 7.16 0.2 23.49 23.22 17.58
JGD Homology shar te2-b2 8.28 5.28 3.66 0.08 11.9 11.71 9.01
JGD Kocay Trec13 30.74 8.92 11.38 9.13 40.35 43.63 36.12
JGD Relat relat9 9.84 10.63 2.25 0.09 8.28 1.53 0.88
JGD Trefethen Trefethen 20000 22.15 7.37 9.91 0.79 31.79 31.33 24.28
Koutsovasilis F1 32.86 32.57 4.42 2.35 15.55 33.55 37.25
LPnetlib lp osa 30 0.44 0.66 0.34 1.93 0.46 2.77 2.86
Meszaros bas1lp 17.61 7.58 6.36 2.8 24.39 32.07 24.72
Meszaros mod2 7.11 2.37 4.38 0.16 9 8.9 6.62
Meszaros model4 3.63 0.76 2.67 0.65 5.17 4.79 3.63
Meszaros stat96v1 34.07 8.99 11.03 2.53 42.92 44.42 34
Mittelmann pds-80 6.47 4.37 2.48 0.21 6.93 7.01 6.76
Norris torso2 18.3 11.14 8.21 0.26 27.21 25.74 20.16
Oberwolfach bone010 51.42 51.26 16.95 2.18 51.84 53.85 51.47
PARSEC SiNa 12.25 3.38 7.32 0.91 16.89 18.22 13.13
Rajat rajat16 4.96 3.39 2.95 0.2 5.74 8.80 7.48
Rajat rajat25 5.45 2.79 3.6 0.2 5.86 8.14 5.94
Rucci Rucci1 11.49 12.7 5.09 0.11 14.68 14.44 11.59
Sandia adder dcop 05 0.81 0.17 0.67 0.13 1.29 1.27 0.95
Sandia adder dcop 09 0.74 0.17 0.67 0.13 1.31 1.3 0.98
Schenk IBMNA c-26 2.4 0.43 1.85 0.2 3.69 3.14 2.24
Schmid thermal2 10.89 14.77 4.09 0.21 12.99 12.71 11.42
SNAP cit-Patents 5.18 4.88 0.64 0.13 2.32 1 0.65
SNL ASIC 320ks 7.36 6.74 4.34 0.17 8.86 18.11 13.99
SNL ASIC 680k 3.23 3.21 2.25 0.17 4 5.01 4.85
SNL MiniFE150 47.53 45.1 14.6 0.8 50.76 49.23 47.2
SNL NALU HeatCondEQS 36.78 36.83 6.53 0.8 20.18 20.12 36.16
TKK tube2 36.72 12.48 12.8 1.19 49.72 46.4 36.91
vanHeukelum cage10 8.74 2.37 6.09 0.37 13.42 11.75 8.21
vanHeukelum cage13 24.47 23.87 9.78 0.5 28.11 22.01 18.01
vanHeukelum cage14 31.8 30.04 8.22 0.54 27.27 19.55 28.19

Table 6.1: Benchmarked Sparse-Matrix Vector Product Calculation Speed
in GFLOP/s from a Single Socket POWER8 Processor (KK=Kokkos, TPE-
TRA=Original SpMV Kernel used in TPetra Solvers, MKL=Intel Math Ker-
nel Library, OMP-STAT=OpenMP Static Parallelism, OMP-DYN=OpenMP
Dynamic Parallelism, OMP-INSP=OpenMP with Non-Zero Load Balancing
across Threads, KK-INSP=Kokkos with Non-Zero Load Balancing across
Threads

21

Chapter 7

Results from IBM POWER8

KK OMP-STAT OMP-DYN OMP-INSP KK-INSP
Andrews Andrews 7.98 12.83 0.27 13.12 8.97
ANSYS Delor64K 10.99 13.68 0.21 12.39 7.04
Bai olm2000 1.18 2.37 0.08 2.52 1.44
Bai rbsb480 3.25 4.81 0.64 4.92 3.12
Boeing bcsstk39 17.94 18.02 0.97 20.3 17.14
Boeing bcsstm34 3.91 6.33 0.77 6.33 4.14
Boeing crystm01 9.84 12.89 0.44 13.53 9.41
Boeing crystm02 13.28 16.08 0.49 17.32 12.39
Boeing crystm03 13.67 17.11 0.5 18.10 12.53
Boeing ct20stif 10.1 15.95 1.11 20.09 17.63
Boeing pwtk 11.74 11.54 1.21 11.86 11.87
Bourchtein atmosmodl 8.18 9.27 0.141 9.24 7.95
Bova rma10 11.35 11.67 1.11 19.26 16.08
Brethour coater1 2.92 5.12 0.28 5.11 3.17
Brethour coater2 12.72 15.33 0.45 15.77 11.29
DIMACS10 id2010 5.29 11.68 0.1 12.05 6.69
DIMACS10 italy osm 4.44 4.83 0.04 4.94 4.36
DIMACS10 ne2010 7.8 12.03 0.1 12.01 6.6
DIMACS10 road central 2.42 2.4 0.05 2.69 2.54
DIMACS10 vsp vibrobox scagr7-2c rlfddd 1.73 1.94 0.24 9.30 5.6
DNVS m t1 11.13 11.43 2.33 12.31 11.66
DNVS shipsec1 12.18 12.09 1.26 13 12.69
Dziekonski dielFilterV2real 11.12 8.35 0.95 10.82 11.34
FIDAP ex1 0.83 1.49 0.3 1.43 0.91
FIDAP ex10 6.35 9.24 0.47 9.62 6.74
FIDAP ex11 14.09 18.15 1.46 20.01 17.58
FIDAP ex15 8.92 12.69 0.3 12.8 8.1
FIDAP ex18 7.1 11.08 0.26 11.21 6.66
FIDAP ex25 3.8 5.85 0.56 6.23 3.81
Fluorem HV15R 11.41 10.68 3.39 11.29 11.48
Freescale memchip 6.78 6.43 0.12 5.92 6.85
GHS indef blockqp1 0.64 0.63 0.23 4.60 3.28
GHS indef bmw3 2 11.75 11.42 1.12 11.78 11.87
GHS indef brainpc2 0.94 1.01 0.14 3.92 3.54
GHS indef ncvxqp7 7.34 9.61 0.14 8.72 6.23
GHS psdef audikw 1 11.43 6.58 1.91 11.09 11.64
GHS psdef bmwcra 1 11.98 11.64 1.63 12.12 12.06
GHS psdef inline 1 11.83 6.82 1.69 11.34 11.91
GHS psdef ldoor 11.28 10.47 1.11 11.36 11.4
GHS psdef s3dkq4m2 15.65 20.27 1.19 20.54 17.54
GHS psdef wathen100 13.38 16.76 0.33 17.03 11.81
GHS psdef wathen120 10.47 17.08 0.33 17.31 12.17
Grund bayer04 8.16 11.45 0.16 10.59 5.53
Hamm bcircuit 6.3 10.35 0.11 11.92 6.19
Hamm hcircuit 4.90 6.87 0.1 12.04 6.24
HB bcsstk02 0.85 1.35 0.57 1.45 0.9
HB bcsstk13 7.99 10.27 0.87 12.4 8.87
HB lnsp 131 0.09 0.19 0.04 0.2 0.11
HB lnsp 511 0.45 0.96 0.09 0.92 0.57
HB mbeacxc 3.6 5.14 1.91 8.97 6.63

22

HB mbeaflw 3.61 5.12 1.9 8.98 6.59
HB orani678 1.81 2.52 0.75 6.28 3.69
Hollinger mark3jac020 5.36 8.88 0.13 8.89 5.12
IBM dc1 0.98 1.07 0.14 1.79 1.39
IBM EDA ckt11752 dc 1 3.1 3.52 0.14 10.41 5.49
IBM EDA trans4 0.98 1.07 0.14 1.83 1.39
IPSO TSC OPF 300 2.30 2.35 1.85 16.23 13.12
Janna Fault 639 11.65 11.64 1.02 11.58 11.71
Janna Hook 1498 11.48 11.22 0.92 11.24 11.47
Janna StocF-1465 10.17 10.38 0.31 9.42 9.28
JGD Homology m133-b3 6.87 10.83 0.08 10.76 5.76
JGD Homology n3c6-b7 5.24 9.11 0.17 9.17 5.27
JGD Homology n4c6-b6 7.1 15.11 0.15 14.99 8.41
JGD Homology shar te2-b2 4.85 9.29 0.06 10.05 6.31
JGD Kocay Trec13 10.7 11.61 14.38 19.07 18.65
JGD Relat relat9 4.66 5.54 0.06 1.42 0.65
JGD Trefethen Trefethen 20000 11.76 16.87 0.61 17.49 13.56
Koutsovasilis F1 11.39 5.79 1.85 11.2 11.88
LPnetlib lp osa 30 0.31 0.33 1.25 2.33 2
Meszaros bas1lp 4.81 5.02 2.53 17.23 12.53
Meszaros mod2 5.33 6.6 0.12 8.78 5.9
Meszaros model4 4.08 4.98 0.7 8.28 5.16
Meszaros stat96v1 12.34 18.83 2.28 19.23 17.26
Mittelmann pds-80 8.04 9.81 0.15 10.17 6.89
Norris torso2 11.09 16.54 0.19 16.45 10.19
Oberwolfach bone010 11.77 11.64 1.67 11.64 11.79
PARSEC SiNa 6.43 8.13 0.75 15.96 11.9
Rajat rajat16 3.52 3.25 0.14 4.29 4.19
Rajat rajat25 3.65 3.92 0.15 5.42 3.37
Rucci Rucci1 7.16 9.61 0.08 9.62 5.79
Sandia adder dcop 05 1.66 1.61 0.12 1.81 1.45
Sandia adder dcop 09 1.69 1.56 0.12 1.56 1.39
Schenk IBMNA c-26 2.44 4.17 0.17 6.23 3.27
Schenk nlpkkt240 10.59 10.42 0.62 10.39 10.56
Schmid thermal2 7.55 7.52 0.15 7.26 6.52
SNAP cit-Patents 1.95 1.28 0.09 1.43 0.58
SNL ASIC 320ks 8.16 11.36 0.12 13.79 8.27
SNL ASIC 680k 1.65 1.67 0.12 2.47 1.81
SNL MiniFE150 10.94 10.98 0.59 10.8 11.06
SNL NALU HeatCondEQS 10.4 7.56 0.59 7.21 10.49
TKK tube2 15.87 18.02 0.92 19.63 16.60
vanHeukelum cage10 7.68 11.06 0.28 12.52 6.6
vanHeukelum cage13 9.26 9.75 0.37 9.95 8.44
vanHeukelum cage14 10.05 8.89 0.4 9.15 10.07

Table 7.1: Benchmarked Sparse-Matrix Vector Product Calculation Speed in
GFLOP/s from a Single Socket POWER8 Processor (KK=Kokkos, OMP-
STAT=OpenMP Static Parallelism, OMP-DYN=OpenMP Dynamic Paral-
lelism, OMP-INSP=OpenMP with Non-Zero Load Balancing across Threads,
KK-INSP=Kokkos with Non-Zero Load Balancing across Threads

23

References

[1] Christopher G Baker and Michael A Heroux. Tpetra, and the Use of Generic Programming in Scientific
Computing. Scientific Programming, 20(2):115–128, 2012.

[2] Leonardo Dagum and Ramesh Menon. OpenMP: an Industry Standard API for Shared-Memory Pro-
gramming. IEEE Computational Science and Engineering, 5(1):46–55, 1998.

[3] Timothy A Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM Transactions
on Mathematical Software (TOMS), 38(1):1, 2011.

[4] Eduardo F DAzevedo, Mark R Fahey, and Richard T Mills. Vectorized Sparse Matrix Multiply for
Compressed Row Storage Format. In International Conference on Computational Science, pages 99–106.
Springer, 2005.

[5] H Carter Edwards, Daniel Sunderland, Vicki Porter, Chris Amsler, and Sam Mish. Manycore
Performance-Portability: Kokkos Multidimensional Array Library. Scientific Programming, 20(2):89–
114, 2012.

[6] Michael A Heroux, Roscoe A Bartlett, Vicki E Howle, Robert J Hoekstra, Jonathan J Hu, Tamara G
Kolda, Richard B Lehoucq, Kevin R Long, Roger P Pawlowski, Eric T Phipps, et al. An Overview of
the Trilinos Project. ACM Transactions on Mathematical Software (TOMS), 31(3):397–423, 2005.

[7] Tomáš Oberhuber, Atsushi Suzuki, and Jan Vacata. New Row-grouped CSR Format for Storing the
Sparse Matrices on GPU with Implementation in CUDA. arXiv preprint arXiv:1012.2270, 2010.

[8] Sivan Toledo. Improving the Memory-system Performance of Sparse-Matrix Vector Multiplication. IBM
Journal of research and development, 41(6):711–725, 1997.

[9] Richard W Vuduc and Hyun-Jin Moon. Fast Sparse Matrix-Vector Multiplication by Exploiting Variable
Block Structure. In International Conference on High Performance Computing and Communications,
pages 807–816. Springer, 2005.

24

DISTRIBUTION:

1 MS 1319 Michael A. Heroux, 01400

1 MS 1319 Simon D. Hammond, 01422

1 MS 1319 Robert J. Hoekstra, 01422

1 MS 1319 Erik O. Strack, 01426

1 MS 1319 Christian R. Trott, 01426

1 MS 0845 Kendall H. Pierson, 01542

1 MS 0845 Michael W. Glass, 01545

1 MS 1079 Michael Holmes, 05210

1 MS 1071 Reno Sanchez, 05250

1 MS 0845 Technical Library, 09536

1 MS 0899 Technical Library, 9536 (electronic copy)

25

v1.37

	Optimizing the Performance of Sparse-Matrix Vector Products on Next-Generation Processors
	Background
	Implementation of CSR-SpMV Operations
	Base Implementation
	Direct OpenMP with Static Thread Scheduling
	Direct OpenMP with Dynamic Thread Scheduling
	Base Kokkos Implementation (Dynamic Execution Policy)
	Intel Math-Kernel Library (MKL)
	Direct OpenMP with Non-Zero Load Balancing Structure Detection
	Kokkos with Non-Zero Load Balancing Structure Detection

	Case Study: Benchmarking SpMV Implementation Performance on Next-Generation Processors
	Hardware Resources
	Intel Xeon Phi 7250 (Knights Landing) Processor
	IBM POWER8 Processor

	Performance Metrics
	Performance Comparison

	Conclusion
	Results from Intel Xeon Phi 7250 (Knights Landing) Processor (DDR4 Only)
	Results from Intel Xeon Phi 7250 (Knights Landing) Processor (Cache Memory Mode)
	Results from Intel Xeon Phi 7250 (Knights Landing) Processor (HBM Only)
	Results from IBM POWER8

