
SIAM J. ScI. COMPUT.
Vol. 16, No. 2, pp. 452-469, March 1995

() 1994 Society for Industrial and Applied Mathematics
012

AN IMPROVED SPECTRAL GRAPH PARTITIONING ALGORITHM FOR
MAPPING PARALLEL COMPUTATIONS*
BRUCE HENDRICKSON AND ROBERT LELAND

Abstract. Efficient use of a distributed memory parallel computer requires that the computational load be
balanced across processors in a way that minimizes interprocessor communication. A new domain mapping algorithm
is presented that extends recent work in which ideas from spectral graph theory have been applied to this problem.
The generalization of spectral graph bisection involves a novel use of multiple eigenvectors to allow for division
of a computation into four or eight parts at each stage of a recursive decomposition. The resulting method is
suitable for scientific computations like irregular finite elements or differences performed on hypercube or mesh
architecture machines. Experimental results confirm that the new method provides better decompositions arrived at
more economically and robustly than with previous spectral methods. This algorithm allows for arbitrary nonnegative
weights on both vertices and edges to model inhomogeneous computation and communication. A new spectral lower
bound for graph bisection is also presented.

Key words, graph partitioning, parallel computation, load balancing, graph spectrum, eigenvector

AMS subject classifications. 05C50, 68R10, 65Y05

1. Introduction. Efficient use of a distributed memory parallel computer requires that
the computational load be balanced across processors in a way that minimizes interprocessor
communication. This mapping requirement can be abstracted to a graph problem in which
nodes represent computation, edges represent communication, and the objective is to assign
an equal number of vertices to each processor in a way that, in some metric, minimizes the
number of edges crossing between processors. Extensive practical experience has shown that
the quality ofthis mapping has a substantial impact on performance, hence there is considerable
interest in effective mapping algorithms.

Finding a mapping that actually minimizes communication between balanced sets is an
NP-hard problem [9], so it is unlikely that an efficient, general algorithm exists. The practical
importance of this problem has, however, motivated a variety of heuristic approaches. A
thorough review of these methods and the extensive literature associated with them is beyond
the scope of this paper. We simply note that the established methods range from quick, linear
time algorithms based on geometric assumptions [17], [19] or local graph information [5],
[15] to very slow algorithms which approximate a global search for the minimum using
genetic operators or simulated annealing 14], 16]. The faster heuristics often do not provide
mappings of adequate quality for bench-marking purposes or for performance-critical codes
which will be used many times, while the more expensive mapping techniques are generally
impractical for large problems. This paper describes a method designed to provide high quality
partitionings at moderate cost.

Most existing load balancing methods are based on recursive graph bisectionmthe graph is
broken in half, the halves are halved independently, and so on, until there are as many pieces as
processors in the parallel machine. Bisection techniques have several inherent shortcomings.
First, bisection algorithms are unable to accept a less attractive initial cut which would allow
net savings in later cuts; i.e., they have no look ahead capability. In the VLSI community, for
example, it has been observed that recursive quadrisection leads to better circuit layouts than
twice as many steps of bisection [25]. Second, in bisection the task of splitting the graph into

*Received by the editors September 24, 1992; accepted for publication (in revised form) February 21, 1994. This
work was supported by the Applied Mathematical Sciences program, U.S. Department of Energy, Office of Energy
Research, and was performed at Sandia National Laboratories, operated for the U.S. Department of Energy under
contract DE-AC04-76DP00789.

Sandia National Laboratories, Albuquerque, New Mexico 87185 (bahendr@cs.sand+/-a.gov,
leland@cs, sandia, gov)

452

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 453

sets of vertices (the decomposition problem) is largely decoupled from that of assigning a set
of vertices to a specific processor (the assignment problem). The communication overhead
of an application program, however, depends on both the decomposition and the assignment,
hence it is generally preferable to consider these aspects of the problem together. We might,
for example, choose to accept a higher volume of communication between two sets in order
to place them topologically closer on a given architecture.

Our approach to the graph partitioning problem addresses these shortcomings. It is based
upon results from spectral graph theory, in which eigenvectors of a matrix are used to bisect a
graph. The idea of using eigenvectors to partition graphs dates back to work in the early ’70s
by Donath and Hoffman [3], [4] and Fiedler [6], [7], but it has recently generated renewed
interest [2], [18], [21]-[23]. Simon [24] and Williams [27] have applied spectral bisection to
the load balancing problem and found it to have a number of attractive features in this context.
Unlike some other techniques, spectral methods are invariant under geometric transformations
of the computational domain, as well as under renumbering of the computational graph. They
also seem to generate good partitions in practice, albeit at a fairly high cost compared with
some weaker heuristics.

Our method generalizes spectral graph bisection in several important ways. First and
most important, we use multiple eigenvectors in a new way to divide a problem into four or
eight pieces at once rather than just two. On an intuitive level, the first eigenvector defines
a surface which bisects the graph, the second defines an intersecting surface which bisects
these two pieces, and so on. This allows us to perform fewer recursive steps while dividing a
problem into a given number of pieces. By trading off the combined effects of several cuts, we
can reduce the look ahead problem associated with bisection. In addition, by using multiple
eigenvectors we often achieve a substantial economy in the net cost of the eigenvector calcula-
tions, the dominant expense. Second, our model allows for inhomogeneous computation and
communication requirements of an application, substantially broadening the class ofproblems
for which it is appropriate. Third, our method does not ignore machine architecture, but rather
minimizes a function that explicitly accounts for hypercube topology in the communication
cost. Recent empirical evidence confirms that this should lead to significantly better parti-
tions in practice 10]. Our method can also be applied to meshes since d-dimensional meshes
can be recursively decomposed as d-dimensional hypercubes. (We note that the function we
minimize may not be appropriate for other applications of graph partitioning.) Fourth, unlike
most other approaches, our method solves the assignment problem simultaneously with the
decomposition.

Other methods for using multiple eigenvectors to partition graphs into multiple sets have
been developed by Donath and Hoffman [3] and Rendl and Wolkowicz [23]. However, these
algorithms require 2k eigenvectors to produce 2k sets rather than the k eigenvectors we need.
Furthermore, they do not account for hypercube or mesh topology as we do. These methods do
have the advantage of allowing for partitioning into sets of arbitrary size, whereas our method
is largely restricted to producing balanced partitions.

Our partitioning algorithm is designed for mapping computations across message passing
multiprocessors, and is most appropriate for applications in which the computational require-
ments are static so that a good decomposition can be determined a priori. It is particularly well
suited to problems in which many different messages are simultaneously competing for use
of the communication network. Many problems in scientific communication fit this descrip-
tion because theyinvolve alternate phases of computation and communication in which the
same calculation is repeated in each computation phase and many messages are transmitted in
the communication phase. Examples include typical unstructured finite difference and finite
element calculations.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

454 BRUCE HENDRICKSON AND ROBERT LELAND

The structure of this paper is as follows. In 2, we review hypercube multiprocessors,
describe our graph model ofcomputation, and develop an associated metric ofcommunication
cost. This allows us to construct a discrete optimization problem which describes the optimal
mapping in 3. Since this optimization problem is NP-hard, we derive a continuous problem
approximating it in 4. In 5 and 6 we describe how the solution to this continuous problem
reduces to an eigenvector calculation, and how the eigenvectors can be used to generate an
approximate solution to the discrete optimization problem. Some new a posteriori lower
bounds on partition quality are presented in 7. Results of some sample calculations are given
in 8, and conclusions are presented in 9. A less formal, more intuitive, presentation of much
of this material can be found in [11], 12].

2. Preliminaries.

2.1. Hypercube multiprocessors. A d-dimensional hypercube multiprocessor consists
of a set of 2d processors, identified by distinct binary numbers from 0 to 2d 1. Information
is transmitted between them by passing messages through a network in which wires connect
processors whose binary values differ in a single bit. We will assume there is no global
memory, and that wires can simultaneously transmit data in either direction.

Hypercube multiprocessors enjoy popularity because they have attractive theoretical and
practical properties: The network is very regular and can be described elegantly in a recursive
fashion. Each processor is connected to d communication wires, and a message can be routed
between any two processors by traversing at most d wires. Furthermore, a message route can
be devised simply; to travel between two processors, a message merely uses one wire from
each bit in which the two processor’s binary representations differ.

2.2. A graph model of computation. As mentioned in 1, our approach to the parti-
tioning problem is targeted mainly toward scientific computing applications. Most of these
problems involve repeated iterations of the same cycle of computations. Although it is some-
times possible to achieve parallelism by effectively overlapping multiple iterations [28], the
more common approach is to exploit parallelism within each iteration. Within an iteration, a
processor performs a set of computations followed by a set of communication operations, and
since each iteration involves the same set of operations, it is sufficient to distribute the task
among processors based upon the requirements of a single iteration.

We represent a computation as an undirected, weighted graph G (V, E), using n to
denote the size of the vertex set V, and m the size of the edge set E. Each vertex vi V
corresponds to a computational task to be performed on a single processor, and the time
required to execute that task is represented by a positive weight wv(vi). We denote by Wv
the sum of the weights of all the vertices in the graph. An undirected edge eij E connects
two vertices vi and vj if the computational task represented by one of the vertices requires
input from the other. The edge has an associated positive weight tOe(eij proportional to the
amount of data that must be transmitted between the tasks. If each task requires data from the
other, then this weight is the sum of the two amounts of information. The sum of the weights
of all the edges is denoted by We. For technical reasons that will become clear in 5, we
will assume that G is connected. The graphs associated with most scientific computations are
at least largely connected, and our implementation employs a scheme which adds a minimal
number of edges to connect a disconnected graph, so the assumption of connectivity is not
restrictive in practice.

Partitioning a computational task among the processors corresponds to assigning each
vertex of the graph to a processor. The sum of the weights of the vertices assigned to a
processor represents the amount of computational effort that processor must expend, and the

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 455

sum of the weights of all the edges connecting vertices assigned to two different processors
represents the total amount of information that must be communicated between the two.

2.3. A communication metric. Most modern parallel computers have some form of
hardware cut-through routing, hence the time required to transmit a message is nearly inde-
pendent of the number of wires traversed provided there is no significant network congestion.
For applications like those we are targeting in which most messages are lengthy, this implies
a model in which the communication cost of a message is proportional to the message length,
independent of the identity of the sending and receiving processors. The cost of a set of
messages can then be modeled as the sum of their individual costs. Within the constructs
of our graph model, we define the cut-weight of a partitioning scheme to be the sum of the
weights of all the edges whose vertices are assigned to different processors. Most previous
approaches to domain mapping for parallel computing have tried to minimize this cut-weight
communication measure.

However, since it treats messages in isolation, the cut-weight metric fails to consider
any effects of message congestion. The applications we are considering typically have a
communication phase in which there are many messages simultaneously competing for wires.
In this case, each wire a message uses is unavailable for other tasks, so the load a message
places on the network is proportional to the number of wires it consumes. Consequently
we define the hop-weight of a message to be the length of the message multiplied by the
number of wires it requires, and the hop-weight of a collection of messages to be the sum of
their individual hop-weights. We will use hop-weight as our measure of the communication
cost of a mapping. Recent experimental work has indicated that this is the most accurate
communication metric for scientific computing 10].

With the intent of making this discussion more formal, we let A/[V ---> P be an
assignment scheme that maps vertices to processors. We denote by V(q) the set of vertices
assigned to a processor q, so V(q) {v V A’l(v) q}, and we use Pi to indicate the
processor to which vertex vi is assigned. The number of wires that a message must traverse to
get from pi tO pj we denote by hij and observe that it is a function of the machine topology,
not the mapping. With this notation, we can formally define the hop-weight of an assignment

hop-weight(A4) We(eij)hij.
eij EE

Next we map the binary digits designating a processor to 4-1 by

(2) c(k)(q)= { if bitkofq=l,
-1 if bitkofq=0.

This transformation is convenient because the simple function (1 c(k)(q)c()(r))/2 is zero
if processors q and r have the same kth bit and one if they differ. For a hypercube the number
of differing bits between processors q and r is equal to hrq and can now be expressed as

kd=l(1 c(k)(q)c(iO(r))/2. Hence the total communication cost on a hypercube under an
assignment scheme A//can be represented as

1 d

(,0i)(k)(3) Cost(.M)- hop-weight(.M)= We(eij) E(1-c(k) (pj)).
eijEE k=l

We would like to find an assignment that minimizes this communication cost, while keeping
the computational load balanced. We note that when d 1, hop-weight reduces to cut-weight,
so, in this case, the minimal cost is the bisection width of the graph.

as

(1)

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

456 BRUCE HENDRICKSON AND ROBERT LELAND

3. A discrete optimization problem. When using a spectral method to solve a combi-
natorial problem, the general strategy is to formulate the combinatorial problem as a discrete
optimization and then relax the discreteness constraint to obtain a continuous optimization
problem. This continuous version may have some special structure making it tractable, even
if the original discrete problem is NP-hard. After the continuous problem is solved, the result
is mapped back to a nearby discrete point, which often provides a good approximation to the
discrete optimum. A survey of results obtained using this general aplaroach is given by Mohar
in [18].

To follow this strategy we need to express our problem as a discrete optimization problem.
The communication cost we wish to minimize is given in (3), but it will prove useful to add
an additional term and interchange the order of summation to obtain

1
We(eij)(1 --c(k)(Di)C(k)(Oj)) I_

_
i=1

ti(C(k)(pi)2 1)(4) Cost(A)=
k=l eijEE

Since c(k)(q) 4-1, this last term is zero, and does not change the value of Cost(A//).
However, when the discreteness constraint on c(k) is relaxed in 4, this term will become
important. Appropriate values for ti will also be considered in 4.

Equation (4) describes the communication cost to be minimized, but it must be constrained
to ensure load balance. The computational load is balanced if the sums of the weights of the
vertices assigned to each processor are equal. Strict balance is not always feasible, e.g.,
when bisecting a graph with an odd number of equally weighted vertices. Hence it should be
understood that the balance constraint may have some associated discretization error. With
this in mind, we can write the load balance constraint

(5) 4;(q) Wo/2, ’V’q 6 {0 2a- 1},

where)4;(q) denotes the sum of the weights of all vertices assigned to processor q, so that
W(q) vEV<q) wv(v). It will prove convenient to use a different form of the balance
constraint expressed in terms of the ck) notation introduced in (2). In particular, the conditions

(6) (a)

(b)

2

W(q) Wo,
q=0

2d--1
V(q) H C(j) (q) O,

q=0 jS

’v’S 0 S c_ {1 d}

ensure balance, as demonstrated by Theorem 3.1.
THEOREM 3.1. Equations (5) and (6) are equivalent.
Proof. Since it excludes the null subset, condition (6b) provides 2d constraint equa-

tions. Combining (6b) with (6a) yields 2d equations for the 2d unknown values of W(q). We
will show these equations to be linearly independent and hence that a unique solution exists.
Then, since the solution to (5) is easily seen to be a solution to (6), we conclude that the two
constraint formulations are. equivalent.

The proof that equations (6) are linearly independent is inductive. First we consider the
d 1 base case, and note that equation (6a) becomes W(1) + W(2) Wo. Similarly,
equation (6b) becomes W(1). 1 + W(2). 1 0 since ,5" means j 1 and hence the
c<j) term associated with one vertex set is + 1, and -1 is associated with the other vertex set.
These equations are clearly linearly independent.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 457

Suppo_se now that for some value of d we know that a system of this form, denoted
G(d x d)V;(d) f(d), is linearly independent. We can demonstrate that the system G((d +
1) x (d + 1))W(d + 1) f(d + 1) is linearly independent as follows. Note that the set of
subsets 13 #- S’ __c 1 d + consists of S, {d + }, and a remainder comprised of each
set in S with d + 1 included. We can therefore rewrite (6) for the d + 1 case:

(7)
2d- 2a+l-1

(a) EW(q)+ E W(q) Wv,
q=0 q=2

2 2d+l

(b)E }/V(q)Hc(Jl(q)-1- E }/V(q) Hc(Jl(q) O,
q=0 j$ q=2 j$

2 2d+

(C)E }/]2(q)c(d+l) (q) + E }/V(q)c(d+l) (q) O,
q=O q=2

2d- 2d+-I

(d)E V(q)H c(j) (q)c(d+ll(q) q- E "IV(q)H C(j) (q)c(d+l)(q) O.
q=0 jS q=2 jeS

Now, letting d + 1 be the position of the most significant bit in the binary representation of q,
we have c(d+l) (q) --1 for values ofq in the lower range 0 < q < 2d 1, andc(d+l)(q) 1
for values in the upper range 2d < q < 2d+l 1. Upon substituting these values we arrive at
the identity

G(dxd) G(dxd)](8) G((d + l) x (d-t-1)) -G(d x d) G(d x d)

This system is clearly linearly independent since any linear combination of rows which
zeros the left-hand portion of a row will double the right-hand portion, and by our induc-
tive hypothesis, the individual matrix blocks are linearly independent. [3

Constraint (6b)can now be reformulated to involve the wv(vi) values.

(9) E }/V(q)H c(J)(q)= E E llv(l)i) H c(J)(q)’
q=0 jS q=0 viq jS

:2E{I(I]i)H(J)(Pi)]q=O uq jS

Equation (6a) is automatically satisfied by the ll)v(l)i) values and need not be explicitly in-
cluded. We can therefore combine (4) with (9) to obtain a formal statement of the problem of
minimizing communication subject to the load balance constraint.

Problem P1.

1 E llOe(eij)(1 -c(k)(pi)c(k)(pj)) d- - i=1

ti (Pi 1)(10) Minimize

subject to

(a) c(k)(q)--+1, Yk {1 d}, Yq 6 {0 2d- 1};
n

(b) E wv (l)i) d}.
i=1

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

458 BRUCE HENDRICKSON AND ROBERT LELAND

We will call this discrete optimization problem (P1). It is NP-hard since it generalizes
the problem of graph bisection [9]. A general, efficient algorithm for solving it is therefore
unlikely to exist, and we are forced to resort to heuristics.

4., A continuous approximation. Since solving (P1) is difficult, we approximate it by
an easier problem. In particular, we relax the constraint that c(k) (q) -t-1, which changes
the discrete problem into a tractable continuous optimization problem. Unfortunately the
solution to the continuous problem does not give us a valid partitioning since the c(k) (q)’s will
no longer have discrete values corresponding to the bit patterns of the target processors. We
can, however, use the solution of the continuous optimization to find a nearby point satisfying
the 4-1 condition. This nearby point will not generally be the absolute minimizer of (P1), but
the hope is that it will provide a good answer in practice.

It will be convenient to reformulate (P1) in matrix terms. For a fixed k, consider the n
values of c(k)(fi) i n} as an n-vector denoted by x (k). Introduce the weighted
adjacency matrix A such that

(11) A(i j)-[tOe(eij) if eij E,
0 otherwise./

nLetting D diag(ti) and r Y’4=l ti, we can rewrite the objective function in (P1) in matrix
notation as

(12) ld(We r) 1 a
+

k=l

where (x())r denotes the transpose of x) and B D A. We note that the leading constant
term has no effect on the minimizer, just on the minimum value.

We set the diagonal values ti to make each row sum of B zero. There is no compelling
reason for this choice, but it is convenient for several reasons. First, since ti Ye We (eij)

the nx"implies that r 2We, the initial term in the cost is identically zero. Second, ,ltt B is
positive semidefinite. Furthermore, we will show that if the graph is connected then B has only
a single null vector consisting of all l’s. Third, if the edge weights are all 1, then B reduces to
the familiar Laplacian matrix of the graphmour matrix is a weighted Laplacian. We expect
this to be advantageous because unweighted Laplacians have proved useful in a number of
combinatorial optimization problems [18]. In particular, when used to partition graphs into
two sets (a special case of what we will describe below), the Laplacian facilitates several
theoretical results [2], [6], [7]. Fourth, this choice is convenient for solving the eigenvector
problem arising below.

Now we relax the constraint that each of the elements of the x vectors must be 4-1.
Instead, we impose the norm constraint Ixkll2 /-. We combine this continuous constraint
with (10), (12) and the expression for r to yield the following continuous approximation to
(P1).

Problem P2.

(13)
1 d

Minimize -(x(t)rBx(
k=l

subject to

(al) x(Rn, Yk {1 d};
(a2) (x(k)rx(n, Yk {1 d};

(b) tOv(l)i) H X(j) (i) O, VS" 0 7 S _c {1 d}.
i=1 jeS

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 459

We call this problem (P2) and note that its solution provides a lower bound for the solution of
(P1). The advantage of approximating (P1) by (P2) is that the latter can be solved efficiently,
as the next section will demonstrate.

5. Solving the continuous approximation. To solve (P2) we begin by focusing on a
subset of the constraints. Instead of considering all of the terms of (13b), we will concentrate
on only those terms involving two or fewer elements in the products. These terms are

(14) (bl) wv(vi)x(k)(i) O, Yk {1 d};
i=1

(b2) Wv(Vi)X(k)(i)x(J)(i) : O,
i=1

Yk, j {1 d}’k:/:j.

We make the important observation that these are the only constraints contained in (13b)
when d < 2. In particular, if d (bisection), then only (14bl) is relevant, and if d 2
(quadrisection), then (14b 1) and (14b2) are the only terms in (13b).

To simplify, we change variables to a set of vectors y(k) Nn defined by y(k)(i)
/Wv(Vi)X (k) (i). Since the x (k) values are relaxations of +l, the appropriate normalization for
the y vectors is (y(k))ry(k) Wo. Letting s, g 6 Nn be vectors in which si /w(vi) and
gi 1//wo(vi), we transform (14) into

(15) (bl)

(b2)

sTy(k) 0, ’v’k {1 d};

(y(k))Ty(j) O, Yk, j {1,..., d} k 5/: j.

Combining (15) with (13), and letting C Diag(g)T B Diag(g), we can rewrite (P2) as
the following.

Problem P3.

(16) (y(k))T Cy(k)Minimize
k--1

subject to

(al)

(a2)

(bl)

(b2)

(b3)

y(k) n, Vk {1 d};

(y<k))Ty(k) Wv, Vk 6 d};

s Ty<k) 0, Yk d};

(y(k))ry<j) O, Yk, j {1 d} k j;

tOv(vi)l-ISI/2Hy(J)(i --0, ’S" S

_
{1 d}, ISl > 2;

i=1 jS

which we denote by (P3). Next we collect a number of well-known but useful observations
regarding the matrix C. We note that these observations use our assumption that the weights
have positive values.

THEOREM 5.1. The matrix C has the following properties.
(I) C is symmetric positive semidefinite.
(II) The eigenvectors ofC can always be chosen to be pairwise orthogonal.
(III) The vector s is an eigenvector ofC with eigenvalue zero.
(IV) If the graph is connected, s is the only eigenvector ofC with eigenvalue zero.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

460 BRUCE HENDRICKSON AND ROBERT LELAND

Proof. Orient each edge in the graph arbitrarily and define the standard incidence matrix
of a graph F Inxm such that

1 if is the initial vertex of edge l,
(17) F(i, l) - if is the terminal vertex of edge 1,

if is not incident to edge 1.

Now define a weighted incidence matrix G Nnxm as G = Diag(s-)F Diag(/we(e)).
Property (I) follows from the observation that C can be written as GGr. Property (II) is a
consequence of the symmetry of C and acknowledges that C may have multiple eigenvalues.
The observation that the vector of all ones is a zero eigenvector of B yields (III). Property
(IV) is a trivial generalization of Theorem 2.1 c of 18], which is the same result applied to

unweighted graphs.
Problem P4. We now define one further minimization problem, denoted by (P4), to be

the same as (P3) but with constraint (16b3) removed. This is useful because (P4) can be solved
easily, and its solution can then be used to solve (P3). (In fact, (P3) and (P4) are equivalent if
d < 2.) We define u (i) to be the normalized eigenvectors of C with corresponding nondecreas-
ing eigenvalues ,i. The solution to (P4) is easily expressed in terms of these eigenvectors, as
the following lemmas and theorem demonstrate.

LEMMA 5.2. Let y(1) y(d) be a set of vectors that solves (P4), and denote the span
of the y(k) vectors by 32. Then any set of orthogonal vectors z(that spans 32 and satisfies
Iz(!l12 VW, Yk 6 {1 d}, also solves (P4).

Proof. The objective function in (P4) can be written as trace(Yr CY), where Y is the
n x d matrix whose kth column is the vector y(). Since the columns of Y are orthogonal, any
orthogonal basis Z for 3; that satisfies the normalization constraint can be written as Z YR,
where R is an orthonormal matrix. We now observe that trace(ZrCZ) trace(Rr yrCYR)
trace(Yr CY), and the lemma follows.

LEMMA 5.3. Ify(1), y(d) solves (P4), then there is another set ofvectors (1), i(d)
in which ((k))Tbl(i) 0; ifk > then that also solves (P4).

Proof. Theorem 5.1(III) coupled with constraint (16bl) ensures that (y(k))u(1) 0 for all
k. Starting with the y(l vectors, we can apply rotations to satisfy the remaining orthogonality
constraints. Lemma 5.2 ensures that the value ofthe objective function is invariant with respect
to these rotations.

THEOREM 5.4. Any set oforthogonal vectors y(ll y(al that spans {u(u(a+l)

and satisfies IlY(ll , ’k {1 d}, solves (P4). Furthermore, if;ka+l < .a+.,
then these are the only solutions to (P4).

Proof. By Lemma 5.3, there is a solution (to (P4) in which (i(k)ru(i 0 if k > i.
Since C is symmetric, we can rewrite i(l as a linear sum of eigenvectors of C: i(k

Y4n.=l ol}k)u (i) NOW the objective function can be written
d d

(18) 4 Cost ((k/)Tc(/O
k=l k=l i=1

Constraint (13a2) implies Y’.i__l (otk) Wo for all k, and the construction of the i(vectors

guarantees that oe} 0 if k > i. Using these identities we can rewrite the cost function

(19) 4 Cost (o/}k))2,i
k=l i=k+l

(20) >_ k,+, (c}t))2
k=l i=k+l

d

’k+l Wo.
k=l

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 461

It is easy to verify that this lower bound can be achieved by letting k /W-vu(k+l). By
applying Lemma 5.2, we conclude that all orthogonal bases y1 y(d) for the space spanned
by {u2 bt (d+l) in which IlYkll2 solve (P4).

To see that these are the only solutions to (P4) it is sufficient to observe that if,kd+l < ,kd+2,
the inequality between (19) and (20) is strict when > d + unless tk 0. But this implies
the k) vectors lie in the space spanned by {b/(2) //(d-t-l)}, and the theorem follows. [3

Theorem 5.4 indicates that the solution to (P4) is invariant under rotations of the d-
dimensional space, and for d > the space of these rotations has dimension (d2). This
multiplicity of solutions is quite convenient since the continuous solution is only an approx-
imation to the the discrete problem (P1). If the continuous optimization had only a single
minimizer and that minimizer was far from any of the discrete points then the continuous
problem could be a poor model of the discrete one. Since we have a (d2)-dimensional subspace
of minimizers, we have a better chance of finding a good discrete solution. These degrees of
freedom also allow us to satisfy the additional constraints of (P3).

5.1. Spectral bisection. Ifwe wish to divide our graph into two pieces, then (P4) reduces
to (P3) since constraints (16b2) and (16b3) have no effect. We therefore take yl to be
/W-v/g (2), and let x(1) (i) y(1)(i)//Wv(Vi). The vector x1) is the continuous approximation
to 4-1 values, so we need to map it to a nearby discrete point with an equal weight of+ 1 and 1
values. We do this by finding the median weighted value among all the x1) (i)’s and mapping
values above the median to + and values below to 1. This gives a balanced decomposition,
and in practice typically a low cut-weight.

Once the graph is divided into two pieces, each piece can be divided again by applying
this technique recursively. For unweighted graphs, this is the partitioning procedure described
by Pothen, Simon, and Liou in [21 and first applied to the load balancing problem by Simon
[24]. Simon found this approach to produce better partitions than coordinate bisection or
graph bisection, two methods in common use in the parallel computing community.

5.2. Spectral quadrisectiono Dividing the graph into four pieces requires two eigen-
vectors. With two eigenvectors the constraint (16b3) is unnecessary, so (P4) is again equiv-
alent to (P3). The solutions of (P4) are any appropriately normalized orthogonal basis for
the space spanned by y(1) -vU(2) and y(2) -vU(3). This multiplicity of solu-
tions allows us a single rotational degree of freedom, which yields vectors of the form
y(1) y1)cos0 + y(2)sin0 and (2) _y(1)sin0 + y(2)cos0. From the y vectors we
generate x vectors whose values approximate 4-1 by xk)(i) y’)(i)//wv(vi). Ideally, we
would like to find y vectors in which the corresponding x values are near to points with values
4-1 to help ensure that the cost of the discrete solution is not too different from the continuous

optimum.
The distance from x’)(i) to 4-1 can be expressed as (1 x*) (i)2)2. Summing over each

element of both k vectors, we find that we must solve

(21)
2

minimize (1 x(k)(i)2)2.
i=1 k=l

Expanding x{k(i) in terms of 0, we reduce (21) to minimizing a constant coefficient quartic
equation in sines and cosines of0. The construction of the coefficients in this equation requires
O (n) work, but the cost of the resulting minimization problem is independent of n. Although
this is a global optimization problem, in our experience the number of local minimizers is
small, so a solution can be found by a sequence of local minimizations from random starting
points 13].

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

462 BRUCE HENDRICKSON AND ROBERT LELAND

Once x1) and X (2) have been determined, a nearby discrete point must be found that
balances the partition sizes. Our solution to this problem is described in 6.

5.3. Spectral octasection. Dividing the graph into eight pieces requires three eigenvec-
tors. In this case, the constraints (16bl) and (16b2) are insufficient, since (16b3) generates an
additional cubic constraint of the form

(22) y(1)(i)y(2)(i)y(3)(i)/v/Wv(vi) O.
i=1

As before, the solutions of (P4) are any appropriately normalized orthogonal bases for the
space spanned by y() /Wou(2), y(2) --vu(3), and y(3) ,,/---ou(4), but these are not
necessarily solutions of (P3). The additional constraint (16b3) removes one degree of freedom
from the three-dimensional solution space for (P3), leaving a two-dimensional parameter space
to explore.

As in 5.2, we use these remaining degrees of freedom to look for y vectors that generate
x values as near as possible to 4-1. The bases for the eigenspace y can be described in terms
of three rotational parameters. The y(k) vectors are mapped to xk) vectors by x’(i)
y’ (i)//w,,(vi). This generates a constrained optimization problem

(23) minimize (1 x(l(i))
i=1 k=l

subject to

Wv(Vi)X(1)(i)x(2)(i)x(3)(i) 0
i=1

in which the objective function is a constant coefficient polynomial in sines and cosines of
three angular parameters. The coefficients can be generated in O (n) time, after which the
cost of the optimization problem is independent of n. As before this is a global optimization
problem, but in our experience the number of local minimizers is small, so a solution can be
found by a sequence of constrained local minimizations from random starting points [8].

As in 5.2, once x(), X (2), and x (3) have been determined, a nearby discrete point must be
found that balances the partition sizes. Our method for solving this problem is described in 6.

5.4. Higher order partitionings. When d > 3 the partitioning problem becomes more
difficult. The subspace defined by the set of eigenvectors of C will allow (a2) degrees of

rotational freedom. However, there will be a set of () +... + (aa) constraints due to (16b3).
When d > 4, there are more constraints than degrees of freedom, so it will not generally be
possible to construct a balanced solution from the d+ lowest eigenvectors of C. When d 4
there are six variables and five constraints, so it should be possible to satisfy all the balance
conditions. However, these constraints consist of three cubic equations and one quartic, so
the computational complexity of satisfying them is daunting. For this reason we have chosen
not to implement any partitioning above octasection, and we suggest recursive application of
one of the above schemes to divide a problem across a larger number of processors.

6. Generating a partition from real values. The procedures described in 5.2 and 5.3
generate a point in Id for each vertex in the graph. These continuous points need to be mapped
to points with coordinates + 1 to determine a partition. This mapping must ensure that equal
weights of vertices are assigned to each partition, and each continuous value should be mapped
to a nearby discrete point.

It is useful to describe this mapping problem in terms of a complete, weighted bipartite
graph/3 V, V2, g}. The first set of vertices V1 consists of the n vertices of our original

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 463

graph, while the second set V2 corresponds to the 2d sets. A weighted edge e connects each
vertex x V1 to each vertex y V2, with weight equal to the distance between the continuous
point corresponding to x and the discrete point associated with the set y. Any distance function
can be used, but we chose the square of the Euclidean distance for computational convenience.
There is also a vertex weight associated with each vertex x V1 equal to the weight of the
corresponding vertex in the original graph.

The optimal mapping can now be described in terms of a minimum cost assignment from
V1 to V2 with the constraint that the sums of the vertex weights of the elements of V mapped
to each element of V2 are equal. This is a generalization of a class of assignment problems
considered by Tokuyama and Nakano [26], who develop an assortment of algorithms that
generalize in a straightforward manner to our problem. Their best algorithm is randomized
and requires o(2dn) time. We chose instead to implement one of their simpler, deterministic
algorithms that runs in O(22d-n log n) time. By exploiting the geometric structure of our
particular application it is possible to reduce this time bound to O(3dn log n).

7. Lower bounds on partitions. A known bound on the edge count for bisection of an
unweighted graph is 1/4 n.2, where)2 is the second lowest eigenvalue of the Laplacian matrix
of the graph (see, for example, [2], [18]). A simple consequence of the results in 5 is a
generalization of this bound with respect to both weighting and dimensionality.

THEOREM 7.1. The communication cost induced by cutting a graph into 2a pieces is
,d+lalways at least 1/4 Wo z_,i=2 ,i.

Proof. Since (P4) is derived from (P1) by relaxing constraints, the minimum of (P4) will
never be larger than that of (P1). Substitution of the solution in Theorem 5.4 into the cost
function of (16) leads to the result. [3

A better bisection bound can be determined by considering the difference between the
continuous and discrete solution vectors. The continuous solution is the vector y(1) /-Wou(2)
from 5.1. We let b n be the vector with the smallest 2-norm among all vectors such that
y(1)(i) + b(i) -]4Wv(l)i), and let fl Ilbll. We note that b (and consequently/3) is easy
to compute using

(24) b(i) min{y(1)(i) 4Wv(l)i), y(1)(i) + 4Wv(l)i)}.

(25)

THEOREM 7.2. The bisection width ofa graph is bounded by

Cost >_ Wv,2 "]- (.3)2)

Proof Ifc 6 {+1 }n is the discrete solution to (P1), define z to be its weighted counterpart,
z(i) /wo(vi)c(i). We note that if z defines a partition, then -z defines the same partition;
so without loss of generality we can assume that zry1 > O. We define a 6]n to be
the difference between z and y(, so a(i) z(i) y(l)(i). We can expand a in terms of
the eigenvectors of C so that a "=20ljUj, where this expansion begins at 2 since a is

northogonal to u 1.. It follows from the definition of/3 that/3 < ara j=2 c. Now

(26) Wo zTz (y(1) d-a)T (y(1) d-a)

(y(1))r y(1) q_ 2ary(1) d- aTa
Wv + 2ot2 + ara,

sootz --aTa/(2/-o). Since 0 < zTyl) (yl)+a)ryO) Wo + VrWoa2, it follows that

or2 > -W-, which implies that aTa < 2Wo.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

464 BRUCE HENDRICKSON AND ROBERT LELAND

The bisection width of the graph can be expressed as

(27) 4 Cost zTCz
(y() + a)TC(y() + a)

(y(1))T Cy() + 2ar Cy() + aT Ca
n

+ +
j=2

+
j=2

(28) Wv)z + (;kj .2)ot}.
j=2

The sum in the second term of (28) is minimized when otj 0 for all j > 3, in which case

ot aTa ot aTa(1 aTa/(4Wv)). This implies that

(29) 4 Cost > Wv,2 if- (3 ,kz)aTa(1 aTa/(4Wo)).

This last term comprises a concave function in aTa, so its minimum value occurs when ara
is either maximized or minimized. Using the above observations that fl < aTa < 2Wv, we
obtain

(30) 4 Cost > min{Wv,k2 + (,k3),.2)Wv, Wv,2 + (3 --/.2)fl(fl/(4Wo))}.

But since fl(1 fl/(4Wo)) has a maximum value of Wo, the second term of (30) always
dominates and the theorem follows.]

Although the bound in Theorem 7.2 is better than previously known spectral bounds, it
is still rather loose in practice and its practical value is therefore not clear. It may help in
identifying classes of graphs for which the spectral method achieves near optimal results, or
for proving that some particular graphs have large bisection widths.

8. Results. We have compared the quality of partitions produced by our algorithm with
those generated by several other graph partitioning methods which are in common use or have
been recently advocated. Our conclusion is that the improved spectral partitioning algorithm
we have proposed generates significantly better partitions than these other methods, which
are themselves considered to be quite good. This is based on direct experimental comparison
using a variety of meshes. We have selected one representative test for this paper, a finite
element meshing of a multielement airfoil provided by Barth 1].

The airfoil mesh is shown in Fig. and its dual is shown in Fig. 2. The dual has a vertex
representing each element in the mesh (triangular faces in this case) and an edge connecting
vertices representing elements which share an edge in the mesh. There are 8034 vertices and
11813 edges in this dual graph. The dual is relevant because in many parallel finite element
codes, data is organized by assigning collections of individual elements to each processor.
The iterative solution of the resulting equations then involves some computation associated
with each element and some communication between elements sharing an edge or vertex. The
dual graph therefore provides a better model for the iterative solution than the original mesh
does. For ease of comparison with other methods, we chose to partition an instance of the
dual in which all vertex and edge weights are equal to 1.

Table 1 shows the results obtained by applying various partitioning methods to the dual of
the multielement airfoil graph. The methods are listed in rank order by hop-weight, which has

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 465

FIG. 1. Multielement airfoil mesh.

FIG. 2. Dual ofmultielement airfoil mesh.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

466 BRUCE HENDRICKSON AND ROBERT LELAND

been shown to closely correlate with the overhead due to communication for the applications we
are targeting 10]. A brief.discussion of some important aspects of the partitioning algorithms
follows.

TABt.E
Performance ofdifferent partitioning algorithms on dual ofthe multielement airfoil mesh.

64 Processors8 Processors
cuts [hops
300 !, 458
317 396
212 286

Method cuts hops

KL 1158 2183
Inertial 1166 1855
RSB 997 1661
RSQ 1030 1626
RSO 221 224 1018 1463

RSOKL 197 200 911 1287
1There is no 8 processor entry for RSQ because it is not

possible to partition into 8 sets with an integral number of
quadrisection steps.

KL refers to a recursive application of a version of the classic graph bisection heuristic
devised by Kernighan and Lin [15]. KL must be supplied with an initial partition which is
then improved by a greedy local strategy. We used an x-coordinate bisection of the vertices of
the dual as an initial guess since this produced better partitions than any of the random initial
guesses we tried. KL is a quick, linear time algorithm but is sensitive to the numbering of the
vertices, and tends to do poorly on large problems because it only considers very local informa-
tion about the graph. As with all bisection algorithms, one bit in the final processor assignment
of a given vertex is determined at a time, so this algorithm makes no effort to minimize hops.
It is clearly possible to add a phase to a bisection algorithm or any recursive partitioning
algorithm which does try to further minimize hops by choosing an advantageous permutation
of the set assignments of subgraphs. We have not used any such strategy in our experiments.

The inertial method recently proposed by Nour-Omid, Raefsky, and Lyzenga 19] is also
a recursive bisection method. It treats the mesh as a rigid structure and makes cuts orthogonal
to the principle axis of the structure. This is also a fast algorithm which can be implemented
to run in linear time, but requires geometric information which may be unavailable and, as the
table indicates, it produces partitions of only moderate quality.

Recursive. spectral bisection (RSB) is the name given by Simon to the d spectral
partitioning algorithm studied by him and others [24]. It requires no geometric information,
is order insensitive, and makes more sophisticated use of global information than the inertial
method or KL. It produces significantly better partitions of large graphs than KL or inertial,
but has an O(nr) runtime dominated by the Lanczos iteration used to find the bisecting
eigenvectors. Simon [24] and Williams [27] have both concluded that RSB is preferable to
several partitioning strategies not considered here.

Recursive spectral quadrisection (RSQ) is our d 2 spectral partitioning algorithm.
Here two bits in the final processor assignment are determined concurrently to approximately
minimize hops in the corresponding two hypercube dimensions. This can be at the expense of
a slight increase in the cut-weight, as the table indicates. Generally only a marginal number
of additional Lanczos iterations are required to compute the second eigenvector, so RSQ is
often actually cheaper than two levels of RSB. If we assume that the cost of the eigenvector
calculation is proportional to n (which is appropriate in an idealized sense for the Lanczos
procedure [20]), then a single step of RSQ is faster than two steps ofRSB by a constant factor
of 1 + /-/2. In practice the time savings is less than this and does not always occur.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 467

Recursive spectral octasection (RSO) is our d 3 spectral partitioning algorithm which
approximately minimizes hops in three hypercube dimensions at a time. In general it produces
partitionings with fewer hops and perhaps slightly more cuts than RSQ and RSB, although
it happens to do better on cuts than RSQ in this case. Assuming again that the eigenvector
calculations cost O (n/), one step ofRSO would ideally be faster than three steps ofRSB by
a constant factor of (3 + v/)/2. While this factor is not achieved in practice, the octasection
algorithm is generally faster than either quadrisection or bisection.

The last algorithm, RSOKL, is a composite algorithm in which the output of RSO at each
stage of recursion is fed into a generalized KL algorithm capable of minimizing hops over an
8-way initial partitioning. The motivation for this strategy was to combine the global strength
of RSO with the local finesse of KL. The resulting partition is clearly the best with respect to
both cuts and hops. The KL phase of the algorithm accounts for only a small portion of the run
time, so the net cost of RSOKL is often less than that of RSB. Notice that for the 8 processor
case the cut and hop totals are nearly equal, indicating that almost all communication occurs
between adjacent processors. KL can be appended to the other algorithms as well, but we
have found RSOKL to be the best combination given our communication metric.

RSO and RSQ can also be more robust than RSB when the graph exhibits symmetry. For
example, the three-fold symmetry of the cubic grid graph causes)2 of its Laplacian to have a
multiplicity of three, and the corresponding eigenspace to be three dimensional. Since RSB
chooses a single vector from this subspace essentially at random, it may fail badly. It will, for
example, make a diagonal cut through the grid for some Lanczos starting vectors. In contrast,
RSO works within the entire subspace, rotating the basis vectors in such a way that it returns
a gray-coding of blocks of the grid. This is the optimal result in which cuts and hops are as
small as possible and all communication is between adjacent processors.

To demonstrate that this discrepancy does arise in practice, we ran both methods on a
simple 4 x 4 x 4 grid graph. In RSB we used the Lanczos starting vector recommended by
Pothen, Simon, and Liou [21], namely, ri (n + 1)/2, and iterated until the eigenresidual
Au)u was below 10-6. The resulting decomposition had 72 cuts and 78 hops. In RSO we
solved to the same accuracy for this starting vector and several random starting vectors. In
each case we obtained 48 cuts and 48 hops, the optimal partitioning. Similar results may be
observed with other symmetric graphs.

9. Conclusions. We have presented a method for mapping lirge problems onto the nodes
of a hypercube multiprocessor in such a way that the computational load is balanced and the
communication overhead is kept small. For the problems we have investigated, this approach
generates mappings that have lower communication requirements than other partitioning tech-
niques. Because the second and third eigenvectors are relatively inexpensive to calculate, the
net cost of spectral quadrisection or octasection is generally less than that of spectral bisection.
In addition, our method yields computable lower bounds for the communication cost of any
balanced partitioning scheme which are tighter than those previously known.

Although our method was developed with a hypercube communication network in mind,
this approach should work well for other machine topologies. For example, a two-dimensional
mesh can be defined as a collection of two-dimensional hypercubes, so a recursive application
of our quadrisection approach is immediately applicable. Similarly, a three-dimensional mesh
is composed of three-dimensional hypercubes, so our octasection algorithm can be applied.
For other architectures we expect our approach to be useful as a heuristic. Although the
method tries to minimize a communication function that counts hypercube hops, in practice
the spectral quadrisection and octasection algorithms divide a domain into pieces that require
a small communication volume. This should lead to low communication overhead on most
parallel machines.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

468 BRUCE HENDRICKSON AND ROBERT LELAND

Graph partitioning also finds application in network design, circuit layout, sparse matrix
computations, and a number of other disciplines. Consequently, the ,partitioning algorithm
we have described may find uses far afield from parallel computing. More broadly, the way
we have made use of multiple eigenvectors is, to our knowledge, unlike any previous work
in spectral graph theory. It is our hope that these ideas can be applied to other spectral graph
theoretic problems.

Acknowledgments. The ideas in this paper have evolved through discussions with many
people including Horst Simon, Alex Pothen, Louis Romero, Ray Tuminaro, John Shadid, and
Steve Plimpton.

REFERENCES

T. BARTH, personal communication, December 1991.
[2] R. BOPPANA, Eigenvalues and graph bisection: An average case analysis, in Proc. 28th Annual Symposium

on Foundations of Computer Science, IEEE, 1987, pp. 280-285.
[3] W. DONATH AND A. HOFFMAN, Algorithmsforpartitioning ofgraphs and computer logic based on eigenvectors

ofconnection matrices, IBM Technical Disclosure Bulletin, 15 (1972), pp. 938-944.
[4] Lower boundsfor the partitioning ofgraphs, IBM J. Res. Develop., 17 (1973), pp. 420-425.
[5] C. M. FIDUCCIA AND R. M. MATTHEYSES, A linear time heuristic for improving network partitions, in Proc.

19th IEEE Design Automation Conference, IEEE, 1982, pp. 175-181.
[6] M. FmDLER, Algebraic connectivity ofgraphs, Czechoslovak Math. J., 23 (1973), pp. 298-305.
[7] A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory,

Czechoslovak Math. J., 25 (1975), pp. 619-633.
[8] R. FLETCHER, Practical Methods of Optimization, Volume 2, Constrained Optimization, John Wiley & Sons,

New York, 1986.
[9] M. GAREY, D. JOHNSON, AND L. STOCKMEVER, Some simplified NP-complete graph problems, Theoret. Comput.

Sci., (1976), pp. 237-267.
10] S. HAMMOND, Mapping Unstructured Grid Computations to Massively Parallel Computers, Ph.D. thesis, Dept.

of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, 1992.
11 B. HENDRICKSON AND R. LELAND, An improved spectral load balancing method, in Proc. 6th SIAM Conf.

Parallel Processing for Scientific Computing, Society for Industrial and Applied Mathematics, 1993,
pp. 953-961.

12] ,Multidimensional spectral load balancing, Tech. report SAND 93-0074, Sandia National Laboratories,
Albuquerque, NM, January 1993.

13] J.J. DENNIS AND R. SCHNA3EL, Numerical methodsfor unconstrained optimization and nonlinear equations,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

[14] L.-M. JIN AND S.-P. CHAN, A genetic approach to network partitioning, Internat. J. Comput. Math., 42 (1992),
pp. 47-60.

[15] B. KERNIGHAN AND S. LIN, An efficient heuristic procedure for partitioning graphs, Bell System Technical
Journal, 29 (1970), pp. 291-307.

16] N. MANSOUR, Physical Optimization Algorithms for Mapping Data to Distributed Memory Multiprocessors,
Ph.D. thesis, School of Computer Science, Syracuse University, Syracuse, NY, 1992.

[17] G. L. MILLER, S.-H. TENG, AND S. A. VAVASS, A unified geometric approach to graph separators, in Proc.
32rid Symp. Foundations of Computer Science, IEEE, October 1991, pp. 538-547.

18] B. MOHAR, The Laplacian spectrum of graphs, in Graph Theory, Combinatorics, and Applications, Y. Alavi
et al., eds., J. Wiley, New York, 1991, pp. 871-898.

[19] B. NOUR-OMID, A. RAEFSKY, AND G. LYZENGA, Solvingfinite element equations on concurrent computers, in
Parallel Computations and Their Impact on Mechanics, A. K. Noor, ed., American Soc. Mech. Eng., New
York, 1986, pp. 209-227.

[20] B. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[21 A. POTHEN, H. SIMON, AND K. LIotJ, Partitioning sparse matrices with eigenvectors ofgraphs, SIAM J. Matrix

Anal. Appl., 11 (1990), pp. 430-452.
[22] D. POWERS, Graph partitioning by eigenvectors, Linear Algebra Appl., 101 (1988), pp. 121-133.
[23] E RENDL AND H. WOLKOWICZ,A projection techniqueforpartitioning the nodes ofa graph, Tech. report CORR

90-20, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, November 1990.
[24] H.D. SIMON, Partitioning of unstructured problemsfor parallel processing, in Proc. Conference on Parallel

Methods on Large Scale Structural Analysis and Physics Applications, Pergammon Press, Elmsford, NY,
Oxford, 1991.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A SPECTRAL GRAPH PARTITIONING ALGORITHM 469

[25] P. SUARIS AND G. KEDEM, An algorithmfor quadrisection and its application to standard cell placement, IEEE
Trans. Circuits and Systems, 35 (1988), pp. 294-303.

[26] T. TOKUYAMA AND J. NAKANO, Geometric algorithms for a minimum cost assignment problem, in Proc. 7th
Annual Symposium on Computational Geometry, Association for Computing Machinery, 1991, pp. 262-
271.

[27] R. WILLIAMS, Performance ofdynamic load balancing algorithms for unstructured mesh calculations, Con-
currency, 3 (1991), pp. 457-481.

[28] D. WOMBLE, A time-stepping algorithm for parallel computers, SIAM J. Sci. Statist. Comput., 11 (1990),
pp. 824-837.

D
ow

nl
oa

de
d

03
/1

9/
15

 to
 1

98
.1

02
.1

53
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

