Defining and Measuring Supercomputer Reliability,
Availability, and Serviceability (RAS)

Jon Stearley <jrstear@sandia.gov>

Sandia National Laboratori&s
Albuquerque, New Mexico

Abstract. The absence of agreed definitions and metrics for superdemRAS
obscures meaningful discussion of the issues involved amttkts their solution.
This paper seeks to foster a common basis for communicakiontaupercom-
puter RAS, by proposing a system state model, definitiond,ra@asurements.
These are modeled after the SEMI-E10 [1] specification whichidely used in
the semiconductor manufacturing industry.

1 Impetus

The needs for standardized terminology and metrics for regpgputer RAS begins
with the procurement process, as the below quotation extglisummarizes:

“prevailing procurement practices are ... a lengthy anaagjve undertak-
ing both for the government and for participating vendorsi§any technically
valid methodologies that can standardize or streamlireeptocess will result
in greater value to the federally-funded centers, and gregtportunity to fo-
cus on the real problems involved in deploying and utilizimg of these large
systems.” [2]

Appendix A provides several examples of “numerous genaaalWare and software
specifications” [2] from the procurements of several modsstems. While there are
clearly common issues being communicated, the languagkisi$ar from consistent.
Sites struggle to describe their reliability needs, anddees strive to translate these
descriptions into capabilities they can deliver to muétiplstomers. Another example
is provided by this excerpt:

“The system must be reliable... It is important to define whatmean by
reliable. We do not mean high availability... Reliability this context means
that a large parallel job running for many hours has a higbalodity of suc-
cessfully completing. It is measured by the mean time betvwele failures.
Note that the system can undergo a failure that does not ledaolss of a
job without affecting reliability - this is important to deloping reliability en-
hancement strategies. A related requirement would befttreg §ystem under-
goes a failure that is local, only jobs using that local reseware affected. This

** Sandia is a multiprogram laboratory operated by Sandiad&ation, a Lockheed Martin Com-
pany, for the United States Department of Energy under @onBDE-AC04-94AL85000.

kind of aspect of reliability we also call resiliency. Notet a system can have
very high availability and not be reliable for our purposkss, by contrast,
unlikely that a system that has low availability could haighhreliability.” [3]

Standardized terms and measurements for supercomputeniisBeamline the pro-
curement process.

Once a system is operational, even a simple phrase like Sthers is up” can
have very different meanings between who is speaking, whedsing, and what sys-
tem is being described. Categorizing the type and impacndésired system events
is similarly unclear - for example: is intermittent resperisom an 1/0O node an inter-
rupt or a failure, how can its effect on users measured, etdsdth operational and
design review, it is difficult to have meaningful discussatue to inability to agree
on terminology. Making complex supercomputers reliabldificult even with clear
communication, but unclear communication further congiéis the process and delays
progress. Standardized terms and measurements wilt#eilpractical improvements
in RAS performance.

Not all sites track RAS data for their supercomputer(s), emparing data from

those sites who do requires careful review of their defingi@nd calculations. For
example, both NERSC and LLNL do an excellent job at trackidgSRlata (NERSC
data is public ahttp://www.nersc.gov/nusers/status/AvailStats/
LLNL provided extensive data to me upon request) - matchiogdeand metric names
are used, but it is unclear if the definitions and calculatiatso match exactly. Ac-
curate RAS performance comparisons between these sitesshfe via very careful
review, but standardization would ease this process andfibéime high-performance
computing (HPC) community as a whole.

All systems reach a point where it is more cost-effectivedplace them than to
continue to operate them. The reliability, availabilitgrgceability, utilization, cost
effectiveness, (etc) of existing systems are compared &i wdn be procured - in most
cases without clear terminology or quantitative metricsdither. And so the cycle
continues.

It is not uncommon for users of supercomputers to exprestrations regarding
system reliability - even when the cost of their systems eang the tens of millions
of dollars. Accurate quantitative assessment of superatenRAS performance is ar-
guably impossible without agreed-upon definitions and mesmsents - their lack is ex-
tremely expensive in time, effort, and money. In responsgrilar needs for standard-
ization, the semiconductor manufacturing industry hasltged the “Specification for
Definition and Measurement of Equipment Reliability, Aedility, and Maintainabil-
ity” (SEMI-E10 [1]). The remainder of this document is lalgenodeled after that
Specification, and proposes a standardized system statel ngedinitions, and mea-
surements for supercomputer RAS.

! Guidance was provided at Sandia’s 2004 CS| External Revieatselevant lessons and prac-
tices from the manufacturing industry be leveraged to imprsupercomputer RAS.

2 System State Model

It would take an incredibly dense state diagram to visuadittehe possible states a
supercomputer and its workload can reach. Navigating iagrdm during system de-
bugging is at least intimidating, and can feel humorouslydiess at worst:

“A computer is in one of two situations. It is either known te lbad or it is
in an unknown state.” - Mike Levine (PSC)

Clear definitions of equipment states are a prerequisitedorate RAS measurements;
this document defines six basic states into which all equipr@nditions and periods
of time must fall (see Figure 1).

Fig. 1. Hierarchy of Equipment States (basic states in gray)

Total Time

Non-Scheduled (Item IS NOT (Item 1S Operations
Time operational) operational) Time
) I

Installation

Rebuild

Major Upgrades i Iltem IS (Item IS NOT i

Non-operational Holidays Up"me (avallable) available) Downtime
" . : Item IS heduled heduled

Engineering Production available for Unschedule Schedule
Time Time production Downtime Downtime
use)

Software, Hardware, l—% Repair Preventative Maintenance
or Process glagnosls System Software Upgrades
engineering, : orrective action Minor Hardware Replacements
test, or PdeL_ICIIVe Sta_ndby Verification Facilities related
qualification Time Time Facilities related

Executing Awaiting

production jobs production jobs

Boldfaceis used below for words defined in section 3.

2.1 PRODUCTIVE STATE

The time (productive time) when atem is performing computations on behalf of pro-
duction users, for example:

— (thesystemis) executingobs for one or more production users
— (thenodeis) executing gob for a production user

2.2 STANDBY STATE

The time (standby time) when an itemasailable to production users, but not in a
productive state due to workload conditions, for example:

— nojobsin batch queue
— jobsin batch queue require momodesthan are currently in standby state, or are
delayed due to queue priority configuration

2.3 ENGINEERING STATE

The time (engineering time) when @am is available to system engineering users, for
example:

— system software engineering and qualification (e.g. opyaystem software, batch
system software, etc)

— hardware engineering and evaluation (e.g. involving dffé hardware settings or
configurations, newomponents etc)

— process engineering (e.g. refining of support processdsasibooting, shutdown,
problem isolation, etc)

2.4 SCHEDULED DOWNTIME STATE

The time (scheduled downtime) when iéem is notavailable due to planned events,
for example:

— preventative maintenance

— hardware or software upgrades

— system verification (testing in order to verify that it is fioning properly)

— maintenance delay - time waiting for maintenance persoomgérts (maintenance
delay may also be due to an administrative decision to pastpmintenance)

— facilities related (power, cooling, etc)

2.5 UNSCHEDULED DOWNTIME STATE

The time (unscheduled downtime) when ié@m is not available due to unplanned
events, for example:

— repair (including time spent for diagnosis, correctivé@ttand verification of re-
pair)

— maintenance delay

— facilities related (power, cooling, etc)

2.6 NON-SCHEDULED STATE

The time (non-scheduled time) whenigam is not scheduled to be utilized by produc-
tion or system engineering users, for example:

— initial installation
— rebuilds and upgrades which are beyond the scope of scliedoventime
— holidays during which the item is not expected to be openatio

2.7 State Hierarchy

Time spent in the six basic equipment states is hierardhioeganized as follows (see
Figure 1):

TOTAL TIME all time (at the rate of 24hrs/day, 7 days/week) during théogebe-
ing measured. In order to have a valid representation of tiote, all six basic
equipment states must be accurately accounted for.

OPERATIONS TIME total time minus non-scheduled time.

UPTIME time when aritem is available; the sum of engineering and production time.

DOWNTIME time when aritem is notavailable; the sum of scheduled and unsched-
uled downtime.

PRODUCTION TIME 2 the time when aitem is available to production users; the
sum of productive and standby time.

3 Definitions

This section proposes standardized definitions of termsiwdrsie commonly used, but
not commonly agreed upon. Great effort has been made tpasititablished definitions
wherever possible. Only those terms deemed necessaryvare (@onsult referenced
dictionaries for more information).

3.1 RAS Terminology

Reliability the probability that an itefwill function without failure under stated con-
ditions for a specified amount of time [4]. “Stated condigbimdicates prerequisite
conditions external to the item being considered. For exangpstated condition
for a supercomputer might be that power and cooling must bédadle - thus a
failure of the power or cooling systems would not be considex failure of the
supercomputer itself.

Availability the fraction of a time period that an item is in a condition &fprm its
intended function upon demand [1]a{/ailable” indicates that an item is in this
condition); availability is often expressed as a probabj].

Serviceability 4 the probability that an item will be retained in, or restoteda condi-
tion to perform its intended function within a specified perof time [1].

Maintenance the act of sustaining an item in or restoring it to a conditomerform
its intended function [1], usually during scheduled time.

2 “Production time” herein is analogous to “manufacturinge’ in SEMI-E10.

% The use of the term “item” intentionally allows for the caktion of reliability for individual
components or for the system as a whole. Similarly for otls@siof the term “item” in this
document.

4 Serviceability (widely used in the supercomputer HPC comitg)i is herein defined as an
exact synonym for the decades-old term “maintainabilityidely used in engineering and
manufacturing [4,1]). Perhaps “maintainability” is noedsin the HPC community in order to
avoid an acronym conflict with Random Access Memory (RAM)?

Repair the act of restoring an item to a condition to perform itsmated function.

Utilization the percentage of a time period that an item actually pedatsrintended
function [1].

System Downtime Eventa detectable occurrence significant to the system whictesaus
it to transition from an uptime state to a downtime statet¢stare defined in sec-
tion 2), regardless of why the transition is made (e.g. seleetidowntime, system
failure, administrative decision, etc) [1].

3.2 Foundational Terminology

Supercomputer any of the group of computers that have the fastest proagspieeds
available at a given time [4]. Generally speaking, the ideghfunction of a super-
computer is to quickly perform computations for users.

System a collection of components organized to accomplish a spdaifiction or set
of functions [4]. When dealing with a specific supercomputée system” means
“the (majority of components of the) supercomputer” - foasple, a site may not
consider “the system” to be in a production status until asi®5% of it'snodes
(defined below) are in a production status.

Component one of the parts that make up a system. A component may be asgaw
software and may be subdivided into other components. [4]

Item an all-inclusive term to denote any level of unit, includsygtem and component
[4].

Processa set of interrelated or interacting activities which tfanss inputs into out-
puts [5].

Event any occurrence which affects the state of an item [4].

Interrupt the suspension of a process to handle an event external firdbess [4].
See section 3.3 for specific types of supercomputer int&srup

Failure the termination of the ability of an item to perform a reqdifeinction [4].
External corrective action is required in order to resttweability of an item to
perform a required function, e.g. manual reboot, repairgptacement.

— Failures regard items, interrupts regard work (being penfied by the items).

— It is important to categorize interrupts and failures in vegaat facilitate the res-
olution of problems and improve overall system performaBéfective application
of this specification requires agreement on such categtioiza

Fault an accidental condition that causes an item to fail to perits required function
[4].

3.3 Supercomputer Terminology

Job a user-defined unit of work that is to be accomplished by a caenp4]. For a job
processed by a batch system, the following distinct stagedefined:

1. submission- a request is made for fast computation.
2. wait - delay may occur until sufficient resources are availabfelfdl the request,
including consideration of queuing priorities.

3. shell-execution- resources are allocated to fulfill request, a shell is imehkand
scripted commands may take place such as data preprocessing

4. application-execution- computations are performed

5. cleanup- resources are made available for other requests, opijosatipted com-
mands such as post-processing, delivery of results, aiification of job comple-
tion.

Jobs not processed by a batch system generally only cofsistapplication-execution
stage. An “active job” is a job which is in shell-executioppéication-execution, or
cleanup stages.

Job Kill the expected interruption of an active job.

Job Interrupt (I5,,) the unexpected interruption of an active job.

System Interrupt (Isystem) the unexpected interruption of all active jobs.

System Failure Fsystem,) anunscheduled eventrequiring this systerenter a down-
time status beforany componentay transition into a productive status (e.g. the
system must be repaired before new jobs can execute).

Service Interrupt (Iservice) @ny event that disrupts full service to users, including
system transitions out of production or engineering stadusany drop below a
promised number of compute nodes [6]. For example, from énspective of pro-
duction users, any time the system is not capable of runnijodp gsized at the
intended function of the system) is a service interrupt.

Component Failure the failure of a component for any reason other than desigrsfla
[4], which may or may not result in a job or system interruptsypstem failure.

Node a hardware component consisting of one or m@BUs and capable of commu-
nicating with other nodes in order to perform parallel comagions.

Nodehour © a unit of work equal to one node computing for one hour.

Wallclock Time regular time as displayed on a wallclock.

Production Nodehours the sum of all time on all nodes in production state (see Sec-
tion 2.7), e.g. commonly estimated as production time (inreptimes the total
number of nodes in the system.

Productive Nodehours the sum of all time on all nodes in a productive state (see Sec-
tion 2.1), e.g. job duration times job size (the number ofewoithe job utilized).

Field Replaceable Unit (FRU) 7 a hardware component that can be easily replaced in
the field [4].

4 Measurements

“In the history of science and technology, it is clear thaigress can be
strongly correlated with the availability of quantitatidata. ... The substitution
of arm waving and hype has been a major contributor to thesttiag in the
field...” [7]

5 “Nodehours” is a commonly used term and is thus used her@weNer, the use of “processor-
hours” may be justified in systems containing more than oneg.CP

8 “nodehour” is used instead of “node-hour” in order to avaitbéguity in equations.

" FRU herein is analogous to consumables in SEMI-E10.

Quantitative understanding of performance is a preretguisi continual performance
improvements ([5] sections 0.2{f,g}). Motivations to cetit metrics can vary widely;
the objectives of this document are:

1. to work towards the identification of those metrics which &uly useful in im-
proving RAS performance, and

2. to facilitate effective communication about RAS perfarme (enabling clear re-
guirements, accurate systems comparisons, etc).

Because scale (number of nodes) is a principal feature afrsamputers, it is useful
to define metrics based on wallclock time (denoted hereinTy &nd nodehour time
(denoted herein by “N”). All references to “time” or “nodalrs” in below equations
are cumulative over the period of calculation, e.g. “prdihrctime” below means the
sum of all wallclock hours spent in a production state duthrgperiod of time being
considered.

Rigorous tracking of RAS events (e.g. node status tramstib interrupts, etc) is
a prerequisite for quantitative understanding of RAS penmce. Tracking methods
are beyond the scope of this document.

4.1 Reliability

Reliability is often [8] calculated a®(t) = e~** whereA = -t is theconstant
failure rate (uses an exponential random variable modelin Inot confident that su-
percomputer failure rates are constant, and therefore tas®this model for calcu-
lating reliability. Similarly for rates of repair in the callation of serviceability. This
document proposes standardization of low-level metridg oselection of appropriate
models (e.g. Poisson random variable?) for high-leveliceeis left for future work.

Careful classification of events (e.g. interrupt versulsifa) and their scope of im-
pact (e.g. job versus system) enables clear communicationtaystem reliability.
Readers are encouraged to review these distinctions arsideortheir practical rele-
vance.

Only uptime is included in reliability calculations (dovime is included in avail-
ability calculations). Furthermore, the below metricsufeon production time - similar
metrics focused on engineering time may be appropriatedoressystems (e.g. see
System Production and Engineering Availability in SectioR).

Mean Time and Nodehours Between Job Interrupts It is very common for users
to form estimates (and expectations) of how often they egpee interrupts. It is also
common however for these reports to vary widely. This meiveys the time between
such undesirable events.
MTBIJ p = production time
ob =

number of jobinterrupts

Inconsistent reports can result if this metric is (incotiggestimated using uptime
pertaining to only a subset of jobs in the numerator rathem 8ystem-wide uptime. For
example, a user who runs ten one-hour jobs of which five inpgymay erroneously

report thatM T BI; = 2 hours/interrupt (=10 hours / 5 job interrupts). The truth
may however be that these were the only interrupts expexéenao the system over
five full days of service, thus yielding/TBI; = 24 hours/interrupt (=5*24/5).
Comparison of system-wid&/T'BI;,;, as above to a subsé{T BI;,;, (e.9. per-user
or per-application) may be useful towards identifying fastcorrelated with interrupts.

A key weakness oM T B1 j,, however, is that it doesot convey any information
about theamount of workwhich can be accomplished. A metric based on computational
work (nodehours) is more informational:

__ productive nodehours
MNBIJOb " number of jobinterrupts

M N B, provides insight into how much computational work can besexgd to
complete without interrupt, and may be useful to users inmeding the job size and
duration most likely to complete. A plot af/T' B, as a function of job size would
be useful - and an informational accompaniment to appticattaling efficiency plots.

Contour plots of the probability of jobs completing withanterrupt (with job size
and duration as horizontal and vertical axes respectivaby also be useful (e.g. ag-
gregating all jobs on the system over a period of time).

Mean Time and Nodehours Between Node FailureNode failures (e.g. including
events requiring reboot, repair, or replacement of nodespacommon cause of job
interrupts - these metrics convey the average time and ptivduwvork between these
events.

_ production time
MTBFNOde number of node failures

___productive nodehours
MNBFNOde " number of node failures

Mean Time and Nodehours Between System FailureSystem failures (e.g. includ-
ing necessary unscheduled system reboots) are a primagsgiualole event to nearly
everyone (and are consistently evident in Appendix A). €hastrics convey the aver-
age amount of time and productive work between such events.

_ production time
MTBFSZJStem number of system failures

_ productive nodehours
MNBFSyStem T number of system failures

Mean Time and Nodehours Between Service InterruptsService interrupts are of
principal concern to users - these metrics convey the aediag and productive work
between such events. They are aggregate metrics, affegtiedth scheduled and un-
scheduled service interrupts.

. _ production time
MTBlservice = number of service interrupts

o productive nodehours
MNBIS&TUZCE ~ number of service interrupts

10

4.2 Availability

Total System Availability (%) This calculation measures the percentage of a time
period that the system was available. The key feature ofntieiic is the use of total
time (all states) in the denominator - for many users whatematsthat the system be
available, notvhyit was not.

Total Availabilitysystem (%) = _uptime ., q()()

total time

Scheduled System Availability (%) This calculation measures how fully uptime ex-
pectations are met during a time period. The key feature@®ftietric is that quantitative
expectations exist (e.g. uptime and downtime schedulesatrat the beginning of the
time period).

Scheduled Availabilitysystem(%) = “Rkime_downtime , 4

scheduled uptime

System Production and Engineering Availability (%) For systems having both sig-
nificant engineering and production purposes, separateureaents of time spent ful-
filling each function may be useful (systems without such-guaposes are sufficiently
served by Total System Availability above).

__ production time
~ operations time 100

Production Availabilitysystem (%)

. ina ti
engineering time 100
operations time

Engineering Availabilitysystem (%) =

4.3 Serviceability

Calculation of these metrics on an overall system basis §saweer failure type basis
is useful towards quantitative understanding of the pcatimpact of each failure type.
Again, this requires the establishment of failure catezgpand accurate recording of
events.

Mean Time To Repair This calculation is intended to reflect the average amount of
time it takes to recover from a failure.

MTTR = unscheduled downtime

number of failures

Mean Nodehours To Repair This calculation measures the average computational
ability lost per failure. Example usage of this metric wobklto measure the scope of
impact of failure events which cause portions of computessdd become unavailable,
rather than the entire system.

__ unscheduled downtime nodehours
MNTR = number of failures

11

Mean time to Boot System Wallclock time to boot the complete system is a useful
metric [9], whose importance increases with the numberrés the system must be
booted (e.g. the number of system failure events requirsystem reboot).

_ sumof wallclock time booting the system
J\/[TTBSyStem - number of boot events

4.4 Utilization

Total System Utilization This calculation is intended to reflect overall productidin u
lization of the system. Because it uses total time in the denator, it is a meaningful
aggregate of reliability, availability, and serviceatyili

Total Utilizationsystem (%) = % * 100

Production Time System Utilization (%) This calculation measures the percentage
of a system’s available computational ability that was altyuutilized. This isnot a
RAS metric it is entirely a function of workload and queuing configimat- but is
included here for completeness.

. . 7. . __ productive nodehours
Production Time Utilizationsystem(%) = production nodehours 100

5 Implementation

This document is intentionally platform-independent -geks to foster effective com-
munication about supercomputer RAS. There are howeveiipteuttharacteristics of
Linux which are well aligned with this objective, and thugygest it as a good candi-
date as an implementation platform:

— Linux is increasingly present in supercomputers (increglgibecoming a stan-
dard).

— Linux culture has strong aspects of cost-effectivenessopeah, standardized im-
plementations.

— Multiple packages are available which collect and preset#itd system statistics
from large sets of Linux nodes (e.g. Ganglia, Supermon).

Beyond the adoption of agreed-upon terminology, the falhgware needed towards
practical implementation of this document:

1. The intended function(s) of the system and their time priigns must be clearly
enumerated. For example, what exactly is the intended balafithe system being
considered for production use, system-development use, et

2. Interrupt and failure modes must be clearly categorinetlyding their scope of im-
pact. Key to this effort is keeping in mind “from who's persfiee did this fail/etc?”
Categorization hierarchies should be enumerated so thafarerare) events can
be accurately accounted for. Sharing of such categorizhtaerarchies and policies
will benefit the HPC community.

3. Low-level statistics must be meaningfully aggregatedd mgh-level metrics ap-
propriate for inter-system and inter-site comparison.

12
6 Conclusions

It is easy for supercomputer users and administrators te daep understanding of
each other’s frustrations regarding reliability, availi#yy and serviceability (RAS), but
effective collaboration towards improvement is hindergdlhoe lack of standardized
terminology and measurements. This lack also increasesodtef supercomputers in
all phases (design, procurement, operation, and retirgnfumpercomputers today are
complex, expensive, and relied upon - each in increasinguneaSignificant improve-
ments in system RAS are a prerequisite for sustained comiputay future even larger
and complex supercomputers.

RAS concepts are well understood in other industries andHtR€ community
would be wise to leverage these investments to improve sapgruter RAS. This doc-
umentis largely modeled after the SEMI-E10 semiconducemufiacturing SEMI-E10
specification, and proposes a standardized system statd,rdefinitions, and measure-
ments for supercomputer RAS.

Acknowledgments

Sue Kelly, Bob Ballance, Doug Doerfler, Nathan Dauchy, RagiBwell, Neil Pundit,
Mike Davis, Tim Ingebritson, Jim Ang, and William Kramer leaprovided reviews
and/or contributions to this document - thank you! Thanls® ab Mark Seager and
Dave Fox for providing LLNL RAS data!

Postscript

Successful standards must be developed and establishetbbgensus-based process.
Feedback on this document and contribution toward thigtdfe hereby solicited from
any interested party.

Revision

Revision 1.35 of this document is published in the procegglof the 6th LCI Inter-
national Conference on Linux Clusters (April 2005). Thi$Revision: 1.44 $, $Date:
2005/04/2121:07:41 $. Updated revisions are availabigpat/www.cs.sandia.
gov/~jrstear/ras or by contacting the author.

A Procurement Specification Excerpts

A.1 Sandia National Laboratories

“An Investigation into Reliability, Availability, and Seiceability (RAS) Features for
Massively Parallel Processor Systems” by Kelly and Ogd@&j fitovides additional
RAS details on Sandia Systems.

13

Red Storm [11]

— “There shall not be any single-point of failure that can eaasystem interrupt for
high failure rate components such as power supplies, psocgscompute nodes,
3-D mesh primary communications network, or disks. It iseqtable for the ap-
plication executing on a failed processor or node to fail Wwhen this happens
applications executing on other parts of the system shafaild

— (regarding nodes responsible for booting the system) “@bkhall be an automatic
fail over mechanism to prevent a system interrupt due todbe f a boot node.”

— “Mean time between Interrupt (MTBI) for full system shall geeater than 50 hours
for continuous operation of the full system on a single aggtion code. This means
that the full system must be able to run continuously on atiegton using the full
system for 50 hours without any hardware component failaresystem software
failures that cause an interrupt or failure of the applmatode.”

— “MTBI for the full system, as determined by the need to relihetsystem, shall be
greater than 100 hours of continuous operation. This méemtdte system will be
continuously operational for 100 hours with at least 99%hef $ystem resources
available and all disk storage accessible.”

— “FRU (Field Replaceable Units) failures shall be able to k&ednined, isolated,
and routed around without system shutdown.”

ICC (Linux cluster) [12]

— (TAC3) “Each cluster shall be up and processing applicatminimum of 90%
of the (test) wall clock time.”

— (TAC4) “Each cluster will be shutdown at least twice and retied during this
evaluation period. One test will be a complete power dowrditam. Each cluster
must be production ready within one hour following returmpofver. Reboot of the
cluster from shutdown without power loss shall be less tttamBiutes. Production
ready clusters must have at least 95% of nodes availabletapplications within
these time limits.”

— (HAM7) “Management of each cluster must have less than lgp¢impact on the
performance or reliability of the cluster.”

— (HAM15) “The clusters must be designed to prevent a singietpaf failure. It
is acceptable for an application using a failed componefiitpbut this failure
should not effect applications executing on other parthefduster that have not
failed.”

— “the key criteria for measuring reliability is Mean Time Baten Interrupts (MTBI)
of an application. System availability, or percentage eftime the system is "up",
is of secondary importance. In fact, it is possible to haveaahine with high avail-
ability that is not useful for Sandia’s problems becaus#it®l is too short.”

— (SPM1) “The Mean Time Between Interrupt (MTBI) for a singlepéication run-
ning on one-half of the entire system shall be greater thaimod8s of continuous
operation.”

— (SPM2) “The MTBI for the entire system, as defined by the needeboot the
system, shall be greater than 336 hours of continuous operat

14

(POM1) “Each cluster shall provide a simple accounting atilization tracking
facility capable of supporting a subscription process.”

(CMD11) “Each cluster should support comprehensive mainigoof the state of
its components and provide real time notification of equiptmealfunction (e.qg.,
loss of nodes, file system down, etc.).”

A.2 Lawrence Livermore National Laboratories

ASC Purple [13]

“User app spanning 80% of the SMPs will complete a run withrextrresults that
utilizes 200hrs of system+user CPU time in at most 240 waltichours without
human intervention. User app spanning 30% will completen®h 220 wall clock
hours w/o human intervention.”

“System hw and sw will execute 100 hour capability jobs (jeksrcising at least
90% of the computational capability of the system) to susftegompletion 95%
of the time. If application termination due to system ermar be masked by auto-
matic system initiated parallel checkpoint/restart, teach failures will not count
against successful application completion. That is, ifffgtem can automatically
take periodic application checkpoints and upon failure gugystem errors auto-
matically restart without human intervention, then thesgerruptions to application
progress do not constitute failure of an application to eastully complete.”
“Over any 4 week period, the system will have an effectiveteeel of at least 95%.
Effectiveness level is computed as the average of periagt®@féness levels. ...
Period effectiveness level is computed as University djgaral use time multiplied
by max [0,(p-2d)/p] divided by the period wall clock time. \&fe p is the number
of CPUs in the system and d is the number disabled.”

“SMP or node or fru failures will be determined by suppliedghostic utils, iso-
lated, and routed around w/o system shutdown.”

“Failure of a single component such as cpu, single smp, @lsicomm. channel
will not cause the full system to become unavailable.”

... "the SMPs will be able to tolerate failures through gfatdegradation of per-
formance where the degradation is proportional to the nurob&RUs actually
failing.”

Thunder (Linux Cluster) [14]

(TR-1) “nodes will be mechanically designed so that congpteide disassembly
and reassembly can be accomplished in less than 20 minutggrhined techni-
cian.”

(MTBF) “The Offeror will provide the MTBF calculation for &h FRU and node
type. The Offeror will use these statistics to calculateMBF for the provided
aggregate Thunder cluster hardware. This calculation lvélperformed using a
recognized standard. Examples of such standards are Mif@ndard (Mil Std)
756, Reliability Modeling and Prediction, which can be fdun Military Hand-
book 217F, and the Sum of Parts Method outlined in Bellcochfial Reference

15

Manual 332. In the absence of relevant technical infornmaiticthe proposal, the
University will be forced to make pessimistic reliabiligyailability, and service-
ability assumptions in evaluating the proposal.”

A.3 Los Alamos National Laboratories

Q[10]

— “Hot swap of FRU”

— “Node failures shall be determined, isolated, and routedirad w/o system shut-
down. Reconfig system around failed node for continued diperfrom a network
workstation.”

— “Failure of a single component such as single node, diskporm. channel shall
not cause the full system to become unavailable.”

— “Soft memory component failure in user memory shall not eathe node to fail.”

References

1. Semiconductor Equipment and Materials Internationpéc8ication for definition and mea-
surement of equipment reliability, availability, and mainability. SEMI E10-0304, 1986,
2004.

2. Steven Ashby (LLNL), David H. Bailey (LBNL), Maurice Blamon (UCAR),
Patrick Bohrer (IBM), Kirk Cameron (U. SC), Carleton DeTak. Utah), Jack Dongarra (U.
Tenn.), Douglas Dwoyer (NASA Langley), Peter Freeman (N$¥)med Gheith (IBM),
Brent Gorda (LBNL), Guy Hammer (DOD-MDA), Wesley Felter 8, Jeremy Kepner
(MIT/LL), David Koester (MITRE), Sally McKee (Cornell), Déd Nelson (DOE), Jef-
frey Nichols (ORNL), Michael Vahle (Sandia), Jeffrey VetigLNL), Theresa Windus
(PNNL), and Patrick Worley (ORNL). Performance modelingtrits and specifications:
Report of HECRTF working group six. USC CSCE TR-2003-016g#st, 2003.

3. Ron Brightwell, William Camp, Benjamin Cole, Erik DeBetietis, Robert Leland, Jim
Tomkins, and Arthur B. Maccabe. Architectural specificatfor massively parallel com-
puters - an experience and measurement-based appr@actturrency and Computation:
Practice and Experien¢cgSpecial Issue) The High Performance Architectural Gmaje:
Mass Market Versus Proprietary Components, September. 2004

4. Standards Coordinating Committee 10 (Terms and Defirs}idane Radatz (Chair)The
IEEE Standard Dictionary of Electrical and Electronics ieg volume IEEE Std 100-1996.
IEEE Publishing, 1996.

5. The International Organization for StandardizationQJS Quality management systems -
fundamentals and vocabulary. 1SO-9000, 2000.

6. W. T. Kramer. How are we doing? A self-assessment of thétgud services and systems
at NERSC, 2001. LBNL-47712.

7. David J. Kuck. High performance computing challengeddaire systems. from High-End
Computing Revitalization Task Force (HECRTF) presentalip Alan Laub and John Grosh
on November 21, 2003.

8. Enrique Vargas Sun Microsystems Enterprise Engineetitigh availability fundamentals.
Revision 01, November 2000. http://www.sun.com/bluggtin

9. Adrian Wong, Leonid Oliker, William Dramer, Teresa Kalémd David Bailey. ESP: A sys-
tem utilization benchmark. IRroceedings of the Supercomputing 2000 Confere?@e0.

16

10.

11.

12.

13.

14.

Suzanne M. Kelly and Jeffry B. Ogden. An investigatioto iReliability, Availability, and
Serviceability (RAS) features for massively parallel mssor systems. SAND2002-3164,
2002.

ASC red storm acceptance test plan. Cray and Sandiardhtiaboratories internal docu-
ment.

Institutional computing cluster (ICC) - statement offlkvoRFQ 5031, Sandia National Lab-
oratory.

Purple - statement of work (B519700). UCRL-PROP-145839University of California
Lawrence Livermore National Laboratory.

Thunder - statement of work (B532746). UCRL-MI-2000@8)iversity of California
Lawrence Livermore National Laboratory.

