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Motivation

» How does the choice of the finite element discretization affect
the solution of PDE-constrained optimization problems arising
in the control and design of semiconductor devices?

> collaboration with the Charon project (Sandia National Labs):
modeling of electrical semiconductor devices at high fidelities;
in addition to simulation, Charon enables the solution of related
parameter estimation, optimal design, and inverse problems

Doping Profile
SOURCE GATE DRAIN
) ]
n

Example Problems:
» increase the current flow over a contact by tweaking the doping profile

» determine the doping profile based on a profile measurement and the
corresponding (experimental) current data
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% Problem Statement

minimize 7 = JJ(e) v~ T(@) A1 r, + 5 ()~ )
subject to
In(x) = pn(Vn(z) + n(2)Vy(z))
Ip(@) = p1p(Vp(z) — p(2)Vy(2))
V. dn(z)=0 DRIFT-DIFFUSION
V-Jdp(z)=0
=V (k(z)Vy(z)) = n(z) — p(z) — u(z),

where y is the electrostatic potential, n and p are electron and hole
densities, u is the doping profile, u,, and p, are electron and hole
mobilities, k is the permittivity, and the total current density is given by

J(@) = Jn(2) + Jp(@).
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% Survey
Discretization of the Drift—Diffusion Equations

» primal Galerkin FE schemes with streamline or flux upwinding
(SUPG - Hughes, Brooks; FUPG — Carey, Sharma)

» mixed and hybrid FE methods with exponential fitting
(Brezzi, Marini, Pietra; Holst, Jiingel, Pietra)

> exponentially fitted triangular and tetrahedral FE methods
(Wang, Miller, Angermann)

» finite volume / covolume methods, e.g. the box method with
Scharfetter-Gummel upwinding (McCartin, Bank et al., Mock)
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Survey

i Discretization of the Drift—Diffusion Equations

» primal Galerkin FE schemes with streamline or flux upwinding
(SUPG - Hughes, Brooks; FUPG — Carey, Sharma)

» mixed and hybrid FE methods with exponential fitting
(Brezzi, Marini, Pietra; Holst, Jiingel, Pietra)

> exponentially fitted triangular and tetrahedral FE methods
(Wang, Miller, Angermann)

» finite volume / covolume methods, e.g. the box method with
Scharfetter-Gummel upwinding (McCartin, Bank et al., Mock)

Optimization
» while the discretization of the D-D equations is fairly well studied,
there are virtually no studies on the impact of the discretization on
the solution of the PDE—constrained optimization problem
> one example: study of the SUPG method in discretize-then-optimize
vs. optimize-then-discretize (Collis and Heinkenschloss)

» numerical study of Galerkin versus mixed Galerkin discretizations J
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Simplified Model Problem
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L. 1 -~ o .
minimize J = §||J(x)~V—J(w)~V|I2_1/z,ro + Sll(u(z) — a@)[[5 o

2
subject to
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p Simplified Model Problem

(07

5 (@) — @) 5.0

S 1 .
minimize J = §||Vy(l‘)'V—Vy(af)'l/||2—1/2,ro +

subject to
=V (k(z)Vy(z)) = u(z)
J — Vy
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minimize J = §||Vy(1:) ‘v —Vy(x) ‘V||2—1/2,1“o + 9
subject to

—V - (k(z)Vy(x)) = + u(x) in 0
y(x = D(x) on FD
(k(2)Vy(2) - v = gla) on T
I'b T,
FN 1_‘N
'y
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Galerkin Discretization
» state and control spaces
Y:{yEHl(Q) : y=yp on I‘D}7 U:L2(Q)
> test function space
V={veH (Q) :v=00nTp}

» (bi)linear forms
a(y,v) = / kVy - Vv dz, b(u,v) = —/ uv dz,
Q Q

(f,v) =/va de, (g, v)ry =/F gv dx

» Weak form: Find y € Y,u € U, which solve, for allv € V

(%

5 I(u(z) = @@)5 0

1 N
minimize §||Vy(:r) v —Vy(z) - V||2—1/2,1“0 +

subject to
a(ya ’U) + b(uv U) = <f7 U> + <g7 U>FN'
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Galerkin Discretization
» state and control spaces

Y={ycHY(Q): y=yponTp}, U=L*Q)

> test function space

V={veH (Q) :v=00nTp}

» (bi)linear forms
a(y,v) = / kVy - Vv dz, b(u,v) = —/ uv dz,
Q Q

(f,v) =/va de, (g, v)ry =/F gv dx

» Weak form: Find y € Y,u € U, which solve, for allv € V

N 1 . o R
minimize 5\|Vy(17)’V*Vy(ﬂﬁ)'VHZ_l/z,ro + 5||(U($)—U($)||3,Q

subject to
a(ya ’U) + b(uv U) = <f7 U> + <g7 v>FN'
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% Galerkin Discretization

Flux Term: |Vy(z) - v — Vy(z) - l/||271/2'r0

» Standard approach. Restrict the states to a finite element
subspace Y}, compute terms Vy, - v directly, and use a weighted L?
norm to approximate the norm on H~1'/2(T,):

Vy-v—Vy- V||%1/2,ro ~ h||Vyn - v =V - V”%,Fo

» Better choice: Variational Flux Approximation (VFA).
Replace flux Vy;, - v by a more accurate, C° approximation My,
obtained by solving the equation

Apop dl = k71 a(yn,vn) + blup,vr) — (fyon) — EVyn - vy dl
Ty I\,

then approximate the flux term as follows:

IVy v = V5 vIZor, = hllAn = Al r,
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% Galerkin Discretization

Variational Flux Approximation

Mopdl = k7 alyn, vn) + blun, vi) — (f,vn) — ENVyn - vy dl
To T,

» PDEs: Wheeler, Babugka, Brezzi, Hughes, etc.
When used to postprocess a given finite element solution (yn,up,),
the right hand side above involves only known quantities.

» Optimal control (to date): Berggren, et al. (Thanks!)
VFA is used in an already defined optimality system to improve the
accuracy of the solution.

» Our case, NEW use of VFA:

VFA changes the optimization problem, because the discretization
~ 2 N T2
[Vy-v—=Vy-v|Z5r, =bl[A = Al r,
where \j, is given above, is a function of both the unknown states
yr, and the unknown controls up,!
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% Mixed Galerkin Discretization

» consider the Poisson equation as a first—order system: -
Given u € L?(Q), f € L*(Q), g € L*>(Tx), and yg € HY(Q)NC(Q),
seek y € L?(Q) and p € [LQ(Q)]Q, with V - p € L%(Q), satisfying

Vept+tu=—f in Q

Elp—Vy=0 in Q
Y =YD on I'p
(kVy)-v=yg on I'y.

» for the weak form, we introduce the spaces
. 2 2 2
H(div, Q) = {q e [L2Q)*:V.qel (Q)},
Ho n(div, Q) = {q € H(div,Q) : q¢-v=0on FN},

Hy n(div, Q) = {q € H(div,Q): (kq)-v=gon I‘N}.
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}. Mixed Galerkin Discretization
>

state spaces Y = L2(Q) and P = H, n(div, Q)
> control space U = L2(Q)
> test function spaces V = L2(Q) and Q = Ho, y(div, Q)
» (bi)linear forms

1
apa)= [ poad bdan= [ (aude  cwo= [ ws,

(f,v):/fvdw, (Ya,q-v)rp :/ yp q-vdzx
Q I'p
» Weak form: Find (y,p) € Y x P, and u € U, which solve, for all
q € Q and all v € V, the problem
C 1., N 9 o 12
minimize 5”7‘3 (p-v—=pv)Zijor, + 5”“ —ullg.0
subject to

a(p,q) +b(q,y) = (Ya,q- V)p,,
b(pa ’U) + C(U,U) = - <fa ’U> .
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: Mixed Galerkin Discretization

Flux Term: ||k~ 2(p-v —D- V)H2—1/2,FO

» Direct approximation. The flux is approximated directly by pj:
k=P v =P )21 jor, = BIE(pn v = Pr - V)G, -

» A more natural, “compatible” flux approximation!
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Preliminary Comparison

2 (ulz) - @@))2 g

1 ~
minimize §||J(z) v —J(z)- u||271/27r‘0 +

2
subject to
=V (k(z)Vy(z)) = f(2) + u(z) in ©
y(z) = yp(z) on I'p
(k(z)Vy(z)) - v = g(=) on 'y
GALERKIN MIXED GALERKIN

Jr, Vi vV vde Jo B2 vy v de
i, nodal basis functions VFA ti,; “face” basis functions
© STD: innacurate flux computations @ more natural choice for flux objectives

© VFA: cumbersome implementation!

a(p,q) +b(¢,¥) = (Ya,q-v)p,,
a(y,v) + b(u,v) = (f,v) + (9, v)ry b(p,v) + c(u,v) = — (f,v)
@ less expensive solution of the PDE & more expensive solution of the PDE
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Experimental Setup

» Galerkin: first—order nodal elements (P')

o I, Tp > Mixed: lowest-order Raviart-Thomas elements (RTp)

v

32 x 32 x 2 triangular mesh

forcing term f(z) =0, yp =0on I'p

target doping @ = 1, reg. param. o = 6.25-107*

g = 0 on left, right I'n; g(x) = —k(z) on bottom 'y

vV v.v Y

parameter study: (a) diffusivity profile k
(b) target flux Vy - v
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}. Experimental Setup ... cont'd

Example 1. The desired flux is V§ -~ =1 and k(z) = 102 in Q.
Example 2. The desired flux is V7 -v =1 and k(z) = 1072 in Q.
Example 3. The desired flux is V- v =1 and

10 in [—1,-0.25] x [~1,1]
k(z) = 41072 in [-0.25,0.25] x [—1,1]
10 in [0.25,1] x [—1,1],

Example 4. The desired flux is Vi - v = 100 and k(z) is as in Ex. 3.

P. Bochev, D. Ridzal Galerkin vs. Mixed Galerkin Discretizations in Flux Control Problems 14 E‘]Samia National Laboratories
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Objective Functional

Example 1: k(z) = 102 Example 2: k(z) = 10~2
GM Mixed GM-VFA GM Mixed GM-VFA
Jr 1.99e-06 1.88e-06 1.95e-04 6.42e-09 2.51e-09 2.70e-09
Tu 1.10e-08 1.10e-08 3.81e-07 1.12e-03 1.08e-03 1.11e-03
J 2.00e-06 1.89e-06 1.95e-04 1.12e-03 1.08e-03 1.11e-03
Example 3: k() discontinuous Example 4: k(x) disocntinuous
GM Mixed GM-VFA GM Mixed GM-VFA
Jr 6.07e-05 8.10e-10 2.83e-07 1.06e+01 2.56e-07 6.29e-07
Tu 7.17e-05 4.62e-05 4.50e-03 3.63e+00 4.57e-03 7.19e-03
J 1.32e-04 4.62e-05 4.50e-03 1.42e+01 4.57e-03 7.19e-03

Table: Jr, Ju and J denote the values of the flux term, the control term and
their sum (the total value of the objective functional).
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) Example 3

Galerkin States Mixed Galerkin States Galerkin VFA States

-1

Galerkin Controls

-1 -1 -1 -1 -1 -1

Figure: Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row)
and optimal controls (bottom row) for Example 3.
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Example 4

Mixed Galerkin States Galerkin VFA States

Galerkin States

-1 -1 -1 - -1 -1
y x

Galerkin Controls Mixed Galerkin Controls Galerkin VFA Controls

20 M‘

[

Figure: Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row)
and optimal controls (bottom row) for Example 4.
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Summary & Conclusion

» performed study of Galerkin and mixed Galerkin discretizations used for
the numerical solution of PDE—constrained optimization problems with
applications to semiconductor design

» unique problem feature: objective functionals involve flux terms, which
have fundamentally different discrete representations depending on the
type of FE discretization

» for problems with heterogeneous material properties the mixed Galerkin
method offers the most robust performance and the most accurate results

> the worst performer is the standard Galerkin method (not recommended!),
which may yield state and control approximations that are many orders of
magnitude less accurate than those computed by the mixed method

» if, for whatever reason, the use of the mixed method is not feasible, then
the Galerkin discretization of the state equations should be combined with
the VFA approach in order to improve robustness and accuracy
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