Sandia
National
Laboratories

On the Use of Vectorization in
Production Engineering Workloads

Courtenay T. Vaughan (ctvaugh@sandia.gov)

"y, UL DERaRTEENT OF
1

— (ZJENERGY NS4

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

UNCLASSIFIED UNLIMITED RELEASE SAND2018-5352 C

Images courtesy of Sandia National Laboratories and Oak Ridge National Laboratory

Introduction

We have been working on application porting, bring-up and optimization for
Trinity Haswell/Knights Landing for three years

> Lots of experiences about how to make code run faster on our machines
> Been a useful way to drive application optimization

Getting to the stage of working on more optimization

> Focus on improving levels of vectorization because this helps drive good code design,
memory access, compute efficiency etc.

This talk is about our analysis of applications in this context

: <. P, y L S)
¥ p’ . e ar SpRR
g e S
- - &
s s B ey
» - b g
. > - v gy Wy
- e e T
- ' e .
- a2
S -’;:.‘ e i = -
At o 5 s ¥ -
] -~ —v-__; - -
== ,‘_ﬂ'_@h-—’ &

P

+ | Motivation for Studying Vectorization

Deployment of Trinity (Cray XC) platform as LANL/SNL ACES partnership
° >9,000 nodes of dual-socket Haswell (dual-AVX256)

> >9,500 nodes of single-socket Knights Landing (dual-AVX512)

> Where significant amount of application performance is available

Early experiences showed limited success of automatic vectorization by Intel
compiler toolchain

> Compiler reports showed many loops refusing to vectorize
> Even when vectorizing often not getting performance delta

° In some cases it appeared code would vectorize but we would use the scalar/remainder
loops

04/03/2018

Motivating Application Examples for Knights Landing

Application Performance
(with and without vectorization)

3000

B Vectorized
O Non-Vectorized

500 IH
0

04/03/2018

Application studies on Khnights Landing
showed small/no difference with and
without vectorization enabled

> Why doesn’t this show more improvement!?
> Are codes not vectorizing?
> Or, are they vectorizing and not gaining?

Complex interaction of behavior for
larger applications

Concern about compilers, libraries etc.

> Could we be getting much more from our
platforms?

¢ I Motivation for Studying Vectorization

Complexity of hardware is growing
> AVX512 adds support for masked vector instructions
> Now need to count the number of active lanes
> AVX256 and 512 adds more sophisticated instructions

> Multiple operations per-lane per instruction (e.g. FMA, FMSUB, Horizontal
Adds)

Growing use of vectorization in other products for the
NNSA/ASC

> ARM, IBM POWER, implication of similar ideas for GPUs
> Want to ensure we have code that can vectorize

Want to make better compilers and toolchains
o Partner with vendors to make these better for our needs

04/03/2018

7 I Why is this Challenging!?

Performance Counters on Haswell and Knights Landing are not sufficient
> No FLOP/s counting on Haswell (unbelievable)
> General performance counter support on KNL extremely limited

° Particularly around wide-vector support (e.g. how do you count vectorized FLOP/s when
also using masking)

> Compilers tell you things but sometimes not the complete truth
> Vectorization reports are good but could be better
> Drop to scalar loops
> Appears that dependency analysis is not a perfected art (although getting better)

04/03/2018

: <. P, y L S)
¥ p’ . e ar SpRR
g e S
- - &
s s B ey
» - b g
. > - v gy Wy
- e e T
- ' e .
- a2
S -’;:.‘ e i = -
At o 5 s ¥ -
] -~ —v-__; - -
== ,‘_ﬂ'_@h-—’ &

P

9 | APEX-Tesserae Tools

Need to develop in-house methods for counting operations and performing
analysis of vectorization/application behavior

° Intention to analyze vectorization in codes
> But, can use this to look at memory access, instruction execution behavior etc

Complete visibility into instruction stream using binary instrumentation
> Limited to X86, but this is our main focus for Trinity work (and many platforms)

> Intel SDE (similar tool) does not allow us to customize the analysis

° Drive custom tool development using Intel’s PIN framework
> Works on all production platforms and KNL, good support for KNL

See: Towards Accurate Application Characterization for Exascale, S.D. Hammond,
SAND2015-8051 (Technical Report, Sandia Nat. Labs), September, 2015

04/03/2018

10 | APEX-Tesserae Tools

Want to maintain highest-performance possible for analysis (otherwise this is
hard to scale)

> At startup we perform an analysis of each program basic block (we perform our own
blocking through instruction-by-instruction analysis)

> Generate a "summary” for the block of instruction behavior

> Add a hook to atomically update counts when each block is encountered
> Allows high-performance execution in multi-threaded environments

Works fine except for masking register analysis which require dynamic inspection

> Add a hook only for vector instructions which use masking, perform a dynamic
population count on the mask register and atomically keep counts

04/03/2018

g o
- " 4 2
Pror e S o l«‘ i o b
& . s g oL S e
- g | - L oy, i
~ - . i
- o ¥ P .%*-
-. - - -
- - - - e “’ -

-~
o R,
—
o
AN
- x
Ik = ——
- - ! .
: v e LU BT
- H e
] &0
3
-
=

C4/0

Application Analysis

Fortran 77 + Fortran 90 :
CTH Flat Mesh (tiny bit of C), O(1M) Hydrodynamics, Structured

Fortran 77 + Fortran 90 :
CTH AMR Mesh (tiny bit of C), O(1M) Hydrodynamics, Structured

Mini-Application, Hydrodynamics,

MiniAMR (using AMR Mesh) C, O(10K) Structured, Simple Stencil

LAMMPS C, C++, O(10K) Molecular Dynamics

LULESH C, C++98, O(1K) Mlm-Appllca’gon, Unstructured
Hydrodynamics

SAGE Fortran, O(10K) Hydrodynamics, Unstructured

SPARC Siraily UANIDES CFD Modeling

O(~1M incl. Trilinos)

13 I Analysis Results

Taken each application and configured a suitable input deck/problem
° Designed to run for O(minutes) of execution time to see real behavior
o Sufficiently large that correct memory subsystems and behaviors are observed

Compiled for KNL using Cray Programming Environment/compiler wrappers with
the Intel PE loaded

Compiled each code with and with-out vectorization (“-no-vec”)

> Still see vectorization in some codes because of calls to libraries on the platform that
execute vector instructions (e.g. MKL, optimized calls to memset)

> See whether the compiled code with and with-out vectorization makes significant
difference

04/03/2018

14 I Instruction Analysis

Instructions that Perform FP64 Compute Number Of ms;ructlo.ns which utilize
60 floating point arithmetic (percentage of
entire program execution)
W 50
5 40 . o
£ Mini-applications and LAMMPS have
8 10 significantly denser compute-instruction
H intensity
g > ”Simpler” access patterns
L - LAMMPS has more optimized execution
I and algorithms
I - CTH-AMR has poor intensity because of
& O & O a c) c) & A P . y
R R R GG AR G RCR management of the adaptive refinement and
®@°@@°4‘@°@@°@@°@@°@@° :
F e & S B R s complex stencils
&Qs &\2\ PR &Q\ & & \)S\\y%‘ S \9\‘5/ Sy &Y %

04/03/2018

15 I Vectorization Analysis

90

80

70

60

50

40

30

20

10

Percentage of Total Floating Point Operations

0

e&\ 3 <
Pt @ S

& (£
45\ > \‘? O @ ©0 @ ©
N TP AR

Percentage of FP64 Operations which are

2\

4&9

AN

X

04/03/2018

Packed

|

e&\ \\‘9 400 4@0 \\@a 4@‘) A% @ 40\ \\0\ Q%7 Q@

AN < O

Q. N

Analyze the percentage of floating point
operations which execute in “packed” mode

o Packed uses all lanes of the vector unit and
does not perform any masking

> Represents the most efficient use of the vector
unit

CTH and SAGE are typically higher because
Fortran is anecdotally more likely to vectorize
cleanly

SPARC is unusual for a C++ code because it
has high levels of efficiency

o Because of use of manual intrinsics in Kokkos-
Kernels/Trilinos libraries

i | Vectorization Analysis (Operation Density)

FP64 Ops per FP64 Inst

3.5

2.5

04/03/2018

Number of floating point operations per
instruction that performs a 64-bit double
precision operation

° |deal value here is 16 (8-wide, 2-per lane
(e.g. FMA)

°Value of |
behavior

indicates basic scalar-like

Note — big difference here in vectorization

level achieved in flat/ AMR mesh modes for
CTH

> AMR adds significant complexity to look up
for data operations

Vectorization Analysis (Mask Operations)

Percentage of FP64 Inst. that use Masks Masking lowers wide-vector efficiency by
9 disabling lanes using predicates
8 > Lowers computational efficiency
g2 7 > But .. can make very complex code easier
S to compile (otherwise just fall back to
2 scalar)
. 5 o« .
s > Dense vector use is ideal
g 3
T 2 Typically not able to be counted correctly
g I by hardware (hardware counts all vector
"o i - - | operations including memory loads/stores
V\@\o@ @\ 1\ \\ : \4024@0@24904@1400\04@& and integer operations with masking).
RS e e R e e > We count only double precision to look at
IR LTS FFF T fici
SFTXZIE I 79 g compute efficiency

04/03/2018

18 | Vectorization Analysis (Mask Operations)

Average Vector Density when using Masks How many lanes are enabled during each
L instruction that utilizes masks?
j% 6 ° |deal is for this to be close to SIMD width
g, (8-wide)
= > Only close for SAGE hydrocode
% 4
= 3
§ See poor masking efficiency for codes
k 2 | | ‘ > Represents divergence in the code paths
g I I I I (which generate masks)
" M I ° Implies we need to find ways to reduce
B N SN R divergence if we want to increase vector
Q&\Q‘\\ %&\“\ ,bﬁ\ Qgﬁq}‘\\ &e\ %@\ %\%@Y\@\ éﬁ%@\ Q-O@O@\ efficienc
P LELEPFTS FFE F LK S Y

04/03/2018

19 | Bytes Transferred to Floating-Point Compute Intensity

Bytes Transferred per FP64 Operation How many bytes are loaded/stored per
L0 double precision operation!?
g ® > Common “bytes to FLOP” metric which is
& :Z rough guide to system design
S 4 > High values for compute intensive codes
g are 24 bytes (two 8B operand loads, and an
= 8B operand store)
v s > Values beyond this show codes are having to
3 Y g
g 1 perform indirection/lookups, data movement,
8 . I I I I I I overheads etc
e > Show the weakness of memory subsystems
\yé).Qﬁgh <S§N~N§>44§;)~AF§\Q“§>-AF;N~¥5>~AF§\\yé)-AF;N~AF§N~¥§> 'tt]E[t ElrfE (jEEIi\/EET'ir\E; if\ 'tf\fa ()1:?\63[' C)f ().:ZE;EB F)GEY'
S e aT o @ 0@ @ @ e @ e FLOP
@2&\4“(\&@&@ &\e&@ Qgs\é_)@ éo“\\ q\i&\o@@@o\@@ or worse
ISR SFF IO TS

04/03/2018

Bytes Transferred per Memory Operation

Bytes Transferred per Memory Operation

Bytes Transfered

2

0
?\0 \\0 Y§\® O AQ& 40\ \\0\ 400 AQ,O G c) \\Qp G O \\é) \\é)
\0\\4A\\°4A\ Q © & P & e
Yg&\{&t“ \Q,QA 'bt“ Q&\{&@ f—,\q & Qs\ \2\@ O“'\(,‘/ﬂ S Ot“
N ~2f</\~2~<< ISR oV F S o

04/03/2018

How many bytes are loaded/stored per
memory operation?

> Hardware is optimized for wider data paths
(typically 32 or 64B)

> KNL is optimized for 64B load/stores to
support wide vector registers

Codes show much modest

load/store widths

o Consistent with lower vectorization level
(loads scalar values)

more

° Indirect loads/stores where offset/indices
must be loaded from memory

21 | Bytes Read/Written Ratio

Bytes Read to Written Ratio

Bytes Read per Byte Written
|
|
|

0

PP PP DD DD P PP
ST @ T W N N

X X
» {&Q\'v Q\w‘\??vg&e\{\ < Qﬁ?@?‘

S T

04/03/2018

What is the ratio of bytes read to bytes
written!?
> Hardware is typically optimized for a 2:1 of

read : write ratio (makes sense since need
two operands for each result generated)

° Typical hardware ratio is close for most
codes although slightly higher read
throughput would improve performance for
most codes

MiniAMR and LAMMPS have significant
read dominance

> Read many operands to generate a single
result

P

Conclusions

Understanding vectorization levels is difficult (especially with limited hardware
counter support)

> Yet essential, because we are trying to improve code performance on Haswell, Knights
Landing, Skylake etc.

> Needed to produce our own tools to get the data we wanted from our codes

Want to use the data to guide application optimization efforts and future
hardware design/optimization activities

> Growing use of vector/vector-like support in HPC-class processors
o Still useful for GPU porting as well (identifying/removing data dependencies)

24+ | Conclusions

Profiled the vectorization levels achieved in broad range of applications
> Not just mini-applications and benchmarks, and running complex input decks

Fortran codes produce higher levels of vectorization
° Language is designed to support analysis/generation of vectorized operations

SPARC C++ has higher levels of vectorization because of use of manually
vectorized/intrinsics in the main application solver

> Using the Kokkos-Kernels/Trilinos C++ wrappers of SIMD types
> Automatic vectorization is still challenging

04/03/2018

5 | Conclusions

Evaluated several “rules of thumb” for hardware design

Read/Write Bytes Ratio of 2:]1 seems to be reasonable, 3:1 would be better
> Need to support additional indirection indices as well as throughput for compute operations

Fairly limited use of masking hardware (most is 8%)
> But the use of these instructions makes compilation much easier
> Supported but perhaps don’t need to be as aggressively optimized?

Typical bytes transferred per memory operation is in region of 7 to 16
> Hardware is optimized for 32 or 64B (64B for KNL)

> Need to see if better way to optimize around expected smaller width loads?

04/03/2018

6 | Conclusions

Bytes per FLOP ratio varies considerably from 8 to 45 with broad diversity.

> See considerable variation in hardware ratios today but implication is that we are still
FLOP rich and bandwidth poor

> Exascale is not helping us get to where we want to be (when we focus on
HPL/LINPACK)

Want to drive to more balanced and efficient systems for our applications, not
just our benchmarks

Need good tools to work at application scale (or much better hardware counter
support)

04/03/2018

&)

Sandia
National
Laboratories

