
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Images courtesy of Sandia National Laboratories and Oak Ridge National Laboratory

On the Use of Vectorization in
Production Engineering Workloads

Cour tenay T. Vaughan (c tvaugh@sand ia . g ov)

04/03
/2018

UNCLASSIFIED UNLIMITED RELEASE SAND2018-5352 C

Introduction

We have been working on application porting, bring-up and optimization for
Trinity Haswell/Knights Landing for three years
◦ Lots of experiences about how to make code run faster on our machines
◦ Been a useful way to drive application optimization

Getting to the stage of working on more optimization
◦ Focus on improving levels of vectorization because this helps drive good code design,
memory access, compute efficiency etc.

2

This talk is about our analysis of applications in this context

Motivations and Background

Motivation for Studying Vectorization

04/03/2018

4

Deployment of Trinity (Cray XC) platform as LANL/SNL ACES partnership
◦ >9,000 nodes of dual-socket Haswell (dual-AVX256)
◦ >9,500 nodes of single-socket Knights Landing (dual-AVX512)
◦ Where significant amount of application performance is available

Early experiences showed limited success of automatic vectorization by Intel
compiler toolchain
◦ Compiler reports showed many loops refusing to vectorize
◦ Even when vectorizing often not getting performance delta
◦ In some cases it appeared code would vectorize but we would use the scalar/remainder

loops

Motivating Application Examples for Knights Landing

04/03/2018

5

Application studies on Knights Landing
showed small/no difference with and
without vectorization enabled
◦ Why doesn’t this show more improvement?
◦ Are codes not vectorizing?
◦ Or, are they vectorizing and not gaining?

Complex interaction of behavior for
larger applications

Concern about compilers, libraries etc.
◦ Could we be getting much more from our

platforms?
0

500

1000

1500

2000

2500

3000

SP
ARC

CTH Fl
at

CTH A
MR

mini
AMR

LU
LE

SH

PA
RTISn

LA
MMPS

SA
GE

Application Performance
(with and without vectorization)

Vectorized
Non-Vectorized

Motivation for Studying Vectorization

04/03/2018

6

Complexity of hardware is growing
◦ AVX512 adds support for masked vector instructions
◦ Now need to count the number of active lanes

◦ AVX256 and 512 adds more sophisticated instructions
◦ Multiple operations per-lane per instruction (e.g. FMA, FMSUB, Horizontal

Adds)

Growing use of vectorization in other products for the
NNSA/ASC
◦ ARM, IBM POWER, implication of similar ideas for GPUs
◦ Want to ensure we have code that can vectorize

Want to make better compilers and toolchains
◦ Partner with vendors to make these better for our needs

Why is this Challenging?

04/03/2018

7

Performance Counters on Haswell and Knights Landing are not sufficient
◦ No FLOP/s counting on Haswell (unbelievable)
◦ General performance counter support on KNL extremely limited
◦ Particularly around wide-vector support (e.g. how do you count vectorized FLOP/s when

also using masking)

◦ Compilers tell you things but sometimes not the complete truth
◦ Vectorization reports are good but could be better
◦ Drop to scalar loops
◦ Appears that dependency analysis is not a perfected art (although getting better)

Vectorization Analysis Tools

APEX-Tesserae Tools

04/03/2018

9

Need to develop in-house methods for counting operations and performing
analysis of vectorization/application behavior
◦ Intention to analyze vectorization in codes
◦ But, can use this to look at memory access, instruction execution behavior etc

Complete visibility into instruction stream using binary instrumentation
◦ Limited to X86, but this is our main focus for Trinity work (and many platforms)
◦ Intel SDE (similar tool) does not allow us to customize the analysis
◦ Drive custom tool development using Intel’s PIN framework
◦ Works on all production platforms and KNL, good support for KNL

See: Towards Accurate Application Characterization for Exascale, S.D. Hammond,
SAND2015-8051 (Technical Report, Sandia Nat. Labs), September, 2015

APEX-Tesserae Tools

04/03/2018

10

Want to maintain highest-performance possible for analysis (otherwise this is
hard to scale)
◦ At startup we perform an analysis of each program basic block (we perform our own

blocking through instruction-by-instruction analysis)
◦ Generate a ”summary” for the block of instruction behavior
◦ Add a hook to atomically update counts when each block is encountered
◦ Allows high-performance execution in multi-threaded environments

Works fine except for masking register analysis which require dynamic inspection
◦ Add a hook only for vector instructions which use masking, perform a dynamic

population count on the mask register and atomically keep counts

Application Analysis

Application Analysis

04/0
3/20
12

Application Languages Domain

CTH Flat Mesh Fortran 77 + Fortran 90
(tiny bit of C), O(1M) Hydrodynamics, Structured

CTH AMR Mesh Fortran 77 + Fortran 90
(tiny bit of C), O(1M) Hydrodynamics, Structured

MiniAMR (using AMR Mesh) C, O(10K) Mini-Application, Hydrodynamics,
Structured, Simple Stencil

LAMMPS C, C++, O(10K) Molecular Dynamics

LULESH C, C++98, O(1K) Mini-Application, Unstructured
Hydrodynamics

SAGE Fortran, O(10K) Hydrodynamics, Unstructured

SPARC C++11, Trilinos
O(~1M incl. Trilinos) CFD Modeling

Analysis Results

04/03/2018

13

Taken each application and configured a suitable input deck/problem
◦ Designed to run for O(minutes) of execution time to see real behavior
◦ Sufficiently large that correct memory subsystems and behaviors are observed

Compiled for KNL using Cray Programming Environment/compiler wrappers with
the Intel PE loaded

Compiled each code with and with-out vectorization (“-no-vec”)
◦ Still see vectorization in some codes because of calls to libraries on the platform that

execute vector instructions (e.g. MKL, optimized calls to memset)
◦ See whether the compiled code with and with-out vectorization makes significant

difference

Instruction Analysis

04/03/2018

14

Number of instructions which utilize
floating point arithmetic (percentage of
entire program execution)

Mini-applications and LAMMPS have
significantly denser compute-instruction
intensity
◦ ”Simpler” access patterns
◦ LAMMPS has more optimized execution

and algorithms
◦ CTH-AMR has poor intensity because of

management of the adaptive refinement and
complex stencils

0

10

20

30

40

50

60

CTH-A
MR (w

/V
ec

)

CTH-A
MR (w

/o
Vec

)

CTH Fl
at

(w
/ A

MR)

CTH Fl
at

(w
/o

Vec
)

Mini
AMR (w

/ V
ec

)

Mini
AMR (w

/o
Vec

)

LA
MMPS

 (w
/ V

ec
)

LA
MMPS

 (w
/o

Vec
)

LU
LE

SH
 (w

/ V
ec

)

LU
LE

SH
 (w

/o
Vec

)

SA
GE (

w/ V
ec

)

SA
GE (

w/o
Vec

)

SP
ARC (w

/ V
ec

)

SP
ARC (w

/o
Vec

)

Pe
rc

en
ta

ge
 o

f T
ot

al
 in

st
ru

ct
io

ns

Instructions that Perform FP64 Compute

Vectorization Analysis

04/03/2018

15

Analyze the percentage of floating point
operations which execute in “packed” mode
◦ Packed uses all lanes of the vector unit and

does not perform any masking
◦ Represents the most efficient use of the vector

unit

CTH and SAGE are typically higher because
Fortran is anecdotally more likely to vectorize
cleanly

SPARC is unusual for a C++ code because it
has high levels of efficiency
◦ Because of use of manual intrinsics in Kokkos-

Kernels/Trilinos libraries

0

10

20

30

40

50

60

70

80

90

CTH-A
MR (w

/V
ec

)

CTH-A
MR (w

/o
Vec

)

CTH Fl
at

(w
/ A

MR)

CTH Fl
at

(w
/o

Vec
)

Mini
AMR (w

/ V
ec

)

Mini
AMR (w

/o
Vec

)

LA
MMPS

 (w
/ V

ec
)

LA
MMPS

 (w
/o

Vec
)

LU
LE

SH
 (w

/ V
ec

)

LU
LE

SH
 (w

/o
Vec

)

SA
GE (

w/ V
ec

)

SA
GE (

w/o
Vec

)

SP
ARC (w

/ V
ec

)

SP
ARC (w

/o
Vec

)

Pe
rc

en
ta

ge
 o

f T
ot

al
 F

lo
at

in
g

Po
in

t
O

pe
ra

tio
ns

Percentage of FP64 Operations which are
Packed

Vectorization Analysis (Operation Density)

04/03/2018

16

Number of floating point operations per
instruction that performs a 64-bit double
precision operation
◦ Ideal value here is 16 (8-wide, 2-per lane

(e.g. FMA)
◦ Value of 1 indicates basic scalar-like

behavior

Note – big difference here in vectorization
level achieved in flat/AMR mesh modes for
CTH
◦ AMR adds significant complexity to look up

for data operations

0

0.5

1

1.5

2

2.5

3

3.5

CTH-A
MR (w

/V
ec

)

CTH-A
MR (w

/o
Vec

)

CTH Fl
at

(w
/ A

MR)

CTH Fl
at

(w
/o

Vec
)

Mini
AMR (w

/ V
ec

)

Mini
AMR (w

/o
Vec

)

LA
MMPS

 (w
/ V

ec
)

LA
MMPS

 (w
/o

Vec
)

LU
LE

SH
 (w

/ V
ec

)

LU
LE

SH
 (w

/o
Vec

)

SA
GE (

w/ V
ec

)

SA
GE (

w/o
Vec

)

SP
ARC (w

/ V
ec

)

SP
ARC (w

/o
Vec

)

FP64 Ops per FP64 Inst

Vectorization Analysis (Mask Operations)

04/03/2018

17

Masking lowers wide-vector efficiency by
disabling lanes using predicates
◦ Lowers computational efficiency
◦ But .. can make very complex code easier

to compile (otherwise just fall back to
scalar)

◦ Dense vector use is ideal

Typically not able to be counted correctly
by hardware (hardware counts all vector
operations including memory loads/stores
and integer operations with masking).
◦ We count only double precision to look at

compute efficiency

0

1

2

3

4

5

6

7

8

9

CTH-A
MR (w

/V
ec

)

CTH-A
MR (w

/o
Vec

)

CTH Fl
at

(w
/ A

MR)

CTH Fl
at

(w
/o

Vec
)

Mini
AMR (w

/ V
ec

)

Mini
AMR (w

/o
Vec

)

LA
MMPS

 (w
/ V

ec
)

LA
MMPS

 (w
/o

Vec
)

LU
LE

SH
 (w

/ V
ec

)

LU
LE

SH
 (w

/o
Vec

)

SA
GE (

w/ V
ec

)

SA
GE (

w/o
Vec

)

SP
ARC (w

/ V
ec

)

SP
ARC (w

/o
Vec

)

Pe
rc

en
t

of
 F

lo
at

in
g

Po
in

t
In

st
ru

ct
io

ns
 Is

su
ed

Percentage of FP64 Inst. that use Masks

Vectorization Analysis (Mask Operations)

04/03/2018

18

How many lanes are enabled during each
instruction that utilizes masks?
◦ Ideal is for this to be close to SIMD width

(8-wide)
◦ Only close for SAGE hydrocode

See poor masking efficiency for codes
◦ Represents divergence in the code paths

(which generate masks)
◦ Implies we need to find ways to reduce

divergence if we want to increase vector
efficiency

0

1

2

3

4

5

6

7

CTH-A
MR (w

/V
ec

)

CTH-A
MR (w

/o
Vec

)

CTH Fl
at

(w
/ A

MR)

CTH Fl
at

(w
/o

Vec
)

Mini
AMR (w

/ V
ec

)

Mini
AMR (w

/o
Vec

)

LA
MMPS

 (w
/ V

ec
)

LA
MMPS

 (w
/o

Vec
)

LU
LE

SH
 (w

/ V
ec

)

LU
LE

SH
 (w

/o
Vec

)

SA
GE (

w/ V
ec

)

SA
GE (

w/o
Vec

)

SP
ARC (w

/ V
ec

)

SP
ARC (w

/o
Vec

)

Ve
ct

or
 L

an
es

 E
na

bl
ed

 w
he

n
M

as
ki

ng
 A

pp
lie

d

Average Vector Density when using Masks

Bytes Transferred to Floating-Point Compute Intensity

04/03/2018

19

How many bytes are loaded/stored per
double precision operation?
◦ Common “bytes to FLOP” metric which is

rough guide to system design
◦ High values for compute intensive codes

are 24 bytes (two 8B operand loads, and an
8B operand store)
◦ Values beyond this show codes are having to

perform indirection/lookups, data movement,
overheads etc

◦ Show the weakness of memory subsystems
that are delivering in the other of 0.25B per
FLOP or worse

0

5

10

15

20

25

30

35

40

45

50

CTH-A
MR (w

/V
ec

)

CTH-A
MR (w

/o
Vec

)

CTH Fl
at

(w
/ A

MR)

CTH Fl
at

(w
/o

Vec
)

Mini
AMR (w

/ V
ec

)

Mini
AMR (w

/o
Vec

)

LA
MMPS

 (w
/ V

ec
)

LA
MMPS

 (w
/o

Vec
)

LU
LE

SH
 (w

/ V
ec

)

LU
LE

SH
 (w

/o
Vec

)

SA
GE (

w/ V
ec

)

SA
GE (

w/o
Vec

)

SP
ARC (w

/ V
ec

)

SP
ARC (w

/o
Vec

)

By
te

s
Lo

ad
ed

 p
er

 F
lo

at
in

g
Po

in
t

O
pe

ra
tio

ns

Bytes Transferred per FP64 Operation

Bytes Transferred per Memory Operation

04/03/2018

20

How many bytes are loaded/stored per
memory operation?
◦ Hardware is optimized for wider data paths

(typically 32 or 64B)
◦ KNL is optimized for 64B load/stores to

support wide vector registers

Codes show much more modest
load/store widths
◦ Consistent with lower vectorization level

(loads scalar values)
◦ Indirect loads/stores where offset/indices

must be loaded from memory

0

2

4

6

8

10

12

14

CTH-A
MR (w

/V
ec

)

CTH-A
MR (w

/o
Vec

)

CTH Fl
at

(w
/ A

MR)

CTH Fl
at

(w
/o

Vec
)

Mini
AMR (w

/ V
ec

)

Mini
AMR (w

/o
Vec

)

LA
MMPS

 (w
/ V

ec
)

LA
MMPS

 (w
/o

Vec
)

LU
LE

SH
 (w

/ V
ec

)

LU
LE

SH
 (w

/o
Vec

)

SA
GE (

w/ V
ec

)

SA
GE (

w/o
Vec

)

SP
ARC (w

/ V
ec

)

SP
ARC (w

/o
Vec

)

By
te

s T
ra

ns
fe

re
d

Bytes Transferred per Memory Operation

Bytes Read/Written Ratio

04/03/2018

21

What is the ratio of bytes read to bytes
written?
◦ Hardware is typically optimized for a 2:1 of

read : write ratio (makes sense since need
two operands for each result generated)

◦ Typical hardware ratio is close for most
codes although slightly higher read
throughput would improve performance for
most codes

MiniAMR and LAMMPS have significant
read dominance
◦ Read many operands to generate a single

result

0

1

2

3

4

5

6

CTH-A
MR (w

/V
ec

)

CTH-A
MR (w

/o
Vec

)

CTH Fl
at

(w
/ A

MR)

CTH Fl
at

(w
/o

Vec
)

Mini
AMR (w

/ V
ec

)

Mini
AMR (w

/o
Vec

)

LA
MMPS

 (w
/ V

ec
)

LA
MMPS

 (w
/o

Vec
)

LU
LE

SH
 (w

/ V
ec

)

LU
LE

SH
 (w

/o
Vec

)

SA
GE (

w/ V
ec

)

SA
GE (

w/o
Vec

)

SP
ARC (w

/ V
ec

)

SP
ARC (w

/o
Vec

)

By
te

s
R

ea
d

pe
r

By
te

 W
ri

tt
en

Bytes Read to Written Ratio

Conclusions and Discussion

Conclusions

Understanding vectorization levels is difficult (especially with limited hardware
counter support)
◦ Yet essential, because we are trying to improve code performance on Haswell, Knights
Landing, Skylake etc.

◦ Needed to produce our own tools to get the data we wanted from our codes

Want to use the data to guide application optimization efforts and future
hardware design/optimization activities
◦ Growing use of vector/vector-like support in HPC-class processors
◦ Still useful for GPU porting as well (identifying/removing data dependencies)

23

Conclusions

04/03/2018

24

Profiled the vectorization levels achieved in broad range of applications
◦ Not just mini-applications and benchmarks, and running complex input decks

Fortran codes produce higher levels of vectorization
◦ Language is designed to support analysis/generation of vectorized operations

SPARC C++ has higher levels of vectorization because of use of manually
vectorized/intrinsics in the main application solver
◦ Using the Kokkos-Kernels/Trilinos C++ wrappers of SIMD types
◦ Automatic vectorization is still challenging

Conclusions

04/03/2018

25

Evaluated several “rules of thumb” for hardware design

Read/Write Bytes Ratio of 2:1 seems to be reasonable, 3:1 would be better
◦ Need to support additional indirection indices as well as throughput for compute operations

Fairly limited use of masking hardware (most is 8%)
◦ But the use of these instructions makes compilation much easier
◦ Supported but perhaps don’t need to be as aggressively optimized?

Typical bytes transferred per memory operation is in region of 7 to 16
◦ Hardware is optimized for 32 or 64B (64B for KNL)
◦ Need to see if better way to optimize around expected smaller width loads?

Conclusions

04/03/2018

26

Bytes per FLOP ratio varies considerably from 8 to 45 with broad diversity.
◦ See considerable variation in hardware ratios today but implication is that we are still
FLOP rich and bandwidth poor

◦ Exascale is not helping us get to where we want to be (when we focus on
HPL/LINPACK)

Want to drive to more balanced and efficient systems for our applications, not
just our benchmarks

Need good tools to work at application scale (or much better hardware counter
support)

