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Introduction

We have been working on application porting, bring-up and optimization for
Trinity Haswell/Knights Landing for three years

> Lots of experiences about how to make code run faster on our machines
> Been a useful way to drive application optimization

Getting to the stage of working on more optimization

> Focus on improving levels of vectorization because this helps drive good code design,
memory access, compute efficiency etc.

This talk is about our analysis of applications in this context
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+ | Motivation for Studying Vectorization

Deployment of Trinity (Cray XC) platform as LANL/SNL ACES partnership
° >9,000 nodes of dual-socket Haswell (dual-AVX256)

> >9,500 nodes of single-socket Knights Landing (dual-AVX512)

> Where significant amount of application performance is available

Early experiences showed limited success of automatic vectorization by Intel
compiler toolchain

> Compiler reports showed many loops refusing to vectorize
> Even when vectorizing often not getting performance delta

° In some cases it appeared code would vectorize but we would use the scalar/remainder
loops
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Motivating Application Examples for Knights Landing

Application Performance
(with and without vectorization)
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Application studies on Khnights Landing
showed small/no difference with and
without vectorization enabled

> Why doesn’t this show more improvement!?
> Are codes not vectorizing?
> Or, are they vectorizing and not gaining?

Complex interaction of behavior for
larger applications

Concern about compilers, libraries etc.

> Could we be getting much more from our
platforms?



¢ I Motivation for Studying Vectorization

Complexity of hardware is growing
> AVX512 adds support for masked vector instructions
> Now need to count the number of active lanes
> AVX256 and 512 adds more sophisticated instructions

> Multiple operations per-lane per instruction (e.g. FMA, FMSUB, Horizontal
Adds)

Growing use of vectorization in other products for the
NNSA/ASC

> ARM, IBM POWER, implication of similar ideas for GPUs
> Want to ensure we have code that can vectorize

Want to make better compilers and toolchains
o Partner with vendors to make these better for our needs
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7 I Why is this Challenging!?

Performance Counters on Haswell and Knights Landing are not sufficient
> No FLOP/s counting on Haswell (unbelievable)
> General performance counter support on KNL extremely limited

° Particularly around wide-vector support (e.g. how do you count vectorized FLOP/s when
also using masking)

> Compilers tell you things but sometimes not the complete truth
> Vectorization reports are good but could be better
> Drop to scalar loops
> Appears that dependency analysis is not a perfected art (although getting better)

04/03/2018
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9 | APEX-Tesserae Tools

Need to develop in-house methods for counting operations and performing
analysis of vectorization/application behavior

° Intention to analyze vectorization in codes
> But, can use this to look at memory access, instruction execution behavior etc

Complete visibility into instruction stream using binary instrumentation
> Limited to X86, but this is our main focus for Trinity work (and many platforms)

> Intel SDE (similar tool) does not allow us to customize the analysis

° Drive custom tool development using Intel’s PIN framework
> Works on all production platforms and KNL, good support for KNL

See: Towards Accurate Application Characterization for Exascale, S.D. Hammond,
SAND2015-8051 (Technical Report, Sandia Nat. Labs), September, 2015

04/03/2018



10 | APEX-Tesserae Tools

Want to maintain highest-performance possible for analysis (otherwise this is
hard to scale)

> At startup we perform an analysis of each program basic block (we perform our own
blocking through instruction-by-instruction analysis)

> Generate a "summary” for the block of instruction behavior

> Add a hook to atomically update counts when each block is encountered
> Allows high-performance execution in multi-threaded environments

Works fine except for masking register analysis which require dynamic inspection

> Add a hook only for vector instructions which use masking, perform a dynamic
population count on the mask register and atomically keep counts

04/03/2018
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C4/0

Application Analysis

Fortran 77 + Fortran 90 :
CTH Flat Mesh (tiny bit of C), O(1M) Hydrodynamics, Structured

Fortran 77 + Fortran 90 :
CTH AMR Mesh (tiny bit of C), O(1M) Hydrodynamics, Structured

Mini-Application, Hydrodynamics,

MiniAMR (using AMR Mesh) C, O(10K) Structured, Simple Stencil

LAMMPS C, C++, O(10K) Molecular Dynamics

LULESH C, C++98, O(1K) Mlm-Appllca’gon, Unstructured
Hydrodynamics

SAGE Fortran, O(10K) Hydrodynamics, Unstructured

SPARC Siraily UANIDES CFD Modeling

O(~1M incl. Trilinos)



13 I Analysis Results

Taken each application and configured a suitable input deck/problem
° Designed to run for O(minutes) of execution time to see real behavior
o Sufficiently large that correct memory subsystems and behaviors are observed

Compiled for KNL using Cray Programming Environment/compiler wrappers with
the Intel PE loaded

Compiled each code with and with-out vectorization (“-no-vec”)

> Still see vectorization in some codes because of calls to libraries on the platform that
execute vector instructions (e.g. MKL, optimized calls to memset)

> See whether the compiled code with and with-out vectorization makes significant
difference
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14 I Instruction Analysis

Instructions that Perform FP64 Compute Number Of ms;ructlo.ns which utilize
60 floating point arithmetic (percentage of
entire program execution)
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15 I Vectorization Analysis
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Analyze the percentage of floating point
operations which execute in “packed” mode

o Packed uses all lanes of the vector unit and
does not perform any masking

> Represents the most efficient use of the vector
unit

CTH and SAGE are typically higher because
Fortran is anecdotally more likely to vectorize
cleanly

SPARC is unusual for a C++ code because it
has high levels of efficiency

o Because of use of manual intrinsics in Kokkos-
Kernels/Trilinos libraries



i | Vectorization Analysis (Operation Density)

FP64 Ops per FP64 Inst
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Number of floating point operations per
instruction that performs a 64-bit double
precision operation

° |deal value here is 16 (8-wide, 2-per lane
(e.g. FMA)

°Value of |
behavior

indicates basic scalar-like

Note — big difference here in vectorization

level achieved in flat/ AMR mesh modes for
CTH

> AMR adds significant complexity to look up
for data operations



Vectorization Analysis (Mask Operations)

Percentage of FP64 Inst. that use Masks Masking lowers wide-vector efficiency by
9 disabling lanes using predicates
8 > Lowers computational efficiency
g2 7 > But .. can make very complex code easier
S to compile (otherwise just fall back to
2 scalar)
. 5 o« .
s > Dense vector use is ideal
g 3
T 2 Typically not able to be counted correctly
g I by hardware (hardware counts all vector
"o i - - | operations including memory loads/stores
V\@\o@ @\ 1\ \\ : \4024@0@24904@1400\04@& and integer operations with masking).
RS e e R e e > We count only double precision to look at
IR LTS FFF T fici
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18 | Vectorization Analysis (Mask Operations)

Average Vector Density when using Masks How many lanes are enabled during each
L instruction that utilizes masks?
j% 6 ° |deal is for this to be close to SIMD width
g, (8-wide)
= > Only close for SAGE hydrocode
% 4
= 3
§ See poor masking efficiency for codes
k 2 | | ‘ > Represents divergence in the code paths
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19 | Bytes Transferred to Floating-Point Compute Intensity

Bytes Transferred per FP64 Operation How many bytes are loaded/stored per
L0 double precision operation!?
g ® > Common “bytes to FLOP” metric which is
& :Z rough guide to system design
S 4 > High values for compute intensive codes
g are 24 bytes (two 8B operand loads, and an
= 8B operand store)
v s > Values beyond this show codes are having to
3 Y g
g 1 perform indirection/lookups, data movement,
8 . I I I I I I overheads etc
e > Show the weakness of memory subsystems
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Bytes Transferred per Memory Operation

Bytes Transferred per Memory Operation

Bytes Transfered
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How many bytes are loaded/stored per
memory operation?

> Hardware is optimized for wider data paths
(typically 32 or 64B)

> KNL is optimized for 64B load/stores to
support wide vector registers

Codes show much modest

load/store widths

o Consistent with lower vectorization level
(loads scalar values)

more

° Indirect loads/stores where offset/indices
must be loaded from memory



21 | Bytes Read/Written Ratio

Bytes Read to Written Ratio
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What is the ratio of bytes read to bytes
written!?
> Hardware is typically optimized for a 2:1 of

read : write ratio (makes sense since need
two operands for each result generated)

° Typical hardware ratio is close for most
codes although slightly higher read
throughput would improve performance for
most codes

MiniAMR and LAMMPS have significant
read dominance

> Read many operands to generate a single
result
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Conclusions

Understanding vectorization levels is difficult (especially with limited hardware
counter support)

> Yet essential, because we are trying to improve code performance on Haswell, Knights
Landing, Skylake etc.

> Needed to produce our own tools to get the data we wanted from our codes

Want to use the data to guide application optimization efforts and future
hardware design/optimization activities

> Growing use of vector/vector-like support in HPC-class processors
o Still useful for GPU porting as well (identifying/removing data dependencies)



24+ | Conclusions

Profiled the vectorization levels achieved in broad range of applications
> Not just mini-applications and benchmarks, and running complex input decks

Fortran codes produce higher levels of vectorization
° Language is designed to support analysis/generation of vectorized operations

SPARC C++ has higher levels of vectorization because of use of manually
vectorized/intrinsics in the main application solver

> Using the Kokkos-Kernels/Trilinos C++ wrappers of SIMD types
> Automatic vectorization is still challenging

04/03/2018



5 | Conclusions

Evaluated several “rules of thumb” for hardware design

Read/Write Bytes Ratio of 2:]1 seems to be reasonable, 3:1 would be better
> Need to support additional indirection indices as well as throughput for compute operations

Fairly limited use of masking hardware (most is 8%)
> But the use of these instructions makes compilation much easier
> Supported but perhaps don’t need to be as aggressively optimized?

Typical bytes transferred per memory operation is in region of 7 to 16
> Hardware is optimized for 32 or 64B (64B for KNL)

> Need to see if better way to optimize around expected smaller width loads?
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6 | Conclusions

Bytes per FLOP ratio varies considerably from 8 to 45 with broad diversity.

> See considerable variation in hardware ratios today but implication is that we are still
FLOP rich and bandwidth poor

> Exascale is not helping us get to where we want to be (when we focus on
HPL/LINPACK)

Want to drive to more balanced and efficient systems for our applications, not
just our benchmarks

Need good tools to work at application scale (or much better hardware counter
support)
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