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Abstract

In this paper we derive some novel, “discrete wavelet” formulas
for approximating a function f that is periodic with period T on
lR = {x : −∞ < x < ∞} . At the outset we derive some families
of approximations based the Whittaker Cardinal series expansion and
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aliasing, including special cases of these, for interpolation at the points
{k h}∞

−∞
and {k h + h/2}∞

−∞
, combined with the cases of T = 2 N h

and T = (2 N − 1)h, where N is a positive integer. We also write
down special cases of the formulas for the cases when f is either an
even or an odd function on lR . The coefficients of each type of ex-
pansion are point evaluations of functions to be approximated, i.e.,
we differ from Fourier polynomial approximations in that no compu-
tations of the coefficients are required for our approximations. We
then also derive some relations with polynomials in y via use of the
transformation y = cos(2 π x/T ) . We give some comparative exam-
ples of approximations of smooth periodic functions and discontinuous
functions via both our periodic basis as well as with corresponding
polynomial approximations.

1 Introduction and Summary

Fourier polynomial approximations are of course very important in applica-
tions.

2 Formula Derivations

We use two well known identities to derive our formulas, which are valid for
all z ∈ lC :

π z

tan(π z)
= lim

N→∞

N
∑

k=−N

1

z − k
,

π z

sin(π z)
=

∞
∑

k=−∞

(−1)k

z − k
.

(2.1)

We shall assume throughout the paper that f is periodic on the real
line lR , with period T > 0 , i.e., that f(x + T ) = f(x) for all x ∈ lR .
In addition, we shall assume that f takes on its mean value at all points
on lR , which is especially important at points of discontinuity, i.e., that
limδ→0(f(x − δ) − 2 f(x) + f(x + δ)) = 0 for all x ∈ lR .
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2.1 Formulas Based on the Cardinal Function

Let f have the above properties, and for a given number a ∈ lR and h > 0 ,
let us define the Cardinal series,

F (a, h, x) =
∑

k∈ZZ

f(k h − ah)
sin

{π
h (x + ah − k h)

}

π
h (x + ah − k h)

. (2.2)

which approximates f on lR . We shall be primarily interested in two cases:
a = 0 and a = 1/2 .

Theorem 2.1 Let f be periodic, with period T on lR .

(i) If h is defined by h = T/(2N) , where N is a positive integer, then

F (a, h, x) =
2 N−1
∑

k=0

f(k h − ah) s(a, k, h, x) , (2.3)

where

s(a, k, h, x) =
sin

{

π
h(x + ah − k h)

}

2N tan
{

π
P (x + ah − k h)

} . (2.4)

(ii) If h is defined by h = T/(2N − 1) , where N is a positive integer, then

F (b, h, x) =
2 N−2
∑

k=0

f(k h − b h)S(a, k, h, x) (2.5)

where

S(a, k, h, x) =
sin

{π
h (x + ah − k h)

}

(2N − 1) sin
{ π

T (x + ah − k h)
} . (2.6)

Proof. Part (i): Under the assumption that f has period T on lR , i.e.,
that f(x+T ) = f(x) for all x ∈ lR , and if a is an arbitrary real number, we
have
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F (a, h, x) =
∑

k∈ZZ

f(k h − ah)
sin

{π
h (x + ah − k h)

}

π
h (x + b h − k h)

=
∑

s∈ZZ

2 N−1
∑

k=0

f(k h − ah + 2 s N h)
sin

{

π
h (x + ah − k h − 2 s N h)

}

π
h(x + ah − k h − 2 s N h)

=
N−1
∑

k=−N

f(k h) s(a, k, h, x) ,

(2.7)
and since 2N h = T ,

s(a, k, h, x) =
h

π
sin

{

π

h
(x + ah − k h)

} ∞
∑

s=−∞

1

x + ah − k h − s T
. (2.8)

Hence, using (2.1) (a), we get (2.4).

Part (ii): In this case, we have (2N − 1)h = T , so that

F (a, h, x) =
∑

k∈ZZ

f(k h − ah)
sin

{π
h (x + ah − k h)

}

π
h(x + ah − k h)

=
∑

s∈ZZ

2 N−2
∑

k=0

f(k h − ah + s T )
sin

{π
h(x + ah − k h − s T )

}

π
h (x + ah − k h − s T )

=
2 N−2
∑

k=0

f(k h − ah)S(a, k, h, x) ,

(2.9)

where

S(a, k, h, x) =
h

π
sin

{

π

h
(x + ah − k h)

} ∞
∑

s=−∞

1

x + ah − k h − s a
. (2.10)

Applying (2.1) (b) to this equation yields (2.6) .

Remark 2.2 The following identities are easily verified, for any given inte-
ger k ,
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s(a, k, h, x) = s(a, k + 2N,h, x)

S(a, k, h, x) = S(a, k + 2N − 1, h, x) .
(2.11)

When these identities are combined with the above theorem they readily
yield the following eight formulas of interpolation over the interval [0, T ] of
even and odd periodic functions of period T defined on the real line lR .

(i) If T = 2N h , a = 0 , and if f is an even function defined on lR , with the
above additional assumed properties, then

F (0, h, x) = f(0) s(0, 0, h, x) + f(Nh) s(0,N, h, x)

+
N−1
∑

k=1

f(k h) {s(0, k, h, x) + s(0,−k, h, x)} .
(2.12)

(ii) If T = 2N h , a = 0 , and if f is an odd function defined on lR , with the
above additional assumed properties, then

F (0, h, x) =
N−1
∑

k=1

f(k h) {s(0, k, h, x) − s(0,−k, h, x)} . (2.13)

(iii) If T = 2N h , a = 1/2 , and if f is an even function defined on lR , with
the above additional assumed properties, then

F (1/2, h, x) =
N

∑

k=1

f(k h − h/2) {s(1/2, k, h, x) + s(1/2,−k, h, x)} . (2.14)

(iv) If T = 2N h , a = 1/2 , and if f is an odd function defined on lR , with
the above additional assumed properties, then

F (1/2, h, x) =
N

∑

k=1

f(k h − h/2) {s(1/2, k, h, x) − s(1/2,−k, h, x)} . (2.15)

(v) If T = (2N − 1)h, a = 0 , and if f is an even function defined on lR ,
with the above additional assumed properties, then
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F (0, h, x) = f(0)S(0, 0, h, x)

+
N−1
∑

k=1

f(k h) (S(0, k, h, x) + S(0,−k, h, x)) ,
(2.16)

(vi) If T = (2N − 1)h, a = 0 , and if f is an odd function defined on lR ,
with the above additional assumed properties, then

F (0, h, x) =
N−1
∑

k=1

f(k h) {S(0, k, h, x) − S(0,−k, h, x)} (2.17)

(vii) If T = (2N − 1)h, a = 1/2 , and if f is an even function defined on lR ,
with the above additional assumed properties, then

F (1/2, h, x) = f(T/2)S(1/2,N, h, x)

+
N−1
∑

k=1

f(k h − h/2) {S(1/2, k, h, x) + S(1/2, 1 − k, h, x)}

(2.18)

(viii) If T = (2N − 1)h, a = 1/2 , and if f is an odd function defined on lR ,
with the above additional assumed properties, then

F (1/2, h, x) =
N

∑

k=1

f(k h−h/2) (S(1/2, k, h, x) − S(1/2, 1 − k, h, x)} (2.19)

3 Formulas Based on a Green’s Function

An alternate class of trigonometric approximations is obtainable via use of
the Green’s function

G(x, y) =
y

π

1

x2 + y2
(3.1)

for solution of Dirichlet problems in the upper half plane: {(x, y) ∈ lR2 , x ∈
lR , y > 0 . Although the coefficients of these bases are again function evalua-
tions, this class does not interpolate, nor does it correspond to trigonometric
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polynomial approximation. However, it also does not exhibit Gibb’s phe-
nomena at discontinuities, i.e., it has properties similar to Fejér’s method of
trigonometric approximation.

It is well known that if f is continuous and uniformly bounded on lR , then

lim
y→0+

∫

lR
G(x − x′, y) f(x′) dx′ = f(x) (3.2)

at all points x of continuity of f .

The following approximation was studied in [S1, §5.8],

F(ξ, y, h, x) ≡
h y

π

∑

k∈ZZ

f(ξ + k h)

(x − ξ − k h)2 + y2
. (3.3)

where it was shown, that if f is continuous and bounded on lR , and if β is
an arbitrary fixed positive number in (0, 1) , then fh(a, hβ , x) → f(ξ +x) for
all x ∈ lR .

Theorem 3.1 If f is periodic, with period 2π on lR , and if h = 2π/M ,
with M a positive integer, then

F(ξ, y, h, x) =
M−1
∑

k=0

f(ξ + k h)w(ξ, k, y, h, x) , (3.4)

with

w(ξ, k, y, h, x) =
sinh(y)

M {cosh(y) − cos(x − ξ − k h)}
. (3.5)

Proof. We have

w(ξ, k, y, h, x) =
∑

s∈ZZ

G(x − ξ − kh − 2π s, y) , (3.6)

and with G(x, y) difined in (3.1).

Now, by applying partial fraction decomposition to the function G(x − ξ −
kh − 2π s, y), we find that
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w(ξ, k, y, h, x) =
i

M π

∑

s∈ZZ

{

1

(x − ξ − k h + i y)/(2π) − s

−
1

(x − ξ − k h − i y)/(2π) − s

}

,

(3.7)

and by using (1.3)-(a) and applying some trigonometric identities, we arrive
at the expression (3.4) for w .

4 Connections with Fourier Series and Numerical

Integration

.
It is convenient to take T = 2π . Two types of Dirichlet kernels are used

regularly to prove the convergence of Fourier series, namely

Ds(N, θ) =
N

∑

k=−N

ei k θ

=
sin{(N + 1/2) θ}

sin(θ/2)
,

(4.1)

and also,

Dt(N, θ) =
1

2
e−i N θ) +

N−1
∑

k=−N+1

ei k θ +
1

2
ei N θ

=
sin{N θ}

tan(θ/2)
,

(4.2)

Given F defined on [−π , π] , its Fourier series is given by

F (θ) =
∑

k∈ZZ

ck ei k θ , (4.3)

with
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ck =
1

2π

∫ π

−π
F (θ) e−i k θ dθ . (4.4)

It thus follows that

1

2π

∫ π

−π
F (θ′)Ds(θ − θ′) dθ′ =

N
∑

k=−N

ck ei k θ , (4.5)

and also, that

1

2π

∫ π

−π
F (θ′)Dt(θ − θ′) dθ′ =

1

2
c−N e−i N θ +

N−1
∑

k=−N+1

ck ei k θ +
1

2
cN ei N θ .

(4.6)

The integrals in (4.5) and (4.6) are clearly continuous periodic wavelets.

Next, if G(x, y) is defined as in (3.1), and if f is periodic on lR , with period
2π , and proceeding as for the derivation of (3.6), we find that if f is periodic
with period 2π on lR , we get

F(y, x) ≡

∫

lR
G(x − x′ , y) f(x′) dx′

=
1

2π

∫ π

−π

sinh(y)

cosh(y) − cos(x − x′)
f(x′) dx′ .

(4.7)

The function F defined in this manner is thus also a continuous periodic
wavelet.

5 Trapezoidal and Midordinate Integration

We should also mention two popular methods, the trapezoidal and midor-
dinate rule of numerical integration over an interval [0, T ] , with spacing
h = T/M . First, the trapezoidal rule, which is given by

∫ T

0
f(x) dx ≈ TM (h, f) , (5.1)

with
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TM (h, f) = h

{

1

2
f(0) +

M−1
∑

k=1

f(k h) +
1

2
f(T )

}

, (5.2)

and the midordinate rule,

∫ T

0
f(x) dx ≈ MM (h, f) , (5.3)

with

MM (h, f) = h
M
∑

k=1

f((k − 1/2)h) . (5.4)

Thus the formula in (2.3) may be obtained by applying the trapezoidal rule
(5.1)–(5.2) to the integral (4.6) involving the kernel Dt , while (2.5) can
be derived by applying the midordinate rule to the integral (4.5). Indeed,
Gabdulhaev obtained (2.3) for the interval [−π , π] in just this manner (see
[S1, Theorem 2.2.6]).

6 Connection with Polynomial Approximation

Suppose that we wish to approximate a given function F (y) on a finite in-
terval (c, d) of the real line lR . Then, setting y = (1/2)(c + d) + (1/2(d −
c) cos(x) , we get a new function, G(x) = F (y) = F ((1/2)(c+d)+(1/2)(d−
c) cos(x)) , which is a periodic function on all of lR , with period 2π , and
moreover, G(x) is an even function of x. We can thus approximate G on the
interval [0, π] via use of either (2.7) or (2.13). Since G is representable via
a rapidly convergent trigonometric cosine series expansion, as can be seen
from either (3.5) or (3.6), and since cos(m x) = Tm(w), with w = cos(x) ,
and with TM (w) denoting the Chebyshev polynomial, it follows that the cor-
responding function F (y) is now approximated via a Chebyshev polynomial
expansion in the variable

w =
y − (1/2)(c + d)

(1/2)(d − c)
. (6.1)

Moreover, this approximation is a rapidly convergent function of N if F is
analytic in an open region containing the interval [c, d] . However, we no
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longer have interpolation at a set of equi-spaced points, but rather at the
points 1

yj = (1/2)(c + d) + (1/2)(d − c) cos(xj) , (6.2)

where xj = π j/N , j = 0 , 1 , . . . , N for the case of (2.7), and with
xj = π(j − 1/2)/N , j = 1 , 2 , . . . , N for the case of (2.13) .

We may thus note the relations: Chebyshev polynomial approximation subset
Trigonometric polynomial interpolation ⊂ Sinc series.

7 Examples

We illustrate here the interpolation of two functions, f1(x) = cos(x) and
f2(x) = (1− 0.9 sin(2π x))1/3 on the interval [0, 1], via some of the methods
of this paper, as well as with equi-spaced interpolation polynomial. When
performing trigonometric interpolation, with period T = 1 , each of these
functions is assumed to be periodic, with period 1 on lR . Thus, f1 is dis-
continuous on the integers, whereas f2 is in fact smooth and periodic on lR .
Thus, for purposes of trigonometric interpolation, f1 takes on its average
value, cos(0) + cos(1))/2 at the integers, and we thus get large errors when
interpolating this function via trigonometric polynomial with period T = 1
whereas we get much better accuracy when interpolating f2 with such poly-
nomilas. On the other hand, for purposes of polynomial interpolation, we
get rather good results when interpolating f1 on [0, 1] but poorer results
when interpolating f2, the larger errors in the latter case being due to the
fact that f2 has singularities close to the real axis. The Green’s function
basis approximation procedure behaves like a Fejér aprpoxiamtion, in that
it has no overshoots, but converges very slowly.

We have demonstrated here the approximation procedure using an even
number of intervals on a period, i.e., h = T/(2N), and with interpolation at
the “integer” points {j h} . We have not demonstrated the other cases i.e.,
with interpolation at the points {(j − 1/2)h}, nor for the cases of integer or
non-integer interpolation points for the case of h = T/(2N + 1), since our
the results in these cases are similar. These other cases could, however, be
important in some applications, depending on given data.

1End values may no longer be interpolations for the case of (2.7), since a Fourier series
averages values at discontinuities.
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Figure 1: Cos(x) Exact, “x” and Trig approximation, “-”
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Figure 2: Error of Trig Approximation of Cos(x)
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Figure 3: Exact and Trig Approximation of (1 − .9 sin(2π x))1/3
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Figure 5: Exact and Green’s Approximation of Cos(x)
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Figure 6: Error of Green’s Approximation of Cos(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
(1−.9 sin(2 pi x))1/3, Exact, "x" and Greens Approx, "−", h = 1/80
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Figure 9: Exact and Polynomial Approximation of Cos(x)
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Figure 10: Error of 21-pt. Equi-spaced Polynmial Interpolation
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Figure 11: Exact,Trig and Polynomial Approximation of (1 −
.9 sin(2π x))1/3
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Figure 12: Error of 21 Pt Equi-Spaced Poly Approx of (1− .9 sin(2π x))1/3
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Figure 13: Exact, ‘x’, Trig(20), ‘-’, Poly(20), ‘o’, Approx of (1 −
.9 sin(2π x))1/3
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