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Abstract. In applications ranging from DNA sequencing through archeological dating to sparse
matrix reordering, a recurrent problem is the sequencing of elements in such a way that highly
correlated pairs of elements are near each other. That is, given a correlation function f reflecting
the desire for each pair of elements to be near each other, find all permutations π with the property
that if π(i) < π(j) < π(k) then f(i, j) ≥ f(i, k) and f(j, k) ≥ f(i, k). This seriation problem
is a generalization of the well-studied consecutive ones problem. We present a spectral algorithm
for this problem that has a number of interesting features. Whereas most previous applications of
spectral techniques provide only bounds or heuristics, our result is an algorithm that correctly solves
a nontrivial combinatorial problem. In addition, spectral methods are being successfully applied
as heuristics to a variety of sequencing problems, and our result helps explain and justify these
applications.
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1. Introduction. Many applied computational problems involve ordering a set
so that closely coupled elements are placed near each other. This is the underlying
problem in such diverse applications as genomic sequencing, sparse matrix envelope
reduction, and graph linear arrangement as well as less familiar settings such as arche-
ological dating. In this paper we present a spectral algorithm for this class of problems.
Unlike traditional combinatorial methods, our approach uses an eigenvector of a ma-
trix to order the elements. Our main result is that this approach correctly solves an
important ordering problem we call the seriation problem which includes the well-
known consecutive ones problem (C1P) [5] as a special case.

More formally, we are given a set of n elements to sequence; that is, we wish to
bijectively map the elements to the integers 1, . . . , n. We also have a symmetric, real
valued correlation function (sometimes called a similarity function) that reflects the
desire for elements i and j to be near each other in the sequence. We now wish to
find all ways to sequence the elements so that the correlations are consistent; that is,
if π is our permutation of elements and π(i) < π(j) < π(k) then f(i, j) ≥ f(i, k) and
f(j, k) ≥ f(i, k). Although there may be an exponential number of such orderings,
they can all be described in a compact data structure known as a PQ-tree [5], which
we review in the next section. Not all correlation functions allow for a consistent
sequencing. If a consistent ordering is possible we will say the problem is well posed.

∗ Received by the editors May 8, 1995; accepted for publication (in revised form) January 8, 1997;
published electronically June 15, 1998. This work was supported by the Mathematical, Information,
and Computational Sciences Division of the U.S. DOE, Office of Energy Research, and was performed
at Sandia National Laboratories, operated for the U.S. DOE under contract DE-AL04-94AL8500.

http://www.siam.org/journals/sicomp/28-1/28577.html
† Infinity Financial Technology, Mountain View, CA 94043 (atkins@infinity.com).
‡ Scientific Computing & Computational Mathematics, Gates Bldg. 2B, Stanford University,

Stanford, CA 94305-9025 (boman@sccm.stanford.edu).
§ Applied & Numerical Mathematics Department, Sandia National Laboratories, Albuquerque,

NM 87185-1110 (bah@cs.sandia.gov).

297



298 J. E. ATKINS, E. G. BOMAN, AND B. HENDRICKSON

Determining an ordering from a correlation function is what we will call the seriation
problem, reflecting its origins in archeology [29, 33].

C1P is a closely related ordering problem. A (0, 1)-matrix C has the consecutive
ones property if there exists a permutation matrix Π such that for each column in
ΠC, all the ones form a consecutive sequence. If a matrix has the consecutive ones
property, then the C1P is to find all such permutations. As shown by Kendall [19]
and reviewed in section 6, C1P is a special case of the seriation problem.

Our algorithm orders elements using their value in an eigenvector of a Laplacian
matrix which we formally define in section 2. Eigenvectors related to graphs have
been studied since the 1950s (see, for example, the survey books by Cvetković et
al. [8, 7]). Most of the early work involved eigenvectors of adjacency matrices. Lapla-
cian eigenvectors were first studied by Fiedler [10, 11] and independently by Donath
and Hoffman [9]. More recently, there have been a number of attempts to apply spec-
tral graph theory to problems in combinatorial optimization. For example, spectral
algorithms have been developed for graph coloring [3], graph partitioning [9, 28], and
envelope reduction [4], and more examples can be found in the survey papers of Mo-
har [23, 24]. However, in most previous applications, these techniques have been used
to provide bounds, heuristics, or in a few cases, approximation algorithms [2, 6, 14]
for NP-hard problems. There are only a small number of previous results in which
eigenvector techniques have been used to exactly solve combinatorial problems includ-
ing finding the number of connected components of a graph [10], coloring k-partite
graphs [3], and finding stable sets (independent sets) in perfect graphs [16]. This
paper describes another such application.

Spectral methods are closely related to the more general method of semidefinite
programming, which has been applied successfully to many combinatorial problems
(e.g., MAX-CUT and MAX-2SAT [14] and graph coloring [18]). See Alizadeh [1] for a
survey of semidefinite programming with applications to combinatorial optimization.

Our result is important for several reasons. First, it provides new insight into the
well-studied C1P. Second, some important practical problems like envelope reduction
for matrices and genomic reconstruction can be thought of as variations on seriation.
For example, if biological experiments were error-free, the genomic reconstruction
problem would be precisely C1P. Unfortunately, real experimental data always contain
errors, and attempts to generalize the consecutive ones concept to data with errors
seems to invariably lead to NP-complete problems [31, 15]. A spectral heuristic based
upon our approach has recently been applied to such problems and found to be highly
successful in practice [15]. Our result helps explain this empirical success by revealing
that in the error-free case the technique will correctly solve the problem. This places
the spectral method on a stronger theoretical footing as a cross between a heuristic and
an exact algorithm. Similar comments apply to envelope reduction. Matrices with
dense envelopes are closely related to matrices with the consecutive ones property.
Recent work has shown spectral techniques to be better in practice than any existing
combinatorial approaches at reducing envelopes [4]. Our result sheds some light on
this success.

Another way to interpret our result is that we provide an algorithm for C1P
that generalizes to become an attractive heuristic in the presence of errors. Designed
as decision algorithms for the consecutive ones property, existing combinatorial ap-
proaches for C1P break down if there are errors and fail to provide useful approximate
orderings. However, our goal here is not to analyze the approach as an approximation
algorithm, but rather to prove that it correctly solves error-free problem instances.
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This paper is organized in the following way. In the next section we introduce the
mathematical notation and the results from matrix theory that we will need later. We
also describe a spectral heuristic for ordering problems which motivates the remainder
of the paper. The theorem that underpins our algorithm is proved in section 3, the
proof of which requires the use of a classical theorem from matrix analysis. Several
additional results in section 4 lead us to an algorithm and its analysis in section 5.
We review the connection to C1P in section 6.

2. Mathematical background.

2.1. Notation and definitions. Matrix concepts are useful because the cor-
relation function defined above can be considered as a real, symmetric matrix. A
permutation of the elements corresponds to a symmetric permutation of this matrix,
a permutation of the matrix elements formed by permuting the rows and the columns
in the same fashion. The question of whether or not the ordering problem is well
posed can also be asked as a property of this matrix. Specifically, suppose the ma-
trix has been permuted to reflect a consistent solution to the ordering problem. The
off-diagonal matrix entries must now be nonincreasing as we move away from the
diagonal. More formally, we will say a matrix A is an R-matrix 1 if and only if A is
symmetric and

ai,j ≤ ai,k for j < k < i,

ai,j ≥ ai,k for i < j < k.

The diagonal entries of an R-matrix are unspecified. If A can be symmetrically
permuted to become an R-matrix, then we say that A is pre-R. Note that pre-R
matrices correspond precisely to well-posed ordering problems. Also, the R-matrix
property is preserved if we add a constant to all off-diagonal entries, so we can assume
without loss of generality that all off-diagonal values are nonnegative.

When π is a permutation of the natural numbers {1, . . . , n} and x is a column
vector, i.e. x = [x1, . . . , xn]T , we will denote by xπ the permutation of x by π, i.e.,
xπ
i = xπ(i). Similarly, Aπ is the symmetric permutation of A by π, i.e., aπi,j = aπ(i),π(j).

We denote by e the vector whose entries are all 1, by ei the vector consisting of zeros
except for a 1 in position i, and by I the identity matrix. A symmetric matrix A is
reducible if there exists a permutation π such that

Aπ =

[
B 0
0 C

]

,

where B and C are nonempty square matrices. If no such permutation exists then
A is irreducible. If B and C are themselves irreducible, then we refer to them as the
irreducible blocks of A.

We say that λ is an eigenvalue of A if Ax = λx for some vector x 6= 0. A
corresponding vector x is an eigenvector. An n × n real, symmetric matrix has n
eigenvectors that can be constructed to be pairwise orthogonal, and its eigenvalues
are all real. We will assume that the eigenvalues are sorted by increasing value, and
refer to them as λi, i = 1, . . . , n. The (algebraic) multiplicity of an eigenvalue λ is
defined as the number of times λ occurs as a root in the characteristic polynomial

1 This class of matrices is named after W. S. Robinson who first defined this property in his work
on seriation methods in archaeology [29].
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p(z) = det(A − zI). A value that occurs only once is called simple; the eigenvector
of a simple eigenvalue is unique (up to normalization). We write A ≥ 0 and say A
is nonnegative if all its elements ai,j are nonnegative. A real vector x is monotone if
xi ≤ xi+1 for all 1 ≤ i < n or if xi ≥ xi+1 for all 1 ≤ i < n.

We define the Laplacian of a symmetric matrix A to be LA = DA − A, where
DA is a diagonal matrix with di,i =

∑n

j=1 ai,j . The minimum eigenvalue with an
eigenvector orthogonal to e (the vector of all ones) is called the Fiedler value, and a
corresponding eigenvector is called a Fiedler vector.2 Alternatively, the Fiedler value
is given by

min
xT e=0,xT x=1

xTLAx,

and a Fiedler vector is any vector x that achieves this minimum while satisfying these
constraints. When A ≥ 0 and irreducible, it is not hard to show that the Fiedler
value is the smallest nonzero eigenvalue and a Fiedler vector is any corresponding
eigenvector. We will be notationally cavalier and refer to the Fiedler value and vector
of A when we really mean those of LA.

2.2. PQ-trees. A PQ-tree is a data structure introduced by Booth and Lueker
to efficiently encode a set of related permutations [5]. A PQ-tree over a set U =
{u1, u2, . . . , un} is a rooted, ordered tree whose leaves are elements of U and whose
internal nodes are distinguished as either P-nodes or Q-nodes. A PQ-tree is proper
when the following three conditions hold.

1. Every element ui ∈ U appears precisely once as a leaf.
2. Every P-node has at least two children.
3. Every Q-node has at least three children.

Two PQ-trees are said to be equivalent if one can be transformed into the other by
applying a sequence of the following two equivalence transformations.

1. Arbitrarily permute the children of a P-node.
2. Reverse the children of a Q-node.

Conveniently, the equivalence class represented by a PQ-tree corresponds precisely to
the set of permutations consistent with an instance of a seriation problem. In section
5 we describe an algorithm which uses Laplacian eigenvectors to construct a PQ-tree
for an instance of the seriation problem.

2.3. Motivation for spectral methods. With the above definitions we can
describe a simple heuristic for the seriation problem that will motivate the remainder
of the paper. This heuristic is at the heart of the more complex algorithms we will de-
vise, and underlies many previous applications of spectral algorithms [17]. We begin
by constructing a simple penalty function g whose value will be small when closely
correlated elements are close to each other. We define g(π) =

∑

(i,j) f(i, j)(πi − πj)
2.

Unfortunately, minimizing g is NP-hard due to the discrete nature of the permu-
tation [13]. Instead we approximate it by a function h of continuous variables xi

that we can minimize and that maintains much of the structure of g. We define
h(x) =

∑

(i,j) f(i, j)(xi − xj)
2. Note that h does not have a unique minimizer, since

its value does not change if we add a constant to each x component. To avoid this

2 This is in recognition of the work of Miroslav Fiedler [10, 11].
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ambiguity, we need to add a constraint like
∑

i xi = 0. We still have a trivial solu-
tion when all the xi’s are zero, so we need a second constraint like

∑

i x
2
i = 1. The

resulting minimization problem is now well defined.

Minimize h(x) =
∑

(i,j)

f(i, j)(xi − xj)
2(1)

subject to
∑

i

xi = 0, and
∑

i

x2
i = 1.

The solution to this continuous problem can be used as a heuristic for sequencing.
Merely construct the solution vector x, sort the elements xi, and sequence based upon
their sorted order. One reason this heuristic is attractive is that the minimization
problem has an elegant solution. We can rewrite h(x) as xTLFx where F = {fij} is the
correlation matrix. The constraints require that x be a unit vector orthogonal to e, and
since LA is symmetric, all other eigenvectors satisfy the constraints. Consequently, a
solution to the constrained minimization problem is just a Fiedler vector.

Even if the problem is not well posed, sorting the entries of the Fiedler vector
generates an ordering that tries to keep highly correlated elements near each other. As
mentioned above, this technique is being used for a variety of sequencing problems [4,
15, 17]. The algorithm we describe in the remainder of the paper is based upon this
idea. However, when we encounter ties in entries of the Fiedler vector, we need to
recurse on the subproblem encompassing the tied values. In this way, we are able to
find all permutations which make a pre-R-matrix into an R-matrix.

3. The key theorem. Our main result is that a modification of the simple
heuristic presented in section 2.3 is actually an algorithm for well-posed instances of
the seriation problem. Completely proving this will require us to deal with the special
cases of multiple Fiedler vectors and ties within the Fiedler vector. The cornerstone
of our analysis is a classical result in matrix theory due to Perron and Frobenius [27].
The particular formulation below can be found on p. 46 of [30].

Theorem 3.1 (Perron–Frobenius). Let M be a real, nonnegative matrix. If we
define ρ(M) = maxi |λi(M)|, then

1. ρ(M) is an eigenvalue of M , and
2. there is a vector x ≥ 0 such that Mx = ρ(M)x.

We are now ready to state and prove our main theorem.

Theorem 3.2. If A is an R-matrix then it has a monotone Fiedler vector.

Proof. Our proof uses the Perron–Frobenius Theorem 3.1. The nonnegative vector
in that theorem will consist of differences between neighboring entries in the Fiedler
vector of the Laplacian of A.

First define the matrix S ∈ R
(n−1)×n as

S =









−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1









.

Note that for any vector x, Sx = (x2 − x1, . . . , xn − xn−1)
T
. Define T ∈ R

n×(n−1) by
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T =











0 0 · · · 0
1 0 0

1 1
. . .

...
...

...
. . . 0

1 1 · · · 1











.

It is easy to verify that ST = In−1, and that TS = In − eeT1 . We define MA =
SLAT = {mi,j} and let LA = {li,j}. We now show that Sx is an eigenvector of MA

if and only if x is an eigenvector of LA and x 6= αe.

LAx = λx, x 6= αe ⇐⇒
SLAx = λSx, x 6= αe ⇐⇒

SLA(I − eeT1 )x = λSx, x 6= αe ⇐⇒
SLATSx = λSx, x 6= αe ⇐⇒

MAy = λy, where y = Sx 6= 0.

The transformation from the second to the third lines follows from LAe = 0. Equiv-
alence holds between all the above equations, so λ is an eigenvalue for both LA and
MA for eigenvectors of LA other than e. Hence the eigenvalues of MA are the same as
the eigenvalues of LA with the zero eigenvalue removed, and the eigenvectors of MA

are differences between neighboring entries of the corresponding eigenvectors of LA.
It is easily seen that (SLA)i,k = −li,k + li+1,k for all i, k, so

mi,j =

n∑

k=1

(SLA)i,kTk,j =

n∑

k=j+1

(−li,k + li+1,k) =

n∑

k=j+1

(ai,k − ai+1,k).

Since, by assumption, A is an R-matrix, ai,k ≤ ai+1,k for i < k + 1, and therefore
mi,j ≤ 0 for i < j. For i > j we can use the fact that

∑n

k=1 li,k = 0 to obtain

mi,j =

n∑

k=j+1

(−li,k + li+1,k) =

j
∑

k=1

(li,k − li+1,k) =

j
∑

k=1

(−ai,k + ai+1,k).

Again, from the R-matrix property we conclude that mij ≤ 0 for i > j. Consequently,
all the off-diagonal elements in MA are nonpositive.

Now let β be a value greater than maxi{λi,mii}, where λi are the eigenvalues of
MA. Then M̃A = βI−MA is nonnegative with eigenvalues λ̃i = β−λi. Also, M̃A and
MA share the same set of eigenvectors. By Theorem 3.1, there exists a nonnegative
eigenvector y of M̃A corresponding to the largest eigenvalue of M̃A. But y is also an
eigenvector of MA corresponding to MA’s smallest eigenvalue. And this is just Sx,
where x is a Fiedler vector of LA. Since y = Sx is nonnegative, the corresponding
Fiedler vector of LA is nondecreasing and the theorem follows. (Note that since the
sign of an eigenvector is unspecified, the Fiedler vector could also be nonincreasing.)

Theorem 3.3. Let A be a pre-R-matrix with a simple Fiedler value and a Fiedler
vector with no repeated values. Let π1 (respectively, π2) be the permutation induced
by sorting the values in the Fiedler vector in increasing (decreasing) order. Then Aπ1

and Aπ2 are R-matrices, and no other permutations of A produce R-matrices.
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Proof. First note that since the Fiedler value is simple, the Fiedler vector is
unique up to a multiplicative constant. Next observe that if x is the Fiedler vector
of A, then xπ is the Fiedler vector of Aπ. So applying a permutation to A merely
changes the order of the entries in the Fiedler vector. Now let π∗ be a permutation
such that Aπ∗ is an R-matrix. By Theorem 3.2, xπ∗ is monotone since x is the only
Fiedler vector. Since x has no repeated values, π∗ must be either π1 or π2.

Theorem 3.3 provides the essence of our algorithm for the seriation problem, but
it is too restrictive, as the Fiedler value must be simple and contain no repeated
values. We will show how to remove these limitations in the next section.

4. Removing the restrictions. Several observations about the seriation prob-
lem will simplify our analysis. First note that if we add a constant to all the correlation
values the set of solutions is unchanged. Consequently, we can assume without loss
of generality that the smallest value of the correlation function is zero. Note that
subtracting the smallest value from all correlation values does not change whether or
not the matrix is pre-R. In our algebraic formulation this translates into the following.

Lemma 4.1. Let A be a symmetric matrix and let Ā = A − αeeT for some real
α. A vector x is a Fiedler vector of A if and only if x is a Fiedler vector of Ā. So
without loss of generality we can assume that the smallest off-diagonal entry of A is
zero.

Proof. By the definition of a Laplacian it follows that LĀ = LA + αeeT − αnI,
where n is the dimension of A. Then LĀe = 0, but for any other eigenvector x of LA,
LĀx = LAx+ 0− αnx. That is, the eigenvalues are simply shifted down by αn while
the eigenvectors are preserved.

This will justify the first step of our algorithm, which subtracts the value of the
smallest correlation from every correlation. Accordingly, we now make the assumption
that our pre-R-matrix has smallest off-diagonal entry of zero. Next observe that if A is
reducible, then the seriation problem can be decoupled. The irreducible blocks of the
matrix correspond to connected components in the graph of the nonzero values of the
correlation function. We can solve the subproblems induced by each of these connected
components and link the pieces together in an arbitrary order. More formally, we have
the following lemma.

Lemma 4.2. Let Ai, i = 1, . . . , k, be the irreducible blocks of a pre-R-matrix A,
and let πi be a permutation of block Ai such that the submatrix Aπi

i is an R-matrix.
Then any permutation formed by concatenating the πi’s will make A become an R-
matrix. In terms of a PQ-tree, the πi permutations are children of a single P-node.

Proof. By Lemma 4.1, we can assume all entries in the irreducible blocks are non-
negative. Consequently, the correlation between elements within a block will always
be at least as strong as the correlation between elements in different blocks. Also, by
the definition of irreducibility, each element within a block must have some positive
correlation with another element in that block. Hence, any ordering that makes Ai

an R-matrix must not interleave elements between different irreducible blocks. As
long as the blocks themselves are ordered to be R-matrices, any ordering of blocks
will make A an R-matrix since correlations across blocks are all identical.

With these preliminaries, we will now assume that the smallest off-diagonal value
is zero and that the matrix is irreducible. As the following three lemmas and theorem
show, this is sufficient to ensure that the Fiedler vector is unique up to a multiplicative
constant.

Lemma 4.3. Let A be an n × n R-matrix with a monotone Fiedler vector x.
If J = [r, s] is a maximal interval such that xr = xs, then for any k /∈ J , ar,k =
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ar+1,k = · · · = as,k.
Proof. We can without loss of generality assume x is nondecreasing since −x is

also a Fiedler vector. We will show that ar,k = as,k for all k /∈ J , and since A is an
R-matrix then all elements between ar,k and as,k must also be equal. Consider rows
r and s in the equation LAx = λx:

n∑

k=1

(ls,k − lr,k)xk = λ(xs − xr) = 0.

Since LA is a Laplacian, we know that
∑n

k=1 li,k = 0 for all i. We get

0 =

n∑

k=1

(lsk − lrk)(xr − xk)

=

r−1∑

k=1

(ls,k − lr,k)
︸ ︷︷ ︸

≥0

(xr − xk)
︸ ︷︷ ︸

>0

+

n∑

k=s+1

(ls,k − lr,k)
︸ ︷︷ ︸

≤0

(xr − xk)
︸ ︷︷ ︸

<0

where we have used the fact that x is nondecreasing. Because all terms in the sum
are nonnegative, all terms must be exactly zero. By assumption, xk 6= xr for k /∈ J
and consequently lr,k = ls,k for k /∈ J and the result follows.

The following lemma is essentially a converse of this. Its proof requires detailed
algebra, but it is not fundamental to what follows. Consequently, the proof is relegated
to the end of this section.

Lemma 4.4. Let A be an irreducible n×n R-matrix with an,1 = 0. If J = [r, s] 6=
[1, n] is an interval such that ar,k = as,k for all k /∈ J , then xr = xr+1 = · · · = xs for
any Fiedler vector x.

Lemma 4.5. Let A be an irreducible R-matrix with an,1 = 0, and x, a monotone
Fiedler vector of A. If J = [r, s] is an interval such that xr = xr+1 = · · · = xs, then
for any Fiedler vector y, yr = yr+1 = · · · = ys.

Proof. First apply Lemma 4.3 to conclude that for any k /∈ J , ar,k = ar+1,k =
· · · = as,k. Since xT e = 0, it follows that J 6= [1, n]. Now use this in conjunction
with Lemma 4.4 to obtain the result.

Theorem 4.6. If A is an irreducible R-matrix with an,1 = 0, then the Fiedler
value λ2 is a simple eigenvalue.

Proof. We will assume that λ2 is a repeated eigenvalue and produce a contradic-
tion. Let x and y be two linearly independent Fiedler vectors with x nondecreasing.
Define z(θ) = cos(θ)x + sin(θ)y, with 0 ≤ θ ≤ π. Let θ∗ be the smallest value of θ
that makes zk = zk+1 for some k where xk 6= xk+1. Such a θ∗ must exist since x and
y are linearly independent.

By Lemma 4.5 the indices of any repeated values in x are indices of repeated
values in y and z(θ). Coupled with the monotonicity of x, this implies that z(θ∗)
is monotone. By Lemma 4.5 the indices of any repeated values in z(θ∗) must be
repeated in x, which gives the desired contradiction.

All that remains is to handle the situation where the Fiedler vector has repeated
values. As the following theorem shows, repeated values decouple the problem into
pieces that can be solved recursively.

Theorem 4.7. Let A be a pre-R-matrix with a simple Fiedler value and Fiedler
vector x. Suppose there is some repeated value β in x and define I, J , and K to be
the indices for which
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1. xi < β for all i ∈ I,
2. xi = β for all i ∈ J ,
3. xi > β for all i ∈ K.

Then π is an R-matrix ordering for A if and only if π or its reversal can be expressed
as (πi, πj , πk), where πj is an R-matrix ordering for the submatrix A(J ,J ) of A
induced by J , and πi and πk are the restrictions of some R-matrix ordering for A to
I and K, respectively.

Proof. From Theorem 3.2 we know that for any R-matrix ordering Aπ, xπ is
monotone, so elements in I must appear before (after) elements from J and elements
from K must appear after (before) elements from J . By Lemma 4.3, we have aik = ajk
for all i, j ∈ J and k /∈ J . Hence the orderings of elements inside J must be indifferent
to the ordering outside of J and vice versa. Consequently, the R-matrix ordering of
elements in J depends only on A(J ,J ).

Algorithmically, this theorem means that we can break ties in the Fiedler vector
by recursing on the submatrix A(J ,J ) where J corresponds to the set of repeated
values. The distinct values in the Fiedler vector of A constrain R-matrix orderings,
but repeated values need to be handled recursively. In the language of PQ-trees,
the distinct values are combined via a Q-node, and the components (subtrees) of the
Q-node must then be expanded recursively.

Proof of Lemma 4.4. First we recall that the Fiedler value is the value obtained
by

min
xT e=0,xT x=1

xTLAx = min
xT e=0,xT x=1

∑

i>j

ai,j(xi − xj)
2,(2)

and a Fiedler vector is a vector that achieves this minimum. We note that if we
replace A by a matrix that is at least as large on an elementwise comparison, then
xTLAx cannot decrease for any vector x.

We consider A(J ,J ), the diagonal block of A indexed by J . By the definition
of an R-matrix, all values in A(J ,J ) must be at least as large as ar,s. However, ar,s
must be greater than zero. Otherwise, by the R-matrix property, ai,j = 0 for all i ≥ r
and j < s and for all j ≥ r and i < s. But then, by the statement of the theorem,
ai,j = 0 for all i ≥ s and j < s and all j ≥ r and j < s, which would make the matrix
reducible.

The remainder of the proof will proceed in two stages. First we will force all the
off-diagonal values in A(J ,J ) to be ar,s and show the result for this modified matrix.
We will then extend the result to our original matrix.

Stage 1. We define the matrix B to be identical to A outside of B(J ,J ), but
all off-diagonal values of B within B(J ,J ) are set to α = ar,s. It follows from the
hypotheses that B is an R-matrix. We define δ = li,i for i ∈ J and note that, by the
R-matrix property, δ ≤ (n− 1)α.

We now define L̃B = LB − (δ + α)I and consider the eigenvalue equation L̃Bx =
λ̃2x. This matrix has the same eigenvectors as LB with eigenvalues shifted by δ + α.
Since l̃ii = δ− (δ+α) = α for i ∈ J , all rows of L̃B in J are identical. Consequently,
either all elements of x in J are equal, or λ̃2 = 0 (which is equivalent to λ2 = δ +α).
We will show that irreducibility and an1 = 0 implies λ2 6= δ + α, which will complete
the proof of Stage 1.

We assume λ2 = δ + α and look for a contradiction. We introduce a new matrix
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B̂ as follows:

b̂i,j =







bi,j if i < r and j < r,
bi,j if i > s and j > s,
α otherwise.

Since B is an R-matrix, B̂ is at least as large as B elementwise, so λ2(B̂) ≥ λ2(B).
We define the vector ŷ by

ŷi =







−(n− s), if i < r,
0, if r ≤ i ≤ s,
r − 1, if i > s,

and x̂ to be the unit vector in the direction of ŷ. We note that x̂T e = 0, and that
x̂TLB̂x̂ = nα. We have the following chain of inequalities:

λ2 = min
xT e=0,xT x=1

xTLBx ≤ x̂TLBx̂ < x̂TLB̂x̂ = nα.(3)

The last inequality is strict since b̂n,1 = α while bn,1 = 0 and (x̂n − x̂1)
2 > 0.

If λ2 = δ + α, then we can combine an inequality due to Fiedler [10],

λ2 ≤ n

n− 1
min
i

lii,

with the observation that mini li,i ≤ δ to obtain λ2 ≤ n
n−1δ ≤ δ + α = λ2. This can

only be true if equality holds throughout, implying that δ = (n − 1)α and λ2 = nα.
But this contradicts (3), so λ2 6= δ + α and the proof of Stage 1 is complete.

Stage 2. We will now show that A and B have the same Fiedler vectors. Since A
is elementwise at least as large as B, for any vector z, zTLAz ≥ zTLBz. From Stage
1 we know that any Fiedler vector of B satisfies xr = xr+1 = · · · = xs. In this vector,
(xi −xj) = 0 for i, j ∈ J , so the contribution to the sum in (2) from B(J ,J ) is zero.
But this contribution will also be zero when applied to A(J ,J ). Since A and B are
identical outside of A(J ,J ) and B(J ,J ), we now have that a Fiedler vector of B
gives an upper bound for the Fiedler value of A; that is, λ2(A) ≤ λ2(B). It follows
that the Fiedler vectors of B are also Fiedler vectors of A and vice versa.

5. A spectral algorithm for the seriation problem. We can now bring all
the preceding results together to produce an algorithm for well-posed instances of
the seriation problem. Specifically, given a well-posed correlation function we will
generate all consistent orderings. Given a pre-R-matrix, our algorithm constructs a
PQ-tree for the set of permutations that produce an R-matrix.

Our Spectral-Sort algorithm is presented in Fig. 1. It begins by translating all the
correlations so that the smallest is 0. It then separates the irreducible blocks (if there
are more than one) into the children of a P-node and recurses. If there is only one
such block, it sorts the elements into the children of a Q-node based on their values
in a Fielder vector. If there are ties in the entries of the Fiedler vector, the algorithm
is invoked recursively.

We now prove that the algorithm is correct. Step (1) is justified by Lemma 4.1,
and requires time proportional to the number of nonzeros in the matrix. The iden-
tification of irreducible blocks in step (2) can be performed with a breadth-first or
depth-first search algorithm, also requiring time proportional to the number of nonze-
ros. Combining the permutations of the resulting blocks with a P-node is correct by
Lemma 4.2.
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Input: A, an n× n pre-R-matrix
U , a set of indices for the rows/columns of A

Output: T , a PQ-tree that encodes the set of all permutations π
such that Aπ is an R-matrix

begin

(1) α := mini6=j ai,j
(1) A := A− αeeT

(2) {A1, . . . , Ak} := the irreducible blocks of A
(2) {U1, . . . , Uk} := the corresponding index sets
(2) if k > 1
(2) for j := 1 : k
(2) Tj := Spectral-Sort(Aj , Uj)
(2) end

(2) T := P-node(T1, T2, . . . , Tk)
else

(3) if (n = 1)
(3) T := u1

(3) else if (n = 2)
(3) T := P-node(u1, u2)

else

(4) x := Fiedler vector for LA

(4) Sort x
(5) t := number of distinct values in x
(5) for j := 1 : t
(5) Vj := indices of elements in x with jth value
(5) Tj := Spectral-Sort(A(Vj , Vj), Vj)
(5) end

T := Q-node(T1, . . . , TT )
end

end

end

Fig. 1. Algorithm Spectral-Sort.

Step (3) handles the boundary conditions of the recursion, while in step (4) the
Fiedler vector is computed and sorted. If there are no repeated elements in the Fiedler
vector then the Q-node for the permutation is correct by Theorem 3.3. Steps (3) and
(4) are the dominant computational steps and we will discuss their run time below.
The recursion in step (5) is justified by Theorem 4.7.

Note that this algorithm produces a tree whether A is pre-R or not. To determine
whether A is pre-R, simply apply one of the generated permutations. If the result is
an R-matrix, then all permutations in the PQ-tree will solve the seriation problem;
otherwise the problem is not well posed.

The most expensive steps in algorithm Spectral-Sort are the generation and sort-
ing of the eigenvector. Since the algorithm can invoke itself recursively, these op-
erations can occur on problems of size n, n − 1, . . .,1. So if the time for an eigen-
calculation on a matrix of size n is T (n), the run time of algorithm Spectral-Sort is
O(n(T (n) + n log n)).

A formal analysis of the complexity of the eigenvector calculation can be simpli-
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fied by noting that for a pre-R-matrix, all that matters is the dominance relationships
between matrix entries. So, without loss of generality, we can assume that all entries
are integers less than n2. With this observation, it is possible to compute the com-
ponents of the Fiedler vector to a sufficient precision such that the components can
be correctly sorted in polynomial time. We now sketch one way this can be done,
although we don’t recommend this procedure in a real-world implementation.

Let λ denote a specific eigenvalue of L, in our case the Fiedler value. This can
be computed in polynomial time as discussed in [25]. Then we can compute the
corresponding eigenvector x symbolically by solving

(L− zI)x = 0 mod p(z),

where p(z) is the characteristic polynomial of L. Gaussian elimination over a field is
in P [21], so if p(z) is irreducible we obtain a solution x where each component xi is
given by a polynomial in z with bounded integer coefficients. We note that letting
z be any eigenvalue will force x to be a true eigenvector. If p(z) is reducible, we
try the above. If we fail to solve the equation, we will instead find a factorization
of p(z) and proceed by replacing p(z) with the factor containing λ as a root. This
yields a polynomial formula for each xi, and we can identify equal elements by, e.g.,
the method in [22]. To decide the order of the remaining components, we evaluate
the root λ to a sufficient precision and then compute the xi’s numerically and sort.
Since λ is algebraic, the xi’s cannot be arbitrarily close [22] and polynomial precision
is sufficient.

In practice, eigencalculations are a mainstay of the numerical analysis community.
To calculate eigenvectors corresponding to the few highest or lowest eigenvalues (like
the Fiedler vector), the method of choice is known as the Lanczos algorithm. This is
an iterative algorithm in which the dominant cost in each iteration is a matrix-vector
multiplication which requires O(m) time. The algorithm generally converges in many
fewer than n iterations, often only O(

√
n) [26]. However, a careful analysis reveals a

dependence on the difference between the distinct eigenvalues.

6. C1P. Ordering an R-matrix is closely related to C1P. As mentioned in section
1, a (0, 1)-matrix C has the consecutive ones property if there exists a permutation
matrix Π such that for each column in ΠC, all the ones form a consecutive sequence.3

A matrix that has this property without any rearrangement (i.e., Π = I) is in Petrie
form4 and is called a P-matrix. Analogous to R-matrices, we say a matrix with the
consecutive ones property is pre-P. C1P can be restated as: given a pre-P-matrix C,
find a permutation matrix Π such that ΠC is a P-matrix.

There is a close relationship between P-matrices and R-matrices. The following
results are due to D.G. Kendall and are proved in [19] and [33].

Lemma 6.1. If C is a P-matrix, then A = CCT is an R-matrix.
Lemma 6.2. If C is pre-P and A = CCT is an R-matrix, then C is a P-matrix.
Theorem 6.3. Let C be a pre-P matrix, let A = CCT , and let Π be a permutation

matrix. Then ΠC is a P-matrix if and only if ΠAΠT is an R-matrix.
This theorem allows us to use algorithm Spectral-Sort to solve C1P. First con-

struct A = CCT , and then apply our algorithm to A (note that the elements of A
are small nonnegative integers). Now apply one of the permutations generated by the

3 Some authors define this property in terms of rows instead of columns.
4 Sir William M. F. Petrie was an archeologist who studied mathematical methods for seriation

in the 1890s.



SPECTRAL ALGORITHM FOR SERIATION 309

algorithm to C. If the result is a P-matrix then all the permutations produce C1P
orderings. If not, then C has no C1P orderings.

The run time for this technique is not competitive with the linear time algorithm
for this problem due to Booth and Lueker [5]. However, unlike their approach, our
Spectral-Sort algorithm does not break down in the presence of errors and can instead
serve as a heuristic.

Several other combinatorial problems have been shown to be equivalent to C1P.
Among these are recognizing interval graphs [5, 12] and finding dense envelope order-
ings of matrices [5].

One generalization of P-matrices is to matrices with unimodal columns (a uni-
modal sequence is a sequence that is nondecreasing until it reaches its maximum,
then nonincreasing). These matrices are called unimodal matrices [32]. Kendall [20]
showed that the results of Lemmas 6.1 and 6.2 and Theorem 6.3 are also valid for uni-
modal matrices if the regular matrix product is replaced by the matrix circle product
defined by

(A ◦B)ij =
∑

k

min(aik, bkj).

Note that P-matrices are just a special case of unimodal matrices, and that the circle
product is equivalent to the matrix product for (0, 1)-matrices. Kendall’s result implies
that our spectral algorithm will correctly identify and order unimodal matrices.
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