
Scalable Heuristics for a Class of Chance Constrained
Stochastic Programs

Jean-Paul Watson
Discrete Math and Complex Systems Department, Sandia National Laboratories,

Albuquerque, NM 87185-1318, jwatson@sandia.gov

Roger J-B Wets
Department of Mathematics, University of California, Davis,

Davis, CA 95616-8633, rjbwets@ucdavis.edu

David L. Woodruff
Graduate School of Management, University of California, Davis,

Davis, CA 95616-8609, dlwoodruff@ucdavis.edu

We describe computational procedures for solving a wide-ranging class of stochastic pro-

grams with chance constraints where the random components of the problem are discretely

distributed. Our procedures are based on a combination of Lagrangian relaxation and sce-

nario decomposition, which we solve using a novel variant of Rockafellar and Wets’ progres-

sive hedging algorithm. Experiments demonstrate the ability of the proposed algorithm to

quickly find near-optimal solutions – where verifiable – to both difficult and very large chance

constrained stochastic programs, both with and without integer decision variables. The al-

gorithm exhibits strong scalability in terms of both CPU time required and final solution

quality on large-scale instances.

Key words: Stochastic Programming, Chance Constraints, Scenario-Based Decomposition,

Heuristics.

History: Submitted November 18, 2008. Revised May 29, 2009. Accepted November 5, 2009.

1. Introduction

Reliability considerations are always an intrinsic component of decision making under uncer-

tainty and the design of good optimization models must necessarily include them. One way

to do this is via a “penalty function” that measures the discrepancies between the decisions’

output and the potential future events, i.e., scenarios. This leads to stochastic programs

with recourse where the recourse costs play the role of the penalty function (Kall and Wal-

lace, 1994; Birge and Louveaux, 1997). Another possibility is to model non-compliance via

a risk measure and optimize to minimize this risk measure; value-at-risk is a popular choice

1

(Holton, 2003). One could also ask explicitly for compliance by including in the model a

probabilistic constraint. This leads to the formulation of a stochastic program with chance

constraints, i.e., certain constraints will have to be satisfied with a high probability (Prekopa,

2003).

There are many real-world situations where chance constrained stochastic programs are

an appropriate model. A commonly discussed example is the so-called 100-year disaster

planning problem where a small fraction (e.g., one percent or less) of the scenarios do not

have to be considered. Another example involves supply chain design, where it is typically

not cost-effective to satisfy performance constraints in all realizable scenarios, as is the case

in various forms of robust optimization. In general, the use of chance constraints provides

modelers an opportunity to express the idea that constraints need not be satisfied or costs

minimized across every conceivable eventuality.

Unfortunately, chance constrained stochastic programs are inherently difficult to solve

except when they fall in a very narrow family. Stochastic programs are usually solved by

relying on an approximating problem obtained via discretization of the probability space.

Stochastic programs with recourse preserve convexity under discretization but, in general,

that is not the case for stochastic programs with chance constraints; note however, that

for problems with continuous variables, Nemirovski and Shapiro, by relying on “Bernstein

approximations”, are able to build convex approximations for a relatively significant class of

chance constrained programs (Nemirovski and Shapiro, 2006).

In this paper, we are concerned with efficient computational procedures for solving a wide

ranging class of stochastic programs with chance constraints where the random components

of the problem are discretely distributed, i.e., with finite support. We shall not be concerned

if the original problem was already of this type, if it resulted from a discretization of the

underlying probability distributions, or is obtained via a sampling scheme such as in the

approach suggested by Luedtke and Ahmed (2008); cf. also Salinetti (1983), who deals

with convergence issues, and Infanger (1993). Rather, we concern ourselves with the very

important and practical problem of finding a good solution to a general chance constrained

stochastic program once presented with a set of scenarios.

We formulate our decision model as a two stage stochastic program where some portion

of the scenarios can be ignored. Each scenario s has an associated weight or probability

given as ps. A formal statement of such a problem is as follows. Given a scenario index set

S of size |S|, a vector x of n first-stage decision variables, a cost vector c of length n, and a

2

scalar 0 ≤ α < 1, find a vector x ∈ ℜn and binary vector d of length |S| to

minimize c · x+
∑

s∈S ds ps(fs · ys) (E)
subject to: (x, ys) ∈ Qs, ∀s ∈ {S : ds = 1}

∑

s∈S ps ds ≥ (1 − α)
ds ∈ {0, 1}, ∀s ∈ S

where ds represents the binary decision to enforce constraints Qs for scenario s ∈ S and the

ys represent second-stage, scenario-specific decision vectors with associated cost coefficient

vectors fs, which are determined given x and a particular s ∈ S. The use of a common

decision vector x for all s ∈ S implicitly implements the non-anticipativity constraints that

avoid allowing the decisions to depend on the scenario. The Qs summarize the problem

constraints. Specific examples of (E) are provided in §5, where computational experiments

concerning problems with both linear and mixed-integer constraints are described. Regard-

less of the nature of the constraints on x, the interesting aspect of this formulation is the

ability to select which scenarios are to be considered and which can be ignored.

Note that Problem (E) is non-convex due to the integrality of the d vector even if the

rest of the problem happens to be convex. This significantly complicates solution procedures

and inflates computational costs. This formulation is similar to one given by Ruszczyński

(2002), who provided cutting planes and an exact algorithm useful for the case where the

constraints are linear and x is real-valued. However, our interest here is in algorithms

for more general (including non-convex) and computationally difficult forms (e.g., due to

integer constraints), and for problem instances that are too large to be solved directly, and

consequently requires decomposition to meet computer memory constraints. Ultimately,

our goal is computational tractability, which has historically been a barrier to widespread

adoption of chance constrained stochastic integer programs of the type occurring in many

key application domains including logistics, transportation, supply chain management, and

network design.

We conclude by observing that formulation (E) (ignoring the second-stage decision vari-

ables and costs for notational simplicity) is commonly used as a discretization of a stan-

dard chance constrained stochastic programming formulation (Ahmed and Shapiro, 2008;

Ruszczyński, 2002), given as follows:

minimize c · x
subject to: Pr{G(x, ξ) ≤ 0} ≥ (1 − α)

where ξ is a random vector from a given probability distribution, G(x, ξ) represents the con-

straints associated with the random vector ξ (i.e., a scenario), and α is the “risk” parameter,

3

i.e., the proportion of scenarios that we are willing to ignore.

The remainder of this paper is organized as follows. In §2, we discuss specific relaxations

and decompositions of Problem (E). In §3, we introduce simple candidate algorithms based on

scenario decomposition to solve instances of Problem (E). A more sophisticated algorithm

is then introduced in §4. Computational experiments comparing the various algorithmic

alternatives are presented in §5. We conclude by summarizing our contributions in §6.

2. Relaxation and Decomposition

Relaxation and decomposition are standard computational techniques for addressing situa-

tions involving both very large-scale and non-convex (or both) problems. First, we consider

a Lagrangian relaxation of Problem (E), as follows:

minimize c · x+
∑

s∈S ds ps(fs · ys) − λ
(
∑

s∈S ps ds − (1 − α)
)

(L)
subject to: (x, ys) ∈ Qs, ∀s ∈ {S : ds = 1}

ds ∈ {0, 1}, ∀s ∈ S

For any fixed λ ≥ 0, the optimal objective function value of Problem (L) is a lower bound

on (E) as one would expect for the Lagrangian relaxation.

We further wish to exploit scenario decomposition, which in turn facilitates decomposition

of x and d. The decomposition of Problem (E) by scenarios (i.e., temporarily ignoring the

coupling constraint) results in a problem of obtaining a solution xs for each scenario s ∈ S,

as follows:

minimize c · xs + fs · ys

subject to: (xs, ys) ∈ Qs

When we decompose (E) by scenarios we obtain a set of problems that are, even collec-

tively, significantly easier to solve than the full Problem (E). Depending on the structure of

the Qs, the subproblems can be tractable when the full problem is computationally out-of-

reach. This situation is illustrated in our computational experiments described in §5.

For our purposes, a key aspect of scenario-based decomposition of Problem (L) is that

d appears only in the coupling constraint. Thus, once the xs variables for the scenario sub-

problems have been optimized, the optimal assignment of ds variables for Problem (L) is

4

immediate. Let xs be the optimal value for a scenario subproblem of (L), i.e.,

minimize c̃s − λds|ds ∈ {0, 1}

subject to: (xs, ys) ∈ Qs

where: c̃s = cxs + fsys

This particular formulation borrows notation from Lulli and Sen (2004), who also address the

problem of scenario selection for stochastic mixed-integer programs. Note that the optimal

value of xs is independent of the value of ds for this single scenario problem. Given xs and

ys, there are two choices for ds: if the optimal values would contribute a negative term in

the objective of Problem (L), then ds = 1; otherwise it is optimal to set ds to zero for that

scenario. This observation is formalized as follows:

Remark 1 When non-anticipativity in Problem (L) is relaxed, if c · xs + fs · ys ≤ λ, then

ds = 1 is optimal, otherwise ds = 0 is optimal.

In order to exploit this decomposition, we need to deal with the fact that the decision

vector x cannot depend on s. If we could obtain an optimal or nearly optimal x∗ such that

for all s ∈ S, xs = x∗, we could immediately set the d values and terminate the search. We

accomplish this using algorithms described next in §3. Alternatively, when all scenarios have

the same probability, then a very simple greedy algorithm is obtained by setting ds = 1 for

the (1 − α)|S| scenarios for which c · xs + fs · ys is lowest. This greedy algorithm is used as

a computational baseline in §5.

3. Applications of Progressive Hedging for Scenario

Selection

The progressive hedging algorithm proposed by Rockafellar and Wets (1991) provides a

mechanism for combining scenario sub-problem solutions and enforcing non-anticipativity.

Progressive hedging (PH) is sometimes referred to as a horizontal decomposition method

because it decomposes the problem by scenarios rather than by time stages. The algorithm

obtains solutions xs for each scenario s, and uses them to construct a unified solution.

The algorithm is particularly appropriate when methods exist to solve a deterministic

version of the problem, but when multiple scenarios are introduced, solutions are not ob-

tainable by directly solving the full problem due to either memory or time limitations. The

5

algorithm offers the additional advantage that it extends immediately to more than two time

stages and can be used heuristically for problems that are formulated with integer constraints

and other non-convexities. There are a couple of ways to gain insight or to motivate the

algorithm. One way is to think of it as blending the solutions for each scenario to form a

solution where decisions that cannot depend on the scenario do not. A more sophisticated

way is to think of non-anticipativity as a constraint of the form xs = x̄ for all s; then one

sees the algorithm as computing successive approximations to a sub-gradient multiplier for

this constraint.

In this section, we outline two ways to use PH to address the solution of Problem (E).

The first approach serves as a straightforward introduction to the PH algorithm, and can

solve Problem (E) when the d vector is given. This algorithm is used effectively as a post-

processor in §5. The second approach is an implementation for solving Problem (L) which

can then be embedded in a search for the smallest λ that results in
∑

s∈S ps ds ≥ (1 − α).

This algorithm is used as a comparative baseline in §5.2. A more sophisticated algorithm is

presented in §4 that simultaneously embeds the search for λ and d in the progressive hedging

algorithm.

3.1. PH for Problem (E) Given d

Given a particular d vector, PH for the solution of Problem (E) reduces to the basic PH

algorithm, which takes a perturbation vector ρ > 0 of length n and a convergence tolerance

ǫ as input parameters (Rockafellar and Wets, 1991). Pseudo-code for PH in this context is

given as follows:

1. k = 0

2. For all s ∈ S, x
(k)
s = argminx,ys

(c · x+ fs · ys) : (x, ys) ∈ Qs

3. x̄k = (
∑

s∈S ps dsx
(k)
s)/

∑

s∈S ps ds

4. For all s ∈ S, w
(k)
s = ρ(x

(k)
s − x̄(k))

5. k = k + 1

6. For all s ∈ S,
x

(k)
s = argminx,ys

(c · x+ w
(k−1)
s x+ ρ/2

∥

∥x− x̄(k−1)
∥

∥

2
+ fs · ys)

: (x, ys) ∈ Qs

7. x̄(k) = (
∑

s∈S ps dsx
(k)
s)/

∑

s∈S ps ds

6

8. For all s ∈ S, w
(k)
s = w

(k−1)
s + ρ

(

x
(k)
s − x̄(k)

)

9. g(k) = 1
P

s∈S
ps ds

∑

s∈S psds||
x
(k)
s −x̄(k)

x̄(k) ||

10. If g(k) > ǫ, then go to step 5. Otherwise, terminate.

In the pseudocode, x
(k)
s denotes the value of xs for scenario s ∈ S at iteration k of PH, while

x̄(k) denotes the corresponding average x
(k)
s over all scenarios s with ds = 1. The w

(k)
s are

PH-specific, per-scenario vectors of length n, and serve as the mechanism through which the

x
(k)
s are eventually forced to agreement. PH is terminated once the scenario sub-problems

are sufficiently homogeneous, as quantified by g(k) and thresholded by ǫ. For each scenario

s ∈ S, the quantity g(k) captures the difference between the selected (as determined by ds)

scenario solutions x
(k)
s and the average x̄(k), normalized in turn by x̄(k) to control for disparate

variable scales; in a slight abuse of notation, we interpret the vector division operator as an

element-wise operator. If Problem (E) is convex given a fixed d, PH is guaranteed to locate

optimal solutions given appropriate values of ρ and ǫ. Otherwise, the use of PH is as a

heuristic, with the objective of quickly locating high-quality solutions.

3.2. PH for Problem (L) Given λ

Remark 1 enables modification of the PH algorithm given above in §3.1 by adding the logic:

If c · x(k)
s + fs · ys ≤ λ then ds = 1 else ds = 0

to Steps 2 and 6. The result is that for a given λ, a straightforward PH algorithm for Problem

(L) can be stated as follows, again taking ρ > 0 and ǫ as input parameters:

1. k = 0

2. For all s ∈ S, x
(k)
s = argminx,ys

(c · x+ fs · ys) : (x, ys) ∈ Qs

If (c · x(k)
s + fs · ys) ≤ λ then ds = 1 else ds = 0

3. x̄k =
∑

s∈S ps dsx
(k)
s /

∑

s∈S ps ds

4. For all s ∈ S, w
(k)
s = ρ(x

(k)
s − x̄(k))

5. k = k + 1

7

6. For all s ∈ S,
x

(k)
s = argminx,ys

(c · x+ w
(k−1)
s x+ ρ/2

∥

∥x− x̄(k−1)
∥

∥

2
+ fs · ys)

: (x, ys) ∈ Qs

If (c · x(k)
s + fs · ys) ≤ λ then ds = 1 else ds = 0

7. x̄(k) =
∑

s∈S ps dsx
(k)
s /

∑

s∈S ps ds

8. For all s ∈ S, w
(k)
s = w

(k−1)
s + ρ

(

x
(k)
s − x̄(k)

)

9. g(k) = 1
P

s∈S
ps ds

∑

s∈S psds||
x
(k)
s −x̄(k)

x̄(k) ||

10. If g(k) > ǫ, then go to step 5. Otherwise, terminate.

In Steps 2 and 6, the search for optimal x and d values are separated exploiting Remark 1.

The intent behind the g(k) metric is identical to that discussed in §3.1. As a practical matter,

Steps 3 and 7 must include a test for the possibility that
∑

s∈S ps ds = 0; in this case the

algorithm terminates and reports that λ is too small. Due to non-convexity, PH for the

solution of Problem (L) is again a heuristic solution technique.

4. Progressive Hedging for Simultaneous Determina-

tion of λ, d, and x

In order to simultaneously determine λ, d, and x, we use progressive hedging to find values of

xs that progressively satisfy the non-anticipativity requirement. In the process, we determine

a minimal λ that would result in
∑

s∈S ps ds ≥ (1 − α) and set the ds values accordingly. In

order to improve the stability of the x̄ estimates (and therefore the w estimates), we relax

the strict binary constraints on the ds variables, and instead progressively bias the values of

ds toward either 0 or 1 as the algorithm converges, as discussed in §4.1. The details of the

enhanced PH algorithm are provided in §4.2.

4.1. Techniques for Biasing the ds Variables

In order to improve the stability of the PH algorithm in early iterations,we relax the binary

restrictions on the ds variables. As the PH algorithm progresses the ds are gradually forced

to become discrete. An effective and mathematically motivated mechanism to accomplish

this behavior is via an augmentation function. We compose a piecewise step function with

a sequence of mollifiers that serve to smooth the step augmentation functions; cf. (Ermoliev

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

5

2

2.5

3

3.5

Beta density(7,1.75)

x

Figure 1: A mollifier function, φ(∆;x), based on the Beta density function with parameters a = 7
and b = 1.75 when ∆ = 1.

et al., 1995) for a related approach when dealing with the minimization of discontinuous

functions. Our “limiting” step function, with argument τ = c · xs + fs · ys, is given by:

ψ(τ, λ, λmax) =

{

1 when 0 ≤ τ ≤ λ,

0 for λ < τ ≤ λmax

where λmax represents an upper bound on the cost τ . Our collection of mollifiers are Beta

density functions defined on the interval [0,∆] with ∆ ց 0 as the PH algorithm converges:

φ(∆; x) =

{

1/∆
B(7,1.75)

(x/∆)6(1 − x/∆)0.75 when x ∈ [0,∆],

0 everywhere else

where the Beta function B(a, b) =
∫ 1

0
xa−1(1 − x)b−1 dx. In order to control the transition

from a smooth representation of ds to a discrete one as PH converges, we use ∆ = g(k)/g0, i.e.,

the PH convergence gap. A graphical depiction of our particular parameterization B(7, 1.75)

is provided in Figure 1, for ∆ = 1.

Given the family of mollifier functions parameterized on ∆, the corresponding augmen-

tation functions are obtained via the convolution:

m(∆, λmax; x, λ) =

∫ ∆

0

ψ(x− z, λ, λmax)φ(∆; z) dz, x ∈ [0, λmax].

A graphical depiction of the augmentation function based on a Beta mollifier is provided in

Figure 2.

9

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

augmentation function

x

Figure 2: The Beta mollifier-based augmentation function m(∆, λmax;x, λ) given ∆ = 1, λmax = 3,
and λ = 1; x is given on the horizontal axis.

4.2. Progressive Hedging for Scenario Selection

Given the family of augmentation functions m(·), a PH algorithm for scenario selection can

be stated as follows:

1. k = 0 and ∆ = 1.

2. For all s ∈ S, x
(k)
s = argminx,ys

(c · x+ fs · ys) : (x, ys) ∈ Qs

3. Assign an upper bound on the cost function to λmax

4. (λ, d) = argminλ≤λmax
λ such that for all s ∈ S,

ds = m(∆, λmax; c · x
(k)
s + fs · ys, λ) and

∑

s∈S

ps ds ≥ (1 − α)

5. x̄(k) =
∑

s∈S ps dsx
(k)
s /

∑

s∈S ps ds

6. For all s ∈ S, w
(k)
s = ρ(x

(k)
s − x̄(k))

7. g(k) = 1
P

s∈S
ps ds

∑

s∈S psds
|x

(k)
s −x̄(k)|

x̄(k)

8. k = k + 1

9. For all s ∈ S,
x

(k)
s = argminx,ys

(c · x+ w
(k−1)
s x+ ρ/2

∥

∥x− x̄(k−1)
∥

∥

2
+ fs · ys)

: (x, ys) ∈ Qs

10

10. (λ, d) = argminλ≤λmax
λ such that for all s ∈ S,

ds = m(∆, λmax; c · x
(k)
s + fs · ys, λ) and

∑

s∈S

ps ds ≥ (1 − α)

11. x̄(k) =
∑

s∈S ps dsx
(k)
s /

∑

s∈S ps ds

12. For all s ∈ S, w
(k)
s = w

(k−1)
s + ρ

(

x
(k)
s − x̄(k)

)

13. g(k) = 1
P

s∈S
ps ds

∑

s∈S psds||
x
(k)
s −x̄(k)

x̄(k) || and ∆ = g(k)/g(0)

14. If g(k) > ǫ, then go to step 8. Otherwise, terminate.

We denote the above algorithm simply by SSPH. Recall that n is the number of first-stage

decision variables in Problem (E). Steps 4 and 10 determine the value of λ that will result

in the desired sum over the d vector. As can be seen from Figure 2, the values of ds are

monotonic in λ so the minimization can be done easily.

In Steps 4 and 10, the condition for achieving the target number of scenarios in which

constraints are satisfied is based on non-binary (relaxed) ds. As SSPH converges, certain ds

are driven toward 0, and in practice once a ds is “sufficiently” close to 0, it is highly unlikely

that the same ds will equal 1 in a fully converged solution. Further, the SSPH algorithm

can exhibit “thrashing” behavior (i.e., spending large numbers of iterations attempting to

eliminate very minor scenario solution differences) with ds near 0, as these values lead to

instability in the x̄(k) and g(k). As a result, we impose ds = 0 once ds drops below some

threshold γ in both Steps 4 and 10 of the SSPH algorithm. For the experiments described

in §5, we set γ = 0.10 based on limited computational exploration.

In many situations, the solution of the extensive form (E) is computationally efficient

given a binary d vector. In particular, this is generally the case for the network flow test

problems described below in §5.1.1 and §5.1.2. In such cases, it is possible to prematurely

terminate SSPH after Step 10 once (1) a binary d vector is obtained (following truncation

relative to the threshold γ) and (2)
∑

s∈S ps ds = (1 − α). The latter equality condition

is required to prevent inclusion of excess scenarios (leading to cost inflation) and must be

appropriately modified if equality is mathematically unattainable (e.g., via some achievable

lower bound). The resulting d are then fixed in the extensive form (E), which is solved,

for example, using a commercial MIP solver. We refer to this technique as a “quick exit”

strategy. The baseline SSPH, which determines both d and the decision variable vectors x

and ys, is referred to as the “full” (convergence) strategy.

11

5. Computational Experiments

We now examine the performance of the proposed PH algorithms for scenario selection in

stochastic programming, considering two test cases: a small-scale, yet difficult “laboratory”

problem and a large-scale, real-world problem. The advantage of the laboratory problem is

that performance can be assessed relative to both established algorithms in the literature

and extensive form solutions obtained via commercial mixed-integer programming solvers.

In contrast, the extensive form of the real-world problem is not solvable with commercial

solvers, and competing approaches have yet to be introduced. However, the size of the

real-world problem instances serves to demonstrate the scalability and applicability of the

proposed algorithms.

Both test cases are of a form that facilitates easy computation of an upper bound on cost,

due to the absence of second-stage decision variables in the objective function. In particular,

Step 3 in the SSPH algorithm is replaced by: ∀i ∈ [1..n], xmax(i) = maxs∈Sx
(k)
s (i) and λmax =

c · xmax.

5.1. Ruszczyński’s Network Flow Model

Ruszczyński (2002) makes use of a chance constrained network flow problem to illustrate

his method for solving Problem (E). We adopt and also extend this problem for use in our

experiments. For the purpose of describing the formulation, we stay as close as possible to

his notation, deviating only when necessary to avoid conflicts with our own. Ruszczyński’s

notation allows for scenarios with different probabilities, but the example he used has equal

probabilities, so we introduce the model formulation in the context of that assumption.

5.1.1. The Basic Model

We begin with a node set V and a directed arc set A ⊆ V × V. For each scenario s ∈ S a

quantity Dkl(s) must be shipped from node k to node l for all (k, l) ∈ V × V, k 6= l. The

optimization objective is to determine arc capacities x(a), a ∈ A, that minimize the total

cost
∑

a∈A c(a)x(a) while enabling the shipping requirements (i.e., demands) to be met with

probability 1 − α. The c(a) represent capacity cost parameters associated with each arc

a ∈ A. Variables ykl(a, s) are introduced to represent the flow from k to l passing through

arc a ∈ A in scenario s ∈ S. The problem formulation, which we denote (NF), is then given

12

as:

minimize
∑

a∈A c(a)x(a)

subject to:
∑

a∈A+(ν) ykl(a, s) −
∑

a∈A−(ν) ykl(a, s) =







−Dkl(s) if ν = k
Dkl(s) if ν = l
0 otherwise

∀ν, k, l ∈ V, ∀s ∈ S
∑

s∈S ds ≥ (1 − α)|S|
x(a) ≥

∑

k,l∈V ykl(a, s), ∀a ∈ A, ∀s ∈ {S : ds = 1}
x ≥ 0, y ≥ 0, ds ∈ {0, 1}, ∀s ∈ S

where the notations A+(ν) and A−(ν) respectively indicate the set of arcs into and out of

node ν. In practice, α and |S| are selected such that (1− α)|S| is integer. The arc capacity

constraint can be linearized as x(a) ≥
∑

k,l∈V ykl(a, s) − (1 − ds)M , where M denotes a

sufficiently large constant, e.g., the sum of all demands in scenario s.

The particular test case of (NF) used by Ruszczyński is a small example with 5 nodes and

7 arcs and is intended to demonstrate his method rather than to be the basis of extensive

computational experiments (see Ruszczyński (2002) for a full description of the data used,

including the specific network configuration and arc capacity costs). In this case all arcs are

bi-directional and the capacities are assumed to be symmetric across an arc, i.e., if a1 = (i, j)

and a2 = (j, i), then x(a1) = x(a2) in any feasible solution. Similarly, the demand between

each pair of distinct nodes is symmetric. The risk level α = 0.1 was used in all experiments.

Building on this example, we generated ten random 100-scenario and five random 400-

scenario (NF) instances using the procedure described in Ruszczyński (2002). In particular,

the Dkl(s) for a specific scenario s ∈ S are given by Dkl(s) = 0.1Ds+ǫkl, where Ds represents

the aggregate flow volume for scenario s, sampled from a normal distribution N (30, 5); the

ǫkl are independent normal variables with mean 0 and standard deviation 0.25.

For each instance, we compute the optimal solution of the (NF) extensive form using

Ruszczyński’s exact method; we are grateful to Ruszczyński for sharing his AMPL code for

solving (NF). Additionally, we allocate one day (1440 minutes) of CPU time to CPLEX 10.1

(ILOG, 2007) on these same instances. We then compare the performance of our SSPH

algorithm against these baselines. In particular, we consider two variants of SSPH: one

variant in which the “quick-exit” logic described in §4 is utilized, and another in which the

algorithm is allowed to run to full convergence. In all SSPH runs, we define for each variable

x(a), a ∈ A, the PH parameter ρa = c(a); this particular choice was based on our prior

experience with variable-dependent ρ values (Watson et al., 2007). In all runs, ǫ = 0.01.

13

CPLEX Ruszczyński Greedy SSPH(Quick) SSPH(Full)

Instance Obj. T. Obj. T. Obj. T. Obj. T. Obj. T.

1 27264.1 58.5 27264.1 9.5 27454.4 0 27264.1 0 27264.1 3.5

2 26993.7 107 26993.7 9 26993.7 0 26993.7 0 26993.7 3

3 27318.6 29 27318.6 3 27473.9 0 27318.6 0 27318.6 3.5

4 28190.7 38 28190.7 4.5 28190.7 0 28255.2 0.5 28255.2 3

5 27461.2 66 27461.2 3.5 27461.2 0 27461.2 0 27461.2 2.5

6 28457.2 53 28457.2 1 28457.2 0 28457.2 0.5 28457.2 3

7 26313.3 54.5 26313.3 3.5 26377.9 0 26377.9 0.5 26313.3 3

8 26541.7 45.5 26541.7 1.5 26563.2 0 26563.2 0 26541.7 3

9 28547.1 42 28547.1 2.5 28547.1 0 28547.1 0 28547.1 3

10 28151.1 44 28151.1 6 28224.1 0 28224.1 0 28224.1 3

% Gap 0.0 0.0 0.185 0.081 0.049
Time 53.75 4.4 0 0.15 3.05

Table 1: Performance results for various scenario selection algorithms on 100-scenario net-
work flow problems. For each algorithm, the total cost (Obj. labeled columns) and run time
(T. labeled columns) are reported. Run-time units are minutes, rounded to the nearest half
minute increment. The final two rows record the average percentage above optimal solution
cost (row labeled “Gap”) and the average run-time (row labeled “Time”).

Upon termination, both variants of SSPH have identified a candidate set of scenarios,

as defined by the resulting ds variables. The ds are then fixed in Problem (NF), yielding a

straightforward linear program which is then solved using CPLEX. Finally, for an additional

baseline, we compare the performance of SSPH variants relative to that of a simple greedy

approach that selects the least expensive (1 − α)|S| scenarios, as described in §2. As with

SSPH, the obtained ds are then fixed in Problem (NF), and the resulting linear program

is solved via CPLEX. The times reported for the SSPH and greedy algorithms include all

overhead processing and final CPLEX linear program solve times. All execution times are

rounded to the nearest half minute increment. All experiments were executed on a 2.2GHz

AMD Athlon architecture running Linux, with 64GB of RAM.

We first consider the results for the 100-scenario instances, which are summarized in Ta-

ble 1. Consistent with the statements made in (Ruszczyński, 2002), Ruszczyński’s method

significantly outperforms CPLEX, obtaining optimal solutions in roughly an order of magni-

tude less time. This is despite the advances in CPLEX solver technology since (Ruszczyński,

2002) appeared. The baseline greedy scenario selection approach performs remarkably well,

achieving solutions on average only 0.185% above optimal in a few seconds of run-time; in

half of the instances, the greedy solution is optimal. This result is likely due to the sampling

14

CPLEX Ruszczyński Greedy SSPH(Quick) SSPH(Full)

Instance Obj. T. Obj. T. Obj. T. Obj. T. Obj. T.

1 27931.9 1440 27708.6 5600 27908.3 0 27908.3 1 27724.8 13

2 28560.6 1440 27434.1 3529 27739.3 0 27595.7 1 27512.5 13

3 30184.7 1440 27524 2240.5 27784.6 0 27742.7 1 27609.7 13.5

4 29082.9 1440 27955.8 2889.5 28111.3 0 28111.3 1 28019.6 15.5

5 28995.9 1440 27613.2 2358 27700.6 0 27700.6 3.5 27690.7 12.5

% Better 0.0 4.441 3.744 3.872 4.220
% Gap 4.72 0.0 0.73 0.60 0.22
Time 1440 3323 0 1.5 13.5

Table 2: Performance results for various scenario selection algorithms on 400-scenario net-
work flow problems. For each algorithm, the total cost (Obj. labeled columns) and run time
(T. labeled columns) are reported. Run-time units are minutes, rounded to the nearest half
minute increment. The final three rows record the average percentage quality improvement
over the CPLEX solution (row labeled “% Better”), the average percentage above optimal
solution cost (row labeled “Gap”), and the average run-time (row labeled “Time”).

procedure used to construct the problem instances; the ǫkl are sampled from a relatively

tight distribution, such that there is no significant overlap in demands Dkl(s) across sce-

narios s ∈ S. On average, SSPH with the quick exit strategy enabled yields improvements

over greedy scenario selection with only slight increases in run-time. SSPH with full con-

vergence requires relatively longer run-times, but they remain lower than those obtained by

Ruszczyński’s method; solutions were only 0.0488% above optimal on average, and optimal

solutions were identified in eight instances.

Overall, the heuristic scenario selection algorithms were able to obtain very high-quality

solutions in minimal run-times, relative to the extensive form solves via CPLEX. Clearly,

Ruszczyński’s exact method is the preferred algorithm for these particular small instances.

Rather, the results reported in Table 1 serve as a preliminary demonstration of the potential

effectiveness of SSPH.

Next, we consider the results for the 400-scenario instances, which are summarized in

Table 2. Here, we limited the run-time of CPLEX on each instance to 1440 minutes, i.e., 1

day. In no case did CPLEX prove optimality, and the optimality gaps at termination were

significant. Despite the apparent simplicity of the (NF) problem formulation, obtaining high-

quality solutions for moderate numbers of scenarios appears problematic. This is confirmed

by the results we obtained via Ruszczyński’s method; within the allocated 1440 minutes

of run-time, the method was only able to complete roughly 13-14 iterations on any given

15

problem instance, with some individual iterations requiring greater than half the allocated

time. In no case was the algorithm able to identify a solution within the time limit. We did

eventually allow runs of Ruszczyński’s method to complete, which required several days of

computation; the results are reported in Table 2. These extended-duration runs allow us to

obtain optimal solutions, which we use to assess the absolute performance of our heuristics.

In contrast, CPLEX was unable to identify optimal solutions on any instance given a week

of run-time.

Surprisingly, even greedy scenario selection obtains solutions over 3.7% better than those

achieved by CPLEX, in less than 10 seconds for all instances. SSPH with the quick exit

strategy yields slight improvements over greedy (to nearly 4% better than CPLEX) in rea-

sonable run-times (≈ 1.5 minutes on average). Executing SSPH to full convergence results in

further improvements, albeit at the expense of increased (but still reasonable) run-times. In

absolute terms, the SSPH algorithm with full convergence is able to locate very near-optimal

solutions in orders-of-magnitude less time than Ruszczyński’s method, and is able to locate

higher quality solutions than CPLEX, again in a fraction of the run-time.

Overall, both SSPH algorithm variants (quick-exit and full convergence) yield improve-

ments relative to the greedy algorithm, while still executing in reasonable run-times. In

contrast to both exact methods, SSPH is conclusively more scalable; even at 400 scenarios

on a 5-node instance, the exact methods are encountering serious performance issues.

5.1.2. An Extended Model With Arc Budgets

To further investigate the scalability of SSPH relative to the direct solution of the extensive

form via CPLEX, we consider a slightly more complicated version of Problem (NF). To

increase computational complexity, we add a per-scenario budget for the total number of

arcs that can be used in a solution. For each scenario s ∈ S and arc a ∈ A, we introduce

a binary variable b(a, s). In each scenario s ∈ S, an arc a ∈ A can be made active, subject

to a total budget on the number of active arcs B(s). Given the M constant defined in

Section 5.1.1, we add the following constraints to the (NF) problem formulation:

ykl(a, s) ≤M · b(a, s), ∀k, l ∈ V, ∀a ∈ A, ∀s ∈ S
∑

a∈A b(a, s) ≤ B(s), ∀s ∈ S

b(a, s) ∈ {0, 1}, ∀a ∈ A, ∀s ∈ S

16

CPLEX Greedy SSPH(Quick) SSPH(Full)

Instance Obj. T. Obj. T. Obj. T. Obj. T.

1 29209.9 1440 29250.4 32 29258.4 2 29209.9 18.5

2 29408.8 1440 29079.8 16 29079.8 5 29105.9 78

3 29541.3 1440 29748.1 165 29608.3 2 29372.8 222

4 32173.8 1440 30480 2 30480 2 30224.2 128.5

5 29819.6 1440 30604.4 270 29741 2 29741 8

6 30481.3 1440 30709 110 30709 6.5 30675.7 13.5

7 28311.4 1440 28448.5 2 28171.5 14 28171.5 34

8 28857.5 1440 28763.7 22.5 28637.4 2.5 28637.4 113.5

9 31121.3 1440 31121.3 76.5 30777.4 2.5 30777.4 11

10 30422.9 1440 30472.6 21 30422.9 1440 30436.5 17.5

% Better - 0.184 0.787 0.960
Time 1440 71.7 147.85 64.45

Table 3: Performance results for various scenario selection algorithms on 100-scenario budget
network flow problems. For each algorithm, the total cost (Obj. labeled columns) and
run-time (T. labeled columns) are reported. Run-time units are minutes, rounded to the
nearest half minute increment. The final two rows record the average objective percentage
improvement over the CPLEX solution (row labeled “% Better”) and the average run-time
(row labeled “Time”).

To maintain consistency with the arc symmetry budget described in §5.1.1, we additionally

impose a corresponding budget symmetry constraint, i.e., if a1 = (i, j) and a2 = (j, i) for

two arcs a1 and a2, then b(a1, s) = b(a2, s) must hold for all s ∈ S, i.e., “opening” an arc

for use in one direction opens the arc in the opposite direction. We denote the resulting

formulation by (BNF), which is an acronym for Budget Network Flow.

We mirror the experimental methodology described in §5.1.1 to generate random in-

stances of Problem (BNF). The B(s) for each problem instance and scenario s ∈ S are inde-

pendently sampled as follows: with probability 0.8, B(s) = 12; otherwise, B(s) = 10. Due to

the arc symmetry constraints, this sampling implies that either 5 or 6 of the total 7 (symmet-

ric) arcs may be activated. We again generate ten and five 100 and 400 scenario instances,

respectively. With the exceptions noted below, we replicate the experimental methodology

described in §5.1.1. In the case of Problem (BNF), our sole comparative baseline is CPLEX

for solving the extensive form. SSPH parameters are identical to those described for the

experiments presented in §5.1.1. Upon termination of both the greedy and SSPH heuris-

tics, the ds are appropriately fixed in Problem (BNF) and the corresponding mixed-integer

program is solved with CPLEX. Further, the CPLEX solve is warm-started by assigning

the second-stage b(a, s) variables to the heuristically obtained values; this assignment yields

17

moderate acceleration of CPLEX run-times. For 100-scenario instances, the resulting MIPs

solve in reasonable run-times to optimality. This is not the case for 400-scenario instances;

as a result, we terminate CPLEX once the first feasible incumbent is identified. All reported

greedy and SSPH run-times include the cost of this final MIP solve. In practice, the necessity

of this final solve could be mitigated by selecting a smaller value for the PH convergence

parameter ǫ.

First, we consider the results for the 100-scenario (BNF) instances, as reported in Table 3.

In contrast to the (NF) results, CPLEX is unable to identify optimal solutions within the

allocated run-time budget of 1440 minutes; at termination, the optimality gap is again signif-

icant (ranging from just under 2% to over 10%). We assess the performance of our heuristic

scenario selection algorithms relative to the CPLEX baseline. The greedy algorithm obtains

better solutions than CPLEX on average (a slight improvement of 0.184%), in substantially

less run-time (≈ 71 minutes), although CPLEX does outperform the greedy algorithm on

half of the instances. Nearly all of the run-time associated with the greedy algorithm is

attributable to the cost of solving the mixed-integer program resulting from the fixing of

the ds scenario selection variables. These models can be very difficult, in contrast to the

linear programs resulting from the fixing of the ds in the (NF) formulation. Further, there

is no possibility of “warm-starting” the fixed-ds CPLEX solve due to the lack of converged

x(a). SSPH with the quick exit strategy enabled yields further improvements in solution

quality (0.787% better than CPLEX). On average, we observe an increased run-time relative

to greedy, but this is due to the specific results for instance 10; for this instance, the initial

incumbent solution yielded an optimality gap of 0.02%, and CPLEX failed to prove opti-

mality within the 1440 minute time allocation. In general, SSPH (under both convergence

criteria) often counterintuitively requires less run-time than the greedy algorithm. This is

due to the ability of SSPH to warm-start MIP solves across PH iterations, as a solution to a

scenario s ∈ S obtained in PH iteration k remains feasible (but typically sub-optimal with

respect to cost) in PH iteration k + 1. Finally, the fully converged SSPH algorithm obtains

the best overall performance (a 0.96% improvement over CPLEX), in roughly an hour of

run-time on average.

Finally, we consider the results for the 400-scenario (BNF) instances, as reported in

Table 4. Relative to the results reported in Table 3, the run-times are proportionally lower

due to our limiting the run-time of the final MIP solve (using fixed ds values) in the 400-

scenario case. The results exhibit similar patterns to those obtained for the (NF) and 100-

18

CPLEX Greedy SSPH(Quick) SSPH(Full)

Instance Obj. T. Obj. T. Obj. T. Obj. T.

1 30422.9 1440 39030.2 5 31105 10 29708.6 94

2 45226 1440 38512.8 5 29822.3 9.5 29664.6 256

3 46081.8 1440 36528 5 31223.8 10 29742.8 201.5

4 74587.8 1440 40430 5 31127.6 9 29918.8 67.5

5 47891.5 1440 38372.8 5 29955.8 9.5 29893 243

% Better - 14.59 31.96 63.86
Time 1440 5 9.6 172.4

Table 4: Performance results for various scenario selection algorithms on 400-scenario budget
network flow problems. For each algorithm, the total cost (Obj. labeled columns) and run-
time (T. labeled columns) are reported. Run-times are reported in minutes, rounded to the
nearest half minute. The final two rows record the average objective percentage improvement
over the CPLEX solution (row labeled “% Better”) and the average run-time (row labeled
“Time”).

scenario (BNF) runs: (1) greedy outperforms the CPLEX solve of Problem (E) and is in turn

outperformed by both quick-exit and full-convergence SSPH and (2) improved performance

of the SSPH heuristic comes with the expected increase (relative to the greedy strategy) in

computational cost. The primary difference is the degree of improvement, which ranges from

a remarkable 14% to 64% in the case of 400-scenario (BNF) instances.

5.2. An Aircraft Sustainability Planning Model

Our work on scenario selection heuristics for stochastic programming was originally moti-

vated by a real-world application involving the allocation of spare parts and part repair-

related resources to a large aircraft maintenance operation. The objective in allowing a

certain proportion of infeasible scenarios in this application is to facilitate investigation into

the risk-reward trade-off: the maintenance contractor may accept a certain probability α

of failing to meet target performance criteria (e.g., the average percentage of time that air-

craft in the fleet are available to fly) in exchange for a reduced capital expenditure in the

deployment of the associated supply and repair chains. Monetary penalties are imposed if

performance targets are not achieved.

This aircraft sustainability problem can be formulated as a stochastic mixed-integer pro-

gram with the following characteristics. Given a cost vector c ≥ 0 of length n, a scenario set

S of size |S|, a scalar 0 < α ≤ 1, matrices A(s) ≥ 0 each of which is of dimension m by n,

and b(s) vectors each of length m for all s ∈ S, find a vector x of length n and vector d of

19

length |S| to:

minimize c · x (ASP)

subject to: A(s)x ≥ b(s)ds, ∀s ∈ S
∑

s∈S ds ≥ (1 − α)|S|

ds ∈ {0, 1}, ∀s ∈ S

x ∈ (Z+)n

In this formulation, which we denote (ASP), the A(s) and b(s) associated with a given

scenario s ∈ S represent constraints that model a discrete event simulation (see (Savage

et al., 2005)) of the sustainability operation, subject to a given realization of aircraft part

failures. We assume that the scenario realization probabilities ps are uniformly distributed.

The variables x encode inventory policy parameters, resource levels, and time-indexed state

tracking variables. The latter represent a dominant fraction of the total number of variables,

which reaches over a million for the largest instances we consider below. For any scenario

s ∈ S, the number of constraints reaches over a million, with the corresponding number of

non-zeros inA(s) reaching 10 million. Details of the (ASP) formulation, a scenario solver, and

an enhanced PH algorithm (for models without chance constraints) are described by Watson

et al. (2007). In particular, mechanisms for solving scenario subproblems heuristically, setting

and varying the PH parameter ρ, accelerating convergence, and economically terminating

PH are introduced.

Clearly, the defining characteristic of Problem (ASP) is its size, which allows us to inves-

tigate the run-time scalability of our scenario selection heuristics. On the other hand, the

scale and novelty of the formulation prevents us from obtaining a comparative performance

baseline; CPLEX requires tens of gigabytes of RAM to store the extensive form of our largest

problem instances, and solution of even the linear relaxation of Problem (ASP) can require

several days of run-time. The problem is representative of industrial scales, for which so-

lutions must be obtained despite the lack of a provably optimal comparative baseline. We

compare the following algorithms:

• Greedy: Solve all scenario subproblems independently, select the resulting (1 − α)|S|

lowest-cost scenarios (setting ds = 1 for the lowest-cost scenarios and ds = 0 otherwise),

20

and use PH (as described in §3.1) to solve the related stochastic mixed-integer program

consisting strictly of scenarios s ∈ S with ds = 1.

• SSPH: Use the SSPH algorithm described in §4 to simultaneously determine λ, a

scenario vector d, and a solution vector x. The “full” convergence form of SSPH is

used, due to the computational difficulty of the extensive form (E) even when d is

given.

• SSPH+: First, execute SSPH as above to obtain a d vector. Then, form a stochastic

mixed-integer program consisting strictly of scenarios s ∈ S where ds = 1. Finally, use

PH (as described in §3.1) to solve the resulting program.

In the case of Greedy and SSPH+, the PH algorithm without scenario selection is being

used in a “touch-up” role, analogous to our use of CPLEX in conjunction with scenario

selection heuristics as described in §5.1. As discussed above, the computational difficulty

and scale of Problem (ASP) prevents exact solution of the extensive form even when the

scenario selection constraint is relaxed. In contrast to our experiments with Problems (NF)

and (BNF), we do not use the quick-exit SSPH strategy; accelerator techniques designed to

exploit the general structure of Problem (ASP) mitigate the need for such a strategy. We

defer to Watson et al. (2007) for a detailed description of these techniques.

We execute each heuristic algorithm on each of three synthetic (ASP) test instances,

of varying size. For all trials, we arbitrarily use α = 0.2. The computational platform is

identical to that described above in §5.1. For each instance and algorithm combination, we

record the overall run-time and the cost of the best solution obtained. The time and cost

units are respectively minutes and USD. As previously noted, only a small fraction of the

variables in the x vector require blending by progressive hedging to enforce non-anticipativity;

the exact number ranges from 144 to 528 for the smallest and largest instances, respectively.

All instances consist of 30 scenarios, which is deemed sufficient by the end-user given multi-

year planning horizons and comparatively frequent aircraft part failures.

The obtained solution costs are reported in Table 5. The instances are characterized by

the first three columns of each row and the remaining columns record the solution costs for

each algorithm. For reference, we also provide two additional columns of results. The column

labeled “All d = 1” records the solution cost obtained by solving Problem (ASP) with α = 0

using PH. The column labeled “λ Search” records the solution cost obtained by embedding

21

n m |S| All d = 1 Greedy λ Search SSPH SSPH+
5M 4M 30 60,264,200 58,330,300 58,076,200 57,878,700 57,287,650

11M 8M 30 133,909,900 126,140,650 125,291,550 126,021,300 125,448,300
22M 16M 30 359,249,300 345,419,550 346,937,100 345,000,400 344,800,320

Table 5: Costs of solutions obtained using various scenario selection heuristics (see text), on
a range of aircraft sustainability planning problem instances. The n and m values respec-
tively represent the number of variables and constraints in the extensive form of the (ASP)
stochastic mixed-integer program.

n m |S| All d = 1 Greedy λ Search SSPH SSPH+
5M 4M 30 94 64 669 85 85+58

11M 8M 30 365 304 3949 377 377+386
22M 16M 30 3715 3470 28069 3356 3356+3287

Table 6: Algorithm run-times in minutes on a 2.2GHz AMD Athlon Linux workstation, for
the results reported in Table 5.

the PH algorithm for a given λ (as given in §3.2) in a binary search for an optimal λ. The

initial lower and upper bounds λl and λu are respectively given as (1) the minimum solution

cost for an individual scenario identified in PH iteration 0 and (2) the cost of the solution

obtained by taking an element-wise maximum of the xs vectors obtained for all scenarios in

PH iteration 0. The binary search is terminated once (λh − λl)/λl · 100 ≤ 0.01.

Necessarily, allowing infeasibility in a proportion α = 0.2 of scenarios yields significant

reductions in overall solution cost. While no clear “winner” exists among the scenario se-

lection heuristics, we observe that SSPH+ dominates SSPH, which in turn dominates the

greedy algorithm. SSPH dominates λ search on all but the medium-sized instance, while

λ search underperforms the greedy algorithm on the largest instance. Although we cannot

draw general conclusions given the small number of test instances, the preliminary evidence

suggests that SSPH and SSPH+ consistently provides high-quality solutions.

Next, we consider the relative run-times of the various algorithms, as reported in Table 6.

The computational difficulty of Problem (ASP) is illustrated by the absolute run-times for

the baseline PH algorithm with ds = 1 for all s ∈ S (§3.1). The key observation is that

SSPH requires no more time to compute solutions than the baseline PH algorithm, i.e., the

additional complexity associated with determination of the d vector does not translate into

increased computational costs. The run-time cost of the greedy algorithm is dominated by

the PH post-processing run; the analogous post-processing in SSPH+ acts to roughly double

22

the base SSPH run-time, with the benefit of lower-cost solutions. Finally, while PH-based λ

search (§3.2) can locate solutions competitive with SSPH and SSPH+, the run-time cost is

prohibitive; typically 10–15 outer loop iterations are required to achieve convergence.

6. Discussion and Conclusions

We have described computational procedures based on Lagrangian relaxation and scenario

decomposition to heuristically solve a wide ranging class of stochastic programs with chance

constraints where the random components of the problem are discretely distributed, with

or without integer variable constraints. Given their well-known difficulty even for small

instances, an effective and scalable method for such problems is an important addition to

the suite of tools available for optimization under uncertainty.

Computational experiments demonstrate the ability of the proposed heuristics to find

near-optimal solutions to small, yet very difficult laboratory test examples, in orders of mag-

nitude less run-time than exact algorithms. On larger instances of laboratory test examples,

the heuristics yield higher-quality solutions than commercial solvers, again in orders-of-

magnitude lower run-times. We also report tests on a very large real-world example, which

demonstrate that scenario selection analysis can be performed with modest additional com-

putational effort relative to solving the corresponding stochastic programs in which the

chance constraints are relaxed.

The use of chance constraints provides a modeler the opportunity to express the idea that

constraints need not be satisfied or costs minimized across every conceivable eventuality.

Efficient and scalable heuristics for scenario selection allow end-users to quickly explore

risk-reward trade-offs. Further, such heuristics may be effectively leveraged to significantly

accelerate exact algorithms, by providing initial near-optimal incumbents.

Acknowledgments

Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin

Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

The authors appreciate the detailed comments from the two anonymous reviewers, which

significantly improved the final presentation.

23

References

Ahmed, S., A. Shapiro. 2008. TUTORIALS in Operations Research, chap. Solving Chance-

Constrained Stochastic Programs via Sampling and Integer Programming. INFORMS.

Birge, J.R., F. Louveaux. 1997. Introduction to Stochastic Programming . Springer.

Ermoliev, Y., V. Norkin, R.J-B. Wets. 1995. The minimization of discontinuous functions

via averaged functions. SIAM Journal on Control and Optimization 33 149–167.

Holton, G.A. 2003. Value-at-Risk: Theory and Practice. Academic Press.

ILOG. 2007. ILOG CPLEX 10.1 solver engine. www.ilog.com/products/cplex.

Infanger, G. 1993. Monte Carlo (importance) sampling within a Benders decomposition

algorithm for stochastic linear programs. Annals of Operations Research 39 41–67.

Kall, P., S.W. Wallace. 1994. Stochastic Programming . John Wiley and Sons.

Luedtke, J., S. Ahmed. 2008. A sample approximation approach for optimization with

probabilistic constraints. SIAM Journal on Optimization 19 674–699.

Lulli, Guglielmo, Suvrajeet Sen. 2004. A branch-and-price algorithm for multistage stochastic

integer programming with application to stochastic batch-sizing problems. Management

Science 50 786–796.

Nemirovski, A., A. Shapiro. 2006. Convex approximations of chance constrained programs.

SIAM Journal on Optimization 17 969–996.

Prekopa, A. 2003. Handbooks in Operations Research and Management Science, Volume 10:

Stochastic Programming , chap. Probabilistic Programming. Elsevier.

Rockafellar, R.T., R.J-B. Wets. 1991. Scenarios and policy aggregation in optimization under

uncertainty. Mathematics of Operations Research 16 119–147.

Ruszczyński, A. 2002. Probabilistic programming with discrete distributions and precedence

constrained knapsack polyhedra. Mathematical Programming 93 195–215.

Salinetti, G. 1983. Approximations for chance-constrained programming problems. Stochas-

tics 10 157–179.

24

Savage, E.L., L.W. Schruben, E. Yucesan. 2005. On the generality of event-graph models.

INFORMS Journal on Computing 17 3–9.

Watson, J-P., D.L. Woodruff, D.R. Strip. 2007. Progressive hedging innovations for a stochas-

tic spare parts support enterprise problem. Tech. Rep. SAND-2007-3722J, Sandia National

Laboratories, Albuquerque, New Mexico.

25

