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Why is fracture a hard problem?

ssical continuum mechanics uses partial differential
But the partial derivatives do not exist along crack
discontinuities.

Special techniques of fracture mechanics are cumbe

Goal

op a model in which exactly the same equations hold
less of any discontinuities.
To do this, get rid of spatial derivatives.
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Basic idea of the
peridynamic theory
Computational Physics Department
• Equation of motion:

where  is a functional.
• A useful special case:

.

where  is any point in the reference configuration, and
 is a vector-valued function.

More concisely:

.

•  is the pairwise force
function. It contains all
constitutive information.

• It is convenient to assume that
 vanishes outside some

horizon .
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Microelastic materials

• Simplest class of constitutive models: microelastic:

♦ There exists a scalar-valued function , called the
micropotential, such that

♦ Interaction between particles is equivalent to an elastic
spring.

♦ The spring properties can depend on the reference
separation vector.

♦ Work done by external forces is stored in a
recoverable form
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Some useful material models
Computational Physics Department
• Microelastic
♦ Each pair of particles is connected by a spring.

• Linear microelastic
♦ The springs are all linear.

• Microviscoelastic
♦ Springs + dashpots

• Microelastic-plastic
♦ Springs have a yield point

• Ideal brittle microelastic: springs break at some
critical stretch ε.

Spring stretch

Spring
force

Yielded

Elastic

Failed

Yielded

Unload

ε

need to store
bond data!
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Dynamic fracture in a
PMMA plate

• Plate is stretched vertically.
• Code predicts stable-unstable transition.

*J. Fineberg & M. Marder, Physics Reports 313 (1999) 1-108

Calculated damage contours

Crack growth direction

Experiment*
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Dynamic fracture in a tough steel:
mode transition

Notches

Maraging steel plate

• Code predicts correct crack angles*.
• Crack velocity ~ 900 m/s.

*J. F. Kalthoff & S. Winkler, in Impact Loading and Dynamic Behavior of Materials, C. Y. Chiem, ed. (1988)
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Peridynamic fracture model
is “autonomous”

• Cracks grow when and where it is energetically
favorable for them to do so.

• Path, growth rate, arrest, branching, mutual
interaction are predicted by the constitutive model
and equation of motion (alone).

• No need for any
externally
supplied relation
controlling these
things.

• Any number of cracks
can occur and interact.

•
Interfaces between
materials have their
own bond properties.
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• Peak force occurs at about 0.4ms (end of drilling phase):1

1. Not all of the target is shown.

1.02 ms0.68 ms0.38 ms

2.05 ms1.70 ms1.36 ms

Example:
Perforation of thin ductile targets
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Example:
Composite material fracture

• Crack path, growth, and stability depend only on material properties.
• No need for separate laws governing crack growth.

Initial condition Weak interface

Weak matrix Weak fiber

DCB test on
a composite
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Dynamic fracture in a balloon
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Example:
Penetration into reinforced concrete

Pullout damage Exit debris

Damage on surface Exit crater
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Example:
Membrane fracture

• Elastic sheet is held fixed on 3 sides. Part of the 4th side is pulled
upward.

• Cracks interact with each other and eventually join up.

“Experiment”
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Examples:
Mechanics of fibers

• Fibers can interact through long-range (e.g. van der Waals) or contact. f

Self-shaping of a fiber due to interactions between different parts

Stretching of a network of fibers
(courtesy of Prof. F. Bobaru, University of Nebraska)
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into a 3.6m thick concrete block*

tion of full-scale experimental data in open literature (Sugano et a
ering and Design 140 373-385 (1993).



Numerical solution method
for dynamic problems
Computational Physics Department
• Theory lends itself to mesh-free numerical methods.
• No elements.
• Changing connectivity.

• Brute-force integration in space.

• Typical (macroscale) model:
♦ If long-range forces are important, could need

much larger .
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Parallelization

• Each processor is assigned a fixed rectangular region
of space.

♦ Regions are assigned so that each slice (in each
direction (x,y,z) contains an equal number of
nodes.

♦ Easy to implement.
♦ OK if the grid is more or less rectangular.
♦ Static.
♦ Some processors may do nothing!

Proc 0 Proc 1 Proc 2 Proc 3

Proc 4 Proc 5 Proc 6 Proc 7

Proc 8 Proc 9 Proc 10 Proc 11

Proc 12 Proc 13 Proc 14 Proc 15



Parallelization, ctd.
Computational Physics Department
• Material nodes can migrate between processors.

• Could improve load balancing by changing the region
owned by each processor as the calculation progresses.

Proc 0 Proc 1 Proc 2 Proc 3

Proc 4 Proc 5 Proc 6 Proc 7

Proc 8 Proc 9 Proc 10 Proc 11

Proc 12 Proc 13 Proc 14 Proc 15
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Parallelization, ctd.
Communication requirements
Computational Physics Department
• Exchange of data must take place for nodes within
of any other processor’s region.

• The cost of this depends strongly on !
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Parallelization, ctd.
Timings
Computational Physics Department
• Performance depends on material model used.

♦ Microelastic model requires only node data.
♦ Microplastic model requires bond data.

♦ For each interacting pair of nodes.
♦ Each node interacts with ~200 neighbors.
♦ Results in much heavier communication

requirements.

Cplant
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Parallelization, ctd.
Issue with current approach
Computational Physics Department
• In the limit of one node per processor, each processor
must communicate with a large number of others:

• Results in different limiting speedup properties
than for a typical hydrocode.

δ
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Parallelization, ctd.
Issue with current approach
Computational Physics Department
• In nanoscale modeling,  may be large because of
long-range forces.

♦ Greatly increases communication requirements.

δ
∆x
------
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Parallelization, ctd.
Discussion
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• What would an ideal architecture for this algorithm
look like?

• Shared memory seems near ideal.
♦ Avoids communication issues.
♦ Avoids need to assign fixed regions of space to each

processor.

• Multi-threaded architecture (MTA) may have big
advantages.

♦ Any processor can do any node without regard to
its location.

♦ No need to write MPI calls.
♦ No need for load balancing.
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MTA-2 Processor
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An example

Constant velocity motion
Load balancing as descri
previously does not work 
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Timing results from the example
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Conclusions
Computational Physics Department
• EMU, because it is based on integral equations,
performs differently from traditional codes.

• Each node interacts with many neighbors.
• This influences communication requirements on

distributed memory systems.
• Experience with EMU on the MTA-2:

• What is required by the programmer...
♦ Ensure loops are parallel -- period.
♦ Larger problems should scale to larger MTA.
♦ Shared scalars accessed by too many threads may

lead to “hot spots” that require mitigation.

• Evolution of EMU, e.g., to adaptive grid, is likely
to be straightforward on the MTA.
32 of 32/home/sasilli/emu/salishan1/
salishan1.frm
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