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Abstract many complex interactions that occur at the system level.
The long term goal of the effort is to build a scalable par-
Supercomputers are increasingly complex systems mergallel simulation capability that can be configured to provide
ing conventional microprocessors with system on a chip varying levels of fidelity for each of the system components.
level designs that provide the network interface and router. We anticipate simulations that range from near cycle accu-
At Sandia National Labs, we are developing a simulator racy for every system component to simulations that model
to explore the complex interactions that occur at the sys- one component in detail while substituting very high level
tem level. This paper presents an overview of the simula-models for all of the other components.
tion framework with a focus on the enhancements needed to
transform traditional simulation tools into a simulator ca-
pable of modeling system level hardware interactions and
running native software. Initial validation results demon-
strate simulated performance that matches the Cray Red
Storm system installed at Sandia. In addition, we include
a “what if” study of performance implications on the Red
Storm network interface.

We present an overview of the initial, serial version of
the simulation framework. It is derived from the Struc-
tural Simulation Toolkit (SST) [19], which is a hybrid
discrete-event/synchronous simulator that incorporates pro-
cessor simulation models from the SimpleScalar processor
simulation suite. Our first step toward system level simula-
tion is to enable high fidelity simulation of supercomputer
network interfaces. As observed in [17], traditional simula-
tors are poorly matched to system level simulation. Specifi-
] cally, accurately modeling network transactions and delays
1 Introduction between the host processor and a connected network inter-
face were particular challenges. Thus, we extended SST to
Modern supercomputers, such as the recent Red Stormaccommodate a model of the Red Storm network interface
machine (the first Cray XT3) and the IBM BlueGene/L (the Seastar 2.1). That model has been used as part of a
machine, are complex systems combining microprocessorgdwo node system simulation running native Red Storm sys-
with custom network interfaces and routers. In general, thetem software. We provide a discussion of the challenges
system levallesign of such machines is driven by intuition of building a high fidelity network model with a focus on
and supported bgomponent levedimulations. The system the changes to the general simulation framework that were
performance is vulnerable to interactions between compo-needed.
nents that are hard to predict. Furthermore, the performance

impact of minor changes on MP! performance is seldom ob- match Red Storm within 5% over most ranges of operation.

V'O_Ilfs todt;e de5|gnr<1ar.s until assysggml\r:atg beTT_bE”t: q IWe were also able to explore several “what if” scenarios.

10 address such Issues, sandia INalional Labs 1S devely,, example, what would happen to message throughput if
oping an open source, system level simulator to explore thethe clock rate of the network interface were doubled? If the
Sandia is a multiprogram laboratory operated by Sandia Corporation, alatency of the HyperTransport interface was reduced, would
Lockheed Martin Company, for the United States Department of En- jt help performance? These are system level questions that
ergy’s National Nuclear Security Administration under contract DE-AC04- would be difficult to simulate in a Verilog model: however
94AL85000. . . . ] '

by using system level simulations we can rapidly explore

1-4244-0910-1/07/$20.0@)2007 |EEE. such system level questions.

The simulated system performance has been validated to




2 Background and Related Work In general, most simulation efforts focus on a given piece
of the system with varying degrees of accuracy and pa-

A variety of simulators and simulation strategies are used fameterizability. As noted in [17], readily available simu-
in computer architecture, providing a range of features andlators tend to lack the ability to pull together high fidelity
functionality. At the lowest level, architectural simula- Simulations ofall system components into a single frame-
tors explore design issues on the processor or system leveWork. Our experience extending SST highlights the chal-
These simulators represent programs by execution-basedenges that are faced when using available tools to model a
trace-based, or stochastic mechanisms and vary in level ofUPercomputer accurately.
detail, configurability, and focus.

2.2 Models of Computation
2.1 Simulators
An important characteristic of a simulator is the under-

SimpleScalar [6] is a commonly used architectural simu- lying model of computation [12], which defines how time is
lation toolkit. It includes execution-based simulators, rang- advanced and how components interact. SST leverages both
ing from simple execution to cache simulation to full simu- asynchronousind adiscrete eventnodel. Synchronous, or
lation of an out-of-order processor and memory hierarchy time-stepped, models discretize time into fixed increments
(sim-outorder ). SST leverages SimpleScalar to pro- (cycles in the case of architectural simulators) at which all
vide a the processor simulation. Similarly, other simula- components are evaluated (e.g. SimpleScalar and PAR-
tors are derived from SimpleScalar and have extended itsSIM). SST provides a synchronous model to enable effi-
functionality. For example, the Simulator for Multithreaded cient implementation for those components that need near
Computer Architecture [9] (SIMCA) was developed to ex- cycle accuracy. A discrete event, or event-driven, model
plore multi-threaded architectures. generatesventdor each transition. Generally, event driven

Simics[13] and the Wisconsin Multifacet GEMS models are more efficient for components where events are
simulator[14] that extends it provide a flexible environment relatively infrequent when compared to the clock rate. SST
that addresses the needs of CMP and SMP simulation and@rovides a discrete event model for the system level com-
memory hierarchy design. GEMS also decouples the func-ponents that communicate less frequently than every cycle.
tional portion from the timing and microarchitectural sim- For example, a bus interface that has a 100 ns latency and
ulation to simplify timing design. In contrast, SST targets that is not used every cycle does not need to be evaluated at
issues in CMP, SMP, and MPP systems where a node is & 2 GHz rate.
heterogeneous collection of processors, memories, NICs,
and. routers. A; noted in [17], it is e>§tre.mel'y phallenging 3 Framework
to simulate detailed system level details in Simics.

Some simulators have been developed to enable spe- . ) . . .
cific functionality. For example, SimOS [8] and ML- Thg Structur_al Simulation .T00|klt (SST) is an architec-
RSIM [20] support the execution of an OS. Simulators such tural simulator implemented in about 45,000 lines of C++.

assimg4 [16], were developed to model a specific proces- IL is composded ol;]'fohur pr(ijmla;]y eIemen'ts (sfee Figure 1_):
sor (the PowerPC 7400) in detail. the Front Ends, which model the execution of a program;

the Back Ends which model architectural components of
the system; th@rocessor/Thread Interface which allows

the front and back ends to interact; aBdkidu [18], a
component-based discrete event and synchronous simula-
tion framework that coordinates communication between
back end components and models the passage of time. To
provide modularity and reconfigurability, it is possible to
select a front end and choose a variety of back end compo-
nents at run time. This allows the user to explore a variety
pAR- Of hardware configurations while using the execution model
K best suited to the available toolset.

The ASIM [7] performance model framework is com-
posed of a set of modules which can be composed to form
different architectures. A novel feature of ASIM is the
partial separation of the performance model for system
components from the program execution. Other modular
simulation efforts include the Liberty Simulation Environ-
ment [23], which has developed a number of modules in its
own LSS language, and Microlib which provides a number
of modules in SystemC [22].

The message PAssing computeR SlIMulator,
SIM [21] was developed to explore algorithms and networ
topologies for parallel computers. It models program exe-
cution as a generalized algorithm divided into computation 3-1 Front End
and communication. Processor speed and network charac-
teristics can be parameterized, but the internals of the pro- The front end generates instructions and threads to be
cessor are not modeled. processed by the back end. The front end also defines how
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the execution of these instructions changes the program- Numerous back end components have been developed,
mer visible state. In short, the front end simulates how but the subset used to model Red Storm includes:
the program executes from a software perspective — it ig-

nores hardware and timing details and just looks at how ® Conventional Processor an out-of-order, multi-issue

the state of its registers and memory is modified by the
instruction S.

The front end provides a loader to load the program into
the simulated memory. Once simulation begins, the front
end provides instruction and thread objects to the back end
(see Section 3.3). Most importantly, it determines how the
program state (usually memory and registers) are modified
by the instruction’s execution. Much like SimpleScalar’s [6]
ss.def orpowerpc.def files, or SPIM’s [11]run.c ,

processor based on SimpleScalaiis-outorder
It can use SimpleScalar's memory model or can con-
nect to a memory controller component.

Memory Controller: a memory controller model
which simulates bus contention, bandwidth con-
straints, latency, and DRAM interleaving.

DRAM : a model of a DRAM chip with a configurable
number of DRAM banks. The DRAM bank size and

width can be configured. Open page latency and con-
tention effects are modeled, and the number of open
rows per bank can be adjusted.

this usually involves a lookup of the instruction in a “big
case statement” to ascertain how state should be updated.
Currently, three front ends exist and can be selected at run-
time: PPC, PISA, and Trace.

Only the PPC front end is used in these experiments. It
is an execution-based front end which uses the PowerPC
ISA[15] and the MachO [2] executable format. Itincludes a
small subsétof the AltiVec vector extensions. The MachO
format is the standard format for MacOS X executables and
allows the use of binaries created by a number of modern
compilers. It has been tested with a variety of compilers.

e Simple Network: a simple network model connecting
NICs on different systems. Latency and bandwidth ef-
fects are modeled, but not topology.

3.3 Interface

The Processor /Thread interface is the key bridge
between the front end and back end. This interface defines
three abstract classegrocessor , thread , andin-
struction . A processor is a back end component
which can executénstruction s belonging to one or

The back end models the hardware of the system. It con-morethread s. Each front end definestaread class
sumes instructions and threads generated by the front en@ndinstruction  class.
and determines how long it would take for the hardware to
execute them. It ignores the specifics of what values are3-4 Hybrid simulation
written where and focuses on the timing details of which
components are accessed, how long memory transactions Modern processors often have dozens of instructions in
take, and other microarchitectural details. The back end isvarious stages of execution during each processor clock cy-
composed of many differefnkidu components that rep-  cle. Each of these instructions (potentially) moves to a new
resent physical components such as processors, networkstage on each cycle. As a result, several transition events
memory controllers, and DRAMs. Components can com- can be expected to occur each cycle. This tends to make

municate througlenkidu ’s discrete event system. synchronous simulation more efficient.
In contrast, parallel supercomputers add network inter-

faces and routers. Communications between chips as well

3.2 Back End

Lvx , stvx ,vspltw ,cmpequhl. ], andvand instructions
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Y+ E B As with most simulations, there were various compo-
= PowerPC 44 Z | Host nents to be modeled. While most of the hardware needed
Z+3 éf new models, we could leverage the PowerPC model from
- 5 & SimpleScalar for the processor implementation on both the

5 = host and the NIC. Similarly, the DRAM component on the
Tx Igli\gé\ host was a standard part of SST as was the SRAM compo-
nent, but both memory models had to be updated somewhat

— N

as discussed in Section 4.3. Finally, for these experiments,
Figure 2. Block diagram of Seastar NIC the network was modeled as a simple point-to-point net-
work using components from SST.

4.1.1 Bus Components

as communications within a network interface or router in- o .
At the core of the Seastar chip is a bus connecting all of the

volve the movement of large amounts of data per unit of :
9 P other components. It models both latency and contention ef-

logic. This would be extremely expensive to model in a fects f f the P PC and f the Opt
synchronous fashion. For example, a router only needs to ccts Tor accesses from the Fowert, and from the pteron

know when a packet transfer starts and when it stops, rathelghOSt)' tTtue Eﬁi(r:]ess;)r back enc: udseji an evr??r: mSe chz%[nlrsrrlw_r:o
than every transition of every flit. Simply tracking start and e?/((]e?\f?s roeute q t(?tﬁeat():ﬁgstisrﬁ; Ocoem Csr?e?n i vvehiciar?wg d.els €
end times has proven to be sufficiently accurate. g P '

latency and contention, and is then routed to the appropri-

To offer both efficient processor simulation and effi- ate component for additional delays before returning back

cient system simulation, the Structural Simulation Toolkit through the bus model to the processor back end.
(SST) is built aroundEnkidu , a hybrid simulation The HyperTransport (HT) connection was modeled as
framework. InEnkidu , component objects represent  two components: one to model latency and one to model
each physical component of the system. Each of thesepandwidth and contention. TheTLink (latency com-
component s is evaluated every clock cycle, allowing it ponent) introduces latency for access across HT based on
to advance its internal state. In additi@@mponent scan  whether the access is a read or write. Each side of the HT
communicate by passing event messages to each other in 8gonnection has aHTLink component that models time in
asynchronous manner. native cycles. ArHTLink _bw connects the host processor
to the Seastar with a model of bandwidth and contention.
Since the combination of the DMA accesses and processor
4 Modeling Red Storm accesses can request much more than the HyperTransport
bandwidth, theHTLink _bw tracks the backlog of requests.
The backlog of requests is incremented by arriving events
and decremented on each clock cycle based orbytes
per clockthat the HT can service. This is an example of
where discrete event simulation and synchronous simula-
ﬁon intersect for a more efficient and more accurate simu-
ation model.

Because the HT component models contention, it would
be possible for the backlog to grow arbitrarily long. Since
this would be an impractical scenario (even for simulation)
and the impacts on a broader network simulation would be
unrealistic, the HT component maintains flow-control with
The PowerPC processor runs a firmware image that im-requesters by having a finite depth request queue. As with

plements the Portals 3.3 API [4, 5]. Portals is an API that rea| hardware, this queue depth is set to cover round-trip
encapsulates MPI matching semantics and, thus, offloadsimes such that full bandwidth can be sustained.

most of the MPI work to the network interface. A detailed

descrlpthn and analysis of the S_eastar hardware_ and soft-4_1.2 DMA Engines

ware environment are presented in [3]. The most important

note from that work is that the Opteron and PowerPC com- The Seastar network interface also includes a robust DMA
municate through the SRAM on the Seastar. engine that is controlled by the PowerPC. While the detailed

Modeling a real system comes with many complications.
To facilitate a discussion of the issues, Figure 2 shows a
block diagram of the Seastar network interface [1]. There
are five major components of the Seastar that are connecte
by a single bus. These include a processor, a local SRAM,
transmit and receive DMA engines, and a HyperTransport
interface to the host processor. The entire NIC runs at 500
MHz and the HyperTransport link to the host runs at 800
MHz and is 16 bits wide in each direction.



complexities of the DMA engines are beyond the scope 0of 4.3 Modifying the Simulator
this paper, the implementation was designed to respond to

the same set of commands (e.g. bit patterns in a control  gsT relies heavily on SimpleScalar to provide an accu-
word) and to present the same interfaces as real hardwarégte model of a microprocessor. The infrastructure was built
Thus, the Red Storm firmware could run unmodified in the 5rqund the desire to add a variety of system level aspects
simulator and interact .correctly with these DMA engines. g SimpleScalar; however, it took for granted that the Sim-
Beyond the control interfaces, the DMA engines are also plescalar model was sufficient to model the processor. In
required to move data in the form of packets. On the trans- gttempting to model Red Storm, we have found that there

mit side, the DMA engine processes a command and makegyre a number of system level issues that could not be ad-
64 byte requests over a flow-controlled interface to Hyper- yressed in the current framework.

Transport with finite request buffer space. These requests
return timing information about when the request should
complete. Like the real hardware, all of these operations4-3-1 Memory and Addressing
are packet oriented.

On the receive side, the Seastar has a FIFO of arriving
packets. The DMA engine consumes up to 8 bytes per cy-

cle from the FIFO and allows the network to deliver up to 8 real systems tend to have numerous memory regions. For

?ytesbper CyCI?H That rgte [C)i/rl]Abe thr ottled by tthe TT |Qter(-j example, the Opteron model can see both its own cacheable
ace because e receive €ngineé competes for band-pp Anv and an uncacheable space of SRAM that is on the

width W'th b,o th the processor accesses a_md the transmitge astar and used to communicate between the Opteron and
DMA engine’s HT read requestsTracking this contention PowerPC. On the Seastar, the PowerPC can access local

and flow control is critical as it creates measurable, real SyS'SRAM, the Opterons DRAM (uncacheable), and numerous

tem effects. . ; .
. . physical registers through its address space. Not only do
One_ofthe nove_ltles of real system hardware is that readsthese various regions have different timing properties, but
and writes have side-effects. For example, a read from

. . athey can also have side effects. For example, writing to a
register may pop a value from a queue. The DMA engines DMA register starts a data transfer

have numerous such side-effects that must be tracked with™ _. .
SimpleScalar uses a split memory model that handles

correct timing. And, correspondingly, there must be a tim- . - .
) . T . data access independently from access timing. Thus, inde-
ing component that provides timing information back to the ;

pendent paths need to be implemented to support the model.
bus component for processor accesses. . . . X

This adds some complexity to the implementation. In ad-
dition, the instruction is “executed” in the dispatch stage
(early in the instructions life). This means that the mem-
ory resident state is changed long before the commit, which
is the part dependent on the timing parameters. This has
implications for correctness.

Supporting the various address ranges required handling
of both timing and data redirection. Timing redirection was
accomplished by adding a bus component that was the pro-
cessor’s timing point of contact. A registration function
for the bus allowed other components (such as the SRAM
or DMA engine) to indicate which ranges of memory they
were responsible for. The bus can then contact the appro-
priate units for timing information when a memory access is

is used with minimal modification. The small portions of made. Data redirection was accomplished by changing the

the host side code that normally run in protected mode arememory component that backs the actual data in the con-

pulled into the library. On the firmware side, TLB setup in- ven_t|0nal _S|mulator. By aIIqwmg the componen_ts t(.) also
i o . L register with the memory object, the memory object is able
structions were eliminated and cache manipulation instruc-

. Lo to forward the data accesses to the appropriate component.
tions (cache invalidates) were removed . . pp' P p
When multiple components interact, it becomes impor-
2HyperTransport connections are directional. Thus, a small read re- tant to implement correct memory timings and semantics.
quest goes over the same path as write data. Read data returns over Bne major issue is the need to separate cacheable and un-
different path. . .
3The firmware can work without them because the processor model C@Cheable address regions. In the real Seastar firmware, ac-

always pulls data from memory rather than storing the data in cache. cesses to register space must be uncached for correctness.

One of the biggest challenges associated with using the ex-
isting simulation framework was associated with the mem-
ory and addressing models. Rather than a single SRAM,

4.2 The Software Stack

Our goal in modeling Red Storm was to run the software
stack with as little modification as possible. On the host
processor, Sandia runs a lightweight kernel that provides
relatively bare access to the hardware [10]. Using the “ac-
celerated” mode of operation [3], the network stack is split
between a library in user space and firmware on the network
interface; thus, we lose very little in fidelity when working
without an OS. The small number of OS functions that are
typically needed in the production software stack (e.g. pro-
tection) are not needed in the simulated environment.

In the simulated environment, the production software




Register accesses have side effects and registers change in-  © ‘ ‘ ‘ PR ————_—
dependently of the PowerPC. Thus, a flag was added to s/ Fed Storm - Simuated
read timing requests to indicate to the processor back end .l
whether the access could be cached (and the line was not
inserted into the cache if the space was uncacheable).

In addition to the issues of cached versus uncached
space, the split memory model introduces an issue of timing
correctness. The host CPU and the Seastar CPU communi-
cate using polling of various memory regions. Because the nl
processor model directly changes memory early in an in-
struction’s life and then commits at a time based on the tim-
ing model, the other processor could “see” changes before 16 % o 128 2% 512 024
they should have actually happened. Rather than invasively Size ores)
modify the processor model, we chose to modify the mem-
ory component to delay writes based on timing. This issue
also appears in high latency reads to shared $péce it
has not been seen to cause a significant problem in practice.

Finally, because we desire minimal modifications from work functions for each component at a frequency derived
production software, we wanted a virtual memory capabil- from the primary simulation clock rate. We plan further
ity comparable to what exists with the real host processor.generalization to allow arbitrarily aligned clocks.

This allows us to map hardwired addresses appropriately

into the applications address speinethc_e same placehfat 5 Validation Against Red Storm

they would otherwise land. The modification occurs in the
simulators front-end, which remaps virtual addresses based
on address ranges.
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Figure 3. MPI ping-pong latency validation

To validate the simulation, we have compared results
from the simulator to measurements taken from Red Storm
hardware. These measurements come from both high level
4.3.2  Simulator Infrastructure network benchmarks and low level measurements from the

There are two issues associated with the simulator infras-irmware. The overall result indicates that the simulation

tructure that needed to be addressed as well. The origi-verx at;cu;a-\tilyq mold els the rgal syst;cem.h K lid
nal SST assumed a homogeneous load of one binary ontoh t ; | '% thevs,&/vgtuse tw;) en\‘;v ml;ir s to \'/til ate
some number of homogeneous processors. In a model ofhe model of the Re orm system. Webegan with mea-

a Red Storm node, we need to execute 2 unique binarieSurements of MPI ping-pong latency. Ping-pong latency is a
using different proc1essor models (PowerPC vs. Opteron),c0mmon network benchmark that helped to insure that basic

different memory layout, and different clock rate. The SST latencies are correct, A; Fjgure 3 illustrates, the MPI ping-
binary loader was modified to create multiple memory ob- pong latency matches within 5% between the simulated and
jects, each of which can be loaded with unique binaries. There"’:llvsgl‘c’temsMpl . | q

loader was also modified such that the location of text, stack le an ping-pong ater.‘CY measurement demon-
and heap could be specified on a per binary basis. The sgptrates thgt numerous system timings h_ave been_ mopieled
configuration scheme was modified such that the same comgorrectly, it can hide numerous other inaccuracies in a

ponent could be configured differently. This allows for ex- model _Of ab ne(tjwq(;khir;)terfar(]: €. kT Zus, Iwe 3"10 urs]edotrr:'e
ample different clock rates and memory layout for the con- streaming bandwidth benchmark developed by the Ohio

ventional processor component which is used to model bothState University, which is another standard benchmark for
the Opteron and PowerPC supercomputer networks. This benchmark posts 64 receives

SST also made the assumption that everything operatea0 n a target node and then streams 64 messages from the
on a single clock. It was possible to run a component at source nodg. The goal is tg measure peak streamlng band-
a different (synchronous) clock but it had to be coded into width at various message sizes; thus, a key part of this mea-

each component. In contrast, a Red Storm node has comsurement is the rate at which new messages are handled.
ponents in three r.najor clock d,omainS' an Opteron at 2GHz For this test to match between the simulation and the real

a PowerPC at 500MHz, and HyperTransport at 800MHz. system, most of the model has to be correct. The band-
Multiple clock support v;/as generalized by modifying the width between the host processor and the network interface

base simulation componeriinkidu , such that it calls the has to be accurate, or the peak bandwidth will be incor-
rect. The processors involved (both the host and the one

4A read could get “old” data on the NIC) have to be relatively accurate, or the messages
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Table 1. Individual routine timings

Routine Simulated  Actual instruction set implementation does not include cache line
handlecommand PUT 0486 us 0592us Invalidate instructions. Thus, a region of the memory on
tx_complete() USER message 0.196us 0.154us the NICthatis used to communicate with the host is treated
rx_message() - ACK 0959us 1.002us as always cached rather than being cached but mvghda}ted
rx_complete() - ACK 0127us 0242us Whenanew command arrives. The message rate limiting

point appears to be the extra timerin_message . We are

handlecommand POST 0.477us 0.442us - S o
USER 1936 1686 still investigating the cause of this discrepancy, but the accu-

:x,mess?g:e() -ACK message 5 11'4 us 5 11.8 us racy of the remaining routines gives us sufficient confidence

x-complete() - : us - US " in the model accuracy to move forward with evaluations.

rx_.complete() - USER message  0.230us  0.378 us

6 Results

will be handled too quickly. Similarly, most timings on the One of the surprising factors experienced with the
NIC have to be correct, or the messages will be handled tooSeastar was a much higher effective HyperTransport (HT)
quickly or too slowly. Figure 4 indicates that the message latency than expected. To explore the impacts of HT latency
processing rate and peak bandwidths match within 5% overon the MPI latency, we ran simulations with the HT latency
alarge range of message sizes. The graph includes measurset to% and2x the measured value. In Figure 5, we can
ments from a Red Storm system with Seastar 1.2 networksee that MPI latency is linearly related to the change in HT
interface chips along with simulations of the Seastar 1.2.latency. The one notable point is that the change in MPI
It also includes a prediction of the performance of Seastarlatency is4x the change in HT latency; however, this is
2.1 chips (being installed now) based on low level measure-not surprising, since two HT writes and one HT read are in-
ments from the Seastar volved in an end to end transaction (push a command to the
The only major discrepancy in Figure 4 is for messages Seastar, a DMA read of the data, and pushing a result to the
of 16 bytes or less. In this range, the simulated perfor- host — the Seastar does not use a programmed-1/O mech-
mance deviates from the real performance by approximatelyanism for short messages). Also of note is that the change
12%. Messages of this size are handled slightly differently in HT latency had no impact at all on streaming bandwidth
in the Red Storm system; thus, they exercise slightly differ- (not shown).
ent paths in the simulator. To further investigate where any  Like HT latency, the HT bandwidth was lower than ini-
discrepancies arise, we instrumented the firmware on bothtially hoped. In Figure 6, we present the results from vary-
production hardware and simulated hardware and show theng HT bandwidth frorr% to 2x the measured value. Since
results in Table 1. The first four lines are send side oper-HT bandwidth did not impact MPI latency, we only show
ations while the last four lines are receive side operations.the results from streaming bandwidth. The change in the
The biggest discrepancy between real and simulated hardHT bandwidth yields the expected changepgakstream-
ware is thehandle _.command PUT. This arises from a  ing bandwidth, but does not change bandwidth at smaller
known issue in the simulation: the SimpleScalar PowerPC message sizes at all.
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Figure 7. Impact of changing NIC bus latency
on (a) latency and (b) streaming bandwidth
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Figure 8. Impact of changing clock frequen-
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The latency of accesses on the bus in the Seastar chip
were also somewhat higher than originally predicted. The
bus latency affects the performance of every processing
operation performed by the PowerPC. It takes longer to
read status registers, longer to access the local SRAM, and
longer to write commands. Figure 7(a) indicates that an
8% latency reduction can be achieved by halving the bus
latency; however, further improvements in bus latency have
minimal impacts as other points become the bottleneck.

Halving the Seastar bus latency increased small message
throughput, which increased streaming bandwidth by ap-
proximately 15% as seen in Figure 7(b). Only small mes-
sages are shown so that the effect can be seen, but the ad-
vantages persist all the way to 2 KB messages. Beyond that,
bandwidth effects dominate the time. As with the latency,
the improvements from further improving bus latency are
minimal.

Another potential impact on performance comes from
the clock frequency of the Seastar chip. Because the Seastar
chip (NIC) is a standard cell design, it only runs at 500



MHz; however, it is clear that it is possible to do designs
on a 130 nm process at 1 GHz or even 2 GHz. Figure 8
compares the impacts of changing various clock rates in
the system. We get large advantages (30%) in latency for
a 1GHz clock on the Seastar NIC and an additional 20% for
increasing that to 2 GHz. Streaming bandwidth, however, is
a different story. While we see an enormous 45% improve-
ment in streaming bandwidth for a 1 GHz NIC clock, the
increase to a 2 GHz NIC clock yields almost nothing as the
host side processing becomes the bottleneck.

Unlike changing the NIC clock, changing just the host
clock has virtually no impact. This is because most of the
processing happens on the NIC and the NIC is a significant
bottleneck with a 500 MHz clock (as seen by the impacts
of changing the NIC clock). While the latency results for
changing the host clock in Figure 8(a) look slightly odd,
they correlate to our experience on the real system. There is
a quantization of time changes caused by the main polling
loop in the firmware. Thus, making some parts of the sys-
tem slightly faster can make the MPI latency result worse.

The final comparison, shown in Figure 9, considers two
combinations of enhancements. The host processor perfor-
mance is held constant. For the “Enhancement” line, the
HT latency is reduced in half, the Seastar bus latency is re-
duced in half, and the Seastar clock rate is increased by a
factor of two. With a slightly more aggressive design point,
each of these should be achievable. This combination of
improvements would yield a 45% improvement in latency
and a comparable improvement in streaming bandwidth.

The “Aggressive Enhancement” line doubles HT band-
width, quarters HT latency, quarters the bus latency, and
increases the Seastar clock rate by a factor of four. While
it yields another 30% improvement in MPI latency, it is an
extremely aggressive design point. Streaming bandwidth is
still constrained at smaller message sizes by MPI process-
ing. After 2 KB, it starts to see an advantage from the extra
HT bandwidth provided.

7 Conclusions

This paper has presented an overview of an initial ver-
sion of a system simulation framework. The framework
had to undergo numerous adaptations to allow us to accu-
rately simulate a pair of Red Storm nodes. These changes
highlight the challenges of accurately simulating production
hardware in traditional simulation environments. However,
they also illustrate that it is possible to build an environment
that is capable of running virtually unmodified production
software in a simulated system. This will become an impor-
tant capability in the long run as systems become increas-
ingly more complex.

We also present a study using the modified simulator.
Beginning with a validated model of the Red Storm node,
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Figure 9. Impact of enhanced network inter-
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we demonstrate that relatively minor changes to the perfor-
mance of the network interface (Seastar) could yield signif-

icant improvements in network performance. Most notably,

a small reduction in bus latency could have a 15% impact
on streaming bandwidth. At the extreme end, increasing the
Seastar clock rate byx could yield an impressive reduc-

(8]

9]

tion in latency by 40% and increase in streaming bandwidth [10]

by 45

8 Future Work

(11]

The changes to SST to facilitate modeling of Red Storm [12]

were performed in a branch of the tree to quickly demon-
strate feasibility before implementing the concepts in the
primary tree. As such, now that the model is “close enough”
we have begun porting the changes into the primary tree —

(13]

incorporating things we have learned along the way. There [14]

are still some aspects of the simulation environment that
add inaccuracies to the system model that we intend to fix
during the port. Primary among these is the lack of cache
manipulation instructions in the PowerPC model. A lesser

issue is the inability to model clocks that are not multiples [15]

of the primary simulation clock. In addition, the timing of

the data access on memory reads in the SimpleScalar model®]

raises concerns, although it has not been a problem in prac-
tice. We intend to address all of these issues as the change
are implemented in the primary version of the tree. Finally,
we are in the process of releasing the simulator with an open
source license.

f17)

[18]
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