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Abstract

The sensor placement problem (SPP) in contaminant warnistgs (CWS) design for water distribution
networks involves maximizing the level of protection afdrby a limited number of sensors. In existing
SPP formulations, the protection level is typically quied as either the expected impact of a contami-
nation event, weighted by occurrence probability, or thepartion of events that are detectable. In these
formulations, the issue of how to mitigate against potéigtiaigh-impact events is either handled implic-
itly or ignored entirely. Consequently, any solutions aégl formulations run the serious risk of failing
to protect against any number of high-impact, 9/11-stytackis. This risk is further amplified by the fact
that reliable estimation of contamination event probdlgl is extremely difficult, such that existing SPP
formulations may significantly discount the potential @tiimpact events. In contrast, robust formulations
of the SPP directly address these concerns by focusinglgtdn a subset of high-impact contamination
events, and placing sensors to minimize the impact of siatsyv

We introduce several robust formulations of the SPP thatdisénguished by how they quantify the
potential damage due to high-impact contamination eventsese include minimization of the worst-case
impact, the Value at Risk (VaR), and the Tail-Conditiongb&otation (TCE). The worst-case formulation is
equivalent to the p-center problem in facility locationang VaR and TCE are standard measures of ro-
bustness in the financial literature; the correspondingustitformulations of the SPP respectively minimize
the (1«)% largest impact and a weighted sum of t# largest impacts. All formulations can be expressed
as Mixed-Integer Programs (MIPs), which can be solved ubioitn commercial MIP solvers and special-
ized heuristics. Additionally, we develop computationathmds for exploring the performance trade-offs
between robust and expectation-based SPP formulationsisé/his framework to explore the nature of ro-
bust versus expectation-based solutions to the SPP onraeevorld water distribution networks, ranging
in size from 400 to over 10,000 junctions.

We observe that robust SPP formulations are one or more srdemagnitude more difficult to solve
than expectation-based SPPs. Our results indicate thaplsirheuristics yield optimal solutions to the
smaller test problems in shorter run-times than MIP solyarsd yield higher-quality solutions for larger
test problems. For realistic sensor budgets, solutions Vaitv expected impact fail to protect against large
numbers of high-impact contamination events (with impa¢03imes larger than the expectation). In
contrast, we show that solutions to robust SPPs yield 1Q:2frer and magnitude of high-impact events.
In general, our results indicate that it is possible to tramfé mean impact versus high impact performance



in real-world water distribution networks, exposing a kepexplored dimension in the design of sensor
placements for CWSs. Further analysis indicates that timopeance of solutions to the worst-case, VaR,
and TCE formulations is strongly correlated. Consequeritlynay be possible in the future to restrict
focus to the worst-case robust SPP formulation, which isiB@antly easier to solve than the VaR and TCE
variants.
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1 Introduction

Algorithmic methods for placing sensors to support theglresif Contaminant Warning Systems (CWSs)
for municipal water distribution networks have receivegndicant attention from researchers and practi-
tioners over the last five to ten years (Kessler et al., 1998fe@ and Salomons, 2004; Berry et al., 2005a,
2006b). Without exception, these algorithms attempt teegininimize the expected impact of a contamina-
tion event or maximize the proportion of contamination désehat are ultimately detected, independent of
impact. Recently, Watson et al. (2004) showed that the twadations are in fact identical, as the second
formulation can be expressed in terms of the first. In the g@abformulation, contamination event proba-
bilities are either assumed to be uniform, or are estima&seédbon factors such as the difficulty of accessing
a particular component of a distribution network. Given adar range of contamination scenarios, sensor
placement algorithms attempt to minimize the probabilgighted sum of contamination event impact, i.e.,
the expected impact. The most advanced algorithms cuyrawgiilable can successfully generate provably
optimal sensor placements to very large (e.g., 10,000+ipmcdistribution networks for very large num-
bers (e.g., 50,000+ ) of possible scenarios, in minutes tioshaf CPU time on a modern workstation (Berry
et al., 2006b). Consequently, the basic sensor placemeblgpn for CWS design is effectively solved for
most practical networks, and the research emphasis hasirtaward integration of more realistic modeling
assumptions such as imperfect sensors (Berry et al., 2066tgllation cost and accessibility considerations
(Berry et al., 2005b), and significantly larger numbers afgdlole contamination scenarios.

One currently unexplored and potentially key aspect of #resasr placement optimization problem in-
volves formulations in which the design objective is not imiization of the expected impact, but rather
minimization of worst-case impact or other “robust” measuthat focus strictly on high-consequence con-
tamination events. The lack of research into these altgem&irmulations is perhaps counterintuitive in
a post-9/11 environment, although it is worth noting tha th§ Environmental Protection Agency (EPA)
has no specific tasking to investigate CWS security meashaesitigate strictly against the highest-impact
contamination events. However, in our working experienith various US water municipalities, a common
reaction when discussing expectation-based formulatdtise sensor placement optimization problem is
“Why not only concentrate on high-impact contaminationrgés@”. From a practical standpoint, even opti-
mal expectation-based solutions can permit numerousimghact contamination events (e.g., as discussed
below in Section 2). Further, accurate estimation of eveababilities is notoriously difficult, allowing
for optimistic de-emphasis of high-impact events. Althlotdle final determination of the design objective
ultimately rests with policy-makers at various levels, #fierementioned factors strongly suggest that, at a
minimum, there is a need to understand the differences leatard implications of both expectation-based
and robust sensor placements.

In this paper, we introduce a number of robust impact measafreensor placement performance, draw-
ing heavily from existing literature on robust optimizatitrom the financial community. Using both exact
mixed-integer programming methods and heuristic alteresit we identify optimal and presumed-optimal



sensor placements that minimize these robust impact mesasuarthree real-world water distribution net-
works. We find that, as anticipated, sensor placements timtnime the expected impact admit — without
exception — a non-trivial number of very high-impact conigation events. These high-impact events can
be mitigated with robust sensor placements, e.g., we obdbat significant reductions in the worst-case
impact are possible. These reductions come at the necesgqagyse of an increase in the mean impact of a
contamination event. However, the degree to which trafleawé possible is significantly larger than antici-
pated, to the point where the performance discrepanciesodaege that it is likely to impact the higher-level
CWS design process. This analysis is not without cost, asstaensor placements are significantly more
difficult to compute than their expected-case counterpaBigecifically, mixed-integer programming for-
mulations can fail to converge on robust formulations eviéer alays of CPU time. Fortunately, heuristic
methods can yield high-quality solutions in hours or les€BU time, although we are currently unable
to establish optimality in all instances. Finally, diffaterobust measures appear highly correlated, such
that minimization of one measure provides optimal or ngdinmal solutions with respect to other robust
measures.

The remainder of this paper is organized as follows. We bigg#ection 2 with a motivating example
to concretely and in detail illustrate differences in tharetteristics of sensor placements that are optimal
with respect to expectation-based and worst-case perfarenaVarious robust impact measures are then
introduced in Section 3. Section 4 details the test netwarkietamination event scenarios, and problem
formulation that we use in the analysis discussed in Se&jdhe latter details qualitative and quantitative
differences between optimal expectation-based and raanstor placements. We defer discussion of the
specific algorithms used in this analysis to Section 6, whlsh addresses the computational difficulty of ro-
bust sensor placement formulations. Finally, we concladgaction 7 with a discussion of the implications
of our results.

2 Motivating Example

To concretely illustrate the issues involving relativedgaffs between expected-case and robust sensor
placement, we begin with an example from a real-world digtion network. The network is simply de-
noted Network2; this and other test networks are describetbfail subsequently in Section 4. Using the
experimental methodology (Section 4) and algorithms (Sed) presented below, we determine sensor
placements for Network2 — given a budget of 20 sensors — #@sgiectively minimize the expected-case
and worst-case impact of a contamination event. The prefEsals of the contamination scenarios are
documented in Section 4; impact is quantified as the numbgeaple sickened by a contamination event.

Histograms of the impact of a range of contamination eventhis case, injections at each junction with
non-zero demand, for a total of 1,621 events) given the @taxpected-case and worst-case sensor place-
ments are shown in Figure 1. We first consider the distributibimpacts given an optimal expected-case
sensor placement, as shown in the left side of Figure 1. Ttaraled worst-case impacts of a contamination
event given this sensor placement are 685 and 4,902, rasgectThe distribution exhibits a key feature
of sensor placements that minimize the expected-case: rédsemce of non-trivial numbers of events that
yield impacts up to nearly ten times greater than that of teamm Specifically, eight contamination events
yield impacts greater than 4,000 individuals sickenedJevan additional six contamination events yields
impacts between 3,500 and 4,000 individuals sickened.

Next, we consider the distribution of impacts given a sempdacement that minimizes the worst-case
impact of a contamination event, as shown in the right sidéigifire 1. In contrasting the two distributions,
we immediately observe a significant reduction in the dgnsiitvery high-impact contamination events.
In particular, the highest-impact event sickens 3,490viddals, in contrast to 4,902 individuals under the
optimal expected-case sensor placement; clearly, all 4eohighest-impact events in the expected-case
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Figure 1: Histograms of the (quantity of) population siok@rior various contamination events under opti-
mal expected-case (left figure) and worst-case (right figegasor placements.

scenario are mitigated by a sensor placement that mininiees/orst case. However, as is expected, the
reduction of high-impact events increases the number ofldmienoderate impact events. The worst-case
sensor placement yields a mean impact of 882 individualkesid, representing a 29% increase relative
to the expected-case sensor placement. Even more dramatithgs observed in the upper quartile im-
pact, from 1,011 under the expected-case sensor placemgdids under the worst-case sensor placement
(representing a 43% increase). The question for decisiakens in water security management is then: Is
a large (in this case 29%) reduction in the worst-case imwadth the corresponding increase in the mean
and moderate case?

Both adversarial and engineering factors dictate the anwwhis question. Although very high-impact
contamination events typically represent a small fractibrihe total number of possible contamination
events, they are nat priori any more difficult to realize. For example, backflow injensocan be car-
ried out with roughly equiprobable success at any node ipigay network. Further, contamination event
probabilities are notoriously difficult to accurately qtiy) due to a variety of estimates that must be made
with respect to adversarial intent, capability, and levidiaoget vulnerability. Reliance on estimated event
probabilities is therefore not without potentially sigoé#it risk; de-emphasis of high-impact injections with
perceived low probability of occurrence may cause sensdoe placed in regions of the network that allow
many worst- or near-worst-case events to proceed unnatigafinally, adversarial characteristics have a
significant impact on the design and assessment of a seraanpént. Intelligent and informed adversaries
are likely to identify and initiate those injection evertatyield the highest-consequence impacts. Although
some measures can be taken to mitigate intelligent advessarg., security classification of network struc-
ture and flow characteristics so that impacts cannot be giegtjithey do not guarantee protection; insiders
will always remain a threat, and trained engineers may be t@binfer such characteristics from external
observation with sufficient accuracy. Consequently, @nafi alternative to estimating contamination event
probabilities is to simply assume an omniscient adversad/facus on protecting against the worst-case
scenarios.



3 Quantifying Solution Robustness

Informally, “robust” optimization methods focus on gerterg solutions that minimize down-side risk. The
majority of early research on robust optimization origathin the financial academic community. Clearly,
guantification of solution robustness is a key componenngfrabust optimization method. Two primary
measures of solution robustness can be found in the bodyaridial literature: Value-at-RiskvV&R) and
Conditional Value-at-Risk@VaR. Given a set of potential scenarios and their associatsis ¢e.g., impact

to the population in the context of sensor placemevitRis defined as the cost of tHe— o most costly
scenario (Holton, 2003). Typicallyy is taken a€).05, such that minimization o¥aR effectively allows

an optimization algorithm to ignore any costs associatetth tie topa fraction of scenariosVaRis an
international standard for risk quantification in the bawgkcommunity, and has seen widespread applica-
tion in related contexts. In contrast Y@R CVaRquantifies the total cost of the most costly scenarios
(Artzner et al., 1999); againy is typically taken a$).05. Consequently, algorithms that minimigd/aR
must make decisions in order to reduce thenost “tail mass” of the cost distributionCVaRis closely
related the concept of Tail-Conditional ExpectatidiCE), which quantifies the cost expectation over the
most costly scenarios. In the case of continuous cost ldigiohs, CVaR = TCE In the case of discrete
cost distributionsCVaRis a continuous approximation to the true cost distribytgarch thalfCE < CVaR
Finally, we additionally consider perhaps the most inteitneasure of down-side risk, that of the worst case
cost, which we denote simply &gorst Overall, we observe that these four risk or robustness messre
related through the following inequalit¥/aR < CVaR< TCE < Worst

4 Test Networks and Problem Formulation

We now describe the test networks (Section 4.1), experahenéthodology (Section 4.1), and problem
formulations (Section 4.2) used to support the motivatimglysis presented previously in Section 2 and the
more comprehensive analysis presented subsequently tioiS6c

4.1 Networksand Contamination Scenarios

We report computational results for three real, largeesoalinicipal water distribution networks. The net-
works are denoted simply as Networkl, Network2, and Net®otlie identities of the corresponding mu-
nicipalities are withheld due to security concerns. Nek#aronsists of roughly 400 junctions, 500 pipes,
and a small number of tanks and reservoirs. Network2 cansfaioughly 3000 junctions, 4000 pipes, and
roughly 50 tanks and reservoirs. Network3 consists of rouyR000 junctions, 14000 pipes, and a handful
of reservoirs; there are no tanks or well sources in this oipality. All of the models are skeletonized,
although the degree of skeletonization in Networkl and Met@is much greater than in Network3.

Graphical representations of Networkl, Network2, and et® are respectively shown in the upper
left, upper right, and lower portion of Figure 2. Each figurasaproduced by manually “morphing” or
altering (e.g., through pipe lengthening or coordinatedia@ion/rotation) key topological features of the
original network structure to further inhibit identificati of the source municipality. Local topologies were
largely preserved in this process, such that the graphittgitly capture the overall characteristics of the
underlying network structures. Sanitized versions oftakté networks, in the form of EPANET input files,
are available from the authors. While these files containawdinate information, all data other than that
relating to labels (which have been anonymized) are urte€onsequently, all computed hydraulic and
water quality information accurately reflect (within thedidly limits of the data and the computational
model) the dynamics of the source municipality. Our goalmaking these files available to the broader
research community are to facilitate independent repdinabf our results and to introduce larger, more
realistic networks into the currently limited suite of dasie test problems.
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Figure 2: Graphical depiction of Networkl (upper left), Wetk2 (upper right), and Network3 (lower)
topologies. See text for details.

Network hydraulics are simulated over a 96 hour duratiopregenting multiple iterations of a typical
daily demand cycle. For each junction with non-zero demargingle contamination scenario is defined.
Each scenario starts at time= 0 and continues for a duration of 12 hours. Scenarios are raddss
biological mass injections with a constant raté a8e-+10 organisms per minute. We note that fhenedian
formulation, via thed,;, allows for the use of arbitrarily complex contaminatioresarios, e.g., multiple
simultaneous injection sites with different contaminaattsariable injection strengths and durations.

We assume uniform scenario probabilities, such that allteare normalized by the number of non-zero
demand junctions to obtain an expectation. Water qualitykitions are performed for each scenario, with
a time-step resolution df minutes. The resulting,; are then used to compute the impact parameigrs

for the various design objectives All hydraulic and watealgy simulations are performed using EPANET
(Rossman, 1999).

4.2 Formulation

To determine an optimal sensor placem&rand the corresponding minimal we formulate the-median
problem as a mixed-integer (linear) program (MIP), whichtiwen solve using a commercially available
MIP solver. The MIP-related terms used throughout this pape defined in thdlathematical Program-
ming GlossaryGreenberg, 2006). A MIP formulation of themedian problem is given as follows:
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The binaryy; variables determine whether a sensor is placed at a junctiogd. Linearization of Equation 1

is achieved through the introduction of auxiliary varialg;, which indicate whether a sensor placed at
junction j is the first to detect scenario Constraint 3 ensures that detection is possible only ifrse
exists at junctiory. Thez,; variables are implicitly binary due to a combination of iing;, Constraint 3,
and the objective function pressure induced by Equationohs@aint 2 guarantees that each scenadaS

is first detected by exactly one sensor, eitheg at in the set’; ties are broken arbitrarily. Finally, the
objective function (Equation 1) ensures that detectionsafemarios is assigned to the junctione LU {q}
such thatd; is minimal.

The impact of a potential contamination scenario is deteechivia transport simulation. Specifically,
EPANET (Rossman, 1999) is used to generate a time-sefied contaminant concentration at each junc-
tion j € L for each scenarie € S. The resulting time-series are then used to compute theonletwide
impactd,; of the scenaria assuming first detection via a sensor placed at jungtioklore formally, let
7s; denote the earliest timeat which a sensor at junctighcan detect contaminant due to scenatie.g.,
when contaminant concentration reaches a specific datattieshold. If contaminant from scenacidails
to reach junctiony, then~,; = t*, wheret* denotes either the end of the simulation or an appropriate
user-specified delay; otherwisg,; can easily be computed from;. Next, we definely; = ds(vs;), i.e.,
the aggregate, network-wide damage incurred if scenarfirst detected at timg,;. In our analysis,
dsq = ds(t*). We assume without loss of generality that a sensor placeduatiction;j € £ is capable
of immediately detecting any scenaros S at j once non-zero concentration levels of a contaminant are
present. Finally, in the absence of realistic alarm procesland mitigation strategies, we assume that both
consumption and propagation of contaminant is terminatee detection occurs.

Population Exposedp€): This objective quantifies the number of peoplekenedby exposure to the
injected contaminant, as defined by the demand-based medetilded in Murray et al. (2006). Specific
values for the numerous parameters in the dosage-respongmitation can be obtained from the authors.
Alternative models of population exposure have assumedvhiability of population estimates on a per-
junction basis (Berry et al., 2005a; Watson et al., 2004)il8\dorrecting the obvious deficiency of demand-
based models, reliable estimates of population densitgemerally unavailable.

5 Expectation versus Robust Sensor Placements

We now examine the differences between expectation-basgdadust sensor placement performance in
detail. The analysis is broken into two components. Spedlificwe expand the analysis presented in
Section 2 to robustness measures other Warst in addition to Networkl and Network3.

For each of our test networks, we use the heuristic algoriflestribed below in Section 6 to develop
disparate sensor placements that attempt to minimizeNdettmand the various robust performance metrics.
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Performance Metric
Objective to Minimize| Mean VaR| TCE Worst
Mean 143.37 | 476.35| 749.26| 1248.51
VaR 174.69| 388.25 | 824.39| 1446.62
TCE 189.82| 476.35| 539.19 | 678.85
Worst 161.64| 564.72| 586.83| 604.59

Table 1: Performance of expectation-based and robust ispteszements in terms of various metrics for
Networkl. The placements consist of 5 sensors mitigatignay 105 possible contamination events.

Performance Metric
Objective to Minimize| Mean VaR TCE Worst
Mean 685.41 | 2244.32| 2953.46| 4901.74
VaR 740.04| 2018.84 | 2699.41| 5076.31
TCE 757.30| 2112.42| 2507.61 | 3961.72
Worst 869.22| 2772.83| 2990.19| 3489.73

Table 2: Performance of expectation-based and robust isptesmements in terms of various metrics for
Network2. The placements consist of 20 sensors mitigatyagnat 1621 possible contamination events.

Performance Metric
Objective to Minimize| Mean VaR TCE Worst
Mean 319.96 | 1214.05| 1767.32| 4779.72
VaR 334.76| 1187.67 | 1780.8| 5793.52
TCE 342.63| 1283.37| 1684.54 | 4219.39
Worst 463.38| 1934.32| 2315.16| 3079.47

Table 3: Performance of expectation-based and robust isptesements in terms of various metrics for
Network3. The placements consist of 20 sensors mitigatyagnat 9705 possible contamination events.

As discussed in Section 6, we cannot in general guaranteeptiraality of the robust sensor placements
due to the marked increase in difficulty of the correspondamdlity location MIP formulations relative

to the baseline expectation-based variant. The perforenaheach of the resulting sensor placements is
then quantified in terms of thklean VaR TCE, and Worst metrics. The results for Networkl through
Network3 are respectively shown in Tables 1 through 3. Werasthat in each of the tables, the inequality
VaR < CVaR< TCE < Worstholds, as required, for both the diagonal entries and théesrdf each row.

We first consider the results for Networkl (Table 1), in whickensors are placed to mitigate against
contamination events initiated at each of the 105 junctisite non-zero demand. Due to the small scale
of this problem, we are able to establish the optimality @& Worst sensor placement. Relative to the
example shown in Section 2, we observe even more dramaferatites between thdean and Worst
sensor placements: the worst-case impact can be cut inohddfsfs than a 13% increase in the mean impact.
Via exhaustive, implicit enumeration of the solution speieea modified MIP branch-and-bound procedure,
we determined that there are in fact a numbealtdrnative global optimahat satisfiWorst= 604.59. This
observation raises the possibility that solutions Witbrst= 604.59 andMean < 161.64 may exist. Indeed,
using a modified version of our heuristic algorithm thatwlgpecification of side constraints, we found such
a solution withWorst= 604.59 andMean= 147.93; the latter represents slightly larger than a 3% increase
relative to the optimal value dflean= 143.37. Although we could in principle perform a similar analysis
for each of the results shown in Tables 1 through 3, side caingt further increase the difficulty of the



robust problem formulation, which as indicated in Sectide élready substantial. Rather, we simply note
that optimality (or presumed optimality) with respect taeaneasure does guarantee conditional optimality
on the complementary measures, due to the potential peséraiternative optima. Finally, we observe
that although the performance of tMeanandWorstplacements is significantly different, the placements
themselves are not; both of tieen Worsplacements discussed above share sensors at respedstiveand
three of the possible five junctions.

Given thatvaR TCE, andWorsTall quantify related aspects of the distribution of highpist contam-
ination events, we expectedpriori that sensor placements minimizing these robustness nesasauld
be strongly correlated in terms of their performance. Ueeigdly, the data shown in Table 1 indicate
this is not the case. For example, Werstperformance of th&aRoptimal solution is more than double
than of the optimaWorstperformance. Even discounting potential effects due trmdttive global optima,
the effect remains significant; minimizing/orstsubject toVaR < 388.25 yields only a slight reduction
to Worst = 1248.51. Similar discrepancies exist between the observed andaptialues ofTCE given
a VaRoptimal placement. Of course, minimization &R allows for any distribution of the remaining
proportion of high-impact events, so the results are ctarsis However, the degree of the divergence was
unexpected. In general, this behavior simply reinforcesitfiportance of understanding and analyzing the
performance metrics used in optimization; apparentlylsutifferences (e.g., betwe@CE andWors) in
even the subset of robust metrics can yield significantmiffees in sensor configurations and performance.

Next, we consider the results for Network2 (Table 2), whigterds the analysis presented in Section 2
to other robust metrics. Expanding on the previously noteskorsation that trade-offs iMeanandWorst
performance that are possible, we again observe alteenafitima in this problem for theJorstoptimal
performance. Mirroring the approach discussed above fowbdl&l, we were able to generate a solution
via imposition of side constraints wittWorst = 3489.73 and Mean = 768.16 — in contrast to the initial
value ofMean= 869.22 given theWorstoptimal solution. Consequently, it is possible in Netwddbtain
a nearly 30% reduction in worst-case impact at the expenserefatively minor 12% increase in mean
impact. Interestingly, despite the similar performantés solution and thé/leanoptimal solution share
sensors at only two of the possible twenty junctions in comnkonally, as with the results for Network1, the
performance of the robust metrics is not strongly correlateven accounting for the presence of alternative
global optima.

6 Algorithmsand Computational Experience

We have previously described both heuristic and exact itgos for solving expectation-based facility lo-
cation formulations of the SPP, i.e., the p-median probBerry et al., 2006b). We employed commercially
available MIP solvers, specifically ILOG’s CPLEX 9.1 andA@ackage's to compute provably optimal
solutions to the p-median MIP formulation described in Bect.2. Using various modeling techniques to
reduce the size of the basic formulation, we were able tatifyenptimal solutions to Network3 in roughly
15 minutes of CPU time on a modern workstation. These tecdesigake advantage of equality in the ar-
rival time of contaminant at various junctions, due to thedsition of a discretized water quality time-step.
Consequently, the impacts; are identical for varioug, and thej can be collected into “superfacilities”,
thereby reducing the effective size of the p-median problem

We also applied a Greedy Randomized Adaptive Search Praedé@IRASP) to heuristically generate
high-quality solutions to the p-median MIP formulation. eTalgorithm, fully described in Resende and
Werneck (2004), is a simple multi-start local search pracedn which steepest-descent hill-climbing is
applied to a numbe/N of initial solutions. The neighborhood used in the GRASPatgm is based on
facility exchange: each move consists of closing a curyesytened facility and opening a currently closed

http:/iwww.ilog.com



Mean Run-Time per Local Optimum
Objective to Minimize| Networkl | Network2 | Network3
Mean 0.01s 0.81s 6.5s
Worst 0.02s 97s 4.4hrs
VaR 0.05s 643s 20.4hrs
TCE 0.06s 810s 26.0hrs

Run-Time
Objective to Minimize| Networkl | Network2 | Network3
Mean 0.70s 3m2s| 47m3ls
Worst 8m20s >24hrs >48hrs
CVaR 3mi8s >24hrs >96hrs

Table 4: Mean run-times required for the GRASP heuristicstoegate a local optimum to both expectation-
based and robust variants of the sensor placement probdemach of our test networks.

Table 5: Run-times to solve the exact MIP models for expietdiased and robust variants of the sensor
placement problem, for each of our test problems.

facility. The hill-climbing procedure selects the movetthesults in the largest decrease in solution cost at
each iteration, and terminates once no improvements asy@ms The best of théV solutions is returned
by the algorithm. Our experiments indicate that the GRASRik&c obtains solutions faster than the MIP
solves described above, e.g., in under three minutes fovdikB. Further, in all cases investigated, the
obtained solutions were optimal, i.e., equivalent in gyab those obtained by CPLEX.

To facilitate the present analysis, we extended the GRASIAdtie to enable solution of the robust
variants of the facility formulation described in Sectio2.4The extensions involved modification of the
move evaluation code that determines the change in solatishassociated with simultaneously closing a
facility « and opening a facility). The efficiency of the resulting algorithm is dictated by sipeed of move
evaluation, which can be accelerated by various analysiclt® specific to the p-center and related facility
location problems; we defer to Mladenovic et al. (2003) foliscussion of these techniques.

As hinted at previously, robust formulations of the SPP anidgcally much more difficult than their
expectation-based counterparts. To quantify this disoreyy we consider the average run-times required to
generate a single sample, i.e., a local optimum, under efdtle Mean VaR TCE, andWorstmetrics. Our
computational platform is a workstation containing 64AMD 2.2GHz Opteron central processors running
under the Linux 2.6 operating system; the platform possé&86f RAM, such that run-time issues relating
to memory paging are non-existent. All codes were writte@+4+ and compiled under gcc 3.4.3 with level
2 optimization. The results for all three of our test netveoake shown in Table 4, using the sensor budgets
indicated in Section 4.1. The run-times include the timaunegl to load the problem instance.

The results clearly illustrate the difficulty of robust \ats of the SPP. Although Networkl run-times
are clearly negligible for any metric, the divergence betweheMeanand other metrics is significant for
Network2; the run-times under thdean and Worst metrics differ by a factor of 100, and is even larger
under thevaRandTCEmetrics. Relative to Networkl, the growth in difficulty iscentuated in part due to
the growth in the sensor budgetas the number of moves available from any solution is a nomcally
increasing function of botim andp for the range op we consider. Even larger analogous discrepancies are
observed on Network3, where the run-times underMlieanandWorstdiffer by a factor of nearly 40. The
difficulty of computing samples for théaRand TCE metrics is even more difficult than faWorst This is
due to the additional need, relative to ¥erstcomputation, for sorting the impacts (in the cas&aRand
TCE and computing the tail expectation (in the cas@ GE).

10



We have also investigated extensions of our basic MIP m&#sty et al., 2006b) to robust optimization
metrics. To generate a MIP formulation to minimi®rstperformance, we simply replace Equation 1 with
the following:

minimize maxcs Z dsjsj (7)
jeLu{q}
The extended formulation for minimization @VaR(the continuous approximation ICE, which in gen-
eral is discretized) is significantly more complicated, #&dot discussed herein. We used CPLEX 10.0, a
state-of-the-art commercial MIP solver, to minimigkean CVaR andWorstfor each of our test networks.
The computational platform was identical to that describbdve for the heuristic tests, and a limit of 24
hours was imposed on each individual run. The results a@tegpin Table 5.

We first consider the results for Networkl, which are analegm those reported for the heuristic in
Table 4. Specifically, minimization of the robust metricquizes several orders of magnitude more run-time
than required for thd&leanmetric. However, minimization ofVaRis less costly thaiVorst we currently
have no explanation for this discrepancy. Next, we exantieaesults for Network2 and Network3. In no
case could CPLEX minimize the robust metrics within theadted time limit of 24 hours. Overall, these
results clearly reinforce the dramatic differences in difiy involved in minimization of expectation-based
versus robust performance metrics; the latter requireaat 20 times more computational effort, and in most
cases, significantly more. From a practical standpoing,¢hrrently prevents us from establishing proofs of
optimality for heuristic solutions for all but the smallésst networks.

Overall, the data presented in Tables 4 and 5 illustrate llalenges associated with optimization of
robust performance metrics. Although exact methods aceatoée in the case of minimizingleanimpacts,
optimal robust solutions - or at least proofs of optimalire currently out of reach of exact methods. Even
with heuristics, locating high-quality solutions to robésrmulations requires a significant computational
investment. However, even lacking optimal solutions, thedmental conclusions presented in Section 5
still hold: it is possible to trade off expected versus ralpesformance. Future improvements in heuristic
and exact technologies will further enhance our ability xpleit this characteristic. Finally, we observe
that the relative difficulty of robust optimization is notagssarily inherent. Our results are empirical, rather
than theoretical, and it is possible that additional redeavrill expose additional techniques for improving
algorithm performance, e.g., cuts in the case of MIPs or neffective move evaluators in the case of
heuristics. Algorithms for minimizing the expected case,, ifor solving the p-median formulation, have
been extensively studied for decades, and only recently tiese algorithms yielded results as impressive
as those we report.

7 Conclusions

Most extant algorithms for the sensor placement problematendistribution networks consider minimiza-
tion of the expected impact of a contamination event. Howekie solutions generated by these algorithms
admit a number of low-probability, very high-impact coniaation events. The presence of these events, in
addition to consideration of known inaccuracies in evenbpbility estimation, should lead decision mak-
ers to at least assess the differences between solutianshithianize expected impact and those that focus
strictly on high-consequence contamination events. Wednice a number of so-called robust metrics for
guantifying the impact of high-consequence, e.g., taihtamination events. Using both heuristic and ex-
act optimization algorithms, we then contrast the perferoeacharacteristics of solutions that respectively
minimize the mean and robust metrics. We show that it is ples$o gain significant reductions in the
number and degree of high-consequence events, at the explam®derate increases in the mean impact of
a contamination event. The existence of this trade-off hba of significant interest to decision makers
response for CWS design, given inherent issues involveld evient probability estimation and the implicit
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desire to mitigate against 9/11-style attacks. Additiynate find that performance with respect to different
robust metrics is not highly correlated, further emphasjzhe need to develop a deeper understanding of
the relationship between solutions developed using @iffeoptimization metrics. Finally, we demonstrate
that solution of robust formulations of the sensor placenpeablem are significantly more difficult than
for their expectation-based counterpart. Although héiagscan identify high-quality solutions for robust
formulations, exact methods are unable to tackle all butsthallest test networks. Further, non-trivial
research effort will be required to develop truly efficietgaithms for solving, especially to optimality,
robust formulations.
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