Speeding up multi-physics simulations through reuse of multigrid components

Andrey Prokopenko
Paul Lin
John Shadid
Jonathan Hu

Sandia National Labs

March 24, 2016

SAND2016-2612 C
Motivation

- Multigrid setup times growing with number of MPI ranks
- Many simulations only change the values of a matrix, not the structure
- Workaround for scalability issues
Motivation

- Multigrid setup times growing with number of MPI ranks
- Many simulations only change the values of a matrix, not the structure
- Workaround for scalability issues

Few years ago...

<table>
<thead>
<tr>
<th>MPI ranks</th>
<th>DOFs</th>
<th>AMG setup time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>0.8M</td>
<td>9.5</td>
</tr>
<tr>
<td>1024</td>
<td>6.5M</td>
<td>10.8</td>
</tr>
<tr>
<td>8192</td>
<td>51.0M</td>
<td>12.1</td>
</tr>
<tr>
<td>65536</td>
<td>401M</td>
<td>25.5</td>
</tr>
<tr>
<td>524288</td>
<td>3.2B</td>
<td>1312</td>
</tr>
</tbody>
</table>
Algebraic Multigrid (AMG)

Main idea
Capture errors at multiple resolutions.
Algebraic Multigrid (AMG)

Two main components

- Smoothers
 - Approximate solve on each level
 - “Cheap” reduction of oscillatory error (high energy)
 - \(S_L \approx A_L^{-1} \) on the coarsest level \(L \)

Main idea

Capture errors at multiple resolutions.
Algebraic Multigrid (AMG)

Two main components

- **Smoothers**
 - Approximate solve on each level
 - "Cheap" reduction of oscillatory error (high energy)
 - $S_L \approx A_L^{-1}$ on the coarsest level L

- **Grid transfers (prolongators and restrictors)**
 - Data movement between levels
 - Reduction of smooth error (low energy)

Main idea

Capture errors at multiple resolutions.
MueLu: Trilinos multigrid library

- Can use either Epetra (32-bit) or Tpetra
 - Template types: Local and global indices, scalar, compute node

- Grid transfers
 - Smoothed and unsmoothed aggregation
 - Petrov-Galerkin
 - Energy minimization
 - Maxwell

- Smoothers (Ifpack/Ifpack2)
 - Relaxation: Jacobi, SOR, l1 Gauss-Seidel
 - Incomplete factorizations: ILU(k), ILUT, ILUTP*
 - Others: Chebyshev, additive Schwarz, Krylov, Vanka, . . .

- Direct solvers (Amesos/Amesos2)
 - KLU2, SuperLU, . . .

- Load balancing (Zoltan/Zoltan2)
 - RCB, multijagged (Zoltan2 only)
MueLu: factory concept

Data processing

- Factory represents a computational kernel
- Factory knows what input is needed to produce its output
- Factory requests one or more input variables
- Factory builds one or more output variables

Data storage

- All input and output data is (temporarily) stored in data container classes
- Each level has data container
- Data dependencies are automatically handled by MueLu
MueLu: managing data and factories

- Keeping track of all generated data and inter-factory dependencies is tricky
- **FactoryManager** provides an automatic way for a factory to get its required input data
 - Provides *default* options for missing inter-factory dependencies to generate data
 - Checks whether the required data has already been generated, or whether it needs to be generated

Example

- User declares **TentativePFactory** which needs **Aggregates**
- **FactoryManager** checks whether **Aggregates** has already been generated
- **FactoryManager** provides a *default* **AggregationFactory** if data needs to be generated
MueLu: dependencies example

Smoothed Aggregation (SA) main kernels

- Aggregation (forming coarse unknowns)
- Tentative prolongator construction $P^{(tent)}$
- Smoothed prolongator construction $P = (I - \omega D^{-1} A)P^{(tent)}$
- Coarse matrix construction (matrix-matrix multiply) $A_\ell = RA_{\ell-1}P$
- Load balancing of A_ℓ (if necessary)
- Smoother initialization
Reuse: fine level smoothers (S)

- Reuse
 - Symbolic factorization of smoother S_0

- Recompute
 - Smoother S_0 (faster using only numeric factorization)
 - Everything else...

✓ Useful for heavy smoothers, like ILU
✓ Does not affect convergence
✗ Little benefit for light-weight smoothers
Reuse: fine level smoothers (S)

- Additive Schwarz/subdomain ILU
 - Data import infrastructure
 - Local symbolic factorizations
 - Data transfers unavoidable

- Polynomial smoothers
 - Reuse eigenvalue estimate
 - Reuse initial guesses for eigenvalue estimates (reduce matvecs)

- Jacobi, Gauss-Seidel, etc.
 - No reuse
Reuse: tentative prolongators (TP)

- **Reuse**
 - Tentative prolongators $P^{(tent)}_\ell, \ell > 0$
 - Matrix graphs of P_ℓ and $A_\ell, \ell > 0$
 - Symbolic factorization of smoothers $S_\ell, \ell \geq 0$

- **Recompute**
 - Smoothed prolongators $P = (I - \omega D^{-1} A) P^{(tent)}$ (faster using matrix graph reuse)
 - Coarse level matrices $A_\ell, \ell > 0$ (faster using matrix graph reuse)
 - Smoothers S_ℓ (faster using only numeric factorization)

✓ Avoids construction of tentative prolongator
✓ Preserves import objects for rebalancing
✓ Does not affect convergence
✗ Requires matrix-matrix product for P and RAP
Reuse: final prolongators (RP)

- **Reuse**
 - Prolongators/restrictors $P_\ell, R_\ell, \ell > 0$
 - Matrix graphs of $A_\ell, \ell > 0$
 - Symbolic factorization of smoothers $S_\ell, \ell \geq 0$

- **Recompute**
 - Coarse level matrices $A_\ell, \ell > 0$ (faster using matrix graph reuse)
 - Smoothers S_ℓ (faster using only numeric factorization)

✓ Avoids matrix-matrix product for final P_ℓ
✓ Preserves import object for rebalancing $A_\ell, \ell > 0$
✗ May negatively affect convergence
✗ Requires matrix-matrix product for RAP
Reuse: all but fine level smoother (RAP)

- **Reuse**
 - Prolongators/restrictors $P_\ell, R_\ell, \ell > 0$
 - Coarse level matrices $A_\ell, \ell > 0$
 - Smoothers $S_\ell, \ell > 0$
 - Symbolic factorization of smoothers S_0

- **Recompute**
 - Smoother S_0 (faster using only numeric factorization)

- ✓ No matrix-matrix products required
- ✓ Preserves coarse smoother data
- ✓ Preserves rebalancing information
- ✓ Cheapest reuse option
- ✗ Least likely to converge
Experiments: ISMIP-HOM Test C

A “first order” approximation to a full Stokes model for a standard ice sheet model benchmark ISMIP-HOM (Test C). This model is an approximation to viscous incompressible quasi-static Stokes flow with power-law viscosity

\[-\nabla \cdot (2\mu \dot{\varepsilon}_1) = -\rho g \frac{\partial s}{\partial x}\]
\[-\nabla \cdot (2\mu \dot{\varepsilon}_2) = -\rho g \frac{\partial s}{\partial y}\]

where

\[\dot{\varepsilon}_1^T = (2\dot{\varepsilon}_{11} + \dot{\varepsilon}_{22}, \dot{\varepsilon}_{12}, \dot{\varepsilon}_{13})\]
\[\dot{\varepsilon}_2^T = (\dot{\varepsilon}_{12}, \dot{\varepsilon}_{11} + 2\dot{\varepsilon}_{22}, \dot{\varepsilon}_{23})\]
\[\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)\]

and viscosity \(\mu\) is a nonlinear function given by “Glen’s law”

\[\mu = \frac{1}{2} A^{-(\frac{1}{n})} \left(\frac{1}{2} \sum_{ij} \dot{\varepsilon}_{ij}^2 \right)^{\frac{1}{2n} - \frac{1}{2}}\]

The model is complemented by relevant stress-free and floating ice boundary conditions.

The mesh for the Test C benchmark is taken to be a regular Cartesian grid of size \(160 \times 160 \times 40\), similar to the one depicted in Figure ??.
Experiments: ISMIP-HOM Test C

<table>
<thead>
<tr>
<th>Reuse</th>
<th>Setup</th>
<th>Solve</th>
</tr>
</thead>
<tbody>
<tr>
<td>No reuse</td>
<td>77.2</td>
<td>66.7</td>
</tr>
<tr>
<td>TP</td>
<td>64.8</td>
<td>67.4</td>
</tr>
<tr>
<td>RP</td>
<td>42.6</td>
<td>67.5</td>
</tr>
<tr>
<td>RAP</td>
<td>22.0</td>
<td>84.8</td>
</tr>
</tbody>
</table>
Experiments: 3D MHD generator

- Steady-state 3D MHD generator
 - Resistive MHD model
 - Stabilized FE
 - Newton-Krylov solve
 - 8 DOFs/mesh node

- Monolithic preconditioner
- Prolongator is unsmoothed
- Heavy smoother
 - In this case, DD/ILU(0)

- P cheap to construct compared to smoothers
Experiments: 3D MHD generator

- Steady-state 3D MHD generator
 - Resistive MHD model
 - Stabilized FE
 - Newton-Krylov solve
 - 8 DOFs/mesh node
- Monolithic preconditioner
- Prolongator is unsmoothed
- Heavy smoother
 - In this case, DD/ILU(0)
- P cheap to construct compared to smoothers

<table>
<thead>
<tr>
<th>Reuse</th>
<th>Setup</th>
<th>Solve</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No reuse</td>
<td>3.79</td>
<td>2.65</td>
<td>6.44</td>
</tr>
<tr>
<td>S</td>
<td>3.27</td>
<td>2.63</td>
<td>5.91</td>
</tr>
<tr>
<td>RP</td>
<td>3.14</td>
<td>2.61</td>
<td>5.75</td>
</tr>
<tr>
<td>RAP</td>
<td>2.74</td>
<td>42.80</td>
<td>45.53</td>
</tr>
</tbody>
</table>
Experiments: jet problem

- 3D Jet, Re=106, CFL 0.25, no slip BCs
- SA AMG, V(3,3) symmetric Gauss-Seidel smoothing

Setup cost almost entirely
 - Smoothed prolongator
 - \(P = (I - \omega D^{-1} A)P^{(tent)} \)
 - Galerkin product

For this particular problem, convergence maintained
Experiments: jet problem

- 3D Jet, Re=106, CFL 0.25, no slip BCs
- SA AMG, V(3,3) symmetric Gauss-Seidel smoothing

- Setup cost almost entirely
 - Smoothed prolongator
 - \(P = (I - \omega D^{-1} A)P^{(tent)} \)
 - Galerkin product

![Speedup graph showing performance comparison across different node counts for various methods: TP, RP, RAP, and Full.](image)
Conclusions

- Easy way of reducing multigrid setup times without changing algorithms
- Multiple opportunities for reducing cost through reuse
 - Grid transfers
 - Heavy weight smoothers
 - Matrix-matrix multiplication
- Effectiveness of reusing setup information is problem dependent
- Still have some low-hanging fruit to pick
Future work

- Storing more auxiliary data
 - Temporary communication data structures
 - Hash tables for matrix-matrix multiplication

- Experimenting with reuse with next-gen smoothers
 - Multi-colored Gauss-Seidel
 - Iterative ILU

- Ability to use different reuse strategies in Newton solver and across transient steps
 - Heavy reuse within Newton solver, lighter reuse across time steps
 - Lighter reuse early in simulation due to startup conditions

- Better information exchange between nonlinear and linear solve
MueLu: references

