
Improving the Runtime and Quality of Nested Dissection Ordering�Bruce Hendrickson Edward RothbergSandia National Laboratories Silicon Graphics, Inc.Albuquerque, NM 81785{1110 Mountain View, CA 94043bah@cs.sandia.gov rothberg@sgi.comMarch, 1996Revised March, 1997AbstractWhen performing sparse matrix factorization, the ordering of matrix rows and columns has a dramaticimpact on the factorization time. This paper describes an approach to the reordering problem that pro-duces signi�cantly better orderings than prior methods. The algorithm is a hybrid of nested dissection andminimum degree ordering, and combines an assortment of di�erent algorithmic advances. New or improvedalgorithms are described for graph compression, multilevel partitioning and separator improvement. Whenthese techniques are combined, the resulting orderings average 39% better than minimumdegree over a suiteof test matrices, while requiring roughly 2.7 times the runtime of Liu's Multiple Minimum Degree.1 IntroductionWhen using a direct method to solve a linear system Ax = b, where A is sparse, symmetric and positivede�nite, the �rst step is typically a heuristic reordering of the rows and columns of A to reduce �ll inthe factor matrix L (where the �ll is the set of zero entries in A that become nonzero in L). Limiting�ll reduces the amount of work and storage required to factor A. The most commonly used heuristic forperforming reordering is the minimumdegree algorithm [17, 34]. An alternative approach, nested dissectionordering [15, 16], has many appealing theoretical properties, but building an implementation that givescomparable ordering qualities and runtimes to the minimum degree method has proven to be quite di�cult.Some promising results have been demonstrated [4, 10, 21, 25, 31], but unfortunately none of these previouse�orts have produced consistently better orderings than minimum degree, and all require signi�cantly moreruntime.An important di�erence between minimum degree and nested dissection is that minimum degree can bedescribed concisely: it always eliminates a column containing the fewest non-zero values next. Variationsin implementation are possible (e.g., Multiple Minimum Degree (MMD) [26] and Approximate MinimumDegree (AMD) [2]), but the fundamental algorithm remains unchanged. The nested dissection \algorithm",on the other hand, is in fact quite ill-speci�ed. The method is instead a general ordering framework. Nesteddissection is fundamentally a divide and conquer approach, where division is accomplished by �nding vertexseparators in a graph associated with the sparse matrix. Questions left unaddressed include:� What properties should the vertex separators have?� What algorithms should be used to �nd them?� When should the nested recursion be halted?� How should the separators be ordered?�To appear in the SIAM J. Sci. Comput. 1

Our goal in this paper is to systematically explore a relatively large space of possible answers to suchquestions. In the course of our investigation, we use existing techniques in new ways, we use existingtechniques in old ways, and we describe several new techniques. In exploring this space, we have identi�edan approach that consistently produces signi�cantly better orderings than minimum degree ordering at acost that is only moderately higher than MMD.We should note that others have also recently described e�ective new ordering methods. Ashcraft andLiu [7] recently published the results of independent and concurrent work. While they adopt a di�erent pointof view, they use some of the same techniques that we do, combining them in a somewhat di�erent way.Like the current work, they obtain orderings that are signi�cantly better than minimumdegree. Subsequentto our work, Gupta [19] has also reported good results from a related multilevel nested dissection approach.We will describe these e�orts in greater detail in x4.In the next section we introduce the graph theoretic concepts necessary to describe the methods explored.We also describe the various components of our ordering approach and how they �t together. In x3, weinvestigate the performance of our algorithmic modi�cations, separately and together, comparing the resultsto prior state-of-the-art reordering algorithms. We draw some general conclusions and outline some directionsfor future work in x4.2 MethodsThe concepts and techniques that are used in our approach to nested dissection ordering are described in thefollowing subsections. In x2.9 we explain how these pieces �t together to comprise our reordering algorithm.2.1 PreliminariesAlgorithms involving sparse matrices are often most naturally described as operations on graphs. A graphG = (V;E) consists of a set of vertices or nodes V and a set of vertex pairs E commonly referred to as edges.We denote vertices by vi, and we use eij for an edge between vertices vi and vj . The edge eij is incidentto vertices vi and vj, making vi and vj adjacent vertices or neighbors. We use Adj(vi) to refer to the setof vertices adjacent to vertex vi. The degree of a vertex is the number of edges incident to it. Each vertexand each edge can also have an associated value known as a weight, which we denote by w(vi) and w(eij)respectively.The nonzero structure of a symmetric, sparse matrix A can be conveniently represented by an undirectedgraph G. The n vertices of the graph correspond to the n columns of the matrix, and an edge connectsvertices vi and vj if Aij is nonzero. It is this simple representation that makes graph theory a powerful toolfor developing sparse matrix algorithms.In particular, the evolution of the nonzero structure during Cholesky factorization can be describedsuccinctly in terms of the graph G of A. Consider what happens when a row and column of the matrix areeliminated. In matrix terms, A A � �zzT , where � is a scalar and z is the eliminated column of A. Ifz has nonzero values in rows i and j, then the updated matrix A has a nonzero value in location Aij. Ingraph terms, after the elimination of a vertex ve, there is an edge eij in G for every pair of nodes vi and vjin Adj(ve). The graph transformations for the full factorization are sketched in Fig. 1.For i = 1; n� 1For All pairs (vj ; vk) of neighbors of viIf vj is not adjacent to vk ThenAdd edge ejk to graphRemove vi and its incident edges from the graphFigure 1: Graph representation of sparse Cholesky factorization.The added edges in the �gure correspond precisely to the �ll in the matrix. The number of oating-pointoperations required to perform the factorization is equal to the sum of the squares of the degrees of each2

eliminated vertex. Clearly, these quantities are functions of the order in which the rows and columns areeliminated. The goal of reordering techniques is to reduce the �ll and the oating-point complexity of thefactorization, which leads to faster, less memory-intensive solution.The algorithms used in this paper will require some additional graph terminology. A path in a graphis a sequence of vertices such that each consecutive pair in the sequence is joined by an edge. A graph isconnected if there is a path between every pair of vertices. A set of edges (vertices) whose removal makes agraph disconnected is known as an edge (vertex) separator.A bipartite graph is a graph in which the vertices can be divided into two disjoint subsets, P and Q, suchthat every edge connects a vertex in P to a vertex in Q.A vertex cover is a set of vertices with the property that every edge in the graph is incident to at leastone of the vertices in the vertex cover. Our approach will require that we identify a vertex cover of minimalweight in a bipartite graph.A matching in G is a set of edges, no two of which are incident to the same vertex. A maximal matchingis a matching that cannot be enlarged by the addition of any other edges of G.2.2 Minimum Degree OrderingRecall that when a column of the matrix is eliminated, the cost of the corresponding outer-product isproportional to the square of the number of sub-diagonal non-zero values in the column. As illustrated inFig. 1, the number of these non-zero values is simply the degree of the vertex in the graph G correspondingto the eliminated column. So a reasonable heuristic strategy would be to always eliminate the vertex withthe smallest degree. This simple greedy strategy is the basis of a very successful reordering technique knownas the minimum degree ordering heuristic. This idea can be viewed as a symmetric version of the Markowitzscheme [29], and was �rst applied to Cholesky factorization by Tinney and Walker [34].Various improvements to minimum degree have been proposed through the years that have greatlyimproved its running time. Examples include Multiple Minimum Degree (MMD) [26] and ApproximateMinimum Degree (AMD) [2]. Although these algorithms don't produce identical orderings, those theygenerate are usually of similar quality. Due to the quality of orderings produced and the fast run times ofthe advanced variants, minimum degree methods are by far the most popular methods for reordering sparsematrices. However, they are poorly understood theoretically, and their worst case behavior can be far fromoptimal [9].2.3 Nested Dissection OrderingAn alternative to minimumdegree was proposed by George [15], and is known as nested dissection. In matrixterms, the intuition behind this approach is illustrated in Fig. 2. The basic idea is to �nd a set of columnsS, whose removal decouples the matrix into two parts, X and Y , whose nonzero values are in disjoint rowsand columns. If we order S after X and Y , then no �ll can occur in the o�-diagonal blocks of the submatrixconsisting of X and Y . Once a set S has been found, X and Y can be reordered by applying the dissectionstrategy recursively, or by any other technique (e.g. minimum degree).As with minimum degree, nested dissection can be described in terms of graph operations on the graphof the matrix. The set S is a vertex separator of the graph, and X and Y are the two pieces separated byS. One key to an e�ective nested dissection strategy is thus the ability to �nd small vertex separators.As we will demonstrate later, a second key is allowing some imbalance between the sizes of the twoseparated pieces X and Y . The utility of this tolerance was �rst observed by Lewis and Leiserson [25],but has been largely overlooked. To make progress in a recursive divide-and-conquer approach, neither Xnor Y can be too small, but precise equality seems to be an unnecessary constraint. A substantially betterseparator can often be found if some imbalance is tolerated.While minimum degree is a local, bottom-up approach to reordering, nested dissection is a global,top-down technique. This makes nested dissection more amenable to theoretical analysis. For example,George [15] proved that nested dissection produces asymptotically optimal orderings for regular grid prob-lems. Despite these attractive theoretical results, nested dissection until recently has not been competitivein practice. Orderings produced by nested dissection have been less consistent and usually poorer than thoseproduced by minimum degree, and nested dissection algorithms are generally slower than MMD.3

SYX 00Figure 2: Structure of a matrix reordered via nested dissection.2.4 Compressed GraphsMatrices that arise in many application areas, most notably �nite element analysis, can contain multiplecolumns with identical adjacency structures. In graph terms, the graph G of A contains subsets of verticeswhere, for any two members vi and vj of the subset, Adj(vi) [fvig = Adj(vj) [fvjg. One can thuscompute a compressed graph GC, which is a more concise graph representation of the structure of A [3,11, 13]. The compressed graph is formed by merging all vertices with the same adjacencies into a single,weighted vertex. The weight w(vi) of a vertex is equal the number of original vertices that are mergedinto that compressed vertex. The weight of an edge eij in the compressed graph is simply the product ofthe weights of the endpoints of the edge (since all pairs of original vertices in each compressed vertex areadjacent). The minimum degree ordering heuristic would normally eliminate all members of a compressedvertex consecutively, so one can easily modify the algorithm to work with compressed graphs instead.The nested dissection algorithm can also be modi�ed to work with compressed graphs [3]. Note thatif one member of a compressed vertex belongs to a vertex separator, then all members of that compressedvertex belong to the separator. The multilevel partitioning methods that we will use to �nd graph separators(discussed in x2.5) already work with weighted graphs, so the application of such methods to compressedgraphs is quite natural.The algorithm described in [3] for identifying vertices with identical structure in G computes a hash valuefor each vertex vi: hash(vi) = i+ Xvj2Adj(vi) j:These hash values are used to quickly identify vertices that might have the same adjacency structures.Clearly, if two vertices have di�erent hash values then they have di�erent structures. The algorithm sorts thevertices in G by hash value. Vertices with identical values are then adjacent in the sorted list. The algorithmcompares the adjacency structures of such vertices. The runtime of this algorithm is O(jEj+ jV j log jV j).If one makes the assumption that the input to the ordering algorithm is an uncompressed graph A, thento exploit the compressed graph representation we must include the runtime for �nding this compressedrepresentation in the runtime for the ordering method, even if the compressed graph is identical to theuncompressed graph. The cost of sorting the vertex hash values can be signi�cant. Fortunately, we can takeadvantage of a simple observation to signi�cantly reduce the runtime of the method. Note that if verticesvi and vj are members of the same compressed vertex, then vi must be adjacent to vj . Thus, rather thansorting the vertices to �nd vertices with the same adjacency structure, we can simply compare hash values ofall adjacent vertices. This observation reduces the runtime of the algorithm to O(jEj). As will be discussedlater, the time spent performing compression is small in comparison to the cost of the ordering.An O(jEj) algorithm for this problem that doesn't require hashing can be found in [13].4

2.5 Multilevel Partitioning AlgorithmsIn recent years, multilevel techniques for �nding edge separators in graphs have received a great deal ofattention. First proposed by Bui and Jones [10], and improved by Hendrickson and Leland [20] and Karypisand Kumar [21], these methods have proved capable of �nding high quality edge separators very quickly.The basic idea is sketched in Fig. 3 and has a close analogy with the use of multigrid methods for solvingdi�erential equations. The original graph is approximated by a sequence of smaller and smaller graphs. Thesmallest graph in the sequence is partitioned into two disjoint sets, X and Y , so as to minimize the numberof edges between the sets. This partition is propagated back through the sequence of graphs, while beingre�ned periodically. Program ML-Partition(G, P)Input: Graph G = (V;E)Output: P , a partitioning of VG0 = GUntil G is small enough(1) G = Coarsen(G)(2) P = Partition(G)Until G = G0G = Uncoarsen Graph(G)(3) P = Uncoarsen Partition(P)If desired(4) P = Re�ne Partition(P , G)Figure 3: Structure of multilevel partitioning algorithms.In step (1) from Fig. 3 (the coarsening step), the goal is to produce a coarse graph that maintains theessential properties of the original graph. When partitioning, the essential properties are the size of theseparator and the sizes of the remaining sets created by the separator. Coarsening is generally performedby contracting edges of the graph. When an edge is contracted, the two incident vertices are merged intoone, and the neighbor set of the merged vertex is the union of the neighbors of its two constituent vertices.The weight of the merged vertex is set equal to the sum of the weights of its component vertices. If multipleedges connect the same pair of vertices, they are replaced by a single edge with a weight equal to the sumof the weights of the multiple edges (although such weights will prove unnecessary when computing vertexseparators). To ensure that the graph is coarsened uniformly, the set of edges to be contracted is selected tocomprise a maximal matching. Thus, the size of a coarse graph is typically slightly larger than half the sizeof the original one. Each coarsening step requires time proportional to the number of edges in the graphbeing coarsened. However, the cost of the entire algorithm is di�cult to bound without some understandingof how the number of edges evolves as the coarsening proceeds.Partitioning the coarse graph, step (2), can be performed using any partitioning algorithm that canhandle weighted graphs. In step (3), the uncoarsening phase is trivial. Each uncoarsened vertex is assignedto the set X or Y to which its coarse counterpart was assigned. The re�nement in step (4) typically employssome variant of the local improvement approach of Kernighan and Lin [24] and Fiduccia and Mattheyses [14].Although local re�nement algorithms tend to become trapped in local minima, the multilevel nature of theoverall algorithm allows the re�nement to be performed on multiple scales.This general partitioning framework has been used in several nested dissection implementations [10, 22],including Karypis and Kumar's METIS software [22] which we compare against in x3. These methods �rst�nd an edge separator via a multilevel algorithm and then derive a vertex separator from the edge separator,typically using a matching technique that is summarized in x2.7. As we will discuss in x3.3, this approachhas the limitation that the quantity it attempts to minimize, the size of the edge separator, is only indirectly5

related to the quantity that should be minimized, the size of the vertex separator.To avoid this problem, we use a multilevel strategy that �nds vertex separators directly. To do this, werequire a partitioning algorithm in step (2) that �nds a vertex separator instead of an edge separator. Forthis we use the vertex Fiduccia-Mattheyses method that we describe in x2.6. We also need a re�nementstrategy for step (4) that improves a vertex separator. We use two re�nement strategies for this problem:vertex Fiduccia-Mattheyses, and a maximum-ow technique that we describe in x2.7. This latter algorithmis a generalization to weighted graphs of the matching technique that is used to derive vertex separatorsfrom edge separators. In x3.3, we compare the orderings obtained with this new method against those foundwith a multilevel algorithm that �nds edge separators �rst.2.6 Kernighan-Lin/Fiduccia-Mattheyses for Re�ning Vertex SeparatorsAn important class of algorithms for re�ning edge separators was introduced by Kernighan and Lin [24] andimproved by Fiduccia and Mattheyses [14]. The fundamental idea behind these algorithms is the notion ofgain, which is the reduction in the size of the separator associated with moving a vertex from one set toanother. Kernighan and Lin coupled this simple concept with an innovative local search strategy to producea widely imitated algorithm. Their insight was to repeatedly move the vertex with the greatest gain, evenif that gain was negative, meaning that the move would make the partition worse. Their hope was thatallowing some unhelpful moves might allow for the discovery of better partitions a few moves hence. Thebest partition encountered this way is recorded. Fiduccia and Mattheyses modi�ed the original algorithm sothat a single search for a better partition runs in time bounded by the number of edges in the graph. Thebasic structure of this algorithm is sketched in Fig. 4. This algorithm has generally been used to �nd edgeseparators, so we will denote it as edge FM or EFM.Until No better partition is discoveredBest Partition = Current PartitionCompute initial gainsUntil Termination criteria reachedSelect vertex to movePerform moveUpdate gains of vertices a�ected by moveIf Current Partition balanced & better than Best Partition ThenBest Partition = Current PartitionEnd UntilCurrent Partition = Best PartitionEnd UntilFigure 4: An algorithm for re�ning graph partitions.The algorithm consists of two nested loops. The inner loop performs a sequence of trial moves, remem-bering the best partition ever encountered. Since the algorithm allows for moves that make the partitionworse, the possibility of in�nite looping exists, so the constraint is imposed that a vertex cannot move twicewithin the inner loop. This constraint motivates the need for the outer loop that begins the process overagain. In practice, the outer loop is executed a small number of times (� 10), particularly if the algorithmis initialized with a good partition (as typically happens when it is used in a multilevel method).With appropriate data structures, an inner loop can be executed in time proportional to the number ofedges in the graph. The initial gain values can be computed in O(jEj) time, and sorted with a bucket sort.The best move can now be determined in constant time. In EFM when a vertex is moved, only the gainsof its neighbors are a�ected and their new values can be computed and moved to new buckets in constanttime. In this way the overall time for an inner loop is bounded by the sum of the vertex degrees, or O(jEj).Most prior partitioning work has been devoted to improving edge separators, but for our application weneed to re�ne a vertex separator. Fortunately, the KL approach was extended by Ashcraft and Liu [4] to6

address our problem in a straightforward manner. The method begins with three sets of vertices, a separatorS that divides the remaining vertices into two disconnected pieces X and Y . The moves we consider take avertex v from S and transfer it to X (or Y). When we do this, the neighbors of v that were in Y (or X) arepulled into S.Recall that we are working with weighted vertices, where a vertex's weight corresponds to the numberof vertices from the original graph that comprise it. Consequently, we are interested in a vertex separatorof minimal total weight. With this observation, we can de�ne the gain associated with moving a particularvertex from S to X. gain(v) = w(v) � Xu2Adj(v)\Yw(u)With this de�nition, we can use the basic algorithmic structure from Fig. 4 to re�ne a vertex separator. Wewill call the result vertex FM or VFM to distinguish it from the more familiar EFM.An important feature of our vertex FM implementation is that, like the approach of Fiduccia andMatthey-ses, the cost of an inner loop is bounded by the number of edges in the graph. As before, the gain value of avertex that is either in the separator or entering the separator can be computed in time proportional to thedegree of the vertex. Gain values can be sorted via a bucket sort, allowing move selection to be performedin constant time. Now consider which vertex gains are impacted by a move. The moved vertex v is notallowed to move again, so it is removed from further consideration. Some u1; u2; : : : neighbors of v will bemoved into the separator, so their gains will need to be computed. This requires time proportional to theirdegrees. Also, each neighbor of ui that is already in the separator will need its gain value updated. Sincethe update requires constant time, the time for updating neighbors of ui is again bounded by the degree ofui. Since each vertex can enter the separator at most once, the total run time is bounded by the sum of thevertex degrees, which is just twice the number of edges in the graph.As mentioned earlier, we often wish to introduce some amount of imbalance into the partition. Theedge and vertex FM algorithms are easily modi�ed to allow imbalance. We choose a move that increasesimbalance in the partition if: (i) the gain for that move is larger than the gain for any move that does notincrease imbalance, and (ii) the move does not violate our balance constraint (which will be described later).When using this re�nement strategy as part of a multilevel algorithm, the amount of re�nement istypically quite small. Consequently, the time required to perform VFM is usually more closely related tothe size of the separator than the size of the full graph.2.7 Minimum Weight Vertex Cover of a Bipartite GraphLiu [27] described an alternate algorithm for re�ning a vertex separator. In contrast to the VFM approach,which moves one vertex out of the separator at a time, this re�nement algorithm potentially moves a set ofvertices simultaneously. If we de�ne XS to be the set of vertices in X adjacent to vertices in S, then thealgorithm �nds a set of vertices that forms a vertex cover for the edges between S and XS . The vertices inthis cover come from either S or XS . Note that any vertex cover of these edges constitutes a valid vertexseparator of G, and that the minimum vertex cover is the one that produces the smallest separator. It turnsout that the same approach can be used to obtain a vertex separator from an edge separator. One simplycomputes a minimum vertex cover for the separator edges [30].The re�nement method described above has generally been applied to unweighted graphs, where it must�nd a minimum cardinality vertex cover. Since we wish to apply this re�nement algorithm at multiple levelsof the multilevel method, we must instead �nd a minimumweighted vertex cover. While the unweighted caseis most often described as a maximum bipartite matching problem [30], both the unweighted and weightedvertex cover problems can also be described as network ow problems [6]. To see why, consider Fig. 5. Thecentral portion of the �gure is just a bipartite graph B consisting of S, XS and the edges between them.The vertices in S are connected to a special vertex known as the source, while those in XS are connected toanother special vertex known as the sink. Each edge in the graph can be considered to be a pipe with somecapacity. For this problem, the edges between S and XS have in�nite capacity, while edges from a vertex vin S (XS) to the source (sink) have capacity w(v) (unit capacity in the case of an unweighted graph). If wewish to cut the minimum capacity of pipes to stop all possible ow going from the source to the sink, whichpipes would we cut? This is known as the min-cut problem, and is well known to be the dual of max-ow.In terms of our original graph, the pipes we cut connect vertices of S or XS to the source or sink vertices.7

Source
Sink

S

 B

 S
X

Figure 5: Flow problem equivalent to minimumweighted cover.We need to cut enough pipes so that there is no path from the source to the sink, or equivalently, each edgein the bipartite graph will have at least one of its end points cut. This problem corresponds precisely toa vertex cover of the bipartite graph. Consequently, solving the min-cut/max-ow problem identi�es theminimum weight vertex cover in bipartite graph.We compute a maximum ow in bipartite graph B using a standard augmenting path algorithm. Thedetails are beyond the scope of this paper; we refer the reader to [1] for more information. Our simple imple-mentation has worse asymptotic complexity than more sophisticated weighted bipartite ow algorithms [1],but in practice we �nd this algorithm to be quite fast in comparison to the remainder of the orderingalgorithm.In our experiments, we apply this minimumweighted vertex cover approach (which we refer to as WVC)either singly or in an iterated fashion. When applying it singly, we simply pair the current separator withits neighbors in the larger of the two sets, and �nd the best cover in the resulting bipartite graph. Thereason for choosing the larger of the two sets is that the transformation is unlikely to make the sets moreunbalanced.In our iterated approach, we continue applying the weighted cover technique until we can �nd no smallerseparator. In other words, we continue pairing the current separator with the larger set until the correspond-ing minimum weight vertex cover is no smaller than the current separator. Note that the current separatorS and the two sets X and Y change in the course of the separator re�nement algorithm, and the identityof the larger set may change as well. When no improvement is obtained by looking at the boundary of thelarger set, we then try pairing the separator with the smaller set. If the result is a smaller separator withacceptable balance between the set sizes, we accept the new separator and resume pairing with the largerset.2.8 Combining Nested Dissection and Minimum DegreeIn order to improve both runtimes and ordering qualities, we actually use a hybrid of minimum degreeand nested dissection. We hybridize the methods in two ways. The �rst is the standard incomplete nesteddissection method [18]. Starting with the original graph, we perform several levels of nested dissection.8

Once the subgraphs are smaller than a certain size, we order them using constrained minimum degree [28].Incomplete nested dissection provides the bene�ts of nested dissection at the top levels, where most of thefactorization work is performed, while providing the runtime advantages of minimum degree on the smallerproblems.The second hybridization we use can be thought of as minimum degree post-processing on an incompletenested dissection ordering. This method was originally proposed independently by Ashcraft and Liu [7, 8]and by Rothberg [32]. The hybrid begins by performing several levels of nested dissection, ordering theremaining subgraphs using minimum degree, as described above. However, once these subgraphs have beenordered, they are eliminated from the graph G and the remaining graph (composed of vertices belonging tothe vertex separators found by the nested dissection ordering) is reordered using minimum degree. A simpleintuition behind this hybrid method is that nested dissection makes an implicit assumption that the bestordering of separator nodes is the one produced by the recursive division of the problem. Allowing minimumdegree to reorder the separator vertices removes this assumption.2.9 Bringing it All TogetherWe have combined the techniques described in this section in an ordering code we call BEND (Bruce andEd's Nested Dissection). Let us now summarize the components of this code.Our reordering method begins by attempting to compress the graph as described in x2.4. In practice,this is often unhelpful, and can be turned o� by a user if desired. However, for many �nite element and�nite di�erence matrices this step can dramatically improve running time, and even help the quality of theordering. Since with our modi�cation the run time of this step is modest, we consider it a desirable featurefor a black-box reordering code.We then use an incomplete nested dissection algorithm to reorder the (possibly weighted) graph. Weapply nested dissection as described in x2.3 until the pieces are fairly small (at most n=32 vertices). Sinceminimum degree is generally quite e�ective for modest-sized graphs, we invoke a constrained version ofApproximate Minimum Degree (AMD) as discussed in x2.2 on the subgraphs.Our algorithm uses a multilevel technique to �nd vertex separators for nested dissection. As discussedin x2.5, our multilevel approach �nds a vertex separator directly rather than �rst �nding an edge separatorand then applying a minimum cover technique to derive a vertex separator from the edge separator. Theadvantages of this approach will be discussed in x3.3. We coarsen until there are fewer than 50 vertices inthe graph, and then �nd an initial separator by placing every vertex in the separator and applying VFM asdescribed in x2.6. As mentioned in x2.2, we allow signi�cant imbalance between subgraphs in the course ofcomputing separators.As the separator is propagated through the sequence of intermediate graphs, we re�ne it every twouncoarsening stages. We use one of three di�erent re�nement strategies: (1) VFM, (2) VFM followed bya single step of weighted vertex cover (WVC), or (3) VFM followed by iterated WVC as described in x2.7.The tradeo�s associated with these di�erent options will be discussed in x3.4.Finally, we apply a minimum degree post-pass on the ordering produced by the multilevel incompletenested dissection method. The bene�t of applying this ND/MD hybrid will be discussed in x3.5.Within this general framework, there are several parameters that can be varied. These include the sizeof the subgraphs that cause minimum degree to be invoked, the minimum degree variant used, the amountof imbalance tolerated, the precise details of the coarsening process and the partitioning algorithm on thesmallest graphs in the multilevel hierarchy, and the choice of re�nement method. We explore some of thesetradeo�s in the next section, but make no claims to having explored this space in full.3 Experimental Methodology and ResultsIn this section, we empirically investigate the various algorithmic components described above in x2. Ourprimary metric for evaluating the quality of an ordering is the number of oating-point operations requiredto perform the subsequent factorization. This is a reasonable but not perfect predictor of the time requiredfor the factorization. Our metric for evaluating the cost of an ordering is the runtime of the reordering code.9

Table 1: Test matrices.Matrix Vertices Edges Vertices Edges NZ in Operations toname in G in G (103) in GC in GC (103) L (103) factor (106)BCSSTK15 3948 56 - - 615 147BCSSTK16 4884 142 1778 19 812 186BCSSTK17 10974 208 5219 41 1044 157BCSSTK18 11948 68 10926 61 637 130BCSSTK23 3134 21 2930 17 431 125BCSSTK25 15439 118 13183 82 1432 292BCSSTK29 13992 302 10202 157 1786 471BCSSTK30 28924 1007 9289 114 3852 945BCSSTK31 35588 572 17403 149 5569 2909BCSSTK32 44609 985 14821 118 4989 953BCSSTK33 8738 291 4344 83 2571 1242PWT 36519 144 36515 144 1556 162FLAP 51537 479 46014 415 4654 1199COPTER2 55476 352 - - 13937 12219FORD2 100196 222 97906 211 2378 294BIKKER2 173160 340 - - 58264 145130HSCT16K 16146 499 10467 272 3096 1131HSCT88K 88404 1912 14734 54 17741 8636SRB55K 54870 1307 24965 282 11866 4737FORD263K 263096 6267 60555 378 35817 18117STRUCT1 46949 1117 6707 23 5104 1344STRUCT2 73752 1761 10536 36 10135 4184STRUCT3 53570 560 41644 344 4946 1003CFD1 70656 878 - - 37734 44556CFD2 123440 1482 - - 75008 1364763.1 MatricesWe have tried to select a set of large, realistic test matrices for this study. The matrices we consider come fromfour sources. The �rst eleven come from the Harwell-Boeing sparse matrix test set [12]. We have includedall symmetric matrices from this set that require more than 100 Million operations to factor after applyingminimumdegree ordering. The next �ve matrices (PWT, FLAP, COPTER2, FORD2, and BIKKER2) comefrom the NAS Graph Collection at NASA Ames1. The next four (HSCT16K, HSCT88K, SRB55K, andFORD263K) come from a structural analysis application and were given to us by Olaf Storaasli at NASALangley. The �nal �ve (STRUCT1, STRUCT2, STRUCT3, CFD1, CFD2) were extracted from commercialstructural analysis and computational uid dynamics applications. Three of the problems in our test set(BIKKER2, CFD1, and CFD2) are known to have come from true 3-D problem domains. The remainderare believed to have come from 2-D or 2.5-D domains. These matrices were selected as our test suite beforeany of the experiments reported in this paper were run. All results were generated on a 90-MHz SiliconGraphics Power Challenge system, and all codes were compiled at the same level of optimization.Table 1 gives relevant information about our set of matrices, including the number of vertices in thegraph G of A, the number of edges in G (in thousands), and the number of vertices and edges in thecompressed representation GC of A. The table also shows the number of oating-point operations requiredto factor the problems (in millions) after ordering them with Amestoy, Davis, and Du�'s implementation ofthe Approximate Minimum Degree (AMD) ordering heuristic [2]. The `-' entries in the compressed graph�elds indicate that compression had no e�ect. AMD will serve as a point of reference for the remainder ofthis paper. All results, including operation counts, non-zero counts, and runtimes, will be expressed relativeto the corresponding quantities for Amestoy, Davis, and Du�'s implementation of AMD. While the MMD1http://wk122.nas.nasa.gov:80/NAS/DataSets/GAMFF/main.html10

Table 2: Floating-point operation counts, non-zero values, and ordering runtimes for MMD and METIS(relative to AMD). Operations Non-zeroes RuntimeProblem MMD METIS MMD METIS MMD METISBCSSTK15 1.12 0.72 1.06 0.88 2.9 6.7BCSSTK16 0.80 0.80 0.91 0.93 2.4 22.5BCSSTK17 0.92 1.29 0.96 1.12 2.5 17.0BCSSTK18 1.08 0.83 1.04 1.05 1.9 5.6BCSSTK23 0.95 0.99 0.97 1.09 3.4 3.7BCSSTK25 0.97 1.52 0.99 1.22 2.5 6.6BCSSTK29 0.83 1.11 0.95 1.13 3.8 19.4BCSSTK30 0.98 1.57 1.00 1.28 2.5 27.7BCSSTK31 0.88 0.59 0.95 0.95 2.5 14.5BCSSTK32 1.16 2.34 1.05 1.39 2.7 24.4BCSSTK33 0.97 0.82 0.99 0.94 3.1 18.1PWT 1.06 0.88 1.01 0.98 0.9 7.2FLAP 1.20 0.73 1.04 0.94 1.0 8.7COPTER2 0.89 0.58 0.96 0.80 1.5 4.9FORD2 0.99 1.35 1.01 1.29 1.0 6.0BIKKER2 1.10 0.29 1.06 0.60 1.7 3.8HSCT16K 0.94 0.82 0.98 0.96 3.6 20.2HSCT88K 0.95 1.38 0.98 1.20 5.8 37.7SRB55K 1.04 1.06 1.02 1.02 2.4 19.8FORD263K 1.26 1.20 1.05 1.21 3.2 29.4STRUCT1 0.95 1.36 0.99 1.28 3.0 38.5STRUCT2 1.00 1.15 1.00 1.22 2.6 38.2STRUCT3 1.02 1.11 1.01 1.06 1.8 12.5CFD1 1.06 0.36 1.01 0.62 1.2 5.8CFD2 0.73 0.39 0.87 0.65 1.0 7.0G. Mean 0.99 0.91 0.99 1.01 2.2 12.5heuristic is currently more widely used than AMD, we chose AMD as our reference for two reasons. First,the method produces comparable orderings to MMD with signi�cantly lower runtimes, so we expect thatit will become more widely used over time. Second, runtimes for MMD can be signi�cantly reduced bytaking advantage of the compressed graph representation [3, 11, 13], while runtimes for AMD are much lessinuenced by this technique (we saw less than 5% improvement for our AMD implementation). Thus, theAMD code we use is a fairer basis for comparison.We should note that all results presented in this paper come from a single ordering of an unpermuted inputmatrix. Ordering methods (particularly minimum degree methods) are known to be very sensitive to theinitial ordering. One option for reducing variations due to initial ordering would be to present mean resultsover several random permutations of the input matrix. Unfortunately, random permutations usually worsenthe results for minimum degree methods, while their e�ect is more neutral for separator based methods. Inmost practical situations, the initial ordering of the matrix is far from random. We use the initial orderinggiven by the application to avoid unfairly penalizing minimum degree methods.3.2 Previous methodsTable 2 shows oating-point operation counts, non-zero counts in L, and runtimes, relative to AMD, fortwo existing ordering methods: Liu's implementation of MMD [26] and METIS [22]. As mentioned earlier,MMD is probably the most widely used ordering method today. METIS represents a state-of-the-art nesteddissection code. The last two rows in the table give the geometric mean of the ratios over the full suiteof problems. Note that AMD and MMD provide roughly the same ordering qualities. METIS provides11

Table 3: Floating-point operation counts and ordering runtimes for edge FM and vertex FM, using balancedor unbalanced separators (relative to AMD).Operations RuntimeBalanced Unbalanced Balanced UnbalancedEdge Vertex Edge Vertex Edge Vertex Edge VertexProblem FM FM FM FM FM FM FM FMBCSSTK15 0.61 0.76 0.58 0.68 10.5 8.8 10.8 8.6BCSSTK16 0.75 0.97 0.73 0.70 10.6 6.4 9.9 6.5BCSSTK17 1.25 1.43 1.24 1.26 8.2 6.1 8.1 6.1BCSSTK18 1.13 1.09 0.94 0.84 7.9 6.3 7.9 6.5BCSSTK23 1.12 0.79 1.04 0.80 7.1 5.2 7.1 5.2BCSSTK25 1.56 1.38 1.59 1.39 7.5 5.9 7.5 5.8BCSSTK29 1.23 0.88 1.11 0.77 16.7 12.3 15.9 12.7BCSSTK30 1.34 1.46 1.44 1.30 6.2 5.4 6.7 5.9BCSSTK31 0.58 0.55 0.57 0.49 6.3 5.0 6.5 5.2BCSSTK32 2.16 2.03 2.48 1.82 5.5 4.4 5.4 4.7BCSSTK33 0.77 1.05 0.83 0.81 10.8 6.7 10.7 6.9PWT 0.98 0.97 0.78 0.79 7.8 6.8 10.9 7.5FLAP 0.66 0.80 0.67 0.65 5.5 4.4 5.9 4.5COPTER2 0.65 0.54 0.73 0.50 5.1 4.9 5.5 5.0FORD2 1.82 1.08 1.73 1.01 5.7 5.2 6.0 5.5BIKKER2 0.33 0.25 0.31 0.21 3.6 4.0 3.7 4.0HSCT16K 0.87 0.85 0.66 0.74 14.0 10.0 14.3 11.2HSCT88K 1.30 1.21 1.21 1.16 3.4 2.9 3.8 3.0SRB55K 0.94 0.97 0.87 0.79 6.0 4.9 6.4 5.3FORD263K 1.27 1.02 1.32 0.84 2.8 2.5 2.8 2.5STRUCT1 1.20 1.05 1.16 1.07 3.5 2.9 3.8 3.1STRUCT2 1.05 0.90 0.95 0.83 3.0 2.6 3.3 2.7STRUCT3 1.15 0.93 0.89 0.90 9.1 7.1 9.5 6.9CFD1 0.62 0.50 0.50 0.38 5.1 5.0 5.2 4.8CFD2 0.38 0.37 0.34 0.33 5.8 5.4 5.9 5.5G. Mean 0.94 0.87 0.89 0.77 6.4 5.2 6.7 5.4somewhat better qualities overall, although it gives roughly 4% worse orderings if the three 3-D problemsare removed from the geometric mean computation. Runtimes for MMD are roughly 2.2 times those ofAMD, on average, while runtimes for METIS are more than 12 times those of AMD. To put these runtimenumbers in perspective, numerical factorization of these matrices requires roughly 7 times the runtime ofAMD, on average, using the SGI sparse solver library (after ordering the problems with AMD). If the threeextremely computation-intensive 3-D problems are excluded, then this ratio is roughly 5.3.3 Multilevel vertex separator methodTable 3 gives results for our multilevel edge and vertex FM codes, which were described in x2.5. We usedstandard Fiduccia-Mattheyses re�nement for the edge code, and the vertex oriented variant from x2.6 forthe vertex code. The table includes results for both a balanced method, where the separators must producenearly equally sized subgraphs when they are removed, and an unbalanced approach. In this latter method,the smallest separator is found in which no subgraph contains more than 70% of the vertices in the graph.This amount of imbalance has been shown [25, 33] to produce better orderings than an approach that requiresthe subgraphs to be balanced.We make several observations from the data in this table. First, note that our balanced edge FM code givessimilar ordering qualities to METIS in roughly half the runtime. The primary reason is graph compression| our implementation works with smaller graphs. We found that compression was quite inexpensive. It12

... ...Figure 6: Graph in which good edge separator leads to poor vertex separator.added less than 3% to the runtime of the ordering in cases where it did not signi�cantly reduce the size ofthe problem.A second thing to note from the table is that balanced VFM gives somewhat better orderings thanbalanced EFM code in less time. The main reason for the reduction in runtime is that the edge FM methodmaintains edge weights in the multilevel method. In contrast, the vertex FM method does not try to splitedges and thus does not need edge weights. We found that the runtime of the edge FM method could bereduced by discarding edge weights, at the cost of reduced ordering qualities.Another interesting thing to note from the table is that allowing imbalance in the separators improvesordering qualities more for the vertex FM code (11%) than for the edge FM code (only 5%). This may helpexplain why imbalance has not been a standard feature of previous nested dissection orderings.Let us now examine the reasons why the vertex FM method produces better orderings than the edgeFM approach, especially when some imbalance is allowed. At some level, this outcome is not surprising.Recall that the goal of the partitioning method is ultimately to produce a small vertex separator. Thelocal improvement heuristic in the vertex separator method attempts to minimize the size of the separatordirectly. The edge separator method attempts to minimize the size of an edge separator, deriving the vertexseparator from the edge separator. The relationship between the two is not obvious.Indeed, one can construct pathological cases where the vertex separator derived from a minimum edgeseparator is asymptotically larger than the minimum vertex separator. Consider, for example, the graph inFigure 6. The edges cut by the vertical dashed line form a minimum edge separator. A vertex separatorwould then be derived from this edge separator by choosing a subset of the incident vertices. Note that thisvertex separator would contain one vertex for every cut edge, or a total of n=2� 1 vertices (where n is thenumber of vertices in the graph). The smallest vertex separator, on the other hand, contains just 2 vertices(the outer two).Of course, this example is quite contrived. However, there are practical cases where one would expect thetwo approaches to behave quite di�erently. One such case arises when the smallest vertex separators for agraph contain vertices of high degree (the same observation was made independently in [5]). Recall that anedge separator method attempts to minimize cut edges, deriving a vertex separator from among the verticesincident to these edges. If an edge separator is incident to high-degree vertices, then many edges from thosevertices are liable to be included in the separator. In contrast, none of the incident edges have to be cut ifthe high-degree vertices are placed in the interior of a partition. This causes such vertices to be excludedfrom the derived vertex separator. Consequently, an approach that �rst �nds a small edge separator willtend to �nd a larger vertex separator with low-degree vertices instead of a smaller separator with high-degreevertices. On the other hand, an approach that searches for a vertex separator directly has no reason to avoidplacing high degrees vertices into the separator.While high-degree vertices are clearly a problem when deriving a vertex separator from an edge separator,13

Table 4: Change in vertex separator size, for edge and vertex separator methods, when imbalance is intro-duced. Relative average vertex degrees for vertex and edge separator.Change in Change in Relative avg.separator size: separator size: vertex degree forProblem edge FM vertex FM vertices in separatorBCSSTK15 1.00 1.00 1.01BCSSTK16 1.00 0.84 1.00BCSSTK17 1.02 0.87 1.03BCSSTK18 0.77 0.84 1.07BCSSTK23 1.00 1.00 1.02BCSSTK25 0.89 0.96 1.10BCSSTK29 0.97 1.00 0.97BCSSTK30 0.78 0.93 1.24BCSSTK31 0.81 0.86 1.17BCSSTK32 1.25 0.67 0.94BCSSTK33 1.00 0.88 0.99PWT 0.83 0.95 1.01FLAP 1.01 0.89 1.00COPTER2 0.82 0.87 1.41FORD2 1.25 0.86 1.07BIKKER2 1.16 0.97 1.00HSCT16K 0.86 0.81 1.02HSCT88K 0.82 1.01 1.10SRB55K 1.00 0.96 1.01FORD263K 1.03 0.97 0.88STRUCT1 0.98 0.92 1.14STRUCT2 0.87 1.00 1.10STRUCT3 0.74 0.98 1.12CFD1 0.84 0.68 1.03CFD2 0.89 0.99 1.00G. Mean 0.93 0.90 1.05G. Mean of cubes 0.82 0.72 -experience with our problem set has indicated that this is not the only issue at work. Even in problems wherevertex degrees are relatively uniform, we still found that the vertex separator method typically producedbetter orderings.Let us now consider whether the above intuitive explanation of the behavior of the methods agrees withthe experimental data. Table 4 shows three columns of results. The �rst two columns show the change insize of the top-level separator when we move from a balanced separator to an unbalanced separator. A ratioof 0.5 would indicate that the separator size was reduced by a factor of two when imbalance was allowed.The �rst column shows the change for the edge separator approach, and the second column shows the changefor the vertex separator approach. The last two lines in the table show the mean change in separator size,and the mean change in the cube of the separator size over all problems in the test suite.As is the case with any heuristic, the results in the table vary from problem to problem. However, onecan observe that the results for the edge separator method are as one might expect. Since the methodis minimizing a function (edge separator size) that is only loosely related to the function of merit (vertexseparator size), the results are quite inconsistent. In some cases (e.g., BCSSTK30, STRUCT3), the size ofthe vertex separator decreases signi�cantly. In others (e.g., BCSSTK32, FORD2), the size of the vertexseparator actually increases. Introducing imbalance allows the method to �nd smaller edge separators, butthe vertex separators derived from them are not necessarily smaller.The results for the vertex separator approach are much more consistent. The size of the unbalancedseparator is never more than one percent larger, and is usually signi�cantly smaller than the balanced14

separator. Since the number of oating-point operations associated with a separator grows as the cube ofthe separator size, the mean of the cubes at the bottom of the table gives a rough indication of how thechanges in separator size might a�ect operation counts. Note that this measure does not capture the negativeside of introducing imbalance into the ordering, so the results are predictably overly-optimistic. However,the results are qualitatively similar to the mean operation counts observed when ordering the entire problem.The third column of results in Table 4 compares the average degree of the vertices in the top-levelseparator for the unbalanced edge and vertex separator methods. A ratio of 0.5 would indicate that theaverage degree of separators vertices for the vertex separator method is half that of the edge separatormethod. We note that of the 25 problems in our test suite, average vertex degrees di�er by more than 5for 12 of them. Of these 12, the vertex separator method produces larger vertex degrees for all but two. Itappears that the vertex degree method is placing vertices with high degree into the separator more oftenthan the edge separator method.3.4 Weighted Vertex CoverRecall that we described two di�erent local improvement strategies. The �rst was a vertex oriented variant ofFiduccia-Mattheyses. Results for this approach were presented in the previous section. The second approach,described in x2.7, was weighted vertex cover, which we now explore.Table 5 shows our results for three di�erent approaches to local improvement. The �rst (VFM) simplyapplies the vertex Fiduccia-Mattheyses heuristic at every other level of the multilevel method. The second(VFM+1WVC) follows VFM by a single weighted vertex cover (WVC) separator re�nement computation.The �nal method (VFM+WVC) applies VFM followed by iterated WVC re�nement. The table shows thatthe two heuristics together are more powerful than the VFM heuristic alone. Performing a single WVCre�nement improves the quality of the orderings by 5%, on average. Applying the re�nement heuristicrepeatedly improves the quality of the orderings by 12%.We should add that we were able to obtain comparable orderings to VFM+WVC using VFM alone bymodifying termination parameters in the VFM algorithm, but the runtime was signi�cantly higher than thatof the combined VFM+WVC approach.3.5 ND/MD hybridTable 6 shows the results of applying an ND/MD hybrid to these problems, as described in x2.8. The �rstcolumn in the table shows results for the nested dissection method from the previous section (VFM+WVC).The second column shows results after applying an AMD post-pass to the orderings produced by the nesteddissection method. If we compare the orderings from the hybrid approach to those of either method alone,we �nd that the hybrid results are consistently better. They are better than those from nested dissectionalone for 21 out of the 25 matrices, and they are better than those from AMD alone for 24 out of the 25matrices. In contrast, note that the nested dissection method alone produces worse orderings than AMDalone for �ve problems, sometimes signi�cantly worse. The additional runtime cost of the hybrid methodis minimal, since the graph that is reordered using AMD is typically extremely small. Overall, the hybridapproach improves ordering qualities by 10%.In summary, the combination of our techniques reduces operation counts by nearly 40% in comparisonto minimum degree ordering, and it reduces storage requirements by roughly 17%. Runtimes are roughly5.9 times greater than AMD and about 2.7 times greater than MMD.4 Conclusions and Future WorkThis paper has explored a variety of techniques, both new and old, for performing nested dissection ordering.In particular, we considered:� Compressed graphs: our methods all work with compressed representations of the matrices [3, 11, 13].We improved on an existing technique in order to reduce the runtime of the compression operation.� Multilevel vertex separators: our methods all use a multilevel approach to �nding separators. Unlikeprevious work with multilevel methods [10, 20, 21], we �nd vertex separators directly rather than15

Table 5: Floating-point operation counts and ordering runtimes for VFM alone, VFM plus one re�nement,and VFM plus multiple re�nements (relative to AMD).Operations RuntimeProblem VFM VFM+1WVC VFM+WVC VFM VFM+1WVC VFM+WVCBCSSTK15 0.68 0.57 0.55 8.6 9.3 10.0BCSSTK16 0.70 0.71 0.67 6.5 6.0 6.1BCSSTK17 1.26 1.24 1.19 6.1 5.9 6.6BCSSTK18 0.84 0.79 0.62 6.5 6.7 7.2BCSSTK23 0.80 0.77 0.81 5.2 5.3 6.1BCSSTK25 1.39 1.25 1.29 5.8 6.2 6.7BCSSTK29 0.77 0.77 0.71 12.7 12.4 13.4BCSSTK30 1.30 1.21 1.15 5.9 5.9 6.1BCSSTK31 0.49 0.47 0.42 5.2 5.2 5.6BCSSTK32 1.82 1.40 1.21 4.7 4.8 4.9BCSSTK33 0.81 0.67 0.60 6.9 8.0 8.9PWT 0.79 0.78 0.76 7.5 7.4 7.8FLAP 0.65 0.62 0.62 4.5 4.6 4.7COPTER2 0.50 0.49 0.48 5.0 5.3 6.0FORD2 1.01 0.93 0.92 5.5 5.5 5.5BIKKER2 0.21 0.22 0.20 4.0 4.2 4.4HSCT16K 0.74 0.72 0.65 11.2 11.9 12.2HSCT88K 1.16 1.16 1.04 3.0 3.1 3.2SRB55K 0.79 0.82 0.78 5.3 5.4 5.6FORD263K 0.84 0.93 0.86 2.5 2.6 2.6STRUCT1 1.07 0.99 0.90 3.1 3.0 3.1STRUCT2 0.83 0.81 0.77 2.7 2.9 3.0STRUCT3 0.90 0.86 0.78 6.9 7.0 7.3CFD1 0.38 0.35 0.33 4.8 5.2 5.7CFD2 0.33 0.34 0.28 5.5 5.6 6.1G. Mean 0.77 0.73 0.68 5.4 5.5 5.9
16

Table 6: Floating-point operations, non-zeroes, and runtimes for nested dissection alone (VFM+WVC), andfor the nested dissection/ minimum degree hybrid (relative to AMD).Operations Non-zeros RuntimeProblem ND Hybrid ND Hybrid ND HybridBCSSTK15 0.55 0.59 0.77 0.78 10.0 10.1BCSSTK16 0.67 0.54 0.84 0.77 6.1 6.8BCSSTK17 1.19 0.93 1.05 0.97 6.6 6.7BCSSTK18 0.62 0.61 0.87 0.86 7.2 7.2BCSSTK23 0.81 0.84 0.93 0.93 6.1 6.3BCSSTK25 1.29 0.85 1.10 0.96 6.7 6.8BCSSTK29 0.71 0.72 0.89 0.89 13.4 14.0BCSSTK30 1.15 0.88 1.06 0.98 6.1 6.0BCSSTK31 0.42 0.39 0.76 0.74 5.6 5.6BCSSTK32 1.21 1.03 1.05 1.00 4.9 4.9BCSSTK33 0.60 0.59 0.81 0.79 8.9 8.6PWT 0.76 0.75 0.91 0.91 7.8 7.8FLAP 0.62 0.62 0.86 0.86 4.7 4.7COPTER2 0.48 0.43 0.73 0.71 6.0 6.0FORD2 0.92 0.77 0.98 0.95 5.5 5.6BIKKER2 0.20 0.20 0.51 0.51 4.4 4.4HSCT16K 0.65 0.50 0.86 0.78 12.2 12.2HSCT88K 1.04 0.80 1.01 0.94 3.2 3.2SRB55K 0.78 0.61 0.90 0.84 5.6 5.6FORD263K 0.86 0.83 0.97 0.97 2.6 2.6STRUCT1 0.90 0.85 0.99 0.97 3.1 3.2STRUCT2 0.77 0.71 0.92 0.90 3.0 3.0STRUCT3 0.78 0.78 0.91 0.91 7.3 7.3CFD1 0.33 0.28 0.61 0.59 5.7 5.8CFD2 0.28 0.26 0.59 0.58 6.1 6.1G. Mean 0.68 0.61 0.86 0.83 5.9 5.9
17

deriving them from edge separators.� Local improvement: our methods use two di�erent local improvement strategies: a vertex orientedvariant of Fiduccia-Mattheyses graph partitioning [4, 14], and an iterated weighted vertex covermethod [27]. The latter is an enhancement to an existing method that allows the method work withweighted graphs.� Nested Dissection/Minimum Degree Hybrid: we employ a minimum degree post-pass to improve theorderings produced by nested dissection [7, 8, 32].In exploring this rather broad space of options, we have reached the following conclusions:� It is important to compute vertex separators directly, rather than deriving a vertex separator from anedge separator. The vertex separator approach produced 7% better orderings in less time.� Multilevel methods are extremely attractive for graph partitioning, consistently �nding high qualitypartitions very quickly.� It is crucial to allow some imbalance in the separators. In other words, the subgraphs that remainwhen the separator is removed should not be required to be of equal size. Allowing imbalance improvedorderings by 11% overall with a minimal increase in runtime.� Combining two local improvement strategies (vertex FM and iterated weighted vertex cover) provedto be more e�ective than using just one (vertex FM). Orderings improved by another 12%, althoughordering runtimes also increased by 10%.� A nested dissection/minimum degree hybrid was signi�cantly more e�ective than nested dissectionalone. Orderings improved by a further 10% while runtimes were essentially unchanged.� Overall, our nested dissection approach generated orderings that were signi�cantly better than thoseproduced by minimum degree. Operation counts were reduced by 39%, and non-zeros in the factormatrix were reduced by 17%. The runtime of the method was roughly 2.7 times the runtime of MMD,and roughly 5.9 times the runtime of AMD.As we noted in x1, two independent e�orts have also achieved excellent ordering results. Although thesemethods di�er from ours in many respects, they also involve several common components. The approachused by Ashcraft and Liu [7] includes graph compression, constrained minimum degree on subdomains, asophisticated network ow based re�nement strategy, and a minimum degree post-processing on the sepa-rators. The primary di�erence is in the construction of separators. Their approach is based on a domaindecomposition analogy, where a separator is computed on a coarsened graph and then re�ned on the originalgraph. Our approach is based on a multigrid analogy, where a separator is re�ned on a hierarchy of coarsenedgraphs. The approach taken by Gupta [19] has more similarities to our work. Gupta's WGPP software usesa multilevel vertex Fiduccia-Mattheyses technique to construct separators. The main di�erences betweenWGPP and BEND are our use of constrained minimumdegree on the subgraphs, our network ow techniquefor re�ning separators, and our use of a minimum degree post-pass on the separators. WGPP also uses adi�erent approach to coarsen the graph and to �nd an initial separator.One potential direction for further work is hinted at by Ashcraft and Liu's use of multisectioning. A keyadvantage of multisectioning is that the time spent �nding separators can be signi�cantly reduced. Karypisand Kumar have developed a multilevel edge FM algorithm that does such multisectioning [23], and issigni�cantly faster than recursively applying bisectioning. Adapting such an approach to vertex FM wouldrequire a re�nement strategy that is both fast and e�ective while working on many partitions.An additional area that maymerit further investigation is reducing the runtime associated with coarseninggraphs in the multilevel method. We believe that much of the roughly 20% of total runtime our methodspent in coarsening can be avoided. Note that the recursive nature of the nested dissection method meansthat the graphs that are coarsened at lower levels in the nested dissection method are always subgraphs ofthe graph that was coarsened in the top level. Runtimes could potentially be reduced if the entire graph werecoarsened once, and this coarsened representation were then used to coarsen subgraphs. We did not explorethis option because we built our code in a modular fashion, where the partitioning code was fed subgraphs18

to partition, without having any knowledge about the original graph. The changes required to experimentwith this approach would have been extensive.Of course, there are other ways to reduce runtime in a nested dissection method. Such methods allow oneto easily trade runtime for ordering quality by modifying the wealth of available parameters. Note that thisexibility is not available in a minimumdegree method. The ideal choice of parameters of course will dependon the application area. In many applications, one ordering is used for multiple subsequent factorizations.In such cases, ordering quality is more important than ordering runtime. In other application areas, oneordering is used for a single subsequent factorization, which makes ordering runtime more important. Forthe purposes of this study, we chose a set of parameters that we believe struck a reasonable balance betweenruntime and solution quality. However, we did not attempt to understand this tradeo� in any detail.AcknowledgementsWe are indebted to Cleve Ashcraft for several helpful conversations about the algorithmic components ofthis paper. Cleve also provided many helpful comments on an earlier draft of this paper. Bruce Hendricksonwas funded by the Applied Mathematical Sciences program, U.S. Department of Energy, O�ce of EnergyResearch and works at Sandia National Laboratories, operated for the U.S. DOE under contract numberDE-AC04-76DP00789.References[1] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications,Prentice-Hall, 1993.[2] P. Amestoy, T. Davis, and I. Duff, An approximate minimum degree ordering algorithm, Tech.Rep. TR-94-039, University of Florida, December 1994.[3] C. Ashcraft, Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput., 16 (1995),pp. 1404{1411.[4] C. Ashcraft and J. W. H. Liu, A partition improvement algorithm for generalized nested dissection,Tech. Rep. BCSTECH-94-020, Boeing Computer Services, 1994.[5] , Using domain decomposition to �nd graph bisectors, Tech. Rep. ISSTECH-95-024, Boeing Infor-mation and Support Services, 1995.[6] C. Ashcraft and J. W. H. Liu, Applications of the dulmage-mendelsohn decomposition and networkow to graph bisection improvement, Tech. Rep. ISSTECH-96-017, Boeing Computer Services, 1996. Toappear in SIAM J. Matrix Anal.[7] C. Ashcraft and J. W. H. Liu, Robust ordering of sparse matrices using multisection, Tech. Rep.ISSTECH-96-002, Boeing Information and Support Services, 1996.[8] , Generalized nested dissection: some recent progress. Minisymposium presentation at the FifthSIAM Conference on Applied Linear Algebra, Snowbird, Utah, June 18, 1994.[9] P. Berman and G. Schnitger, On the performance of the minimum degree algorithm for Gaussianelimination, SIAM J. Matrix Analysis and Applic., 11 (1990), pp. 83{88.[10] T. Bui and C. Jones, A heuristic for reducing �ll in sparse matrix factorization, in Proc. 6th SIAMConf. Parallel Processing for Scienti�c Computing, SIAM, 1993, pp. 445{452.[11] A. C. Damhaug, Sparse solution of �nite element equations, PhD thesis, Department of StructuralEngineering, The Norwegian Institute of Technology, Trondheim, Norway, 1992.[12] I. Duff, R. Grimes, and J. Lewis, Sparse matrix test problems, ACM Trans. Math. Soft., 15 (1989),pp. 1{14. 19

[13] I. S. Duff and J. K. Reid, Exploiting zeros on the diagonal in the direct solution of inde�nite sparsesymmetric linear systems, ACM Trans. Math. Softw., 22 (1996), pp. 227{257.[14] C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving network partitions,in Proc. 19th IEEE Design Automation Conference, IEEE, 1982, pp. 175{181.[15] A. George, Nested dissection of a regular �nite element mesh, SIAM J. Numer. Anal., 10 (1973),pp. 345{363.[16] A. George and J. W. H. Liu, Computer solution of large sparse positive de�nite systems, PrenticeHall, 1981.[17] , The evolution of the minimum degree ordering algorithm, SIAM Review, 31 (1989), pp. 1{19.[18] A. George, J. W. Poole, and R. Voigt, Incomplete nested dissection for solving n by n gridproblems, SIAM J. Numer. Anal, 15 (1978), pp. 663{673.[19] A. Gupta, Fast and e�ective algorithms for graph partitioning and sparse matrix reordering, Tech. Rep.RC 20496 (90799), IBM T.J. Watson Research Center, 1996.[20] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Proc. Supercom-puting '95, ACM, November 1995.[21] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs,Tech. Rep. TR 95-035, Department of Computer Science, University of Minnesota, 1995.[22] , METIS: Unstructured graph partitioning and sparse matrix ordering system, tech. rep., Depart-ment of Computer Science, University of Minnesota, 1995.[23] , Multilevel k-way partitioning scheme for irregular graphs, Tech. Rep. TR 95-064, Department ofComputer Science, University of Minnesota, 1995.[24] B. Kernighan and S. Lin, An e�cient heuristic procedure for partitioning graphs, Bell System Tech-nical Journal, 29 (1970), pp. 291{307.[25] C. Leiserson and J. Lewis, Ordering for parallel sparse symmetric factorization, in Proc. SIAMConf. on Parallel Processing for Scienti�c Computing, 1987, pp. 27{31.[26] J. W. H. Liu, Modi�cation of the minimum degree algorithm by multiple elimination, ACM Trans.Math. Soft., 11 (1985), pp. 141{153.[27] , A graph partitioning algorithm by node separators, ACM Trans. Math. Software, 15 (1989),pp. 198{219.[28] , The minimum degree ordering with constraints, SIAM J. Sci. Stats. Comput., 10 (1989), pp. 1136{1145.[29] H. Markowitz, The elimination form of the inverse and its application to linear programming, Man-agement Science, 3 (1957), pp. 255{269.[30] A. Pothen and C. Fan, Computing the block triangular form of a sparse matrix, ACM Trans. Math.Soft., 16 (1990), pp. 303{324.[31] A. Pothen, H. Simon, L. Wang, and S. Barnard, Toward a fast implementation of spectral nesteddissection, in Proc. Supercomputing '92, 1992, pp. 42{51.[32] E. Rothberg, Robust ordering of sparse matrices: a minimum degree, nested dissection hybrid. SiliconGraphics manuscript, 1995.[33] , Exploring the tradeo� between imbalance and separator size in nested dissection ordering. sub-mitted for publication, 1996.[34] W. F. Tinney and J. W. Walker, Direct solutions of sparse network equations by optimally orderedtriangular factorization, J. Proc. IEEE, 55 (1967), pp. 1801{1809.20

