Improving the Runtime and Quality of Nested Dissection Ordering”

Bruce Hendrickson Edward Rothberg
Sandia National Laboratories Silicon Graphics, Inc.
Albuquerque, NM 81785-1110 Mountain View, CA 94043

bah@cs.sandia.gov rothberg@sgi.com

March, 1996

Revised March, 1997

Abstract

When performing sparse matrix factorization, the ordering of matrix rows and columns has a dramatic
impact on the factorization time. This paper describes an approach to the reordering problem that pro-
duces significantly better orderings than prior methods. The algorithm i1s a hybrid of nested dissection and
minimum degree ordering, and combines an assortment of different algorithmic advances. New or improved
algorithms are described for graph compression, multilevel partitioning and separator improvement. When
these techniques are combined, the resulting orderings average 39% better than minimum degree over a suite
of test matrices, while requiring roughly 2.7 times the runtime of Liu’s Multiple Minimum Degree.

1 Introduction

When using a direct method to solve a linear system Az = b, where A is sparse, symmetric and positive
definite, the first step is typically a heuristic reordering of the rows and columns of A to reduce fill in
the factor matrix L (where the fill is the set of zero entries in A that become nonzero in L). Limiting
fill reduces the amount of work and storage required to factor A. The most commonly used heuristic for
performing reordering is the minimum degree algorithm [17, 34]. An alternative approach, nested dissection
ordering [15, 16], has many appealing theoretical properties, but building an implementation that gives
comparable ordering qualities and runtimes to the minimum degree method has proven to be quite difficult.
Some promising results have been demonstrated [4, 10, 21, 25, 31], but unfortunately none of these previous
efforts have produced consistently better orderings than minimum degree, and all require significantly more
runtime.

An important difference between minimum degree and nested dissection is that minimum degree can be
described concisely: it always eliminates a column containing the fewest non-zero values next. Variations
in implementation are possible (e.g., Multiple Minimum Degree (MMD) [26] and Approximate Minimum
Degree (AMD) [2]), but the fundamental algorithm remains unchanged. The nested dissection “algorithm”,
on the other hand, is in fact quite ill-specified. The method is instead a general ordering framework. Nested
dissection is fundamentally a divide and conquer approach, where division is accomplished by finding vertex
separators in a graph associated with the sparse matrix. Questions left unaddressed include:

e What properties should the vertex separators have?
e What algorithms should be used to find them?
e When should the nested recursion be halted?

e How should the separators be ordered?

*To appear in the STAM J. Sci. Comput.

Our goal in this paper is to systematically explore a relatively large space of possible answers to such
questions. In the course of our investigation, we use existing techniques in new ways, we use existing
techniques in old ways, and we describe several new techniques. In exploring this space, we have identified
an approach that consistently produces significantly better orderings than minimum degree ordering at a
cost that is only moderately higher than MMD.

We should note that others have also recently described effective new ordering methods. Ashcraft and
Liu [7] recently published the results of independent and concurrent work. While they adopt a different point
of view, they use some of the same techniques that we do, combining them in a somewhat different way.
Like the current work, they obtain orderings that are significantly better than minimum degree. Subsequent
to our work, Gupta [19] has also reported good results from a related multilevel nested dissection approach.
We will describe these efforts in greater detail in §4.

In the next section we introduce the graph theoretic concepts necessary to describe the methods explored.
We also describe the various components of our ordering approach and how they fit together. In §3, we
investigate the performance of our algorithmic modifications, separately and together, comparing the results
to prior state-of-the-art reordering algorithms. We draw some general conclusions and outline some directions
for future work in §4.

2 Methods

The concepts and techniques that are used in our approach to nested dissection ordering are described in the
following subsections. In §2.9 we explain how these pieces fit together to comprise our reordering algorithm.

2.1 Preliminaries

Algorithms involving sparse matrices are often most naturally described as operations on graphs. A graph
G = (V, E) consists of a set of vertices or nodes V and a set of vertex pairs F commonly referred to as edges.
We denote vertices by v;, and we use ¢;; for an edge between vertices v; and v;. The edge e;; is incident
to vertices v; and v;, making v; and v; adjacent vertices or neighbors. We use Adj(v;) to refer to the set
of vertices adjacent to vertex v;. The degree of a vertex is the number of edges incident to it. Each vertex
and each edge can also have an associated value known as a weight, which we denote by w(v;) and w(e;;)
respectively.

The nonzero structure of a symmetric, sparse matrix A can be conveniently represented by an undirected
graph (G. The n vertices of the graph correspond to the n columns of the matrix, and an edge connects
vertices v; and v; if A;; is nonzero. It is this simple representation that makes graph theory a powerful tool
for developing sparse matrix algorithms.

In particular, the evolution of the nonzero structure during Cholesky factorization can be described
succinctly in terms of the graph G of A. Consider what happens when a row and column of the matrix are
eliminated. In matrix terms, A «— A — azz”, where « is a scalar and z is the eliminated column of A. If
z has nonzero values in rows 7 and j, then the updated matrix A has a nonzero value in location A4;;. In
graph terms, after the elimination of a vertex v, there is an edge ¢;; in G for every pair of nodes v; and v;
in Adj(ve). The graph transformations for the full factorization are sketched in Fig. 1.

bl

For:=1n-1
For All pairs (v;, vx) of neighbors of v;
If v; is not adjacent to vy Then
Add edge ;1 to graph

Remove v; and its incident edges from the graph

Figure 1: Graph representation of sparse Cholesky factorization.

The added edges in the figure correspond precisely to the fillin the matrix. The number of floating-point
operations required to perform the factorization is equal to the sum of the squares of the degrees of each

eliminated vertex. Clearly, these quantities are functions of the order in which the rows and columns are
eliminated. The goal of reordering techniques is to reduce the fill and the floating-point complexity of the
factorization, which leads to faster, less memory-intensive solution.

The algorithms used in this paper will require some additional graph terminology. A path in a graph
is a sequence of vertices such that each consecutive pair in the sequence is joined by an edge. A graph is
connected if there is a path between every pair of vertices. A set of edges (vertices) whose removal makes a
graph disconnected is known as an edge (vertex) separator.

A bipartite graph is a graph in which the vertices can be divided into two disjoint subsets, P and @, such
that every edge connects a vertex in P to a vertex in).

A wvertex cover is a set of vertices with the property that every edge in the graph is incident to at least
one of the vertices in the vertex cover. Our approach will require that we identify a vertex cover of minimal
weight in a bipartite graph.

A matching in G is a set of edges, no two of which are incident to the same vertex. A mazimal matching
is a matching that cannot be enlarged by the addition of any other edges of G.

2.2 Minimum Degree Ordering

Recall that when a column of the matrix is eliminated, the cost of the corresponding outer-product is
proportional to the square of the number of sub-diagonal non-zero values in the column. As illustrated in
Fig. 1, the number of these non-zero values 1s simply the degree of the vertex in the graph ' corresponding
to the eliminated column. So a reasonable heuristic strategy would be to always eliminate the vertex with
the smallest degree. This simple greedy strategy is the basis of a very successful reordering technique known
as the minimum degree ordering heuristic. This idea can be viewed as a symmetric version of the Markowitz
scheme [29], and was first applied to Cholesky factorization by Tinney and Walker [34].

Various improvements to minimum degree have been proposed through the years that have greatly
improved its running time. Examples include Multiple Minimum Degree (MMD) [26] and Approximate
Minimum Degree (AMD) [2]. Although these algorithms don’t produce identical orderings, those they
generate are usually of similar quality. Due to the quality of orderings produced and the fast run times of
the advanced variants, minimum degree methods are by far the most popular methods for reordering sparse
matrices. However, they are poorly understood theoretically, and their worst case behavior can be far from
optimal [9].

2.3 Nested Dissection Ordering

An alternative to minimum degree was proposed by George [15], and is known as nested dissection. In matrix
terms, the intuition behind this approach is illustrated in Fig. 2. The basic idea is to find a set of columns
S, whose removal decouples the matrix into two parts, X and Y, whose nonzero values are in disjoint rows
and columns. If we order S after X and Y, then no fill can occur in the off-diagonal blocks of the submatrix
consisting of X and Y. Once a set S has been found, X and Y can be reordered by applying the dissection
strategy recursively, or by any other technique (e.g. minimum degree).

As with minimum degree, nested dissection can be described in terms of graph operations on the graph
of the matrix. The set S 1s a vertex separator of the graph, and X and Y are the two pieces separated by
S. One key to an effective nested dissection strategy is thus the ability to find small vertex separators.

As we will demonstrate later, a second key is allowing some imbalance between the sizes of the two
separated pieces X and Y. The utility of this tolerance was first observed by Lewis and Leiserson [25],
but has been largely overlooked. To make progress in a recursive divide-and-conquer approach, neither X
nor Y can be too small, but precise equality seems to be an unnecessary constraint. A substantially better
separator can often be found if some imbalance is tolerated.

While minimum degree is a local, bottom-up approach to reordering, nested dissection is a global,
top-down technique. This makes nested dissection more amenable to theoretical analysis. For example,
George [15] proved that nested dissection produces asymptotically optimal orderings for regular grid prob-
lems. Despite these attractive theoretical results, nested dissection until recently has not been competitive
in practice. Orderings produced by nested dissection have been less consistent and usually poorer than those
produced by minimum degree, and nested dissection algorithms are generally slower than MMD.

Figure 2: Structure of a matrix reordered via nested dissection.

2.4 Compressed Graphs

Matrices that arise in many application areas, most notably finite element analysis, can contain multiple
columns with identical adjacency structures. In graph terms, the graph G of A contains subsets of vertices
where, for any two members v; and v; of the subset, Adj(v;) U {v;} = Adj(v;) U {v;}. One can thus
compute a compressed graph G¢, which is a more concise graph representation of the structure of A [3,
11, 13]. The compressed graph is formed by merging all vertices with the same adjacencies into a single,
weighted vertex. The weight w(v;) of a vertex is equal the number of original vertices that are merged
into that compressed vertex. The weight of an edge e;; in the compressed graph is simply the product of
the weights of the endpoints of the edge (since all pairs of original vertices in each compressed vertex are
adjacent). The minimum degree ordering heuristic would normally eliminate all members of a compressed
vertex consecutively, so one can easily modify the algorithm to work with compressed graphs instead.

The nested dissection algorithm can also be modified to work with compressed graphs [3]. Note that
if one member of a compressed vertex belongs to a vertex separator, then all members of that compressed
vertex belong to the separator. The multilevel partitioning methods that we will use to find graph separators
(discussed in §2.5) already work with weighted graphs, so the application of such methods to compressed
graphs is quite natural.

The algorithm described in [3] for identifying vertices with identical structure in G computes a hash value
for each vertex v;:

hash(v;) =i+ Z J.

V€A (v:)

These hash values are used to quickly identify vertices that might have the same adjacency structures.
Clearly, if two vertices have different hash values then they have different structures. The algorithm sorts the
vertices in (G by hash value. Vertices with identical values are then adjacent in the sorted list. The algorithm
compares the adjacency structures of such vertices. The runtime of this algorithm is O(|E| + |V log |V]).

If one makes the assumption that the input to the ordering algorithm is an uncompressed graph A, then
to exploit the compressed graph representation we must include the runtime for finding this compressed
representation in the runtime for the ordering method, even if the compressed graph is identical to the
uncompressed graph. The cost of sorting the vertex hash values can be significant. Fortunately, we can take
advantage of a simple observation to significantly reduce the runtime of the method. Note that if vertices
v; and v; are members of the same compressed vertex, then v; must be adjacent to v;. Thus, rather than
sorting the vertices to find vertices with the same adjacency structure, we can simply compare hash values of
all adjacent vertices. This observation reduces the runtime of the algorithm to O(]E|). As will be discussed
later, the time spent performing compression is small in comparison to the cost of the ordering.

An O(|F|) algorithm for this problem that doesn’t require hashing can be found in [13].

2.5 Multilevel Partitioning Algorithms

In recent years, multilevel techniques for finding edge separators in graphs have received a great deal of
attention. First proposed by Bui and Jones [10], and improved by Hendrickson and Leland [20] and Karypis
and Kumar [21], these methods have proved capable of finding high quality edge separators very quickly.
The basic idea is sketched in Fig. 3 and has a close analogy with the use of multigrid methods for solving
differential equations. The original graph is approximated by a sequence of smaller and smaller graphs. The
smallest graph in the sequence is partitioned into two disjoint sets, X and Y, so as to minimize the number
of edges between the sets. This partition is propagated back through the sequence of graphs, while being
refined periodically.

Program ML-Partition(G, P)
Input: Graph G = (V| E)
Output: P, a partitioning of V

Go=0G
Until ¢ is small enough
(1) (¢ = Coarsen(G)

(2) P = Partition(G)

Until G = Gy
(¢ = Uncoarsen_Graph(G)
(3) P = Uncoarsen_Partition(P)
If desired
(4) P = Refine_Partition(P, G)

Figure 3: Structure of multilevel partitioning algorithms.

In step (1) from Fig. 3 (the coarsening step), the goal is to produce a coarse graph that maintains the
essential properties of the original graph. When partitioning, the essential properties are the size of the
separator and the sizes of the remaining sets created by the separator. Coarsening is generally performed
by contracting edges of the graph. When an edge is contracted, the two incident vertices are merged into
one, and the neighbor set of the merged vertex is the union of the neighbors of its two constituent vertices.
The weight of the merged vertex is set equal to the sum of the weights of its component vertices. If multiple
edges connect the same pair of vertices, they are replaced by a single edge with a weight equal to the sum
of the weights of the multiple edges (although such weights will prove unnecessary when computing vertex
separators). To ensure that the graph is coarsened uniformly, the set of edges to be contracted is selected to
comprise a maximal matching. Thus, the size of a coarse graph is typically slightly larger than half the size
of the original one. FEach coarsening step requires time proportional to the number of edges in the graph
being coarsened. However, the cost of the entire algorithm is difficult to bound without some understanding
of how the number of edges evolves as the coarsening proceeds.

Partitioning the coarse graph, step (2), can be performed using any partitioning algorithm that can
handle weighted graphs. In step (3), the uncoarsening phase is trivial. Each uncoarsened vertex is assigned
to the set X or Y to which its coarse counterpart was assigned. The refinement in step (4) typically employs
some variant of the local improvement approach of Kernighan and Lin [24] and Fiduccia and Mattheyses [14].
Although local refinement algorithms tend to become trapped in local minima, the multilevel nature of the
overall algorithm allows the refinement to be performed on multiple scales.

This general partitioning framework has been used in several nested dissection implementations [10, 22],
including Karypis and Kumar’s METIS software [22] which we compare against in §3. These methods first
find an edge separator via a multilevel algorithm and then derive a vertex separator from the edge separator,
typically using a matching technique that is summarized in §2.7. As we will discuss in §3.3, this approach
has the limitation that the quantity it attempts to minimize, the size of the edge separator, is only indirectly

related to the quantity that should be minimized, the size of the vertex separator.

To avoid this problem, we use a multilevel strategy that finds vertex separators directly. To do this, we
require a partitioning algorithm in step (2) that finds a vertex separator instead of an edge separator. For
this we use the vertex Fiduccia-Mattheyses method that we describe in §2.6. We also need a refinement
strategy for step (4) that improves a vertex separator. We use two refinement strategies for this problem:
vertex Fiduccia-Mattheyses, and a maximum-flow technique that we describe in §2.7. This latter algorithm
is a generalization to weighted graphs of the matching technique that is used to derive vertex separators
from edge separators. In §3.3, we compare the orderings obtained with this new method against those found
with a multilevel algorithm that finds edge separators first.

2.6 Kernighan-Lin/Fiduccia-Mattheyses for Refining Vertex Separators

An important class of algorithms for refining edge separators was introduced by Kernighan and Lin [24] and
improved by Fiduccia and Mattheyses [14]. The fundamental idea behind these algorithms is the notion of
gain, which is the reduction in the size of the separator associated with moving a vertex from one set to
another. Kernighan and Lin coupled this simple concept with an innovative local search strategy to produce
a widely imitated algorithm. Their insight was to repeatedly move the vertex with the greatest gain, even
if that gain was negative, meaning that the move would make the partition worse. Their hope was that
allowing some unhelpful moves might allow for the discovery of better partitions a few moves hence. The
best partition encountered this way is recorded. Fiduccia and Mattheyses modified the original algorithm so
that a single search for a better partition runs in time bounded by the number of edges in the graph. The
basic structure of this algorithm is sketched in Fig. 4. This algorithm has generally been used to find edge
separators, so we will denote 1t as edge FM or EFM.

Until No better partition is discovered
Best Partition = Current Partition
Compute initial gains
Until Termination criteria reached
Select vertex to move
Perform move
Update gains of vertices affected by move
If Current Partition balanced & better than Best Partition Then
Best Partition = Current Partition
End Until
Current Partition = Best Partition
End Until

Figure 4: An algorithm for refining graph partitions.

The algorithm consists of two nested loops. The inner loop performs a sequence of trial moves, remem-
bering the best partition ever encountered. Since the algorithm allows for moves that make the partition
worse, the possibility of infinite looping exists, so the constraint is imposed that a vertex cannot move twice
within the inner loop. This constraint motivates the need for the outer loop that begins the process over
again. In practice, the outer loop is executed a small number of times (< 10), particularly if the algorithm
is initialized with a good partition (as typically happens when it is used in a multilevel method).

With appropriate data structures, an inner loop can be executed in time proportional to the number of
edges in the graph. The initial gain values can be computed in O(|F|) time, and sorted with a bucket sort.
The best move can now be determined in constant time. In EFM when a vertex is moved, only the gains
of its neighbors are affected and their new values can be computed and moved to new buckets in constant
time. In this way the overall time for an inner loop is bounded by the sum of the vertex degrees, or O(|F]).

Most prior partitioning work has been devoted to improving edge separators, but for our application we
need to refine a vertex separator. Fortunately, the KL approach was extended by Asheraft and Liu [4] to

address our problem in a straightforward manner. The method begins with three sets of vertices, a separator
S that divides the remaining vertices into two disconnected pieces X and Y. The moves we consider take a
vertex v from S and transfer it to X (or Y'). When we do this, the neighbors of v that were in ¥ (or X) are
pulled into S.

Recall that we are working with weighted vertices, where a vertex’s weight corresponds to the number
of vertices from the original graph that comprise it. Consequently, we are interested in a vertex separator
of minimal total weight. With this observation, we can define the gain associated with moving a particular

vertex from S to X.
gain(v) = w(v) — Z w(u)
uEAdJ(v)ﬂY

With this definition, we can use the basic algorithmic structure from Fig. 4 to refine a vertex separator. We
will call the result vertex FM or VFM to distinguish it from the more familiar EFM.

An important feature of our vertex FM implementation is that, like the approach of Fiduccia and Matthey-
ses, the cost of an inner loop is bounded by the number of edges in the graph. As before, the gain value of a
vertex that is either in the separator or entering the separator can be computed in time proportional to the
degree of the vertex. Gain values can be sorted via a bucket sort, allowing move selection to be performed
in constant time. Now consider which vertex gains are impacted by a move. The moved vertex v is not
allowed to move again, so it is removed from further consideration. Some ui, us, ... neighbors of v will be
moved into the separator, so their gains will need to be computed. This requires time proportional to their
degrees. Also, each neighbor of w; that is already in the separator will need its gain value updated. Since
the update requires constant time, the time for updating neighbors of u; is again bounded by the degree of
u;. Since each vertex can enter the separator at most once, the total run time is bounded by the sum of the
vertex degrees, which is just twice the number of edges in the graph.

As mentioned earlier, we often wish to introduce some amount of imbalance into the partition. The
edge and vertex FM algorithms are easily modified to allow imbalance. We choose a move that increases
imbalance in the partition if: (i) the gain for that move is larger than the gain for any move that does not
increase imbalance, and (ii) the move does not violate our balance constraint (which will be described later).

When using this refinement strategy as part of a multilevel algorithm, the amount of refinement is
typically quite small. Consequently, the time required to perform VFM is usually more closely related to
the size of the separator than the size of the full graph.

2.7 Minimum Weight Vertex Cover of a Bipartite Graph

Liu [27] described an alternate algorithm for refining a vertex separator. In contrast to the VEM approach,
which moves one vertex out of the separator at a time, this refinement algorithm potentially moves a set of
vertices simultaneously. If we define Xg to be the set of vertices in X adjacent to vertices in S, then the
algorithm finds a set of vertices that forms a vertex cover for the edges between S and Xg. The vertices in
this cover come from either S or Xg. Note that any vertex cover of these edges constitutes a valid vertex
separator of (¢, and that the minimum vertex cover is the one that produces the smallest separator. It turns
out that the same approach can be used to obtain a vertex separator from an edge separator. One simply
computes a minimum vertex cover for the separator edges [30].

The refinement method described above has generally been applied to unweighted graphs, where it must
find a minimum cardinality vertex cover. Since we wish to apply this refinement algorithm at multiple levels
of the multilevel method, we must instead find a minimum weighted vertex cover. While the unweighted case
is most often described as a maximum bipartite matching problem [30], both the unweighted and weighted
vertex cover problems can also be described as network flow problems [6]. To see why, consider Fig. 5. The
central portion of the figure is just a bipartite graph B consisting of S, Xg and the edges between them.
The vertices in S are connected to a special vertex known as the source, while those in Xg are connected to
another special vertex known as the sink. Each edge in the graph can be considered to be a pipe with some
capacity. For this problem, the edges between S and Xg have infinite capacity, while edges from a vertex v
in S (Xg) to the source (sink) have capacity w(v) (unit capacity in the case of an unweighted graph). If we
wish to cut the minimum capacity of pipes to stop all possible flow going from the source to the sink, which
pipes would we cut? This is known as the min-cut problem, and is well known to be the dual of max-flow.
In terms of our original graph, the pipes we cut connect vertices of S or Xg to the source or sink vertices.

Figure 5: Flow problem equivalent to minimum weighted cover.

We need to cut enough pipes so that there is no path from the source to the sink, or equivalently, each edge
in the bipartite graph will have at least one of its end points cut. This problem corresponds precisely to
a vertex cover of the bipartite graph. Consequently, solving the min-cut/max-flow problem identifies the
minimum weight vertex cover in bipartite graph.

We compute a maximum flow in bipartite graph B using a standard augmenting path algorithm. The
details are beyond the scope of this paper; we refer the reader to [1] for more information. Our simple imple-
mentation has worse asymptotic complexity than more sophisticated weighted bipartite flow algorithms [1],
but in practice we find this algorithm to be quite fast in comparison to the remainder of the ordering
algorithm.

In our experiments, we apply this minimum weighted vertex cover approach (which we refer to as WVC)
either singly or in an iterated fashion. When applying it singly, we simply pair the current separator with
its neighbors in the larger of the two sets, and find the best cover in the resulting bipartite graph. The
reason for choosing the larger of the two sets is that the transformation is unlikely to make the sets more
unbalanced.

In our iterated approach, we continue applying the weighted cover technique until we can find no smaller
separator. In other words, we continue pairing the current separator with the larger set until the correspond-
ing minimum weight vertex cover is no smaller than the current separator. Note that the current separator
S and the two sets X and Y change in the course of the separator refinement algorithm, and the identity
of the larger set may change as well. When no improvement is obtained by looking at the boundary of the
larger set, we then try pairing the separator with the smaller set. If the result is a smaller separator with
acceptable balance between the set sizes, we accept the new separator and resume pairing with the larger
set.

2.8 Combining Nested Dissection and Minimum Degree

In order to improve both runtimes and ordering qualities, we actually use a hybrid of minimum degree
and nested dissection. We hybridize the methods in two ways. The first is the standard incomplete nested
dissection method [18]. Starting with the original graph, we perform several levels of nested dissection.

Once the subgraphs are smaller than a certain size, we order them using constrained minimum degree [28].
Incomplete nested dissection provides the benefits of nested dissection at the top levels, where most of the
factorization work is performed, while providing the runtime advantages of minimum degree on the smaller
problems.

The second hybridization we use can be thought of as minimum degree post-processing on an incomplete
nested dissection ordering. This method was originally proposed independently by Asheraft and Liu [7, 8]
and by Rothberg [32]. The hybrid begins by performing several levels of nested dissection, ordering the
remaining subgraphs using minimum degree, as described above. However, once these subgraphs have been
ordered, they are eliminated from the graph G and the remaining graph (composed of vertices belonging to
the vertex separators found by the nested dissection ordering) is reordered using minimum degree. A simple
intuition behind this hybrid method is that nested dissection makes an implicit assumption that the best
ordering of separator nodes is the one produced by the recursive division of the problem. Allowing minimum
degree to reorder the separator vertices removes this assumption.

2.9 Bringing it All Together

We have combined the techniques described in this section in an ordering code we call BEND (Bruce and
Ed’s Nested Dissection). Let us now summarize the components of this code.

Our reordering method begins by attempting to compress the graph as described in §2.4. In practice,
this is often unhelpful, and can be turned off by a user if desired. However, for many finite element and
finite difference matrices this step can dramatically improve running time, and even help the quality of the
ordering. Since with our modification the run time of this step is modest, we consider it a desirable feature
for a black-box reordering code.

We then use an incomplete nested dissection algorithm to reorder the (possibly weighted) graph. We
apply nested dissection as described in §2.3 until the pieces are fairly small (at most n/32 vertices). Since
minimum degree is generally quite effective for modest-sized graphs, we invoke a constrained version of
Approximate Minimum Degree (AMD) as discussed in §2.2 on the subgraphs.

Our algorithm uses a multilevel technique to find vertex separators for nested dissection. As discussed
in §2.5, our multilevel approach finds a vertex separator directly rather than first finding an edge separator
and then applying a minimum cover technique to derive a vertex separator from the edge separator. The
advantages of this approach will be discussed in §3.3. We coarsen until there are fewer than 50 vertices in
the graph, and then find an initial separator by placing every vertex in the separator and applying VFM as
described in §2.6. As mentioned in §2.2, we allow significant imbalance between subgraphs in the course of
computing separators.

As the separator is propagated through the sequence of intermediate graphs, we refine it every two
uncoarsening stages. We use one of three different refinement strategies: (1) VEM, (2) VFM followed by
a single step of weighted vertex cover (WVC), or (3) VFM followed by iterated WVC as described in §2.7.
The tradeoffs associated with these different options will be discussed in §3.4.

Finally, we apply a minimum degree post-pass on the ordering produced by the multilevel incomplete
nested dissection method. The benefit of applying this ND/MD hybrid will be discussed in §3.5.

Within this general framework, there are several parameters that can be varied. These include the size
of the subgraphs that cause minimum degree to be invoked, the minimum degree variant used, the amount
of imbalance tolerated, the precise details of the coarsening process and the partitioning algorithm on the
smallest graphs in the multilevel hierarchy, and the choice of refinement method. We explore some of these
tradeoffs in the next section, but make no claims to having explored this space in full.

3 Experimental Methodology and Results

In this section, we empirically investigate the various algorithmic components described above in §2. Our
primary metric for evaluating the quality of an ordering is the number of floating-point operations required
to perform the subsequent factorization. This is a reasonable but not perfect predictor of the time required
for the factorization. Our metric for evaluating the cost of an ordering is the runtime of the reordering code.

Table 1: Test matrices.

Matrix Vertices Edges Vertices Edges NZ in Operations to

name n G in G (10%) | in Ge in Ge (10%) | L (10%) factor (10°)
BCSSTK15 3948 56 - - 615 147
BCSSTK16 4884 142 1778 19 812 186
BCSSTK17 10974 208 5219 41 1044 157
BCSSTK18 11948 68 10926 61 637 130
BCSSTK23 3134 21 2930 17 431 125
BCSSTK25 15439 118 13183 82 1432 292
BCSSTK29 13992 302 10202 157 1786 471
BCSSTK30 28924 1007 9289 114 3852 945
BCSSTK31 35588 572 17403 149 5569 2909
BCSSTK32 44609 985 14821 118 4989 953
BCSSTK33 8738 291 4344 83 2571 1242
PWT 36519 144 36515 144 1556 162
FLAP 51537 479 46014 415 4654 1199
COPTER2 55476 352 - - 13937 12219
FORD2 100196 222 97906 211 2378 294
BIKKER2 173160 340 - - 58264 145130
HSCT16K 16146 499 10467 272 3096 1131
HSCT88K 88404 1912 14734 54 17741 8636
SRB55K 54870 1307 24965 282 11866 4737
FORD263K | 263096 6267 60555 378 35817 18117
STRUCT1 46949 1117 6707 23 5104 1344
STRUCT?2 73752 1761 10536 36 10135 4184
STRUCT3 53570 560 41644 344 4946 1003
CFD1 70656 878 - - 37734 44556
CFD2 123440 1482 - - 75008 136476

3.1 Matrices

We have tried to select a set of large, realistic test matrices for this study. The matrices we consider come from
four sources. The first eleven come from the Harwell-Boeing sparse matrix test set [12]. We have included
all symmetric matrices from this set that require more than 100 Million operations to factor after applying
minimum degree ordering. The next five matrices (PWT, FLAP, COPTER2, FORD2, and BIKKER2) come
from the NAS Graph Collection at NASA Ames!. The next four (HSCT16K, HSCT88K, SRB55K, and
FORD263K) come from a structural analysis application and were given to us by Olaf Storaasli at NASA
Langley. The final five (STRUCT1, STRUCT2, STRUCT3, CFD1, CFD2) were extracted from commercial
structural analysis and computational fluid dynamics applications. Three of the problems in our test set
(BIKKER2, CFDI1, and CFD2) are known to have come from true 3-D problem domains. The remainder
are believed to have come from 2-D or 2.5-D domains. These matrices were selected as our test suite before
any of the experiments reported in this paper were run. All results were generated on a 90-MHz Silicon
Graphics Power Challenge system, and all codes were compiled at the same level of optimization.

Table 1 gives relevant information about our set of matrices, including the number of vertices in the
graph G of A, the number of edges in G (in thousands), and the number of vertices and edges in the
compressed representation G¢ of A. The table also shows the number of floating-point operations required
to factor the problems (in millions) after ordering them with Amestoy, Davis, and Duff’s implementation of
the Approximate Minimum Degree (AMD) ordering heuristic [2]. The ‘-’ entries in the compressed graph
fields indicate that compression had no effect. AMD will serve as a point of reference for the remainder of
this paper. All results, including operation counts, non-zero counts, and runtimes, will be expressed relative
to the corresponding quantities for Amestoy, Davis, and Duff’s implementation of AMD. While the MMD

Thttp://wk122.mnas.nasa.gov:80/NAS/DataSets/GAMFF /main.html

10

Table 2: Floating-point operation counts, non-zero values, and ordering runtimes for MMD and METIS
(relative to AMD).

Operations Non-zeroes Runtime
Problem MMD METIS | MMD METIS | MMD METIS
BCSSTK15 1.12 0.72 1.06 0.88 2.9 6.7
BCSSTK16 0.80 0.80 0.91 0.93 2.4 22.5
BCSSTK17 0.92 1.29 0.96 1.12 2.5 17.0
BCSSTK18 1.08 0.83 1.04 1.05 1.9 5.6
BCSSTK23 0.95 0.99 0.97 1.09 3.4 3.7
BCSSTK25 0.97 1.52 0.99 1.22 2.5 6.6
BCSSTK29 0.83 1.11 0.95 1.13 3.8 19.4
BCSSTK30 0.98 1.57 1.00 1.28 2.5 27.7
BCSSTK31 0.88 0.59 0.95 0.95 2.5 14.5
BCSSTK32 1.16 2.34 1.05 1.39 2.7 24.4
BCSSTK33 0.97 0.82 0.99 0.94 3.1 18.1
PWT 1.06 0.88 1.01 0.98 0.9 7.2
FLAP 1.20 0.73 1.04 0.94 1.0 8.7
COPTER2 0.89 0.58 0.96 0.80 1.5 4.9
FORD?2 0.99 1.35 1.01 1.29 1.0 6.0
BIKKER2 1.10 0.29 1.06 0.60 1.7 3.8
HSCT16K 0.94 0.82 0.98 0.96 3.6 20.2
HSCT88K 0.95 1.38 0.98 1.20 5.8 377
SRB55K 1.04 1.06 1.02 1.02 2.4 19.8
FORD263K 1.26 1.20 1.05 1.21 3.2 29.4
STRUCT1 0.95 1.36 0.99 1.28 3.0 38.5
STRUCT?2 1.00 1.15 1.00 1.22 2.6 38.2
STRUCTS3 1.02 1.11 1.01 1.06 1.8 12.5
CFD1 1.06 0.36 1.01 0.62 1.2 5.8
CFD2 0.73 0.39 0.87 0.65 1.0 7.0
G. Mean 0.99 0.91 0.99 1.01 2.2 12.5

heuristic is currently more widely used than AMD, we chose AMD as our reference for two reasons. First,
the method produces comparable orderings to MMD with significantly lower runtimes, so we expect that
it will become more widely used over time. Second, runtimes for MMD can be significantly reduced by
taking advantage of the compressed graph representation [3, 11, 13], while runtimes for AMD are much less
influenced by this technique (we saw less than 5% improvement for our AMD implementation). Thus, the
AMD code we use 1s a fairer basis for comparison.

We should note that all results presented in this paper come from a single ordering of an unpermuted input
matrix. Ordering methods (particularly minimum degree methods) are known to be very sensitive to the
initial ordering. One option for reducing variations due to initial ordering would be to present mean results
over several random permutations of the input matrix. Unfortunately, random permutations usually worsen
the results for minimum degree methods, while their effect is more neutral for separator based methods. In
most practical situations, the initial ordering of the matrix is far from random. We use the initial ordering
given by the application to avoid unfairly penalizing minimum degree methods.

3.2 Previous methods

Table 2 shows floating-point operation counts, non-zero counts in L, and runtimes, relative to AMD, for
two existing ordering methods: Liu’s implementation of MMD [26] and METIS [22]. As mentioned earlier,
MMD is probably the most widely used ordering method today. METIS represents a state-of-the-art nested
dissection code. The last two rows in the table give the geometric mean of the ratios over the full suite
of problems. Note that AMD and MMD provide roughly the same ordering qualities. METIS provides

11

Table 3: Floating-point operation counts and ordering runtimes for edge FM and vertex FM, using balanced
or unbalanced separators (relative to AMD).

Operations Runtime
Balanced Unbalanced Balanced Unbalanced

Edge Vertex | Edge Vertex | Edge Vertex | Edge Vertex
Problem FM FM FM FM FM FM FM FM
BCSSTK15 0.61 0.76 | 0.58 0.68 | 10.5 8.8 | 108 8.6
BCSSTK16 0.75 0.97 | 0.73 0.70 | 10.6 6.4 9.9 6.5
BCSSTK17 1.25 143 | 1.24 1.26 8.2 6.1 8.1 6.1
BCSSTK18 1.13 1.09 | 0.94 0.84 7.9 6.3 7.9 6.5
BCSSTK23 1.12 0.79 | 1.04 0.80 7.1 5.2 7.1 5.2
BCSSTK25 1.56 1.38 | 1.59 1.39 7.5 5.9 7.5 5.8
BCSSTK29 1.23 0.88 | 1.11 0.77 | 16.7 12.3 | 15.9 12.7
BCSSTK30 1.34 146 | 1.44 1.30 6.2 5.4 6.7 5.9
BCSSTK31 0.58 0.55 | 0.57 0.49 6.3 5.0 6.5 5.2
BCSSTK32 2.16 2.03 | 248 1.82 5.5 4.4 5.4 4.7
BCSSTK33 0.77 1.05 | 0.83 0.81 | 10.8 6.7 | 10.7 6.9
PWT 0.98 0.97 | 0.78 0.79 7.8 6.8 | 10.9 7.5
FLAP 0.66 0.80 | 0.67 0.65 5.5 4.4 5.9 4.5
COPTER2 0.65 0.54 | 0.73 0.50 5.1 4.9 5.5 5.0
FORD?2 1.82 1.08 | 1.73 1.01 5.7 5.2 6.0 5.5
BIKKER2 0.33 0.25 | 0.31 0.21 3.6 4.0 3.7 4.0
HSCT16K 0.87 0.85 | 0.66 0.74 | 14.0 10.0 | 14.3 11.2
HSCT88K 1.30 1.21] 1.21 1.16 3.4 2.9 3.8 3.0
SRB55K 0.94 0.97 | 0.87 0.79 6.0 4.9 6.4 5.3
FORD263K | 1.27 1.02 | 1.32 0.84 2.8 2.5 2.8 2.5
STRUCT1 1.20 1.05 | 1.16 1.07 3.5 2.9 3.8 3.1
STRUCT?2 1.05 0.90 | 0.95 0.83 3.0 2.6 3.3 2.7
STRUCTS3 1.15 0.93 | 0.89 0.90 9.1 7.1 9.5 6.9
CFD1 0.62 0.50 | 0.50 0.38 5.1 5.0 5.2 4.8
CFD2 0.38 0.37 | 0.34 0.33 5.8 5.4 5.9 5.5
G. Mean 0.94 0.87 | 0.89 0.77 6.4 5.2 6.7 5.4

somewhat better qualities overall, although it gives roughly 4% worse orderings if the three 3-D problems
are removed from the geometric mean computation. Runtimes for MMD are roughly 2.2 times those of
AMD, on average, while runtimes for METIS are more than 12 times those of AMD. To put these runtime
numbers in perspective, numerical factorization of these matrices requires roughly 7 times the runtime of
AMD, on average, using the SGI sparse solver library (after ordering the problems with AMD). If the three
extremely computation-intensive 3-D problems are excluded, then this ratio is roughly 5.

3.3 Multilevel vertex separator method

Table 3 gives results for our multilevel edge and vertex FM codes, which were described in §2.5. We used
standard Fiduccia-Mattheyses refinement for the edge code, and the vertex oriented variant from §2.6 for
the vertex code. The table includes results for both a balanced method, where the separators must produce
nearly equally sized subgraphs when they are removed, and an unbalanced approach. In this latter method,
the smallest separator is found in which no subgraph contains more than 70% of the vertices in the graph.
This amount of imbalance has been shown [25, 33] to produce better orderings than an approach that requires
the subgraphs to be balanced.

We make several observations from the data in this table. First, note that our balanced edge FM code gives
similar ordering qualities to METIS in roughly half the runtime. The primary reason is graph compression
— our implementation works with smaller graphs. We found that compression was quite inexpensive. It

12

Figure 6: Graph in which good edge separator leads to poor vertex separator.

added less than 3% to the runtime of the ordering in cases where it did not significantly reduce the size of
the problem.

A second thing to note from the table is that balanced VFM gives somewhat better orderings than
balanced EFM code in less time. The main reason for the reduction in runtime is that the edge FM method
maintains edge weights in the multilevel method. In contrast, the vertex FM method does not try to split
edges and thus does not need edge weights. We found that the runtime of the edge FM method could be
reduced by discarding edge weights, at the cost of reduced ordering qualities.

Another interesting thing to note from the table is that allowing imbalance in the separators improves
ordering qualities more for the vertex FM code (11%) than for the edge FM code (only 5%). This may help
explain why imbalance has not been a standard feature of previous nested dissection orderings.

Let us now examine the reasons why the vertex FM method produces better orderings than the edge
FM approach, especially when some imbalance i1s allowed. At some level, this outcome is not surprising.
Recall that the goal of the partitioning method is ultimately to produce a small vertex separator. The
local improvement heuristic in the vertex separator method attempts to minimize the size of the separator
directly. The edge separator method attempts to minimize the size of an edge separator, deriving the vertex
separator from the edge separator. The relationship between the two is not obvious.

Indeed, one can construct pathological cases where the vertex separator derived from a minimum edge
separator is asymptotically larger than the minimum vertex separator. Consider, for example, the graph in
Figure 6. The edges cut by the vertical dashed line form a minimum edge separator. A vertex separator
would then be derived from this edge separator by choosing a subset of the incident vertices. Note that this
vertex separator would contain one vertex for every cut edge, or a total of n/2 — 1 vertices (where n is the
number of vertices in the graph). The smallest vertex separator, on the other hand, contains just 2 vertices
(the outer two).

Of course, this example is quite contrived. However, there are practical cases where one would expect the
two approaches to behave quite differently. One such case arises when the smallest vertex separators for a
graph contain vertices of high degree (the same observation was made independently in [5]). Recall that an
edge separator method attempts to minimize cut edges, deriving a vertex separator from among the vertices
incident to these edges. If an edge separator is incident to high-degree vertices, then many edges from those
vertices are liable to be included in the separator. In contrast, none of the incident edges have to be cut if
the high-degree vertices are placed in the interior of a partition. This causes such vertices to be excluded
from the derived vertex separator. Consequently, an approach that first finds a small edge separator will
tend to find a larger vertex separator with low-degree vertices instead of a smaller separator with high-degree
vertices. On the other hand, an approach that searches for a vertex separator directly has no reason to avoid
placing high degrees vertices into the separator.

While high-degree vertices are clearly a problem when deriving a vertex separator from an edge separator,

13

Table 4: Change in vertex separator size, for edge and vertex separator methods, when imbalance is intro-
duced. Relative average vertex degrees for vertex and edge separator.

Change in Change in Relative avg.
separator size: separator size: vertex degree for

Problem edge FM vertex FM vertices in separator
BCSSTK15 1.00 1.00 1.01
BCSSTK16 1.00 0.84 1.00
BCSSTK17 1.02 0.87 1.03
BCSSTK18 0.77 0.84 1.07
BCSSTK23 1.00 1.00 1.02
BCSSTK25 0.89 0.96 1.10
BCSSTK29 0.97 1.00 0.97
BCSSTK30 0.78 0.93 1.24
BCSSTK31 0.81 0.86 1.17
BCSSTK32 1.25 0.67 0.94
BCSSTK33 1.00 0.88 0.99
PWT 0.83 0.95 1.01
FLAP 1.01 0.89 1.00
COPTER2 0.82 0.87 1.41
FORD2 1.25 0.86 1.07
BIKKER2 1.16 0.97 1.00
HSCT16K 0.86 0.81 1.02
HSCT88K 0.82 1.01 1.10
SRB55K 1.00 0.96 1.01
FORD263K 1.03 0.97 0.88
STRUCT1 0.98 0.92 1.14
STRUCT?2 0.87 1.00 1.10
STRUCTS3 0.74 0.98 1.12
CFD1 0.84 0.68 1.03
CFD2 0.89 0.99 1.00

G. Mean 0.93 0.90 1.05

G. Mean of cubes 0.82 0.72 -

experience with our problem set has indicated that this is not the only issue at work. Even in problems where
vertex degrees are relatively uniform, we still found that the vertex separator method typically produced
better orderings.

Let us now consider whether the above intuitive explanation of the behavior of the methods agrees with
the experimental data. Table 4 shows three columns of results. The first two columns show the change in
size of the top-level separator when we move from a balanced separator to an unbalanced separator. A ratio
of 0.5 would indicate that the separator size was reduced by a factor of two when imbalance was allowed.
The first column shows the change for the edge separator approach, and the second column shows the change
for the vertex separator approach. The last two lines in the table show the mean change in separator size,
and the mean change in the cube of the separator size over all problems in the test suite.

As is the case with any heuristic, the results in the table vary from problem to problem. However, one
Since the method
is minimizing a function (edge separator size) that is only loosely related to the function of merit (vertex
separator size), the results are quite inconsistent. In some cases (e.g., BCSSTK30, STRUCTS3), the size of
the vertex separator decreases significantly. In others (e.g., BCSSTK32, FORD2), the size of the vertex
separator actually increases. Introducing imbalance allows the method to find smaller edge separators, but
the vertex separators derived from them are not necessarily smaller.

The results for the vertex separator approach are much more consistent. The size of the unbalanced

can observe that the results for the edge separator method are as one might expect.

separator is never more than one percent larger, and is usually significantly smaller than the balanced

14

separator. Since the number of floating-point operations associated with a separator grows as the cube of
the separator size, the mean of the cubes at the bottom of the table gives a rough indication of how the
changes in separator size might affect operation counts. Note that this measure does not capture the negative
side of introducing imbalance into the ordering, so the results are predictably overly-optimistic. However,
the results are qualitatively similar to the mean operation counts observed when ordering the entire problem.

The third column of results in Table 4 compares the average degree of the vertices in the top-level
separator for the unbalanced edge and vertex separator methods. A ratio of 0.5 would indicate that the
average degree of separators vertices for the vertex separator method is half that of the edge separator
method. We note that of the 25 problems in our test suite, average vertex degrees differ by more than 5
for 12 of them. Of these 12, the vertex separator method produces larger vertex degrees for all but two. It
appears that the vertex degree method is placing vertices with high degree into the separator more often
than the edge separator method.

3.4 Weighted Vertex Cover

Recall that we described two different local improvement strategies. The first was a vertex oriented variant of
Fiduccia-Mattheyses. Results for this approach were presented in the previous section. The second approach,
described in §2.7, was weighted vertex cover, which we now explore.

Table 5 shows our results for three different approaches to local improvement. The first (VEM) simply
applies the vertex Fiduccia-Mattheyses heuristic at every other level of the multilevel method. The second
(VFM+1WVC) follows VFM by a single weighted vertex cover (WVC) separator refinement computation.
The final method (VEM+WVC) applies VEM followed by iterated WVC refinement. The table shows that
the two heuristics together are more powerful than the VFM heuristic alone. Performing a single WVC
refinement improves the quality of the orderings by 5%, on average. Applying the refinement heuristic
repeatedly improves the quality of the orderings by 12%.

We should add that we were able to obtain comparable orderings to VEFM+WVC using VFM alone by
modifying termination parameters in the VFM algorithm, but the runtime was significantly higher than that

of the combined VFM+WVC approach.

3.5 ND/MD hybrid

Table 6 shows the results of applying an ND/MD hybrid to these problems, as described in §2.8. The first
column in the table shows results for the nested dissection method from the previous section (VEM+WVC).
The second column shows results after applying an AMD post-pass to the orderings produced by the nested
dissection method. If we compare the orderings from the hybrid approach to those of either method alone,
we find that the hybrid results are consistently better. They are better than those from nested dissection
alone for 21 out of the 25 matrices, and they are better than those from AMD alone for 24 out of the 25
matrices. In contrast, note that the nested dissection method alone produces worse orderings than AMD
alone for five problems, sometimes significantly worse. The additional runtime cost of the hybrid method
is minimal, since the graph that is reordered using AMD is typically extremely small. Overall, the hybrid
approach improves ordering qualities by 10%.

In summary, the combination of our techniques reduces operation counts by nearly 40% in comparison
to minimum degree ordering, and it reduces storage requirements by roughly 17%. Runtimes are roughly
5.9 times greater than AMD and about 2.7 times greater than MMD.

4 Conclusions and Future Work

This paper has explored a variety of techniques, both new and old, for performing nested dissection ordering.
In particular, we considered:
e Compressed graphs: our methods all work with compressed representations of the matrices [3, 11, 13].
We improved on an existing technique in order to reduce the runtime of the compression operation.

e Multilevel vertex separators: our methods all use a multilevel approach to finding separators. Unlike
previous work with multilevel methods [10, 20, 21], we find vertex separators directly rather than

15

Table 5: Floating-point operation counts and ordering runtimes for VFM alone, VFM plus one refinement,
and VFM plus multiple refinements (relative to AMD).

Operations Runtime
Problem VFM VFM+1WVC VFM4+WVC | VFM VFM+1WVC VFM4+WVC
BCSSTK15 0.68 0.57 0.5b 8.6 9.3 10.0
BCSSTK16 0.70 0.71 0.67 6.5 6.0 6.1
BCSSTK17 1.26 1.24 1.19 6.1 5.9 6.6
BCSSTK18 0.84 0.79 0.62 6.5 6.7 7.2
BCSSTK23 0.80 0.77 0.81 5.2 5.3 6.1
BCSSTK25 1.39 1.25 1.29 5.8 6.2 6.7
BCSSTK29 0.77 0.77 0.71 12.7 12.4 13.4
BCSSTK30 1.30 1.21 1.15 5.9 5.9 6.1
BCSSTK31 0.49 0.47 0.42 5.2 5.2 5.6
BCSSTK32 1.82 1.40 1.21 4.7 4.8 4.9
BCSSTK33 0.81 0.67 0.60 6.9 8.0 8.9
PWT 0.79 0.78 0.76 7.5 7.4 7.8
FLAP 0.65 0.62 0.62 4.5 4.6 4.7
COPTER2 0.50 0.49 0.48 5.0 5.3 6.0
FORD?2 1.01 0.93 0.92 5.5 5.5 5.5
BIKKER2 0.21 0.22 0.20 4.0 4.2 4.4
HSCT16K 0.74 0.72 0.65 11.2 11.9 12.2
HSCT88K 1.16 1.16 1.04 3.0 3.1 3.2
SRB55K 0.79 0.82 0.78 5.3 5.4 5.6
FORD263K | 0.84 0.93 0.86 2.5 2.6 2.6
STRUCT1 1.07 0.99 0.90 3.1 3.0 3.1
STRUCT?2 0.83 0.81 0.77 2.7 2.9 3.0
STRUCTS3 0.90 0.86 0.78 6.9 7.0 7.3
CFD1 0.38 0.35 0.33 4.8 5.2 5.7
CFD2 0.33 0.34 0.28 5.5 5.6 6.1
G. Mean 0.77 0.73 0.68 5.4 5.5 5.9

16

Table 6: Floating-point operations, non-zeroes, and runtimes for nested dissection alone (VFM+WVC), and
for the nested dissection/ minimum degree hybrid (relative to AMD).

Operations Non-zeros Runtime
Problem ND Hybrid | ND Hybrid | ND Hybrid
BCSSTK15 | 0.55 0.59 | 0.77 0.78 | 10.0 10.1
BCSSTK16 | 0.67 0.54 | 0.84 0.77 | 6.1 6.8
BCSSTK17 | 1.19 0.93 | 1.05 097 | 6.6 6.7
BCSSTK18 | 0.62 0.61 | 0.87 0.86 | 7.2 7.2
BCSSTK23 | 0.81 0.84 | 0.93 0.93 | 6.1 6.3
BCSSTK25 | 1.29 0.85 | 1.10 0.96 | 6.7 6.8
BCSSTK29 | 0.71 0.72] 0.89 0.89 | 13.4 14.0
BCSSTK30 | 1.15 0.88 | 1.06 0.98 | 6.1 6.0
BCSSTK31 | 0.42 0.39 | 0.76 0.74 | 5.6 5.6
BCSSTK32 | 1.21 1.03 | 1.05 1.00 | 4.9 4.9
BCSSTK33 | 0.60 0.59 | 0.81 0.79 | 8.9 8.6
PWT 0.76 0.75 1 0.91 091] 7.8 7.8
FLAP 0.62 0.62 | 0.86 0.86 | 4.7 4.7
COPTER2 | 0.48 0.43 | 0.73 0.71 | 6.0 6.0
FORD?2 0.92 0.77 | 0.98 0.95| 55 5.6
BIKKER2 0.20 0.20 | 0.51 0.51 | 44 4.4
HSCT16K 0.65 0.50 | 0.86 0.78 | 12.2 12.2
HSCT88K 1.04 0.80 | 1.01 0.94 | 3.2 3.2
SRB55K 0.78 0.61 | 0.90 0.84 | 5.6 5.6
FORD263K | 0.86 0.83 | 0.97 097 | 2.6 2.6
STRUCT1 | 0.90 0.85 | 0.99 097 | 3.1 3.2
STRUCT2 | 0.77 0.71] 0.92 0.90 | 3.0 3.0
STRUCT3 | 0.78 0.78 | 0.91 091] 7.3 7.3
CFD1 0.33 0.28 | 0.61 0.59 | 5.7 5.8
CFD2 0.28 0.26 | 0.59 0.58 | 6.1 6.1
G. Mean 0.68 0.61 | 0.86 0.83 | 5.9 5.9

17

deriving them from edge separators.

e Local improvement: our methods use two different local improvement strategies: a vertex oriented
variant of Fiduccia-Mattheyses graph partitioning [4, 14], and an iterated weighted vertex cover
method [27]. The latter is an enhancement to an existing method that allows the method work with
weighted graphs.

e Nested Dissection/Minimum Degree Hybrid: we employ a minimum degree post-pass to improve the
orderings produced by nested dissection [7, 8, 32].
In exploring this rather broad space of options, we have reached the following conclusions:

e It is important to compute vertex separators directly, rather than deriving a vertex separator from an
edge separator. The vertex separator approach produced 7% better orderings in less time.

e Multilevel methods are extremely attractive for graph partitioning, consistently finding high quality
partitions very quickly.

e It is crucial to allow some imbalance in the separators. In other words, the subgraphs that remain
when the separator is removed should not be required to be of equal size. Allowing imbalance improved
orderings by 11% overall with a minimal increase in runtime.

e Combining two local improvement strategies (vertex FM and iterated weighted vertex cover) proved
to be more effective than using just one (vertex FM). Orderings improved by another 12%, although
ordering runtimes also increased by 10%.

e A nested dissection/minimum degree hybrid was significantly more effective than nested dissection
alone. Orderings improved by a further 10% while runtimes were essentially unchanged.

e Overall, our nested dissection approach generated orderings that were significantly better than those
produced by minimum degree. Operation counts were reduced by 39%, and non-zeros in the factor
matrix were reduced by 17%. The runtime of the method was roughly 2.7 times the runtime of MMD,
and roughly 5.9 times the runtime of AMD.

As we noted 1n §1, two independent efforts have also achieved excellent ordering results. Although these
methods differ from ours in many respects, they also involve several common components. The approach
used by Ashcraft and Liu [7] includes graph compression, constrained minimum degree on subdomains, a
sophisticated network flow based refinement strategy, and a minimum degree post-processing on the sepa-
rators. The primary difference is in the construction of separators. Their approach is based on a domain
decomposition analogy, where a separator is computed on a coarsened graph and then refined on the original
graph. Our approach is based on a multigrid analogy, where a separator is refined on a hierarchy of coarsened
graphs. The approach taken by Gupta [19] has more similarities to our work. Gupta’s WGPP software uses
a multilevel vertex Fiduccia-Mattheyses technique to construct separators. The main differences between
WGPP and BEND are our use of constrained minimum degree on the subgraphs, our network flow technique
for refining separators, and our use of a minimum degree post-pass on the separators. WGPP also uses a
different approach to coarsen the graph and to find an initial separator.

One potential direction for further work is hinted at by Ashcraft and Liu’s use of multisectioning. A key
advantage of multisectioning is that the time spent finding separators can be significantly reduced. Karypis
and Kumar have developed a multilevel edge FM algorithm that does such multisectioning [23], and is
significantly faster than recursively applying bisectioning. Adapting such an approach to vertex FM would
require a refinement strategy that is both fast and effective while working on many partitions.

An additional area that may merit further investigation is reducing the runtime associated with coarsening
graphs in the multilevel method. We believe that much of the roughly 20% of total runtime our method
spent in coarsening can be avoided. Note that the recursive nature of the nested dissection method means
that the graphs that are coarsened at lower levels in the nested dissection method are always subgraphs of
the graph that was coarsened in the top level. Runtimes could potentially be reduced if the entire graph were
coarsened once, and this coarsened representation were then used to coarsen subgraphs. We did not explore
this option because we built our code in a modular fashion, where the partitioning code was fed subgraphs

18

to partition, without having any knowledge about the original graph. The changes required to experiment
with this approach would have been extensive.

Of course, there are other ways to reduce runtime in a nested dissection method. Such methods allow one
to easily trade runtime for ordering quality by modifying the wealth of available parameters. Note that this
flexibility is not available in a minimum degree method. The ideal choice of parameters of course will depend
on the application area. In many applications, one ordering is used for multiple subsequent factorizations.
In such cases, ordering quality 1s more important than ordering runtime. In other application areas, one
ordering is used for a single subsequent factorization, which makes ordering runtime more important. For
the purposes of this study, we chose a set of parameters that we believe struck a reasonable balance between
runtime and solution quality. However, we did not attempt to understand this tradeoff in any detail.

Acknowledgements

We are indebted to Cleve Ashcraft for several helpful conversations about the algorithmic components of
this paper. Cleve also provided many helpful comments on an earlier draft of this paper. Bruce Hendrickson
was funded by the Applied Mathematical Sciences program, U.S. Department of Energy, Office of Energy
Research and works at Sandia National Laboratories, operated for the U.S. DOE under contract number

DE-AC04-76DP00789.

References

[1] R. Anusa, T. MAGNANTI, AND J. ORLIN, Network Flows: Theory, Algorithms, and Applications,
Prentice-Hall, 1993.

[2] P. AMEsTOY, T. Davis, AND I. DUFF, An approzimale minimum degree ordering algorithm, Tech.
Rep. TR-94-039, University of Florida, December 1994.

[3] C. ASHCRAFT, Compressed graphs and the minimum degree algorithm, STAM J. Sci. Comput., 16 (1995),
pp. 1404-1411.

[4] C. AsHCRAFT AND J. W. H. Liu, A partition improvement algorithm for generalized nested disseclion,
Tech. Rep. BCSTECH-94-020, Boeing Computer Services, 1994.

[6] ——, Using domain decomposition to find graph biseciors, Tech. Rep. ISSTECH-95-024, Boeing Infor-
mation and Support Services; 1995.

[6] C. AsHCRAFT AND J. W. H. Liu, Applications of the dulmage-mendelsohn decomposition and nelwork
flow to graph bisection improvement, Tech. Rep. ISSTECH-96-017, Boeing Computer Services, 1996. To
appear in STAM J. Matrix Anal.

[7] C. AsHCRAFT AND J. W. H. Liu, Robust ordering of sparse matrices using mullisection, Tech. Rep.
ISSTECH-96-002, Boeing Information and Support Services, 1996.

[8] ——, Generalized nested dissection: some recent progress. Minisymposium presentation at the Fifth

SIAM Conference on Applied Linear Algebra, Snowbird, Utah, June 18, 1994.

[9] P. BERMAN AND . SCHNITGER, On the performance of the minimum degree algorithm for Gaussian
elimination, STAM J. Matrix Analysis and Applic., 11 (1990), pp. 83-88.

[10] T. Bur aND C. JoNEs, A heuristic for reducing fill in sparse matriz factorization, in Proc. 6th SIAM
Conf. Parallel Processing for Scientific Computing, STAM, 1993, pp. 445-452.

[11] A. C. DaMHAUG, Sparse solulion of finile element equations, PhD thesis, Department of Structural
Engineering, The Norwegian Institute of Technology, Trondheim, Norway, 1992.

[12] 1. DUFF, R. GRIMES, AND J. LEWIS, Sparse matriz test problems, ACM Trans. Math. Soft., 15 (1989),
pp. 1-14.

19

[13] T. S. Durr aND J. K. REID, Ezploiling zeros on the diagonal in the direct solution of indefinile sparse
symmetric linear systems, ACM Trans. Math. Softw., 22 (1996), pp. 227-257.

[14] C. M. Fipuccia AND R. M. MATTHEYSES, A linear time heuristic for improving network partitions,
in Proc. 19th IEEE Design Automation Conference, IEEE, 1982, pp. 175-181.

[15] A. GEORGE, Nested dissection of a regular finite element mesh, STAM J. Numer. Anal., 10 (1973),
pp- 345-363.

[16] A. GEORGE AND J. W. H. Liu, Computer solution of large sparse positive definite systems, Prentice
Hall, 1981.

[17] ——, The evolution of the minimum degree ordering algorithm, STAM Review, 31 (1989), pp. 1-19.

[18] A. GEORGE, J. W. PooLE, aAND R. VoIGT, Incomplele nested dissection for solving n by n grid
problems, STAM J. Numer. Anal, 15 (1978), pp. 663-673.

[19] A. GupTa, Fast and effective algorithms for graph partitioning and sparse matriz reordering, Tech. Rep.
RC 20496 (90799), IBM T.J. Watson Research Center, 1996.

[20] B. HENDRICKSON AND R. LELAND, A multilevel algorithm for partitioning graphs, in Proc. Supercom-
puting ‘95, ACM, November 1995.

[21] G. KaRryPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitioning irregular graphs,
Tech. Rep. TR 95-035, Department of Computer Science, University of Minnesota, 1995.

[22] ——, METIS: Unstructured graph partitioning and sparse matriz ordering system, tech. rep., Depart-
ment of Computer Science, University of Minnesota, 1995.

[23] ——, Multilevel k-way partitioning scheme for irreqular graphs, Tech. Rep. TR 95-064, Department of
Computer Science, University of Minnesota, 1995.

[24] B. KERNIGHAN AND S. LIN, An efficient heuristic procedure for partitioning graphs, Bell System Tech-
nical Journal, 29 (1970), pp. 291-307.

[25] C. LEISERSON AND J. LEWIS, Ordering for parallel sparse symmelric factorization, in Proc. SIAM
Conf. on Parallel Processing for Scientific Computing, 1987, pp. 27-31.

[26] J. W. H. Liu, Modification of the minimum degree algorithm by mulliple elimination, ACM Trans.
Math. Soft., 11 (1985), pp. 141-153.

[27] ——, A graph partitioning algorithm by node separators, ACM Trans. Math. Software, 15 (1989),
pp. 198-219.

[28] ——, The minimum degree ordering with constraints, STAM J. Sci. Stats. Comput., 10 (1989), pp. 1136—
1145.

[29] H. MARKOWITZ, The elimination form of the inverse and ils application to linear programming, Man-
agement Science, 3 (1957), pp. 255-269.

[30] A. PorHEN AND C. FaNn, Compuling the block iriangular form of a sparse mairiz, ACM Trans. Math.
Soft., 16 (1990), pp. 303-324.

[31] A. PoTHEN, H. SiMON, L. WANG, AND S. BARNARD, Toward a fast implementation of spectral nested
dissection, in Proc. Supercomputing ’92, 1992, pp. 42-51.

[32] E. ROTHBERG, Robust ordering of sparse matrices: a minimum degree, nested dissection hybrid. Silicon
Graphics manuscript, 1995.

[33] ——, FEzploring the tradeoff between imbalance and separalor size in nested dissection ordering. sub-
mitted for publication, 1996.

[34] W. F. TINNEY AND J. W. WALKER, Direct solutions of sparse network equations by optimally ordered
triangular factorization, J. Proc. IEEE, 55 (1967), pp. 1801-1809.

20

