
Transient Solid Dynamics Simulationson the Sandia/Intel Teraop ComputerStephen Attaway�, Ted Barragyy, Kevin Brown�, David Gardner�,Bruce Hendrickson�, Steve Plimpton�and Courtenay Vaughan�AbstractTransient solid dynamics simulations are among the most widely used en-gineering calculations. Industrial applications include vehicle crashworthinessstudies, metal forging, and powder compaction prior to sintering. These cal-culations are also critical to defense applications including safety studies andweapons simulations. The practical importance of these calculations and theircomputational intensiveness make them natural candidates for parallelization.This has proved to be di�cult, and existing implementations fail to scale tomore than a few dozen processors. In this paper we describe our parallelizationof PRONTO, Sandia's transient solid dynamics code, via a novel algorithmicapproach that utilizes multiple decompositions for di�erent key segments ofthe computations, including the material contact calculation. This latter cal-culation is notoriously di�cult to perform well in parallel, because it involvesdynamically changing geometry, global searches for elements in contact, andunstructured communications among the compute nodes. Our approach scalesto at least 3600 compute nodes of the Sandia/Intel Teraop computer (thelargest set of nodes to which we have had access to date) on problems involvingmillions of �nite elements. On this machine we can simulate models using morethan ten-million elements in a few tenths of a second per timestep, and solveproblems more than 3000 times faster than a single processor Cray Jedi.1 IntroductionTransient dynamics simulations are among the most widely used engineering cal-culations. The industrial application which consumes more time on Cray vectorsupercomputers than any other is crash simulations, a prototypical transient dynam-ics calculation[7]. Other industrial applications include simulations of metal forging,�Sandia National Labs, Albuquerque, NM.yIntel Corporation, Beaverton, OR. 1



powder compaction prior to sintering and other processes involving high stresses andstrains. These calculations are also critical to defense applications including safetystudies and weapons simulations. A number of commercial and government solid dy-namics codes have been developed including DYNA, PamCrash and ABACUS. Sandiaalso has a long history of research and code development in this area, headlined by thePRONTO code suite. PRONTO is similar in scope to the commercial codes, but alsoincludes smoothed particle hydrodynamics (SPH), which allows for simulations withvery high strains (e.g., explosions) or coupled uid/structure interaction problems.A discussion of some PRONTO simulations can be found Section 7. The practicalimportance of transient dynamics simulations, combined with their computationalintensiveness would seem to make them natural candidates for parallelization. Unfor-tunately, this has proved to be quite di�cult. For reasons discussed below, existingparallel implementations fail to scale to more than a few dozen processors. Thesedisappointing results have convinced leaders in the solid dynamics community thatparallel computing can not yet make a signi�cant impact in this �eld[2].In Section 2 we describe the functionality and structure of PRONTO. In Section 3we explain why transient dynamics simulations have been di�cult to parallelize. Ourparallelization strategy is sketched in Section 4 and some further performance en-hancements are described in Section 5. The performance of the code on some scalableproblems is discussed in Section 6. A discussion of applications enabled by parallelPRONTO follows in Section 7. Conclusions are drawn in Section 8.2 What is PRONTO?PRONTO is a three-dimensional, transient solid dynamics code which is used for an-alyzing large deformations of nonlinear materials subjected to high rates of strain[3].Developed over the past 10 years, PRONTO is a production-level code used by over 50organizations inside and outside Sandia. Input to the code includes an unstructuredgrid consisting of an arbitrary mixture of hexahedral elements, shell elements, rigidbodies and smoothed particles. PRONTO implements a Lagrangian �nite-elementmethod with explicit time integration and adaptive timestep control to integratethe equations of motion. The �nite-element formulation uses eight-node, uniformstrain hexahedral elements and four-node quadrilateral uniform strain shell elements.Either the Flanagan-Belytschko hourglass control scheme or an assumed-strain hour-glass control scheme can be used to control element distortions. PRONTO containsa variety of complex, nonlinear material models, including elastic-plastic materialswith various types of strain hardening. A critical feature of the code is a robust al-gorithm for detecting when one material surface contacts another, for example in anautomobile collision when the bumper buckles into the radiator. Correctly identifyingsurfaces in contact requires sophisticated algorithms for searching the global set of�nite-elements. In a complex simulation, the cost of contact detection alone can be2



more than 50% of the run time on a sequential machine. A PRONTO timestep hasthe following structure.1. Perform �nite element analysis to compute forces on elements.2. Compute forces between smoothed particles.3. Predict new locations of particles and grid elements.4. Search for contacts between mesh elements, or between elements and particles.5. Correct the locations by pushing back objects in contact.Stages (1), (2) and (4) dominate the sequential run time. The contact search instage (4) typically consumes 30-60% of the time, so a great deal of e�ort has beenexpended over the years to make this computation fast[4]. The result of this e�ortwas the replacement in PRONTO of oating point operations with a faster approachinvolving sorting and searching in integer lists.3 Why is Parallelization Di�cult?Parallelizing transient dynamics codes is challenging for several reasons. For PRONTOthere is the obvious complexity of starting with a fully featured production code. Allits functionality must be parallelized in a scalable way. Even more daunting is theinherent di�culty of parallelizing several key kernel operations which operate on dif-ferent data sets. The �rst task is to parallelize the �nite element (FE) portion of thecode. This is conceptually straightforward: partition the elements among processorsin a way that balances computation while minimizing communication[5]. But par-allelizing contact detection (which is performed on only the surface mesh - not thevolumetric FE mesh) is much harder. To our knowledge, no previous attempts atparallelizing contact detection have scaled to more than a few dozen processors[8, 9].Since, in principle, on a given timestep any surface can contact any other, contactdetection requires some kind of global search. As the geometry of the simulationevolves, this requires dynamic load balancing and irregular communication. Prob-lems which exhibit any global, dynamic or irregular behavior are challenging to par-allelize; contact detection exhibits all three. Parallelizing smoothed particle hydro-dynamics (SPH) is also a challenging problem. Particles with time-dependent radiiinteract if they are geometrically near each other, and their density can vary greatlyas the calculation proceeds, posing a load-balancing problem. Computing the physicsof the SPH interactions also requires several stages of inter-processor communicationwithin a timestep. The key di�culty in making a code like PRONTO perform wellon a large parallel machine is that all of these computational kernels must be par-allelized e�ciently within the same timestep. And each of the kernels operates on adi�erent data set (volumetric mesh, surface mesh, particles) whose spatial density is3



dynamically changing.4 Our Parallel ImplementationWe only sketch our parallelization strategy here. More details can be found in someof the references[1, 6, 10]. Most previous attempts to parallelize transient dynamicscodes have relied upon a single decomposition of the mesh for both �nite elementsand contact detection. But these operations demand very di�erent decompositionproperties. The �nite element analysis performs optimally only if each processor hasthe same number of elements and interprocessor boundaries are minimized. Thisdecomposition can be generated once and used throughout the calculation. In con-trast, contact detection and SPH depend upon geometric proximity, so a geometricdecomposition is most appropriate. As the elements and particles evolve, the decom-positions should change dynamically. The key idea behind our parallelization strategyis that we construct and maintain di�erent decompositions for the di�erent portionsof the calculation. We choose appropriate decompositions to optimize performanceof each phase: a graph-based static method for the �nite element analysis generatedby Chaco[5], and dynamic, geometric decompositions for contact detection and SPH.For the latter we use recursive coordinate bisection (RCB) which has a number ofattractive properties for this application. The advantage of this approach is that wecan achieve high performance in all phases of the calculation. The downside is thatwe need to communicate considerable information between the di�erent decomposi-tions which is expensive in both time and memory. But by carefully implementingthe communication routines we can limit the run time cost, and solid dynamics calcu-lations are not generally memory-bound. As our results will indicate, the advantagesof multiple decompositions greatly outweigh the costs.A timestep of parallel PRONTO has the following structure.1. Perform �nite element analysis to compute forces on elements.2. Update the RCB decomposition of smoothed particles.3. Compute forces between smoothed particles.4. Predict new locations of particles and grid points.5. Ship data to previous decomposition of the contact problem.6. Update the RCB decomposition of the contact problem.7. Search for contacts between mesh elements, or between elements and particles.8. Communicate contact results back to �nite element and SPH decompositions.9. Correct the locations by pushing back objects in contact.Our parallelization of PRONTO required about 15,000 lines of new code. Inaddition, much of the original PRONTO code was restructured for the parallel version4



to improve data locality on cache-based architectures.5 Maximizing PerformanceThe goal of both serial and parallel PRONTO is to enable very large problems torun as quickly as possible. The dominant steps in the above outline are stages (1)and (7). (In this and the next section we focus on mesh-only problems though SPHcomputations can also be time consuming.) The fastest way to perform the globalsearches inherent in stage (7) is to do virtually no ops at all, but rather to use integer-based sort and search operations. Our calculations were performed on the 3600-nodeSandia Teraop computer. Each node of this machine has 128 Mbytes of memoryand two 200 Mhz Pentium-Pro processors, each of which runs at 200 Mops peak.We specially coded the kernel operations of the �nite element computation to use thesecond processor for computation wherever possible. In practice the speed-up thusobtained is limited by memory bandwidth since the two processors share the samememory bus. We also reorganized some data structures to improve cache locality.These e�orts improved the performance of the �nite element computation from 40Mops per node to over 120 Mops per node. For the contact computation, ouralgorithm already insures load-balance of the basic sort and search operations. Wefurther optimized by altering the basic algorithm to avoid a global search on most ofthe timesteps. To accomplish this we occasionally perform a full search which storesall pairs of nearby surfaces. On subsequent timesteps we need only scan this listinstead of searching the processor's entire domain. When the geometry has evolvedenough that the lists could miss possible contacts, a new global search is triggered.This method requires extra memory for storing the lists, but it halved the overallcontact computation time.6 PerformanceDepending on the physical problem being modeled, parallel PRONTO can run as apure �nite element computation without contacts, as �nite elements with contacts,as pure SPH particles (no �nite elements), or as coupled �nite elements and SPHparticles with contacts. Here we focus on the performance of the �rst two cases.In all of the performance numbers we present, we timed the outermost timesteppingloop of PRONTO to determine CPU time per timestep. Problem setup time (which isconstant independent of the number of timesteps simulated), was not included since itis insigni�cant in production-scale runs. We counted oating-point operations usinghardware counters on the Pentium Pro chips. This hardware counts oating pointdivides, adds and multiplies as one op each.To test the performance of a pure �nite element run of parallel PRONTO, we5



modeled a steel bar with hexahedral elements vibrating due to an oscillatory stresswhile being pinned at the ends. This simple problem was selected since it is easy toscale to di�erent sizes. Strains induced between adjacent elements and the material'sequation of state are modeled in the FE computation, but the bar does not bendenough to create contacts. We observed nearly 100% parallel e�ciency in runningthis problem if we scaled the problem size (number of mesh elements) linearly withthe number of processors. As mentioned above, the FE computational kernels runat about 120 Mops/node. Interprocessor communication is only a few percent ofthe total run time. Other lower op-rate overhead within the timestep (boundaryconditions and time integration) takes about one half the CPU time regardless ofthe number of processors. Scaling the problem to the full Teraop machine, we rana 14.04 million element version of the beam problem on 3600 nodes at 224.9 Gops(62.5 Mops/node), requiring 0.166 CPU secs/timestep.Our second benchmark is more interesting as it is prototypical of the problems forwhich PRONTO was designed. We simulated the crush of an idealized steel shippingcontainer by an inclined wall, as shown in Fig. 1. As with the �rst benchmark, thiscomputation is easily scaled due to its regular geometry. However, this calculation isconsiderably more complex. The crumpling of the folded surfaces is a stringent testof the contact algorithm's accuracy and performance. A symmetry plane was used sothat only half the container was actually simulated. An elastic-plastic material modelwas used for the steel in both the can and wall. Within the contact algorithm, globalsearches were conducted about every �ve timesteps.

Figure 1: Crushing of idealized shipping container.Parallel timings are shown in Fig. 2 for a set of small scaled simulations with1875 elements/node. Every time the number of processors P is doubled, the mesh isre�ned in one of the three dimensions so that the number of mesh elements N alsodoubles. Thus the leftmost data points are for a 3750 element simulation running on2 processors. The rightmost data points are for a 6.57 million element simulation on3504 processors. 6



100 101 102 103 104
0.0

0.1

0.2

0.3

Processors

C
P

U
 ti

m
e/

tim
es

te
p 

(s
ec

on
ds

)

Figure 2: Scaled speedup for small container-crush problem.The topmost curve is the total CPU time per timestep averaged over a 100 mi-crosecond (problem time) run. On the small problems this is a few hundred timesteps;on the large problems it is several thousand, since the timestep size must shrink as themesh is re�ned. The lowest curve is the portion of time spent in the FE computation.Contact detection is the time between the lowest and middle curves. Overhead is thetime between the top two curves. We again see excellent scalability to very large Nand P. Perfect scalability would be a horizontal line on this plot. The FE computationscales essentially perfectly. The contact detection time varies from one problem sizeto the next due to variations in surface-to-volume ratios of mesh elements as re�ne-ment is done in di�erent dimensions, but is also roughly horizontal. The overheadtime is also a constant portion of the total run time (i.e. scalable) as P increases untilthe P=2048 and P=3504 data points. The reason for the non-scalability here is thatthe overhead timing includes the cost to push-back contacts that are detected. Thisnormally small computation becomes somewhat unbalanced in this problem on very7



large numbers of processors. The overall op performance of parallel PRONTO onthis problem is 76.05 Gops on 3504 nodes of the Teraop machine. Essentially allthe ops are computed within the FE computation (lowest curve) which again runsat about 120 Mops/node. The majority of the remaining CPU time is spent in theinteger-based contact searches and sorts (no ops).A set of larger simulations of the container crush was also performed where eachrun used a mesh with about 3800 elements/node. These timings are shown in theFig. 3. As before, the upper curve is total CPU time per timestep. PRONTO againevidences excellent scalability, since all of the timing curves are roughly horizontal.The largest problem (rightmost data points) is a simulation of 13.8 million meshelements on 3600 nodes of the Teraop machine. It runs at a sustained rate of 120.4Gops or 33.4 Mops/node.

100 101 102 103 104
0.0

0.1

0.2

0.3

0.4

0.5

Processors

C
P

U
 ti

m
e/

tim
es

te
p 

(s
ec

on
ds

)

Figure 3: Scaled speedup for large container-crush problem.
8



7 ApplicationsParallel PRONTO has been used to perform a range of calculations which were pre-viously impractical or impossible. Here we briey sketch three representative appli-cations.7.1 Application I: Airplane Crash Fuel DispersalIn an airplane crash, �res fed by ruptured fuel tanks are a great threat to survivorsand to hazardous cargo. The danger posed by such a �re depends critically on thedispersal pattern of the fuel. Parallel PRONTO is ideally suited for simulating thesekinds of incidents since it can combine structural analysis for the plane with smoothedparticle hydrodynamics for the fuel. Fig. 4 shows a simulation of an airplane wingstriking a vertical pole. In the image on the left, the purple dots are SPH particlesrepresenting the resulting fuel cloud. The image on the right shows the damageto the wing itself. Note that the collision tears the wing. This particular exampleillustrates how pronto allows the surface to be adaptively rede�ned as portions ofmodel experience failure. If the strain in a given element becomes too large, failureis simulated by deleting the element. Allowing the elements to be adaptively deletedrequires the parallel contact algorithm to be capable of tracking and updating thechanging contact surface as the problem progresses. This calculation was run on 128nodes of the Teraop computer using about 110,000 hexahedral and shell elementsto model the structures and about 130,000 SPH elements to model the fuel. Moredetailed versions of this problem are being developed which will include the entireairplane and a soil model for impact. the current limitation lies in the tools to buildthe computational mesh. These calculations are being performed by John Pott atSandia.7.2 Application II: Shipping Container IntegrityA problem of great interest to the DOE is the integrity of shipping containers fortransporting weapons and hazardous waste. Speci�cally, will the containers functionproperly in the event of a vehicular collision? An image of such a simulation ofinterest is depicted in Fig. 5, where the container is about to be crushed between twosteel walls. This simulation involves more than 1.3 million elements, and includesboth hexahedral and shell elements. The large number of elements is necessary toresolve critical small-scale structural details of the container. Studies of this modelwith parallel PRONTO are ongoing. This work is being performed by Je� Gruda atSandia.
9



Figure 4: Simulation of wing hitting vertical pole.7.3 Application III: Constitutive Models of FoamsFoams of various types are widely used to distribute impact forces or to absorb en-ergy in collisions. The macroscopic properties of foams depend upon their �ne-scalestructure in a complex manner that is not well understood. Better constitutive mod-els of foam properties can be obtained through simulations of small-scale behavior.Unfortunately, very large simulations are necessary to be able to compare computa-tions to experiments. Until the parallelization of PRONTO, such simulations wereimpossible. This example illustrates how parallel PRONTO has enabled qualitativelynew and di�erent engineering studies.Fig. 6 depicts a simulation of an open-cell foam, with cells about 1mm in diame-ter. A linear elastic material model was used, but the complex buckling and foldinggenerates complex nonlinear behavior. The foam is being crushed from above by afast moving plate.As the picture reveals, there is some crush near the impacting plate, but muchmore on the opposing boundary. This is due to the reection of stress waves o� ofthe bottom plate. This behavior is consistent with experimental observations.Each of the foam struts was modeled with multiple hexahedral elements, totalingmore than 900,000. While one could use beam �nite elements, the complex deforma-tion patterns associated with large crush could cause the beam elements di�culty. Inparticular, the beam-on-beam contact would be very hard to detect. By using hexa-10



Figure 5: Simulation of shipping container crushed between steel walls.hedral elements, we are able to model very complex contact conditions. The drawbackto using hexahedral elements, aside from the number of elements required, is that avery small timestep is required to properly integrate the motion. The problem wasrun on 512 nodes of the Teraop computer and required 8.8 hours of CPU time. Over650,000 timesteps were used to integrate the motion in this problem. The complexityof the model and the physics can be appreciated in the close-up view shown in Fig. 7.The large number of �nite elements comprising the struts are clearly visible, as is thecomplicated folding and contact patterns. The red regions are those with the higheststresses. This study is being conducted by Mike Neilsen and Stephen Attaway atSandia.8 ConclusionsWe have successfully parallelized a large-scale production solid dynamics code with anovel algorithmic approach that utilizes multiple decompositions for di�erent key seg-ments of the computations. On our 3600-node Teraop computer, parallel PRONTOruns complex �nite element (FE) simulations with global contact searches at rates ofup to 120 Gops. The �nite element kernel can run contact-free FE simulations at a11



Figure 6: Simulation of partially crushed, open-cell foam.rate of 225 Gops. While these op rates may not seem impressive when comparedto other kinds of simulations or the peak rate of the Pentium Pro chips, some con-text may be useful. First, to be able to simulate a more than ten million elementmodel in a few tenths of second per timestep is unprecedented for solid dynamicssimulations, especially when full global contact searches are required. The key reasonis our new algorithm for e�ciently parallelizing the contact detection stage. To ourknowledge scalability of this computation had never before been demonstrated onmore than 64 processors. This has enabled parallel PRONTO to become the onlysolid dynamics code we are aware of that can run e�ectively on 1000s of processors.More importantly, our parallel performance compares very favorably to the originalserial PRONTO code which is optimized for vector supercomputers. On the containercrush problem, a Teraop node (two Pentium Pro processors) is as fast as a singleprocessor of the Cray Jedi. This means on 3600 nodes of the Teraop machine we cannow run simulations with tens of millions of elements over 3000 times faster than wecould on the Jedi! This is enabling transient dynamics simulations of unprecedentedscale and �delity. Not only can previous applications be run with vastly improvedresolution and speed, but qualitatively new and di�erent analyses have been madepossible.
12



Figure 7: Close-up view of partially crushed, open-cell foam.AcknowledgmentsWe are indebted to Gary Hennigan at Sandia for creating the NEMESIS toolkitwhich has been of great utility to us in pre-processing our multi-million elementmeshes for the Teraop machine. Ben Cole of Intel has provided timely hardwareand software support to our project. Tim Preston of Sandia helped us maintain aquality production-level code. Running our suites of test problems would not havebeen possible without the helpful scripts provided by Christi Forsythe and MikeBrayer of Sandia. This work was performed at Sandia National Laboratories. Sandiais a multiprogram laboratory operated by Sandia Corporation, a Lockheed MartinCompany, for the United States Department of Energy (DOE) under contract DE-AC04-94AL85000. We gratefully Sandia/Intel Teraop computer. We also receivedfunding from the Joint DoD/DOE Munitions Technology Development Program fordevelopment of the contact algorithm. 13



References[1] Stephen W. Attaway, Bruce A. Hendrickson, Steven J. Plimpton, David R. Gard-ner, Courtenay T. Vaughan, Martin W. Heinstein, James S. Peery. ParallelContact Detection Algorithm for Transient Solid Dynamics Simula-tions Using PRONTO3D. Proc. International Mech. Eng. Congress & Expo-sition `96, November 1996.[2] Ted Belytschko. Northwestern University, personal communication.[3] L. M. Flanagan and D. P. Flanagan. PRONTO3D: A Three-DimensionalTransient Solid Dynamics Program. Tech. Rep. SAND87-1912, Sandia Na-tional Labs, Albuquerque, NM, March 1989.[4] M. W. Heinstein, S. W. Attaway, J. W. Swegle and F. J. Mello. A General-Purpose Contact Detection Algorithm for Nonlinear Structural Anal-ysis Codes. Tech. Rep. SAND92-2141, Sandia National Labs, Albuquerque,NM, May 1993.[5] Bruce Hendrickson and Robert Leland. The Chaco User's Guide: Version2.0. Tech. Rep. SAND94-2692, Sandia National Labs, Albuquerque, NM, June1995.[6] Bruce Hendrickson, Steve Plimpton, Steve Attaway, Courtenay Vaughan, DavidGardner. A New Parallel Algorithm for Contact Detection in FiniteElement Methods. Proc. High Performance Computing '96, April 1996.[7] Mike Heroux. Cray Research, personal communication.[8] C. G. Hoover, A. J. DeGroot, J. D. Maltby, R. D. Procassini. Paradyn:DYNA3D for massively Parallel Computers. Presentation at the Tri-Laboratory Engineering Conference on Computational Modeling, October 1995.[9] J. G. Malone and N. L. Johnson. A Parallel Finite Element Con-tact/Impact Algorithm for Nonlinear Explicit Transient Analysis:Part II - Parallel Implementation. Intl. J. Num. Methods Eng. 37 (1994),pp. 591-603.[10] Steve Plimpton, Steve Attaway, Bruce Hendrickson, Je� Swegle, CourtenayVaughan, David Gardner.Transient Dynamics Simulations: Parallel Algo-rithms for Contact Detection and Smoothed Particle Hydrodynamics.Proc. Supercomputing'96, November 1996.
14


