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Preface

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia Na-
tional Laboratories for focused collaborative research on computer science, computational science, and
mathematics problems that are critical to the mission of the laboratories, the Department of Energy, and
the United States. The CSRI provides a mechanism by which university researchers learn about and impact
national– and global–scale problems while simultaneously bringing new ideas from the academic research
community to bear on these important problems.

A key component of CSRI programs over the last decade has been an active and productive summer
program where students from around the country conduct internships at CSRI. Each student is paired with
a Sandia staff member who serves as technical advisor and mentor. The goals of the summer program
are to expose the students to research in mathematical and computer sciences at Sandia and to conduct a
meaningful and impactful summer research project with their Sandia mentor. Every effort is made to align
summer projects with the student’s research objectives and all work is coordinated with the ongoing research
activities of the Sandia mentor in alignment with Sandia technical thrusts.

The CSRI has encouraged all summer participants and their mentors to contribute a technical article
to the CSRI Summer Proceedings, of which this document is the sixth installment. In many cases, the
CSRI proceedings are the first opportunity that students have to write a research article. Not only do these
proceedings serve to document the research conducted at CSRI but, as part of the research training goals of
CSRI, it is the intent that these articles serve as precursors to or first drafts of articles that could be submitted
to peer–reviewed journals. As such, each article has been reviewed by a Sandia staff member knowledgeable
in that technical area with feedback provided to the authors. Several articles have or are in the process of
being submitted to peer–reviewed conferences or journals and we anticipate that additional submissions will
be forthcoming.

For the 2013 CSRI Proceedings, research articles have been organized into the following broad technical
focus areas — Computational Mathematics and Algorithms, Combinatorial Algorithms and Visualization,
Advanced Architectures and Systems Software, Computational Applications — which are well aligned with
Sandia’s strategic thrusts in computer and information sciences.

We would like to thank all participants who have contributed to the outstanding technical accomplish-
ments of CSRI in 2013 as documented by the high quality articles in this proceedings. The success of CSRI
hinged on the hard work of 19 enthusiastic student collaborators and their dedicated Sandia technical staff
mentors. It is truly impressive that the research described herein occurred primarily over a three month
period of intensive collaboration.

CSRI benefited from the administrative help of Amy Levan, Phyllis Rutka, Denise Laporte, and Bernadette
Watts. The success of the CSRI is, in large part, due to their dedication and care, which are much appre-
ciated. We would also like to thank those who reviewed articles for this proceedings — their feedback is
an important part of the research training process and has significantly improved the quality of the papers
herein.

Sivasankaran Rajamanickam
Michael L. Parks

S. Scott Collis

July 22, 2014
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Computational Mathematics and Algorithms

Articles in this section focus on development of numerical algorithms and novel computational models.
This includes preconditioning methodologies, iterative solver techniques, and numerical algorithms on novel
architectures.

Deweese and Boman discuss preconditioners for solving linear systems arising from graph Lapacians
and present comparisons against traditional preconditioners. Elliott and Hoemmen quantify the impact of
a bit-flip in GMRES. They use a fault model to either bound the fault or to detect it easily. Osborn and
Phipps investigate the performance of linear solves on hybrid CPU and GPU architectures and show promis-
ing results for solving linear systems in multiple GPU systems. Zhou et al. present a new algebraic fast
H-matrix solver. Typically, these solvers use geometric information. This present work extends to algebraic
problems and shows scalability results. Shank et al. extend the KKT preconditioning strategy to the indef-
inite Helmholtz case. They show that this strategy is insensitive to mesh resolution and modestly sensitive
to frequency changes. Bond et al. introduce a mesh-free Galerkin method for solving non-local diffusion
problems by using a quadratic scheme specific to radial basis functions. They show results on 1D and 2D
problems. Yang et al. detail an implementation of implicit smoothed particle hydrodynamics package in
LAMMPS and use Trilinos solvers for linear solves. They test their implementations with a Taylor-Green
vortex example and present results.

S. Rajamanickam
M.L. Parks
S.S. Collis

July 22, 2014
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A COMPARISON OF PRECONDITIONERS FOR SOLVING LINEAR SYSTEMS ARISING
FROM GRAPH LAPLACIANS

KEVIN DEWEESE∗ AND ERIK G. BOMAN1

Abstract. We consider the solution of linear systems corresponding to the combinatorial and normalized graph Laplacians of large
unstructured networks. A promising approach to solving these problems is to use a class of support tree preconditioners. We previously
implemented such a preconditioner in Trilinos in serial using the Epetra software stack. This work extends that implementation to run in
parallel on distributed memory systems and migrates the implementation to the Tpetra software stack to help with future development.
This preconditioner is compared against the other preconditioners currently available in Trilinos.

1. Introduction. Networks play an important role in many application areas, for example engineering,
social sciences, and biology [8]. We focus on networks that are large and unstructured. Several analysis
techniques rely on solving linear systems and eigensystems of graph Laplacians such as random walks [4]
and Katz centrality scores [6] using linear solvers and graph partitioning [10] and clustering [11] using
eigensolvers. These solvers can be very compute intensive tasks but preconditioners can be used to dramat-
ically reduce the solution time. Although there are many good preconditioners for PDEs, they are generally
not suited for graph Laplacians from highly irregular graphs or scale-free networks. Several graph based
preconditioners with strong theoretical results have been developed over the past decade [7, 9]. However
these are difficult to implement. We instead seek to better understand the support tree preconditioner first
proposed by Vaidya [1] and how it compares to other preconditioners on these graph problems.

1.1. Background. The combinatorial Laplacian of a graph G is given by

LG = D−AG

where AG is the adjacency matrix of G and D is the diagonal matrix containing the sum of adjacent edge
weights, or in the unweighted case just the vertex degree. A special scaling of this matrix called the normal-
ized Laplacian is given by

NG = D−1/2LGD−1/2.

Both LG and NG are positive-semidefinite and diagonally dominant. An interesting note is that solving
LGx = b can be done indirectly by solving NGx′ = b′. We can see this by setting x′ = D1/2x and b′ = D−1/2b
yielding the following.

NGx′ = b′

D−1/2LGD−1/2D1/2x = D−1/2b

D1/2D−1/2LGx = b

∗UC Santa Barbara Dept. of Computer Science, kdeweese@cs.ucsb.edu
1Sandia National Laboratories, egboman@sandia.gov. Sandia is a multi-program laboratory managed and operated by Sandia Cor-

poration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security
Administration under contract DE-AC04-94AL85000.
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LGx = b

Thus if solving one system is faster than the other, perhaps the normalized Laplacian as it is typically
better conditioned, then it could be solved and the solution converted. However the eigenproblems must be
solved separately as each Laplacian has a different spectra.

1.2. Preconditioners. A good preconditioner M of a matrix A should reduce the number of iterations
of the preconditioned system M−1A. In other words M should be a good inverse approximation of A. In
addition solving the system Mw = y should be much easier to solve than Ax = b as it will be solved at every
iteration. The first constraint prompts us to bound the condition number of M−1A while the second constraint
requires us to bound the fill in the triangular factors of the preconditioner. Assuming a complete Cholesky
factorization is used these factors will be of the form M =CCT and will be used to quickly solve CCT w = y.
Perhaps the most simple preconditioner is the Jacobi method which sets M = D where D is the diagonal of
A. While not a very good inverse approximation this preconditioner is very cheap to apply at every iteration.
A slightly better inverse approximation could be used such as the symmetric Gauss-Seidel preconditioner
which decomposes the input matrix into triangular parts A = L+D+U and uses M = (D+L)D−1(D+U).
Another popular preconditioning technique is to use an incomplete Cholesky factorization to approximately
factor the matrix A 'M = C̃C̃T by dropping some entries during the factorization of A. The first of a class
of support graph preconditioners was proposed by Vaidya which finds a maximum-weight spanning tree of
the graph of A and uses this as a preconditioner. This preconditioner has condition number O(nm) which
bounds the number of iterations of the preconditioned system to O(

√
nm), where n is the dimension of

the matrix (number of vertices) and m is the number of non-zero entries of the matrix (number of edges).
However these are worst case bounds and typically the number of iterations required is much less. Since the
preconditioner corresponds to a tree it can be factored with no fill.

2. Software. A version of Vaidya’s preconditioner was previously implemented inside the Ifpack pack-
age of Trilinos [5]. Ifpack uses Epetra linear algebra primitives as opposed to the more recent, templated
Tpetra primitives. Tpetra allows arbitrary scalar data types and arbitrary index types. Most future Trilinos
development will focus on packages using this new Tpetra stack. For these reasons we decided to migrate
all future work concerning support graph preconditioners to this new Tpetra software stack. The packages
relevant to our work can be seen in Figure 2.1.

Feature Old Stack New Stack
Core Epetra Tpetra
Sparse Direct Amesos Amesos2
Preconditioners Ifpack Ifpack2
Partitioning and Ordering Zoltan Zoltan2

FIG. 2.1. Trilinos software stack

To accomplish this migration and improve upon the previous support graph implementation a few pieces
of software were added to the Trilinos software library. Previously Trilinos did not contain a sparse Cholesky
solver. Using the Amesos2 adapter package an interface was added to the CHOLMOD package [2]. Addi-
tionally a support graph preconditioner was added to the Ifpack2 preconditioner package which creates the
support graph and calls the CHOLMOD interface to perform a complete factorization. Furthermore a bug
in Ifpack2’s Additive Schwarz domain decomposition class was corrected so that it could be used with the
support graph preconditioner.
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3. Experimental. Experiments were run to solve preconditioned linear systems with random right
hand sides using the conjugate gradient solver in the Belos linear solver package. Experiments were run on
4 different graphs from the University of Florida sparse matrix collection [3] shown in Figure 3.1. The first 3
graphs in this table are network graphs and experiments were run using both the combinatorial Laplacian and
normalized Laplacian matrices of these graphs. An important note is that these graphs are all unweighted
so the support graph preconditioner of the combinatorial Laplacian is simply a random spanning tree. The
last graph is a stiffness matrix problem included to see how a support graph preconditioner fares on a more
traditional problem. Experiments with the MSF support graph preconditioner were run with slightly random
edge weights so that the on the unweighted combinatorial Laplaican a random tree would be selected every
time. The diagonal of the original matrix was kept for the preconditioner and on the F1 graph was scaled
so the preconditioner would be positive-definite. The performance of the support graph preconditioner was
compared against other Ifpack2 preconditioners. These include Jacobi, Symmetric Gauss-Seidel (SGS), and
Incomplete Lower-Upper (ILUT). In parallel, Ifpack2’s Additive Schwarz with no overlap was used with
the support graph and ILUT preconditioners as sub-domain solvers. Ideally ILUT would be replaced with
Incomplete Cholesky as we are dealing with symmetric matrices but this is currently not implemented in
Ifpack2. The default ILUT parameters were used including a drop tolerance of 10−12 and fill value of 1.
Additionally ILUT required a small, relative scaling of the diagonal (∼1.01) to ensure a positive-definite
preconditioner. All experiments were run on the 64 core Vesper (vesper@sandia.gov). Zoltan2’s interface to
the Scotch partitioner was used to distribute matrix rows amongst processors. Experiments were done with
partitioning turned on and off using 8 cores to demonstrate the effect of partitioning on the various solvers.
Scaling experiments were performed up to 32 cores.

Graph Rows (Vertices) NNZ (Edges × 2)
flickr 820,878 13,250,560
as-Skitter 1,696,415 22,190,596
hollywood-2009 1,139,905 57,515,616
F1 343,791 26,493,322

FIG. 3.1. Graphs used in experiments

Iters. Solve Time (s)
MSF 42 6.247
Jacobi 76 7.841
SGS 25 7.411
ILUT 30 8.331
None 2689 266.3

(a) Combinatorial Laplacian

Iters. Solve Time (s)
MSF 54 7.713
Jacobi 86 8.942
SGS 49 14.32
ILUT 64 15.85
None 86 8.573

(b) Normalized Laplacian

FIG. 4.1. Serial results on flickr graph

4. Results.

4.1. Serial. The results of serial solves on the flickr graph for both the combinatorial and normalized
Laplacians can be seen in Figure 4.1. It is clear from using no preconditioning on the combinatorial Lapla-
cian that some preconditioning method is needed. In the combinatorial case MSF yields the best solution
time with SGS yielding the fewest number of iterations. The normalized Laplacian is scaled so that solving
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FIG. 4.2. Iterations to convergence

without preconditioning is equivalent to using Jacobi. Interestingly in the normalized case the precondi-
tioned solves are all slightly more expensive. One idea being considered to solve the combinatorial problem
involves solving the normalized problem and converting the solution vector since the normalized problem
should be better conditioned. However these results seem to suggest such a method would not be fruitful.
In Figure 4.2 the convergence rates are shown by the normalized residual at each iteration. Interestingly
the preconditioners seem to have very similar convergence rates that just appear to be off by some constant
which seems to be smaller in the normalized case.

Iters. Solve Time (s)
None 18 9.516
Scotch 17 8.695

(a) MSF

Iters. Solve Time (s)
None 122 10.71
Scotch 128 4.005

(b) Jacobi

Iters. Solve Time (s)
None 116 16.39
Scotch 128 6.166

(c) SGS

Iters. Solve Time (s)
None 120 16.45
Scotch 56 7.613

(d) ILUT

FIG. 4.3. Partitioning results using 8 cores on as-Skitter combinatorial Laplacian

4.2. Partitioning. The Scotch graph partitioning algorithm was used in parallel solves to try and in-
crease the quality of the preconditioner and improve the load balance across processors. The results with
partitioning turned on and off for 8 processors on the as-Skitter combinatorial Laplacian are shown in Figure
4.3. Improvement in the quality of the preconditioner can be inferred by the change in iteration count while
the change in run time is some mix of load balance improvement and change in preconditioner quality. Ja-
cobi behaves as expected; since it just uses diagonal scaling the quality of the preconditioner does not change
but load balancing greatly improves performance. Only with ILUT does using partitioning seem to greatly
improve the quality of the preconditioner. Each sub-domain incomplete factorization needs to have as many
edges as possible to improve quality. However, the number of edges in the MSF sub-domain is constant so
having an extra edge in the sub-domain won’t change the quality very much. The graph algorithm might
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have selected this edge instead but some other edge would not have been selected. This leads us to believe
that the MSF preconditioner should scale reasonably well since losing the edges off processor won’t hurt
the preconditioner quality very much. Since turning partitioning on always leads to at least slightly better
performance due to better load balancing, it is always turned on for the scaling experiments in the next
section.
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FIG. 4.4. Scaling on as-Skitter graph combinatorial Laplacian
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FIG. 4.5. Scaling on as-Skitter graph normalized Laplacian

4.3. Scaling. Up to 32 cores of Vesper were used to perform scaling experiments on as-Skitter and
hollywood-2009. Results for as-Skitter’s combinatorial Laplacian are shown in Figure 4.4. A trial with
no preconditioning was run but the performance was so poor (10 to 100 × slower) that the results are
excluded. Results for as-Skitter’s normalized Laplacian are shown in Figure 4.5. The number of iterations
required for each preconditioner doesn’t fluctuate much as the number of processors increases and their
order stays relative the same. Some fluctuation in iteration count is expected due to using a random right
hand side during every solve. Jacobi seems to have the best solve time performance though as the number
of processors increase the gap between the preconditioners decreases. Since Jacobi and MSF seem the most
competitive the experiments on the larger hollywood-2009 were run only with them. The combinatorial
results are shown in Figure 4.6 and the normalized results are shown in Figure 4.7. The number of iterations
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FIG. 4.6. Scaling on hollywood-2009 graph combinatorial Laplacian

for both of these methods seems to fluctuate a bit more on this larger graph though the gap between them
stays the same. With the exception of MSF on 2 processors both methods seem to scale well regarding solve
time. We suspect that there is some initial MPI overhead causing the spike at 2 processors which is quickly
overcome.
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FIG. 4.7. Scaling on hollywood-2009 graph normalized Laplacian

Iters. Solve Time (s)
MSF 408 3.106
Jacobi 580 4.254
SGS 297 7.168
ILUT 199 3.654

FIG. 4.8. F1 stiffness matrix solved using 32 cores

4.4. Stiffness Matrix. Out of curiosity we ran one experiment on a more traditional stiffness matrix
F1. This matrix is symmetric positive-definite so no modifications were needed to use Belos’ CG solver.
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However, this matrix has both positive and negative off-diagonal entries so the diagonal of the MSF and
ILUT preconditioners had to be modified to ensure the preconditioners were positive-definite. Solves were
done using 32 cores and the results are shown in 4.8. ILUT and MSF perform relatively better against Jacobi
and SGS than they did in with the network graphs. The structure of this graph is much simpler so we suspect
that the main reason is the introduction of edge weights.

5. Conclusions. It is clear that some method of preconditioning is required to solve linear systems
coming from graphs. However, it is not clear if a support graph preconditioner is useful or if something as
simple as Jacobi should be used instead. We observed that Jacobi preconditioning works quite well: even if
the iteration count is high, each iteration is very fast. We remark that MSF is a very simple support graph
preconditioner and there is potentially room for improvement by choosing better subgraphs. Partitioning has
been shown to be useful for all the preconditioners tested but most important for SGS and ILUT. All of the
preconditioners seem to scale well on the graphs used as the number of processors increase. This suggests
that using additive Schwarz with local (serial) preconditioning is a viable approach for network problems.
We observed that it is typically more difficult (longer run times) to solve for the normalized Laplacian so
using the normalized Laplacian to solve a system arising from the combinatorial Laplacian does not seem
viable.

6. Future Work. Most of the software for these experiments was just written so while the results of
these experiments seem reasonable there could still be bugs to clean up. Tests and documentation are needed
before this software is brought out of experimental. There are a few followup experiments that should be
run. A set of weak scaling experiments would help understand how these methods perform as graph sizes
increase. This will require choosing a reasonable graph generator. These experiments used the matrix
ordering in the original files and it is possible that this ordering might be helping some of the methods so a
trial of experiments with randomly reordered matrices should be performed.
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QUANTIFYING THE IMPACT OF SINGLE BIT FLIPS IN GMRES

JAMES J. ELLIOTT∗ AND MARK HOEMMEN1

Abstract. Increasing parallelism and transistor density, along with increasingly tighter energy and peak power constraints, may
force computer hardware manufacturers to expose incorrect computation or storage to application codes. In this work, we quantify
what a bit flip in floating point data entails, and develop a novel operation-centric fault model that allows us isolate and bound the
error introduce by a silent, transient bit flip in data. We consider what happens to an unmodified iterative linear solver, GMRES, if we
allow transient memory corruption in computational kernels’ input data. Coupled with our fault model, we develop a detection strategy
for faults in GMRES’ major kernels: the matrix-vector product, applying the preconditioner, and orthogonalizing the new basis vector
against previous basis vectors. We model the effects of memory corruption on the binary representation of floating-point numbers,
and use this to show how scaling the linear system can force faults either to be bounded, or to be easily detectable without additional
computation. In future work, we will apply these techniques to improve the convergence rate of Fault-Tolerant GMRES (see [5]) if
faults do occur.

1. Introduction. The implications of having a single bit toggle while performing a numerical algorithm
can seem daunting. Simple experiments can show that having a single bit flip can cause certain algorithms
to “crash” (terminate abnormally, due to invalid states or actions detected by the application or operating
system), “stagnate” (keep running but fail to make progress), or even produce the wrong solution, silently.
This work focuses on understanding how a transient bit flip in the data used by the algorithm, translates to
numerical error. With the ability to translate a bit flip into a numerical error, we are able to use mathematical
analysis to reason about hardening algorithms should a bit flip occur. We present two main contributions:

• How to use mathematical analysis and IEEE-754 double precision data representation to bound the
error introduced by a bit flip in the data used by the algorithm.
• How to exploit the IEEE-754 specification to ensure that should a bit flip occur, the error introduced

will be small (less than one), or much larger than the bounds imposed by mathematical analysis.
To demonstrate our technique we begin with the GMRES iterative linear solver. In future work, we will ex-
tend this to the Fault-Tolerant GMRES solver. As a result of extending our work to FT-GMRES, we identify
future research challenges, which we are able to pose as mathematical problems, that is, no knowledge of
bit flips is required.

1.1. Faults, Failures, and Persistence. In this work we address a very specific type of fault. Our goal
is to ensure that this type of fault does not produce a failure. We consider two perspectives: the user and
the system. A fault occurs at the system level, e.g., a bit flips or a node crashes. A fault becomes a failure
if it impacts the user. Figure 1.1 depicts a visual taxonomy of how we consider faults and the scope of our
work. We further classify faults into those that interrupt the user’s program (hard faults), and those that do
not immediately or ever interrupt the users code (soft faults). Clearly, a hard fault results in a failure if the
user is running an application, but the very nature of soft faults implies that they may emit no indication that
something has gone wrong. In the event that soft faults allow the program to continue execution with tainted
data, called Silent Data Corruption (SDC), then we must understand how algorithms behave in the presence
of faulty data. Furthermore, if the algorithm uses tainted data and still obtains the correct solution, then the
fault does not constitute a failure. If the soft fault leads to the incorrect solution, then the fault leads to a
failure.

We further classify soft faults by how long the underlying hardware remains faulty. Persistent faults
arise from hardware that is permanently faulty, e.g., a stuck bit in memory, or the Intel Pentium FDIV
bug [11]. Sticky faults indicate hardware that is faulty for some duration but returns to normal operation.

∗North Carolina State University, Department of Computer Science, jjellio3@ncsu.edu
1Sandia National Laboratories, mhoemme@sandia.gov
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A fault happens inside a function.
It may or may not produce correct

output as a result.

A failure is a fault that 
"leaks out," so the function

misbehaves from an
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Beyond our 

scope

Key:

FIG. 1.1. Taxonomy of faults and scope of this work.

Transient faults occur once, and while the bit flip is transient the effect of the flip may be persistent, which
we discuss at length in § 4.

1.2. Problem Statement. The intent of our work is, ultimately, to guard against silent, transient, soft
faults. We pose the problem as follows: Assume that a single transient bit flip silently corrupts the data
used in an algorithm. Can we understand how the error introduced by this bit flip impacts the solution of
algorithm? In the context of this work, the bit flip is silent, and we assume that any detection mechanisms
failed. Based on this premise, we seek to quantify how a bit flip in data could impact the solution, and we
consider all possible perturbations to the data.

1.3. Assumptions and Justification. Our assumption that a single bit flip impacts data is fundamental,
and we justify this decision as follows:

1. Hardware employs techniques to ensure that so-called “single event upsets” (SEUs) – that is, bit
flips – do not occur. Therefore, it is expected that SEUs will be rare events.

2. If we can understand the best- and worst-case scenarios for error that a single bit flip can contribute,
we will have a baseline to conjecture about multiple bit flips.

3. We lack any knowledge of a statistical distribution indicating the rate at which bit flips can occur.
Therefore, speculation about flip rates may or may not prove useful.

4. Stochastic models are of limited value given that the expected behavior of the algorithm is depen-
dent on the data and parameters used in the algorithms.

We have a strong reason to believe that SDC is a rare event. Hardware incorporates a fairly large amount of
safeguards in-place to protect data and instructions. In example, Intel provides the Machine Check Archi-
tecture, which provides reporting of bit errors at the register, cache (L1-L3), QuickPath Interconnect, and
DRAM (via ECC) layers. We do not attempt to conjecture about the likelihood of bit flips, rather we turn
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to the theoretical basis that an algorithm is built on, and study how the algorithm behaves when perturbed
within the bounds imposed by mathematical analysis. By following this research path, we are able to avoid
the pitfalls presented in bullets #3 and #4, and we are able to isolate the impact of a bit flip in data without
other factors polluting our analysis.

2. Motivation. Energy and peak power increasingly constrain modern computer hardware, yet hard-
ware approaches to protect computations and data against errors cost energy. This holds at all scales of
computation, but especially for the largest parallel computers being built and planned today. This results
from a confluence of factors:

• Increasing parallelism (and therefore more components to fail) [3, 4]
• Decreasing transistor feature sizes, making individual components more vulnerable
• Extremely tight peak power requirements [13], limiting the use of hardware redundancy to increase

reliability
As these trends continue, hardware vendors may succumb to the temptation to expose incorrect arithmetic
or memory corruption to application codes [12, 13, 15]. Some studies already indicate that this behavior is
appearing at the user level [9].

Much of the prior work on fault-tolerant iterative solvers has taken the approach of focusing on specific
linear algebra operations, in particular on the sparse matrix-vector multiply (SpMV) operation [18,21]. Other
work has treated algorithms as black boxes [7]. A common feature among [7,18,19,21] is a methodology of
first proposing a fault-tolerance technique, and then evaluating the effectiveness of the technique by random
sampling. The focus in this type of research has been to detect errors, and then to perform some response
– e.g., correct the tainted values, or roll back and resume computation from an assumed valid state – while
hoping the fault does not occur frequently enough to cause stagnation. In addition, all prior work on sparse
iterative methods is based on a fault model that assumes multiple faults injected at some rate. Studies are
carried out with little care for whether the bit flipped is a 0→ 1 or a 1→ 0, and most studies flip bits
randomly. In summary, the above work makes the following assumptions:

1. Numerical algorithms are simply a collection of operations, or a “black box” subroutine executing
opaquely.

2. Techniques are validated via random sampling.
3. Fault models and experimental methodology presume multiple faults that happen at a specified

“rate.”
We question these assumptions.

If SDC is a rare event, a finding backed by years of correct solutions as well as current research [14], then
why has current SDC research focused on failure rates? Michalak et al. found that when a Roadrunner node
was placed in front of a neutron cannon and subsequently bombarded with charged particles, this resulted in
a startlingly low occurrence of SDC (and primarily resulted in outright node failure) [14]. Clearly, Exascale
does not imply that nodes will be built with particle cannons attached to the boards to guarantee a high rate
of SEUs. Instead, SDC should remain a very rare event, and currently, little, if any, research has attempted
to explain how a single bit flip impacts an algorithm and ultimately the solution. The studying of multiple bit
flips has had an adverse affect on our ability to glean information from the studies. Instead of characterizing
SDC, we have studies that propose solutions to a problem we have very little understanding of. It is our goal
to first analyze SDC, and then to propose both specific algorithmic techniques and general heuristics that
minimize the impact of SDC should it occur. With this ability, mathematicians, scientists, and engineers can
take quantifiable steps to develop algorithms and applications that have an inherent resilience to SDC.

Also, a bit flip (or many bit flips) have a mathematical meaning, given that they impact data used by a
numerical method. Research demonstrating that a proposed scheme can detect or correct errors is only as
valid as the fault model that injects said errors. We advocate a drastically different approach, namely that bit
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flips impact the underlying mathematical assumptions that are used to guarantee the algorithm is convergent.
Rather than focusing on detecting binary errors, we treat bit flips as numerical error and evaluate how these
errors relate to the theoretical basis that the algorithm is built on. In this sense, we filter values that are
theoretically impossible, while accepting variations that are allowable by the theory. While our approach
does not “solve” the SDC problem, we are able to use our findings to isolate clear, well posed problems for
further research.

Based on the above arguments, first we seek to define the semantics of a bit flip in floating-point data,
and then propose a reliability scheme rooted in mathematical analysis. These are disjoint tasks. Quantifying
the impact of a single bit flip provides many insights, and has allowed us to relate how the inputs to the
algorithm dictate the types of errors we can see from a bit flip.

Numerical algorithms (that use floating-point arithmetic to approximate continuous mathematical prob-
lems) can be particularly sensitive to incorrect arithmetic or data corruption. Even a single fault may cause
silently incorrect answers. For example, if a sparse matrix A gets permanently corrupted, a linear solver for
Ax = b will compute the “right answer to the wrong problem.” Fortunately, many numerical algorithms only
need reliability for certain data and phases of computation. If the system can guard just those parts of the
algorithm in space and time, then the algorithm can compute the right answer – or at least be able to detect
failure and report it “loudly” – despite faults in unreliable phases of execution. This suggests a “layered”
approach to the design of reliable numerical algorithms. A reliable outer layer can recover from faults in a
less reliable inner layer. If the solver can spend most of its time in unreliable mode, it can mitigate the cost
of reliable computation in the outer mode. Bridges et al illustrate such a numerical algorithm – the “Fault-
Tolerant GMRES” (FT-GMRES) iterative linear solver – in [5]. It was also shown that such an algorithm
can cooperate with a run-time system to recover from memory corruption [6].

3. Project Overview. To quantify the possible effects of a silent bit flip in GMRES, we propose a
multifaceted approach. We combine modeling based on the IEEE-754 specification of a floating-point num-
ber [10] and standard mathematical analysis to determine the semantics of a bit flip in specific numerical
routines. First, by analyzing the effects of data corruption on the representation of floating-point numbers,
we can show that most hardware faults either result in bounded error, or cause an obvious error that an al-
gorithm can easily detect. This excludes the most damaging errors, and allows us to have predictable error
should SDC occur. Second, we develop a fault detection technique for the Modified Gram-Schmidt (MGS)
component of the Arnoldi process in the GMRES algorithm based on mathematical analysis of the norm
bounds on the intermediate MGS vectors. Third, we illustrate how the scaling of the data used in GMRES
impacts the distribution of potential numerical errors that could arise from a bit flip in data. Fourth, we
conclude by evaluating the future work necessary to bound the error of the entire inner solve, and how such
a bound could be used to enhance the FT-GMRES algorithm.

In summary, the overarching goal of this work is to investigate algorithms in the presence of a silent bit
flip by defining and correlating the semantic meaning of a bit flip in floating point data represented using the
IEEE-754 specification to the analytical bounds derived from the mathematical theory. Using this analysis
approach, we ultimately show that the error introduced by a bit flip can be bounded.

4. Fault Model. The premise of our work is that a silent, transient bit flip impacts data. Before we can
perform any analysis or experimental work, we must define how such a bit flip would impact an algorithm,
and how we enforce that the bit flip was transient. To achieve this goal, we build our model around the basic
concept that when data is used by the algorithm, this translates into some set of operations being performed
on the data. Should a bit flip perturb our data, some operation will use a corrupt value, rather than the correct
value. The output of this single operation will then contain a tainted value, and this tainted value could cause
the solution to be incorrect. Note that a transient bit flip may cause a persistent error in the output depending
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FIG. 4.1. Graphical representation of data layout in the IEEE-754 Binary64 specification.

on how the value is used.
A side effect of an operation-centric model is that we naturally avoid a pitfall that arbitrary memory

fault injection succumbs to, which is that if a bit flip impacts data (or memory) that is never used (read)
then this fault can not lead to a failure. Our fault model allows a bit flip to perturb the input to an operation
performed on the data, while not persistently tainting the storage of the inputs, which we feel mimics how
a transient bit flip would manifest itself, e.g., the data that experiences the bit flip need not show signs that
it was perturbed. This model allows us to observe the impact of transient flips on the inputs, which results
in sticky or persistent error in the result. We then utilize mathematical analysis to model how this persistent
error propagates through the algorithm.

4.1. Fault Characterization via Semantic Analysis. To establish a fault model we must first under-
stand what a fault is. Since floating-point numbers approximate real numbers and most numerical algorithms
use real numbers, we start from the definition of a real-valued scalar γ ∈ R. The range of possible values
that γ can take is

γ ∈ [−∞,+∞].

We assume that the IEEE-754 specification for double-precision numbers, called Binary64, is used to rep-
resent these numbers. This means that γ can take a fixed set of numeric values, and these values lie in the
range

γ ∈ [−1.80×10308,+1.80×10308],

or using base two for the exponent

γ ∈ [−1.9̄×21023,+1.9̄×21023],

where 1.9̄ indicates the largest possible fractional component, and 1.0 indicates the smallest fractional com-
ponent. A more informative range is that of |γ|, excluding 0 and denormalized numbers,

|γ| ∈ [2.23×10−308,1.80×10308], (4.1)

and in semi base two

|γ| ∈ [1.0×2−1022,1.9̄×21023]. (4.2)

To approximate real numbers, Binary64 uses 64 bits, of which 11 are devoted to the exponent, 52 for
the fractional component (we refer to as the mantissa), and one bit for the sign. Figure 4.1 shows how these
bits are laid out. In addition to numeric values, Binary64 includes two non-numeric values, Not-a-Number
(NaN) and Infinity (Inf), which may be signed, to account for infinity and values that result in undefined
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operations, e.g., division by zero. The range of values in Equations (4.1) and (4.2) is not continuous, and has
non-uniform gaps due to the discrete precision, which is a consequence of having a fixed number of bits in
the fractional component.

We can further discretize the range of possible values by recognizing that there is a finite number of
exponents that are possible given IEEE-754 double precision, e.g.,

γ ∈ {0,±Inf,±NaN,±2−1022×1.x,±2−1021×1.x, . . . ,±20×1.x, . . . ,±21023×1.x},

where 1.x indicates some fractional component.
Analytically, this is expressed as

γ = (−1)sign

(
1+

51

∑
i=0

bi2i−52

)
×2e−1023, (4.3)

for IEEE-754 Binary64. Note, the specification does not include a sign bit for the exponent. Rather, IEEE
floating point numbers utilize a bias to allow the exponent to be stored without a sign bit, which we will
later exploit for fault-resilience. Another important characteristic that stems from the general approach of
expressing numbers in exponential notation, is that we can characterize numbers by their order of magnitude.
Of particular interest is the following relation

|2−1022| ≤ |2−1022×1.x|
< |2−1021| ≤ |2−1021×1.x|< .. .

< |20| ≤ |20×1.x|< .. .

< |21023| ≤ |21023×1.x|. (4.4)

This means that we can use the next order of magnitude as an upper bound for errors in the fractional
component of a number — which is practically achieved by incrementing the exponent or multiplying by
two. We can also analytically model the number of fractional bits that could contribute error larger than
some tolerance, since the error that could arise from each mantissa bit is relative to the exponent of the
number. This final step is necessary since the fractional term can take values in the range [1,2), where the
left parenthesis indicates that 2 is not a member of this interval. We can also characterize the error that a
perturbed sign bit can contribute, and, like the fractional component, this error is relative to the exponent
of the number. Suppose the sign is perturbed in a scalar γ , then we have γ̃ = −γ , the absolute error is
|γ− γ̃|= |γ−(−γ)|= 2γ . Which means we can bound the error from a sign bit perturbation by incrementing
the exponent of the resulting value.

In summary, we have demonstrated that errors in IEEE-754 floating point numbers can be characterized
using the exponent of the numbers. This property allows us to reduce the number of bits we need consider in
a fault model, since we know that a large number of errors are bounded by the relatively small set of possible
exponents.

4.2. Fault Characteristics of Perturbed Exponents. In the context of IEEE-754 double precision
numbers and silent data corruption, we do not model the exponents directly. Instead, we model the biased
exponents, as they are the interesting portion of the data that allows us to characterize the errors that the
majority of the bits present in the data can produce. For instance, in double precision data we can characterize
the errors from 53 of the 64 bits using our approach. This type of fault-characterization is impossible if bit
flips are injected randomly into the data’s memory, as that approach loses the semantic information that is
implicitly present in the data.
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The Binary64 specification does not store exponents directly, instead it uses a bias of 1023. From § 4.1
this means we can characterize all faults in double precision data by analyzing perturbations to the possible
biased exponents

{0,1,2, . . . ,1023, . . . ,2046}.

Note that zero is not a biased exponent, and has special meaning. In IEEE-754, a zero pattern in the exponent
with zeros in the mantissa is used to represent the scalar zero, and while a non-zero pattern in the mantissa
is used to represent subnormal numbers. We also assume the user does not perform computation on the two
non-numeric values NaN and Inf, which are represented using the biased exponent 2047 (all ones). We do
include zero in our analysis because it is a valid real number.

Since we are concerned with bit perturbations in the exponent, we express the biased exponents in their
binary form, e.g., 11-bit unsigned integers presented in binary. We can further expand Figure 4.2 to show


2−1

20

21

 ⇒

 1022
1023
1024

 ⇒

 01111111110
01111111111
10000000000


Exponent Biased Storage

FIG. 4.2. Relation of exponent, IEEE-754 double precision bias, and what data are actually stored.

the potential change to the original exponent should a bit flip occur, which will form the basis for our fault
model and analytic models.

In the context of bit flips, we can view a bit flip as adding or subtracting from the biased exponent,
which in turn translates to multiplying or dividing the number by some power of two. We can model the
impact of a bit flip in the exponent as the original scalar being magnified or minimized by a specific powers
of two. We illustrate this in Figure 4.3, where reading left-to-right, we have some initial exponent, which is
represented using a bias of 1023, which translate to a discrete binary pattern. We then consider all bit flips
in this binary pattern and compute the actual perturbed exponent. We then show how the perturbation can be
modeled independent of the original exponent. Table 4.1 summarizes how a bit upset on a double precision
scalar can be modeled, and Table 4.2 summarizes how we can characterize the error that the fault introduces.

By characterizing the error introduced, we recognize that the mantissa flips introduce error that has the
same exponent as the original number, and a sign flip introduces error that is only one order of magnitude
larger than the original number. Furthermore, the exponent bits can either introduce large error, or a flip
introduces error roughly equivalent to the order of magnitude of the original number. Suppose we can
enforce that all numbers used in calculations are less than 1.0, then we know that the majority of the bits
will produce error that is also less than one, since 51 of the total 52 mantissa bits will contribute error less
than 1.0. We also see that some of the exponent bits have the potential to contribute error less than 1.0,
which indicates if we can enforce or assume some properties of the data used in the calculations e.g., data
less than one, then we can greatly increase the likelihood that a bit flip introduces error no greater than 1.0.
This phenomena is shown in Figure 4.3, where we can see empirically that numbers with exponent 20 and
2−1 introduce small error, compared with the errors introduced with the exponent 21.

In summary, we can characterize the impact of a bit flip in the exponent, because the sign and man-
tissa bits produce error that is relative to the exponent. As discussed in § 4.1 and analytically presented in
Eq. (4.4), we are able to relate bit upsets to numerical error in terms of the exponent of the original number.
Table 4.2 summarizes how a bit upset impacts a single value, and expresses how the order of magnitude
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2−1 ⇒ 1022 ⇒ 01111111110 ⇒



01111111111
01111111100
01111111010
01111110110
01111101110
01111011110
01110111110
01101111110
01011111110
00111111110
11111111110



⇒



20 = 2−1×2+1

2−3 = 2−1×2−2

2−5 = 2−1×2−4

2−9 = 2−1×2−8

2−17 = 2−1×2−16

2−33 = 2−1×2−32

2−65 = 2−1×2−64

2−129 = 2−1×2−128

2−257 = 2−1×2−256

2−513 = 2−1×2−512

21023 = 2−1×21024


︸                                       ︷︷                                       ︸

Unperturbed Data
︸           ︷︷           ︸
Possible Binary

︸   ︷︷   ︸
Result

︸    ︷︷    ︸
Perturbation

20 ⇒ 1023 ⇒ 01111111111 ⇒



01111111110
01111111101
01111111011
01111110111
01111101111
01111011111
01110111111
01101111111
01011111111
00111111111
11111111111



⇒



2−1 = 20×2−1

2−2 = 20×2−2

2−4 = 20×2−4

2−8 = 20×2−8

2−16 = 20×2−16

2−32 = 20×2−32

2−64 = 20×2−64

2−128 = 20×2−128

2−256 = 20×2−256

2−512 = 20×2−512

21024 = Inf or NaN


︸                                       ︷︷                                       ︸

Unperturbed Data
︸           ︷︷           ︸
Possible Binary

︸   ︷︷   ︸
Result

︸    ︷︷    ︸
Perturbation

21 ⇒ 1024 ⇒ 10000000000 ⇒



10000000001
10000000010
10000000100
10000001000
10000010000
10000100000
10001000000
10010000000
10100000000
11000000000
00000000000



⇒



22 = 21×2+1

23 = 21×2+2

25 = 21×2+4

29 = 21×2+8

217 = 21×2+16

233 = 21×2+32

265 = 21×2+64

2129 = 21×2+128

2257 = 21×2+256

2513 = 21×2+512

Zero or Subnormal


︸                                       ︷︷                                       ︸

Unperturbed Data
︸           ︷︷           ︸
Possible Binary

︸   ︷︷   ︸
Result

︸    ︷︷    ︸
Perturbation

FIG. 4.3. Examples of how a bit flip can impact an exponent represented using the IEEE-754 Binary64 specification.
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TABLE 4.1
Perturbations possible to IEEE-754 double precision value λ , producing the perturbed value λ̃ .

Bit Location Perturbed Scalar Bit Range

Mantissa λ̃ = λ +λexp(1+2 j−52), for j = 0, . . . ,51
Exponent1→0 λ̃ = 2−2 j

λ , for j = 0, . . . ,10 and bit j+52 = 1
Exponent0→1 λ̃ = 22 j

λ , for j = 0, . . . ,10 and bit j+52 = 0
Sign λ̃ = (−1)(bit63+1)λ ,

TABLE 4.2
Bit flip absolute error for a scalar λ represented using IEEE-754 double precision, with λ = λexp × λfrac. Where λexp is the

exponent 2x, and λfrac is the fractional component.

Bit Location Absolute Error:
∣∣∣λ − λ̃

∣∣∣ ∆ Order†

Mantissa
∣∣λexp(1+2 j−52)

∣∣, for j = 0, . . . ,51 0

Exponent1→0

∣∣∣λ (1−2−2 j
)
∣∣∣, for j = 0, . . . ,10 and bit j+52 = 1 −2 j

Exponent0→1

∣∣∣λ (1−22 j
)
∣∣∣, for j = 0, . . . ,10 and bit j+52 = 0 +2 j

Sign |2λ |, 1
† The change in order of magnitude.

changes. Now that we have characterized a fault in a scalar, we will present a fault model centered around
operations on scalars, where we assume one will be perturbed.

4.3. Operation Centric Fault Model. This work distinguishes itself from related work in the field of
silent data corruption by developing a fault model that is not based on perturbing arbitrary memory locations.
We seek a fault model and experimental methodology that expresses all possible errors, and not the expected
error, which is what is obtained through random sampling. We also remove a strong assumption that is
present in many memory hardening approaches, namely that perturbations to read-only data constitute a
reasonable fault model. “Perturbations to read-only data” include, for example, a persistent change to the
matrix A or right-hand side b of a linear system Ax= b. These types of faults will obviously produce incorrect
solutions, given that the wrong problem was solved. Moreover, a fault model based only on DRAM does
not capture how data behave in the system. For instance, the data might have been read from cache, rather
than from DRAM, or a computation might be pipelined in such a way that intermediate results never leave
the processor die.

4.3.1. Fault Model for Dot Products. We now describe a realization of our fault model that describes
the error that could be injected if an operation in a dot product experiences a single bit upset. We choose
the dot product because it is a common operation, and because we will use this model in § 6.1 to model the
worst-case errors that could be injected into a phase of the GMRES algorithm.

Given two real-valued n-dimensional vectors a,b ∈ Rn, then the dot product is defined to be

c =
n

∑
i=1

ci, where ci = aibi. (4.5)

If we allow a single bit flip to impact the i-th element of the dot product, then we have a perturbed solution
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c̃, which is the result of a perturbation to either ai, bi, or ci. In the context of our fault model, this captures
a bit upset impacting the inputs to the multiplication operator, and it captures a bit upset in the intermediate
value ci, which is the input to the addition operator.

Using Table 4.1, we compose the above cases for a dot product. A bit flip in the result of the multiply
will produce error as described in Table 4.2, and we need only construct a model for the absolute error should
a bit flip perturb a multiplication. Table 4.3 summarizes the analytic models for a bit flip in a multiply based
off our previous models of a perturbed scalar. We then determine the absolute error and potential change in
magnitude, which is presented in Table 4.4.

TABLE 4.3
Perturbations possible given the multiplication of two IEEE-754 double precision scalars, where one operand is perturbed.

λ = αβ and λ̃ = α̃β .

Bit Location Perturbed Product Bit Range

Mantissa λ̃ = αβ +αexp(1+2 j−52)β , for j = 0, . . . ,51
Exponent1→0 λ̃ = 2−2 j

αβ , for j = 0, . . . ,10 and bit j+52 = 1
Exponent0→1 λ̃ = 22 j

αβ , for j = 0, . . . ,10 and bit j+52 = 0
Sign λ̃ = (−1)(bit63+1)αβ ,

TABLE 4.4
Bit flip absolute error for a perturbed multiplication of two IEEE-754 double precision scalars, where one operand is perturbed.

λ = αβ and λ̃ = α̃β .

Bit Location Absolute Error:
∣∣∣λ − λ̃

∣∣∣ ∆Order†

Mantissa
∣∣αexp(1+2 j−52)β

∣∣, for j = 0, . . . ,51 0 or 1

Exponent1→0

∣∣∣αβ (1−2−2 j
)
∣∣∣, for j = 0, . . . ,10 and bit j+52 = 1 −2 j

Exponent0→1

∣∣∣αβ (1−22 j
)
∣∣∣, for j = 0, . . . ,10 and bit j+52 = 0 +2 j

Sign |2λ |, 1
† Potential change in order of magnitude relative to unperturbed result

∣∣∣λmag− λ̃mag

∣∣∣.
The potential change in order of magnitude is paramount. Consider an exponent flip from 1→ 0. These

types of exponent bit flips produce error that is bounded above by the original magnitude of the result, which
can be viewed as “zeroing out” the term if a perturbation occurs. Similar to a perturbed scalar, the mantissa
can contribute either no change in the order of magnitude, or in the worst case a bit flip causes a carry which
will increment the order of magnitude by one. The order of magnitude for a sign bit flip is exactly the same
as that of a perturbed scalar, which introduces error one order of magnitude larger than the result. These
error models can be thought of as the largest additive error that we can inject into a dot product from a bit
flip, e.g.,

c̃ =
n

∑
i=1

aibi +(error term). (4.6)

In summary, we have composed analytic models for the the absolute error that could be introduced into
a dot product. Our models are initially constructed from the IEEE-754 Binary64 model, which we extended
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to express how a bit upset impacts a single double precision scalar. We then composed a model for the
multiplication operator, and analytically expressed the absolute error. Using the absolute error, we have a
model that explains how wrong a dot product can be, assuming a bit flip in one of the input vectors or in an
intermediate value. Next, we refine these models to construct strict upper bounds on the error introduced by
a bit flip in a dot product.

4.3.2. Error Bounds for a Bit Flip in a Dot Product. The models presented in Table 4.4 make no
assumptions about the bits present in the mantissa of the operands. This is problematic if we want to
consider all possible errors that could be introduced into a dot product. To account for the mantissa, and in
doing so create strict upper bounds on the error, we will use the relation presented in Eq. (4.4). From this
relation, we know that αβ < 2αexponent+12βexponent+1, or we can write this as

αβ < 4αexpβexp, (4.7)

where ∗exp = 2∗exponent . Using Eq. (4.7), we are able to account for the mantissa bits, but we can also show
that a bit flip in the sign is bounded by Eq. (4.7). The sign bit introduces error equivalent to incrementing
the exponent of the result

αβ < 2αβ < 4αexpβexp, (4.8)

where 2αβ is the potential error introduced should the sign bit be perturbed, which must be smaller than the
bound constructed for the mantissa.

By utilizing Eq. (4.7), we are able to account for all possible mantissas and their potential faults, as well
as a perturbation to the sign bit. We will now discuss how to use this model to understand the relationship
between the data used in an algorithm and the distribution of potential errors that could occur should a bit
flip in the data.

5. Fault Model Evaluation. In Section 4 we proposed analytic models for error introduced should a
bit flip occur in IEEE-754 double precision data. We now illustrate how data can impact the size of errors
that bit flips can create should they occur. Consider the follow sample vectors

usmall =

[
0.5

0.25

]
, ularge =

[
2
4

]
, and vsmall =

[
0.25
0.5

]
, vlarge =

[
4
2

]
. (5.1)

If we compute the dot product λ = ularge ·vlarge, we have a finite number of potential errors should a bit flip in
the data of ularge,vlarge, or in an intermediate value in the summation. We can experience either 2̃×4+4×2,
2× 4̃+4×2, or 8̃+8. We have previously shown what 2̃ can be in Figure 4.3, but for clarity we will state
what the perturbed values could be

2̃ =



22

23

25

29

217

233

265

2129

2257

2513

Zero



, 4̃ =



21

24

26

210

218

234

266

2130

2258

2514

2−1020



, 8̃ =



24

21

27

211

219

235

267

2131

2259

2515

2−1018



. (5.2)
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By inspection it is clear that substituting any of the above perturbed scalars into the dot product will produce
absolute error greater than one in all cases, and in the event you choose to substitute the near zero perturbed
values, the absolute error of the dot product still has magnitude 8, e.g., |16− (0+8)|.

Alternatively, consider the vectors usmall and vsmall. If we compute the dot product, λ = usmall ·vsmall =

0.25. Then we have possible perturbations 0̃.5, 0̃.25, and 0̃.125, which we can construct from our model of
a perturbed scalar, or we could directly compute the dot product error from our multiplication model.

0̃.5 =



20

2−3

2−5

2−9

2−17

2−33

2−65

2−129

2−257

2−513

21022



, 0̃.25 =



2−3

20

2−6

2−10

2−18

2−34

2−66

2−130

2−258

2−514

21019



, 0̃.125 =



2−2

2−1

2−7

2−11

2−19

2−35

2−67

2−131

2−259

2−515

21017



. (5.3)

By inspection, 0̃.5 can contribute absolute error to the dot product larger than one only once, e.g.,
∣∣0.25− (21022×0.25+0.125)

∣∣.
Likewise, 0̃.25 and 0̃.125 can perturb the result of the dot product with error greater than one, only once,
and for all 3 cases the perturbation will change the result by hundreds of orders of magnitude.

Returning to Figure 4.3 explains what causes bit flips in the exponent to produce either a majority of
large or small error, where we consider error less than one to be small. The binary pattern of the stored
biased exponent contains predominantly zeros for numbers greater than one, and predominantly ones for
numbers less than one.

You can also obtain primarily ones in the exponent as you approach the extrema of the biased exponents,
e.g., numbers larger than 2512. In this case, the biased exponent does contain many ones, however, because
the number is sufficiently large, the absolute error will remain considerably large. This is because if one
“zeroes out” a perturbed element in the dot product, the error is proportional to the magnitude of the result.

If one chooses to take the extrema route to guarantee many ones in the biased exponent, the side conse-
quence is a substantial loss in precision, since one will want to ensure most numbers have magnitude larger
than 2512. Clearly, this would be a poor decision numerically. By operating on numbers approximately 1
in magnitude, one gains the benefit of optimal precision, i.e., 1×10−16, while still maintaining predictable
error should SDC occur.

5.1. Faults in the Mantissa or Sign. The error generated by the mantissa or sign bits is relative to the
exponent of the number that the flip occurred in. If the exponent is larger than one, then clearly the mantissa
or sign bits will generate an error larger than one. Alternatively, if the values all are less than one, then
mantissa errors will produce errors less than one because 2−1×1.x < 1.0≤ 20. The errors from the sign bit
can not exceed 2, since we have 2×2−1×1.x < 21.

It is unreasonable not to consider the mantissa generating a carry, as discussed in § 4.3.2. To account for
this we construct a strict upper bound by incrementing the exponent of each element of the vectors analyzed,
similar to Eq. (4.7). For example,

uoriginal =

[
2.12332
1.24568

]
⇒ uupper bound =

[
4
2

]
. (5.4)
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We then can evaluate our models on these vectors to determine a strict upper bound on the errors we can
experience in a dot product.

5.2. Modeling Large Vectors. We have shown how to exhaustively examine each element in a vector,
and from this analysis we can determine precisely which absolute errors we could experience. Given large
vectors, where the dimension n may have millions or billions of elements, exhaustively searching each ele-
ment would be time consuming, but it would also be a waste of time. As stated previously, there is a discrete
number of exponents supported by the IEEE-754 Binary64 specification. As we have previously shown,
the exponent characterizes the faults we can observe, so we only need consider the 2046 possible biased
exponents and the special case of zero. The perturbations that are possible can be determined independent
of knowing the data, e.g., we can precompute the perturbations and absolute error because we know the
relation stated in Eq. (4.4) and Eq. (4.7).

To analyze arbitrarily large vectors, we will construct a lookup table for the absolute error in whatever
operation we choose to model (we have chosen products and addition). The table size is 2047×2047, and
allows us to consider the error introduced by performing an operation on two exponents, which will map to
a unique i j location.

For example, consider the vectors

u =


1.0
1.2
8.0

0.125

 , and v =


0.125

0.125001
0.125002

1.0

 . (5.5)

We first extract the biases from the vectors

uDouble Prec. =


1.0
1.2
8.0

0.125

⇒ uexponent =


20×1.0
20×1.x
23×1.0

2−3×1.0

⇒ ubiased =


1023
1023
1026
1020

 (5.6)

Now, we determine an interval of possible values, and then account for the mantissa values which may have
been truncated

ui ∈ [1020,1026] ∈ [1020,1027] for i = 1, . . . ,4. (5.7)

The range of biased exponents [1020,1027] will contain all possible values that the original vector
contained, and include one value that was larger than any in the vector, the number corresponding to the
biased exponent 1027. Similarly, we can compute the interval for v

v =


0.125

0.125001
0.125002

0.25

⇒


2−3×1.0
2−3×1.x
2−3×1.x
2−2×1.0

⇒


1020
1020
1020
1021

 , (5.8)

and then we determine the interval for which we consider errors

vi ∈ [1020,1021] ∈ [1020,1022] for i = 1, . . . ,4. (5.9)
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We now compute the lookup table,

1020 1021 1022 1023 1024 1025 1026 1027
1020 × × × × × × × ×
1021 × × × × × × ×
1022 × × × × × ×

,

where each entry computes the relevant perturbations and absolute error for the operations being modeled.
In the case of multiplication, the table has symmetry because multiplication is commutative. In practice,
computing the full table (0, . . . ,2046) is simple and allows one to model errors for arbitrary vectors.

A caveat of the above approach is that we must know the range of values that the vector contains.
This can be achieved by directly computing the min and max values for each vector. Alternatively, an
approximate range can be determined if the “length” of vector is known, e.g., the two-norm. One weakness
to the proposed approach is that we do not consider a flip in the accumulating sum, which we have left to
future work.

5.3. Summary. We have shown that the range of values used in the dot product has a direct impact
on the size of the errors that can be observed. A general rule in floating point algorithms has been to
perform operations on numbers as close to the same magnitude as possible, as doing so minimizes the loss
of precision. We have now shown that following this rule-of-thumb also gives the benefit of making bit
upsets generate relatively small error when the numbers are no larger than one. We will show in § 6.1 how
we utilize this concept of scaling to ensure that bit flips generate either small or very large error.

5.4. Vector and Matrix Norms. A fundamental tool in mathematical analysis is the concept of a norm,
which provides a way to assign length (or size) to a vector. Using a norm, we are able to compare vectors,
which allows us to bound the result of certain operations that utilize matrices and vectors.

5.4.1. Vector Norms. The Cauchy-Schwarz inequality states that

|〈u,v〉| ≤ ‖u‖‖v‖ , (5.10)

which is an abstract result for any inner product space. In our analysis we consider only real-valued vectors,
and so the bound becomes

|u ·v| ≤ ‖u‖2 ‖v‖2 , for u,v ∈ Rn. (5.11)

A consequence of the Cauchy-Schwarz inequality is the triangle inequality

‖u+v‖ ≤ ‖u‖+‖v‖ . (5.12)

For real-valued vectors, the `2 norm ‖·‖2 is defined to be

‖u‖2 =
√

u ·u, (5.13)

which is often referred to as the Euclidean distance. Another norm we will utilize is the infinity norm ‖·‖
∞

,
which in this context can be thought of as the ‘max’ of the vector

‖u‖
∞
= max{|u1| , . . . , |un|}. (5.14)

The final norm we will utilize is the one-norm, which is commonly referred to as the taxicab norm or
Manhattan distance.

‖u‖1 =
n

∑
i=1
|ui| (5.15)
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Because we consider only vectors that are in Rn, these norms are equivalent in the following ways

‖u‖2 ≤ ‖u‖1 ≤
√

n‖u‖2 , (5.16)

‖u‖
∞
≤ ‖u‖2 ≤

√
n‖u‖

∞
, (5.17)

‖u‖
∞
≤ ‖u‖1 ≤ n‖u‖

∞
. (5.18)

5.4.2. Matrix Norms. We also wish to make meaningful comparisons involving matrices. To do so we
will use matrix analogs of the norms defined for vectors, referred to as induced norms. Suppose we have an
m×n matrix A ∈ Rm×n, then the infinity norm is defined as

‖A‖
∞
= max

1≤i≤m

n

∑
j=1

∣∣ai j
∣∣ , (5.19)

which is maximum absolute row sum. The one-norm,

‖A‖1 = max
1≤ j≤n

m

∑
i=1

∣∣ai j
∣∣ , (5.20)

is the maximum absolute column sum. The two-norm, also called the spectral norm, is defined to be

‖A‖2 = σmax(A), (5.21)

, where σmax is the largest singular value of A. The Frobenius norm, which is not an induced norm, takes the
form

‖A‖F =

√
n

∑
i=1

m

∑
j=1

∣∣ai j
∣∣2. (5.22)

We also will use the norm of a matrix-vector product, , e.g., ‖Ax‖. We have the following relation, were p
denotes one of the norms defined above

‖Ax‖p ≤ ‖A‖p ‖x‖p (5.23)

Similar to vector norms, these norms are equivalent since we consider all values in Rm×n. We will use
the following relations

‖A‖2 ≤ ‖A‖F ≤
√

r‖A‖2 for r = rank(A), (5.24)
1√
n
‖A‖

∞
≤ ‖A‖2 ≤

√
m‖A‖

∞
, (5.25)

‖A‖2 ≤
√
‖A‖

∞
‖A‖1. (5.26)

6. GMRES. The Generalized Minimum Residual method (GMRES) of Saad and Schultz [17] is a
Krylov subspace method for solving large, sparse, possibly nonsymmetric linear systems Ax = b. GMRES
is based on the Arnoldi process [2], which can also be used to approximate a matrix’s eigenvalues and
eigenvectors. GMRES has the convenient property that the residual norm of the approximate solution at
each iteration is monotonically nonincreasing, assuming correct arithmetic and storage. Its use of orthogonal
projections and normalized (to length one) basis vectors also has advantages, that we will discuss below.
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We begin this section by explaining how to use properties of the Arnoldi process to detect faults in an
iteration of GMRES. We then apply the SDC models we developed above to show how to scale the linear
system in a way that enhances fault detection and bounds the possible error of the major computational
kernels. We will show in future work that these bounds by themselves do not suffice to bound the solution
error. Nevertheless, they can, if one makes inexpensive changes to how GMRES computes the solution
update coefficients.

6.1. Fault detection via projection coefficients. The norms and inner products that occur in each
iteration of the Arnoldi process in GMRES have bounded absolute value. These bounds depend on the norm
of the preconditioned matrix, which is inexpensive to estimate. We can use them to detect faults in all the
major computational kernels in GMRES. Furthermore, we show that equilibrating or otherwise scaling the
matrix so that its largest absolute value is one reduces the possible exponent range of these norms and inner
products. This excludes more possible faults, thereby enhancing detection.

Algorithm 1 Restarted GMRES
1: for all l = 1to do
2: r← b−Ax( j−1)

3: q1← r/‖r‖2
4: for all j = 1torestart do
5: w0← Aq j
6: for all i = 1to j do
7: hi, j← 〈qi,wi−1〉
8: wi← wi−1−hi, jqi
9: end for

10: h j+1, j←
∥∥w j

∥∥
2

11: q j+1← w j/h j+1, j

12: Find y = min
∥∥H jy−‖b‖e1

∥∥
2

13: Evaluate convergence criteria
14: Optionally, compute x j = Q jy
15: end for
16: end for

6.1.1. Bounds on the Arnoldi Process. We start our analysis by bounding the dot product which de-
termines the i-th upper Hessenberg entry, hi, j of the j-th Arnoldi iteration. The Arnoldi process is expressed
on Lines 4–11 in Algorithm 1. At its core is the Modified Gram-Schmidt (MGS) process, which constructs
a vector orthogonal to all previous basis vectors qi. The MGS process begins on Line 6 and completes on
Line 9. To bound hi, j on Line 7, we will use the Cauchy-Schwarz inequality presented in Eq. (5.11) in
conjunction with various norms presented in § 5.4. We begin with the vector which will become the j+ 1
orthonormal basis vector w0.

‖w0‖=
∥∥Aq j

∥∥
‖w0‖ ≤ ‖A‖

∥∥q j
∥∥
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Our goal is to bound the length of w0, and as was stated when we presented the Cauchy-Schwarz inequality,
the distance measure in Rn is the `2 norm. This leads to the following bound on the first intermediate vector

‖w0‖2 ≤ ‖A‖2

∥∥q j
∥∥

2 ,

≤ σmax(A). (6.1)

We seek to bound the i-th entry of the upper Hessenberg on Line 7, which is bounded by∣∣hi, j
∣∣ ≤ ‖qi‖‖wi−1‖ . (6.2)

We know what qi is a unit vector, e.g., ‖qi‖2 = 1, and therefore we only need to know a bound on the
intermediate basis vector wi.

Recognizing that the Modified Gram-Schmidt process is isometric, that is it preserves the length of
vectors, we have

‖wi‖2 ≤ ‖w0‖2 ,

≤ σmax(A). (6.3)

Therefore, we may bound the upper Hessenberg entries by∣∣hi, j
∣∣≤ 1 · ‖wi−1‖
≤ σmax(A). (6.4)

The bound presented in Eq. (6.4) is crucial, as it demonstrates that the upper Hessenberg entries are bounded
entirely by the input matrix. This means that if the matrix has a large maximum singular value, then the
upper Hessenberg values can take large values. Moreover, we will now relate this bound to potential errors
as illustrated in § 5.2.

6.1.2. Bound Application. We have shown what the theoretical upper limit is for the values in the
upper Hessenberg. This essentially tells us what is theoretically possible inside the Arnoldi process, and we
will use the theory that drives the algorithm to bound the error should a bit flip occur. Using this approach
to construct an SDC detector is significant. By building a detection scheme in this way, we know precisely
what errors we can detect, and more importantly we know what is not detectable. In § 5, we demonstrated
how to analyze the data provided to the algorithm, and model the absolute error that bit flips could introduce
should they impact that data. To begin, we will explain the relationship between the norm bounds presented
in § 6.1.1 and § 5.

The important factor to keep in mind is, that exactly how an error is committed is irrelevant, the norm
bounds allow us to filter out values that are invalid by theory. The intent of modeling the actual numerical
errors that could be observed is because we wish to understand the distribution of possible errors — we
either detect a large error or commit a small error.

6.1.3. Interpreting the Arnoldi Bounds. The bounds presented are theoretical, but we can draw sev-
eral conclusions from the inherent properties of the Arnoldi process. Our goal is to translate the mathematics
into information that can be used in our fault model.

1. The vectors q are unit vectors, and therefore have elements in the range [0,1].
2. The two-norm presents an upper bound on the infinity norm, from Eq. (5.17). Which means we can

state what the largest value of the intermediate basis vector w is, and construct the range of possible
values to be [0,σmax].
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3. Rather than compute the largest singular value of A, we can use upper bounds on the two-norm of
a matrix, e.g., Eq. (5.24) and Eq. (5.26).

The upper Hessenberg matrix H is what drives the subsequent step of the GMRES algorithm, which
is to solve a projected least squares problem, and ultimately compute a solution x. Based on our premise
that a single bit flip occurs, should this bit flip impact the MGS process, then we can use our bound on the
Hessenberg entries to understand the types of error we can expect in the least squares problem. We will
address the least squares problem further in § 6.2.

6.1.4. Error Detection. In the context of error detection, we can only detect an error that exceeds the
bound on the upper Hessenberg entry hi j. To do this, we insert a conditional between Lines 7 and 8, and test
whether

∣∣hi j
∣∣≤ σmax. Should this condition be invalid, then we assume that we have committed an error at

some point, and we can halt the algorithm. If we use the sandbox model with FT-GMRES, we need not halt
and can choose whether to reject this inner iteration and start a new inner solve.

6.1.5. Model Evaluation and Potential Errors. We now use our fault model, in conjunction with two
example linear systems to demonstrate how:

1. Data inputs impact the range of detectable values.
2. Data scaling impacts the distribution of possible errors.

In the following examples, we have implemented Algorithm 1, and instrumented the code to compute the
actual range of values present in vectors. From these ranges we computed all possible bit flip perturbations
in the biased exponent before the dot product that computes the upper Hessenberg entries. We then classify
the absolute error that would be committed in the dot product into four classes:

1. Absolute error less than 1.0
2. Absolute error greater than or equal to 1.0, but less than or equal to ‖A‖2.
3. Absolute error greater ‖A‖2.
4. Error that is non-numeric, e.g., Inf or NaN.

Classes 1 and 2 are undetectable, while Classes 3 and 4 are detectable. Our goal is to ensure that should a
bit flip, the error falls into Classes 1, 3, and 4. While minimizing or eliminating the occurrence of Class 2
errors. We refer to Class 2 errors as the grey area, as they are undetectable errors that we consider to be
large.

6.1.6. Sample Problems. We have chosen two sample matrices to demonstrate our technique. To en-
sure reproducability, we did not create either of these matrices from scratch, rather we used readily available
matrices. The first matrix is fairly common, and arises from the finite difference discretization of the Poisson
equation. This matrix is symmetric and positive definite, meaning that it could be solved using the Conjugate
Gradient method. We generated this matrix using Matlab’s built-in Gallery functionality. The second ma-
trix chosen presents a more realistic linear system. The CoupCons3D matrix comes from the University of
Florida Sparse Matrix Collection [8]. It arises from a fully coupled poroelastic problem. The matrix is sym-
metric in pattern, but not symmetric in values. The system is also not positive definite, meaning Conjugate
Gradient could not be used to solve the system. The matrix is also fairly large, and has zero values explicitly
stored. The system is also poorly scaled, with a mixture of large and small values. We have summarized the
characteristics of each matrix in Table 6.1.

One of our findings from § 4 is that scaling can have a direct impact on the range of possible errors. To
investigate this, we will scale the input matrix and right-hand side vector such that the matrix is equilibrated.
To scale a matrix, we use a sparse matrix implementation of LAPACK’s equilibration routine DGEEQU [1].
Equilibration does not cause fill. Table 6.2 summarizes the norms for each of our test matrices.
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TABLE 6.1
Sample Matrices

Properties Poisson Equation CoupCons3D

number of rows 10,000 416,800
number of columns 10,000 416,800
nonzeros 49,600 17,277,420
structural full rank? yes yes
explicit zero entries 0 5,044,916
nonzero pattern symmetry symmetric symmetric
type real real
structure symmetric unsymmetric
positive definite? yes no

TABLE 6.2
Norms of Sample Matrices

Norm Poisson Equation CoupCons3D

No Scaling Scaling No Scaling Scaling
‖A‖

∞
8.0 2.0 1.30×106 1.0

‖A‖2 7.999 1.999 1.20×106 1.0
‖A‖F 4.46×102 1.12×102 2.75×106 2.91×102

6.1.7. Results. We ran Algorithm 1 for 1000 total iterations, using a restart value of 25. By instrument-
ing the code, we determined the numerical range of values each vector contained, and then computed the
possible absolute error that a bit flip could introduce. We classified the absolute error according to § 6.1.5,
and counted each class of error for the duration of the algorithm.

The pie charts presented in Figure 6.1 are not probabilistic, e.g., they do not convey the likelihood
of observing such an error. Rather, these charts characterize the possible errors when given specific data.
Consider an arbitrary length vector x, we can determine the range of values in the vector, e.g., xi ∈ [a,b],
but we do not know how many of each value, or in what order they occur. Obtaining fine-grained statistics
would involve evaluating every element of the vector, or constructing a probabilistic model that captures the
distribution of values in each vector.

Since we consider the impact of a single bit flip, it is sufficient to follow the methodology presented in
§ 5. That is, we may not know the distribution and order of numbers in the vectors, but we can model every
possible error, by assuming that each value in the interval, could be used in an operation with every value
of the other interval. This Cartesian product (or outer product) guarantees that we have counted all possible
errors for IEEE-754 double precision numbers in an interval, including errors that may not occur because
the vector does not contain that specific number, or because the ordering.

What these results indicate is that there is a clear benefit to having good scaling. We can not enforce this,
since some linear systems may be inherently poorly scaled. We can advocate that scaling, while typically
used to improve numerical stability and reduce the loss of precision, can benefit fault resilience. We can
also conclude that the upper Hessenberg entries are a viable location to perform fault detection, and this is
particularly true when data is scaled, since it reduces the number of errors that fall into the undetectable and
large region.
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(a) 90.62259%

(b) 0.06604%
(c) 0.34884%

(d) 8.96252%

(a) Poisson, no scaling.

(a) 76.20971%

(b) 9.84006%

(c) 6.99295%

(d) 6.95728%

(b) CoupCons3D, no scaling.

(a) 90.84671%

(b) 0.01496%

(c) 0.04743%

(d) 9.09091%

(c) Poisson, equilibrated.

(a) 90.83611%

(b) 0.02250%
(c) 0.12004%

(d) 9.02135%

(d) CoupCons3D, equilibrated.

(e) Legend.

FIG. 6.1. Number of possible errors falling into (a) Class 1: err < 1.0 , (b) Class 2: 1.0≥ err ≤ ‖A‖2, (c) Class 3: ‖A‖2 > err,
and (d) Class 4: Non-numeric

6.2. Inexpensive robustness improvements. In this section, we show that if the errors in the major
computational kernels of a single iteration of GMRES are bounded, then simple, inexpensive changes to
GMRES can make the resulting solution error bounded as well. In particular, we need to ensure that as long
as the error in each of the entries of the last column of the upper Hessenberg matrix is bounded, the resulting
solution of the projected least-squares problem is bounded. The conventional way to solve this least-squares
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problem is first to use Givens rotations to reduce the upper Hessenberg matrix to upper triangular, and then
to use backward substitution to solve the resulting upper triangular system. This can result in unbounded
or even undefined solution coefficients if the upper triangular matrix is singular or nearly so. However, we
believe that the minimum-norm least-squares solution to that triangular system is bounded with respect to
its input, if one truncates zero or small singular values. We plan to prove this in future work. If our assertion
is true, then it ensures boundedness of the solution coefficients with respect to the condition number of the
truncated system. Since GMRES computes the update to the solution vector as a linear combination of the
basis vectors, and since the basis vectors are all unit length and linearly independent, this means that the
effects of an error on the solution are also bounded.

Truncation of zero or small singular values is a particular kind of regularization. This regularization
of the projected least-squares problem requires computing a rank-revealing decomposition. It’s possible
to update a rank-revealing decomposition of a k+ 1 by k matrix (when adding a new column and row) in
Θ(k2) time [22]. This is asymptotically no more computation than would be required to solve the least-
squares problem anyway. Furthermore, a rank-revealing decomposition of the upper Hessenberg matrix is
useful for Flexible GMRES in detecting abnormal conditions that can arise even with correct arithmetic and
storage [5].

6.2.1. Future Work. Our next step is to prove that bounded errors in an iteration of the Arnoldi process
translate into

1. bounded errors in that GMRES iteration, that
2. do not cause unbounded errors in subsequent iterations.

We outline in the discussion above how to show the first of these assertions. It will depend on a slight
change to GMRES, in order to regularize the least-squares problem used to solve for the solution update
coefficients. We will begin proving the second assertion by showing that the corrupted Arnoldi process is
still either an oblique projection method (in the sense of Saad [16, Chapter 5]), or what we call an inexact
oblique projection method, in which “oblique” has the sense above, and “inexact” has the sense of “inexact
Krylov methods.” We will use this, in combination with GMRES’ “memory” of previous correct iterations,
to show that the additional corrupted basis vectors and projection coefficients cannot make the residual norm
grow by more than a certain bound more than its value in the last correct iteration.

The above assertions, if true, ensure that bounded errors in the Arnoldi process translate into bounded
GMRES solution errors. This will give us the piece missing from our previous work on FT-GMRES [5]:
namely, that the outer solver may need to bound inner solves’ errors in order to ensure convergence, as
governed by inexact Krylov theory [20]. FT-GMRES assumes that the outer solver computes reliably, so it
can evaluate each inner solve’s residual norm and use the inexact Krylov bound as an acceptance criterion
for that inner solve. If an inner solve result does not satisfy the bound, the outer solver will repeat the inner
solve. However, this is a very coarse-grained error detection mechanism, given that FT-GMRES expects the
inner solve to consume most of the iterations and do most of the work. Rolling back an entire inner solve can
be expensive. Suppose instead that we could detect most errors in the inner GMRES solve, using the criteria
developed earlier in this paper, and bound the errors that we could not detect. If we could do this, then we
might only ever need to roll back a single iteration of the inner solver. We might not even need to do this, if
we apply inexact Krylov bounds to individual iterations of the inner solver, as well as to the outer solver. If
we succeed in this task, we could finally make good on our promise to deliver an iterative linear solver that
always converges in reasonable time despite faults, as long as it would have converged in reasonable time
without faults.

7. Conclusions. The key findings we have presented are
• The semantics of a bit flip provides useful insight into how the inputs of the GMRES algorithm
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relate to the potential errors that a bit flip in data can produce.
• Studying the effect of a single bit flip can provide enormous insight into how algorithms behave

in the presence of faulty hardware, and produces findings that are not based on conjectures about
failure rates that are not measurable.
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INVESTIGATING ITERATIVE METHODS FOR SYSTEMS WITH MULTIPLE RIGHT-HAND
SIDES USING GRAPHICS PROCESSING UNITS

SARAH V. OSBORN∗ AND ERIC T. PHIPPS1

Abstract. Numerically solving large, sparse linear systems is of great importance in many applications and often a great computa-
tional bottleneck. In this paper, we investigate the potential improvement in performance of solving linear systems on different threaded
architectures, in particular graphics processing units (GPUs). GPUs are an important component in high-performance computing and
allow for great parallelism which preconditioned Krylov iterative solvers can take advantage. In this paper, we discuss some challenges
in solving linear systems with multiple right-hand sides. Then results will be presented for performing solves using existing linear
solvers and preconditioners from the Trilinos Project on CPU and GPU architectures.

1. Introduction. The numerical solution of large, sparse linear systems is fundamental for many ap-
plications in computational science and engineering. This often requires a significant computational effort
so finding faster, more efficient ways to solve Ax = b allows for the solution of larger and more complex
problems. Of particular interest in this paper is the solution of AX = B where X and B are multi-vectors.
Using preconditioned block iterative methods as solvers allows for the potential to speed-up the process
by exploiting the parallelism of these methods on parallel computer platforms like multicore-CPU and
manycore-accelerator (e.g., NVIDIA GPU) devices. In order to take advantage of the potential improve-
ment in performance, careful consideration of algorithms and implementation is essential. In this paper, we
first consider the CUSP library for sparse linear algebra and implement our own kernels for performing block
solves for multiple right-hand sides on a GPU using the CUDA platform. Of particular interest are kernels
adapted to a large number of right-hand sides. This problem arises when using a mean-based preconditioner
in the stochastic Galerkin method [13]. Then, we use existing CPU-based solvers and preconditioners in
Trilinos and port them to GPU architectures and present timing results. We present an overview of iterative
methods and preconditioners for solving AX = B in Section 2. Implementation of the necessary routines in
CUSP and Trilinos is discussed in Section 3 with particular focus on parallel programming using CUDA.
Numerical results are given in Section 4.

In this paper, except when otherwise specified, upper case letters (A, B, etc.) will denoted matrices,
lower case bold letters (x, y, etc.) will denote vectors, and upper case bold letters (X, Y, etc.) will denote
multi-vectors.

2. Preconditioned Iterative Methods. We consider solving the linear system AX = B where A is a
symmetric, positive definite (SPD) matrix and X and B are the solution and right-hand side multi-vectors. In
general, an iterative method starts with an initial guess and performs a series of steps to find more accurate
approximations to the solution. We focus on the conjugate gradient (CG) method due to the structure of
the matrix. The convergence of an iterative method depends on the spectrum of A and can be significantly
improved with preconditioning. The basic idea of preconditioning is to transform a linear system Ax = b
into an equivalent linear system Ãx = b̃ which will have the same solution as the original system. The trans-
formation is chosen so that Ã will have better convergence properties than A resulting in faster convergence.
Typically, this is done by the multiplication of the inverse of a non-singular matrix M so then Ã = M−1A
and b̃ = M−1b. Another way to precondition is to define Ãx = b̃ to be a simplified version of the original
system.

Since we are solving for multiple solution vectors, we consider the pseudo-block CG algorithm which
applies the standard single-vector CG algorithm simultaneously to multiple right-hand sides [12]. The pseu-
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docode for the preconditioned pseudo-block CG method is shown in Algorithm 2 where z =< X,Y > is the
multi-vector dot product defined by z[i] = X[i]T Y[i] where X[i] is the i-th column of X. The multiplication
and division operators are performed component-wise.

Algorithm 2 Pseudo-block preconditioned CG (A,B,X0)

1: R0 = B−AX0
2: Solve MZ0 = R0
3: P0← Z0
4: for all i←1, 2,. . . until converged do
5: αi =

<Ri,Zi>
<Pi,APi>

6: Xi+1← Xi +αiPi
7: Ri+1← Ri−αiAXi
8: Solve MZi+1 = Ri+1

9: βi =
<Ri+1,Zi+1>
<Ri,AZi>

10: Pi+1← Ri+1 +βiPi
11: end for

Now as for the choice of the preconditioner M, we consider three different preconditioning strategies:
incomplete factorizations, polynomial preconditioners, and multigrid preconditioners.

2.0.2. Incomplete Factorizations. An incomplete LU factorization (ILU) preconditioner is based on
Gaussian elimination which given a matrix A yields an upper-triangular matrix U and a lower-triangular
matrix L so that A = LU [14]. The key idea in an incomplete factorization is to produce approximate L̃ and
Ũ by discarding some of the fill-in which often takes place during the factorization so then A ≈ L̃Ũ . An
application of an ILU preconditioner to a multi-vector involves solving two triangular systems with multiple
right-hand sides.

2.0.3. Polynomial Preconditioner. A polynomial preconditioner calculates a series of matrix-valued
polynomials which approximates the inverse of a matrix [14]. For Chebyshev preconditioning, a linear
combination of Chebyshev polynomials are used as the preconditioner matrix. In contrast to preconditioning
methods based on Gaussian elimination, such as ILU from above, the Chebyshev method only uses matrix-
multi-vector multiplication and multi-vector addition.

2.0.4. Algebraic Multigrid Overview. Algebraic multigrid methods are an effective preconditioning
strategy that construct a hierarchy of grids and intergrid transfer operators without explicit knowledge of
the underlying problem [5, 14]. A typical multigrid cycle starts at a finest level where the fine level solution
vector is then transferred to a next coarser level, called restriction. After some relaxation cycles on the coarse
level, the solution is then restricted to the next coarser level until the coarsest level is reached. The solution
obtained at the coarsest level is then interpolated back to the finer level, called prolongation. The solution
from this finer level is interpolated to next finer level after some relaxation iterations. The basic idea is to
damp high-energy components which are reduced through a simple smoothing procedure, then transfer the
low-energy (or smooth) components to a coarser level where they are likewise reduced.

The setup phase involves restricting the original matrix A to a coarser (smaller) matrix by performing
the triple-matrix product Al+1 = RlAlPl where Pl is the interpolation operator, Rl is the restriction operator,
and Al is the representation of the matrix operator for a particular level l where A0 = A. In this work, the
setup of the preconditioner is done on the CPU and is not discussed in detail. Instead we focus on the apply
phase of the preconditioner. The multigrid cycling or solve phase is detailed in Algorithm 3 where m is
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the total number of levels and l is the current level. Several computations are executed at each level in the
algorithm, but the operations are largely sparse matrix- multi-vector multiplications.

Algorithm 3 AMGCycle(A,X,B, l,m)

1: if l == m then
2: Solve AX = B using coarse grid solver
3: else
4: X← Presmooth(A,X,B)
5: R = B−AX
6: E = 0
7: AMGCycle(Al+1,E,Rl+1R, l +1,m)
8: X = X+Pl+1E
9: X← Postsmooth(A,X,B)

10: end if

There are many options for smoother approaches: Gauss-Seidel, incomplete factorizations, polynomial
smoothers, etc. We choose to use a polynomial smoother as it is implemented almost entirely with sparse
matrix - multi-vector products. In particular, we use a Chebyshev iteration as the smoother in our imple-
mentation. For the coarsest grid solver, a direct method is often used like a LU factorization or an iterative
method, but another smoother can be used or an incomplete factorization. In our implementation, we use
the Chebyshev iteration as the coarse grid solver. Once the multigrid hierarchy is formed, to apply it as a
preconditioner for each level l the matrices Rl , Al , and Pl are necessary as well as the smoothers for each
level and the coarse grid solver for the final level.

3. Software Implementation. Our goal was to test the performance of pseudo-block CG precondi-
tioned with AMG on GPU architectures. Existing software implementations were used with iterative lin-
ear solver algorithms and preconditioners as a starting point. In this section, we first describe some basic
terminology and give an overview of programming using CUDA [10], a parallel computing platform and
programming model invented by NVIDIA. Then we explain our implementation in CUSP [4]. CUSP is a
library of parallel algorithms for sparse linear algebra on CUDA GPU architectures. Next, we move to the
Trilinos framework and use existing software for the preconditioned CG and port it to a GPU.

3.1. Overview of Parallel Programming with CUDA. In the CUDA parallel programming model
[9, 10], an application consists of a sequential host program that may execute parallel programs known as
kernels on a parallel device. A kernel is executed using a potentially large number of parallel threads where
each thread runs the same sequential program. The programmer organizes the threads of a kernel into a grid
of thread blocks. The threads of a given block can cooperate among themselves using barrier synchronization
and a per-block shared memory space that is private to that block. To manage this large population of threads
efficiently, the GPU employs a SIMT (Single Instruction Multiple Thread) architecture in which the threads
of a block are executed in groups of 32 called warps. A warp executes a single instruction at a time across
all its threads.

In order to write efficient kernels for our applications, memory access is an important factor. When
accessing a portion of global memory, all threads in a warp access a bank of memory at one time. If the
locations of the global memory are sufficiently close together, the device coalesces all memory accesses into
a consolidated access to consecutive memory locations. When concurrent threads simultaneously access
memory addresses that are very far apart in physical memory, the device is unable to combine the accesses
which leads to non-coalesced memory access. This results in a decrease to memory bandwidth efficiency
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and therefore a decrease to the overall performance of the kernel and should be avoided if possible.

3.2. Implementation of Sparse Linear Algebra Routines on a GPU in CUSP. CUSP provides a
framework for the CG method preconditioned with AMG for a single right-hand side on a GPU. In order
to implement pseudo-block CG and to apply the preconditioner to a linear system with multiple right-hand
sides, three main kernels are necessary: sparse matrix times a multi-vector (SpM-MV), dot product of two
multi-vectors, and scalar multiplication and addition of multi-vectors. With these kernels in place, imple-
menting our method simply involves adding the pseudo-block CG algorithm code and an apply function for
the preconditioner. Special consideration must be made when implementing SpM-MV on a GPU as this
operation is necessary in the solver and preconditioner and ultimately determines the overall performance of
a method. One SpM-MV involves computing the dot products of each row of the sparse matrix with each
column of the multi-vector.

There are many different sparse matrix representations, but we will only consider the compressed row
storage (CRS) format [3]. This format stores the column indices and nonzero values in arrays with a third
array of row pointers which stores the locations of the value array that start a row. This is an efficient format
in that it does not store any unnecessary elements, but needs an indirect addressing step for vector/multi-
vector element access.

First, let us consider a SpM-MV but with a single column in the multi-vector. One possible imple-
mentation is to assign one thread per matrix row to compute the dot product. This kernel suffers from lack
of performance due to the way it accesses the data in the CRS matrix. The column indices and nonzero
values for a given row are stored contiguously in the CRS data structure, but these values are not accessed
by consecutive threads. This leads to uncoalesced memory access causing poor performance. A better
implementation assigns a warp to each matrix row so threads access the data in the CRS matrix format
contiguously, called the vector kernel in [3]. There is still inefficiency in this kernel due to the uncoalesced
vector accesses.

Since we are interested in an efficient kernel for a large number of right-hand sides, let us consider a
multi-vector with a large number of columns and investigate accessing the elements in the multi-vector. The
multi-vector is stored as a one-dimensional array with the entries stored in a row-wise form. Since the matrix
is sparse and the multi-vector is only accessed when the matrix has a nonzero, we don’t have coalesced
memory access for the multi-vector using the above approach. To correct this we have consecutive threads
access consecutive columns for a given row of the multi-vector.

Let us consider the kernel for a particular thread block. Each thread block iterates over the matrix rows
assigned to that block processing seven rows in parallel for each iteration. In order to maintain coalesced
reads of the matrix values, shared memory is used to store the values and column indices for each row. Then
the matrix row and multi-vector dot product is computed in parallel with each thread in a warp accessing a
different column of the multi-vector, processing 128 columns at a time. It should be noted that due to the
number of columns processed in parallel our kernel is not optimized for fewer columns in the multi-vector.

Timing results comparing our kernel and CUSP’s vector kernel for a single vector are shown in Figure
3.1. Our experiments show that with large number of right-hand sides we achieve significantly higher float-
ing point throughput over the vector kernel processing each column in the multi-vector serially. The other
kernels that were implemented on the GPU, multi-vector dot-product and scalar multiplication and addition
of multi-vectors, were implemented in a similar way taking the same considerations of coalesced memory
access and distribution of warps into account.

3.3. Trilinos. Now, we consider using the Trilinos Project to solve a linear system on a GPU [8]. Cur-
rently, matrix and preconditioner assembly are not available on a GPU. Instead, our strategy is to assemble
the linear problem (matrix and right-hand side) and the preconditioner on the CPU in serial. Then the as-
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sembled items are transfered to the GPU and the linear algebra kernels that are available on the GPU are
used to compute the solution.

Trilinos’ ability to support multicore computing is provided by the Kokkos shared-memory API [6].
The software implementations of the linear algebra algorithms and necessary data objects are templated on
a Kokkos node type. This allows a single code-base to support serial, threaded, CPU or GPU, and hybrid
architectures. The node type specifies how to transfer data in memory as well as an abstraction for how the
parallel architecture works. Tpetra is used for the linear algebra objects [1]. Belos’ pseudo-block CG was
used as the iterative solver method [2]. The MueLu package provided the algebraic multigrid which in turn
uses Ifpack2’s Chebyshev iteration as a smoother and coarse grid solver [7].

Once the linear problem and preconditioner are assembled on the CPU, both must be transferred to the
GPU. To accomplish this, we implemented a clone function to copy all necessary data to the new node type
(i.e. the GPU). In order to clone a matrix, vector, or multi-vector to the GPU, an exact copy of the data is
made on the device. To clone a multigrid preconditioner, we must clone the restrictor (R), prolongator (P),
and coarse grid (A) matrices for each level of the muligrid hierarchy as well as the smoother (pre and/or
post) and coarse grid solver. To clone an ILU preconditioner, we perform the factorization of the coarse grid
on the CPU first and then clone the factors (stored as matrices) to the new node type. For the smoother, we
use a Chebyshev iteration and all necessary data is copied to the GPU when it is cloned.

After the linear problem and preconditioner are cloned to the GPU, all that is necessary to solve on a
GPU is the appropriate linear algebra routines (most importantly matrix-vector (or multi-vector) multiply,
matrix-matrix multiplication, dot products, etc.). Kokkos provides the flexibility to specify the linear algebra
kernels to be used for a particular node type. In our implementation, the NVIDIA CUDA Sparse Matrix
library (CUSPARSE) is used for the linear algebra kernels on the GPU [11].

4. Numerical Results. In this section we present results to show the performance of solving linear
systems arising from the finite difference discretization of a linear two-dimensional diffusion equation with
varying number of mesh points. Pseudo-block CG was used as the solver with a convergence tolerance of
10−12, preconditioned with smoothed aggregation algebraic multigrid. A Chebyshev polynomial smoother
was used as the smoother and coarse grid solver with polynomial degree of 5. The CPUs used for the testing
were two Intel Xeon E5-2670 CPUs with 8 cores per CPU and the GPU was a Tesla K20Xm of compute
capability 3.5. For each problem size, the solver ran on the CPU with 1 core and with 16 cores using MPI
parallelism, on a single GPU, and on two GPUs. The timings for the matrix-vector multiply, preconditioner
apply, and the total solve are shown in Figures 4.1 - 4.3. The number of mesh points in each direction is 2N

yielding 22N degrees-of-freedom.
The most useful comparison is the timing results for the CPU with 16 cores and the single GPU. For the

matrix-vector multiplication, the GPU outperforms the CPU with 16 cores when the mesh size reaches 128
and for the preconditioner apply, it is faster when the mesh size reaches 2048.

Currently, solving with 2 GPUs is hindered by the large amount of transfer time between the CPU and
the GPU. This is due to known inefficiencies in the implementation where the entire multi-vector is copied
between the CPU and GPU each time communication between GPUs is required. This is demonstrated in
Figure 4.3 plotting the transfer time between the CPU and GPU.

5. Conclusions. In this paper, we investigated linear solver performance on a CPU and a GPU. This
was first accomplished using CUSP where we implemented pseudo-block CG for solving a system with
multiple right-hand sides. Several linear algebra kernels were written for the GPU. It should be noted that
these kernels are not fully optimized particularly for smaller numbers of right-hand sides. Then we moved
to the Trilinos framework where we cloned a linear problem and an existing multigrid preconditioner to a
different node type, specifically a GPU. We presented some numerical results that show promising results for



S.V. Osborn and E.T. Phipps 37

solving linear systems with a GPU and multi-GPU scheme. There is still work to be done to more efficiently
implement a multi-GPU solver scheme, yet when those issues are resolved the results look very promising.

In the future, we would like to implement the linear algebra kernels that we implemented in CUSP into
the Trilinos framework to be used on the GPU.
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FIG. 3.1. Timing results for matrix-vector and matrix-multi-vector multiply

FIG. 4.1. Timing results for operator apply

FIG. 4.2. Timing results for preconditioner apply FIG. 4.3. Timing results for solve
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THE H -MATRIX-BASED FAST SOLVER FOR LARGE-SCALE CIRCUIT SIMULATION

BANGDA ZHOU∗, SIVASANKARAN RAJAMANICKAM1, AND HEIDI K. THORNQUIST2

Abstract. In this work, we proposed and developed an H -matrix-based linear matrix solver for large-scale scientific simulation
including large-scale complex integrated circuit simulation. In addition to geometrical approach to determine admissibility condition
and build H -matrix data structure which is widely applied in conventional H -matrix algorithm, algebraic admissibility condition is
developed in this work. By algebraic admissibility condition, the proposed solver can handle arbitrary sparse symmetric matrix with an
H -matrix representation.

1. Introduction. In recent years, there has been an increased demand for high performance and low
power very large scale integration circuit design. High performance is achieved by technology scaling,
increased functionality and competitive designs. On the other hand, a common technique used to obtain
low-power design is to scale down the supply voltage. This stands to reason, since the chip power P is
proportional to the square of the supply voltage VDD. Thus, the demand for high performance and low power
has led to modern VLSI designs being characterized by reduced feature size, increased functionality and
lower supply voltage.

Increased chip functionality results in the need for complex and large-scale design. Lower supply
voltage, on the other hand, makes the voltage variation across circuit terminals very critical since it may
lead to chip failures. Consequently, efficient and accurate analysis of circuit is necessary for predicting the
performance and improving the performance if necessary.

Among both DC and transient simulation of large circuit, numerical kernel always takes large portion
of total simulation time. With the advancement of modern circuit design, large bandwidth and high speed
signals require system level simulation which arise new challenges to numerical kernel. Therefore it is
critical to improve the solution speed to facilitate the design of large-scale circuit.

The inverse M−1 of a sparse matrix M ∈Rn×n is fully populated in general. The computation of the exact
inverse, which requires O(n3) operations, is therefore avoided in large-scale computations . Hierarchical
matrix (H -matrix) approximate matrix in a data-sparse way, and the approximate arithmetic for H -matrix
is almost optimal. Data sparse representation of matrix, LU factors and inverse is proved for PDE problem
due to kernel degeneration of integral operator [3,4,15,20]. For PDE-like problem, like large-scale powergrid
analysis, compared by conventional sparse matrix solvers [1, 5, 6, 14], H -matrix for solving sparse matrix
generated from circuit analysis is also shown to be efficient [13, 19]. In conventional H -matrix algorithm,
admissibility condition [3,11] is based on geometric information, which is not always achievable in common
sparse matrix computation. Therefore algebraic admissibility condition [2,17,19] is introduced to determine
the H -matrix representation based on graph generated from sparse matrix itself [9, 10, 12, 17, 18].

In this paper, we developed an H -matrix-based sparse matrix solver for large-scale simulation using
algebraic admissibility condition and its superior performance and controllable accuracy is demonstrated
by simulating two examples , of which the maximum number of unknown is beyond 12 million and total
simulation time is within 1 hour.

2. H -Matrix-based Fast Solver. Hierarchical matrices provide approximations to the matrix with al-
most linear complexity in both operation counts and memory consumption. The inverse and LU factorization
complexity of a sparse matrix generated from finite element method (FEM) are proved to be O(NlogN2) [15]
and solution and memory consumption complexity are O(NlogN), compared with O(N2) in exact arithmetic.

∗Purdue University, zhou136@purdue.edu
1Sandia National Laboratories, srajama@sandia.gov
2Sandia National Laboratories, hkthorn@sandia.gov
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FIG. 2.1. Rank-k approximation of M

2.1. Low Rank Approximation. Low rank approximation of a matrix M not only reduces the opera-
tion count but also save the storage cost.

THEOREM 1 (Best Approximation with Fixed Rank [3]). Let

M =UΣV T (2.1)

be a SVD of M ∈ Rn×m. Let

M̃ := Ũ Σ̃Ṽ T (2.2)

with matrices

Ũ :=U |n×k, Σ̃ := diag(Σ1,1,Σ2,2, . . . ,Σk,k),Ṽ T :=V |m×k. (2.3)

Then M̃ is a best approximation to M in the sense that

‖M− M̃‖2 = Σk+1,k+1,‖M− M̃‖F =

√√√√min(n,m)

∑
i=k+1

Σ2
i,i. (2.4)

holds in the Frobenius and spectral norm.
Proof. For the spectral norm the proof is contained in [8]. The extension to the Frobenius norm can be

achieved by induction.
According to Theorem 1, by given any accuracy requirement ε , numerical rank of M can be adaptively

determined.
To perform low-rank truncation on matrix with full rank is straightforward by Theorem 1. But in H -

matrix-based matrices multiplication and addition, low-rank truncation of matrices in rank-k approximated
form are always encountered. In order to handle low-rank truncation efficiently, reduced Singular Value
Decomposition (rSVD) is introduced.

Let M = ABT ∈ Rm×n be a matrix in rank-k approximation form as shown in Figure 2.1. We compute
an rSVD M =UΣV T by

1. Computing (reduced) QR-factorisations of A, B: A = QARA, B = QBRB with matrices QA ∈ Rn×k,
QB ∈ Rm×k, RA,RB ∈ Rk×k.

2. Computing an rSVD of RART
B =U ′ΣV ′T .

3. Computing U := QAU ′,V := QBV ′.
The operation complexity is reduced from O(nm2) (if n≥ m) to O((m+n)k2) by using rSVD.

2.2. Admissibility Condition. The partition of the index set I× I is critical by H -matrix. It is usually
generated by recursive subdivision of computational domain I× I. The recursion stops in the blocks t× s
that satisfy a so-called admissibility condition or that are small enough, i.e. min{|t|, |s| ≤ nmin}, where nmin
is the predefined constant, denoted as leafsize.
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DEFINITION 1 (Admissibility Condition). Consider clusters t,s ∈ I, following condition is defined as
admissibility condition,

min{diam(t),diam(s)} ≤ ηdist(t,s) (2.5)

where diam(t) is the diameter of cluster t, dist(t,s) is the distance between cluster t and cluster s and η is
a constant

DEFINITION 2 (Admissible Block). Consider matrix block Mt×s, Mt×s is admissible if admissibility
condition between row cluster t and column cluster s is satisfied.

DEFINITION 3 (Inadmissible Block). Consider matrix block Mt×s, Mt×s is inadmissible if following
condition is satisfied,

#(t)≤ nmin and #(s)≤ nmin. (2.6)

where #(·) is the unknown size and nmin is leafsize as mentioned previously.
The complexity of arithmetic operations for a good cluster tree should make sure that blocks become

admissible as soon as possible. In [3], geometry bisection is proved efficient to generate H -matrix structure.
However, geometric information is not always available especially for circuit simulation. In [2, 17, 19],
algebraic admissibility condition is introduced for H -matrix construction without geometric information.

2.2.1. Geometric Approach. The geometric admissibility condition depends on the Euclidean diame-
ters of the supports of the involved basis functions and on their Euclidean distance. For each i∈ I, we denote
the support of the corresponding basis function φi by Ωi := supp(φi). A point xi is chosen for each index
i∈ I. The construction starts with the full index set I, which is the root of the cluster tree by definition. Then,
we apply a suitable technique to find a disjoint partition of the index set and use this partition to create son
clusters. We apply the procedure recursively to the sons until the index sets are small enough, namely when
the size of index set reaches leafsize.

2.2.2. Algebraic Approach. For most sparse matrices from circuit problems and many other scientific
applications, there is no geometric information available or geometric information is not achievable. In
order to compute diam(·) and dist(·, ·) in (3), a graph GM(EM,VM) is generated from sparse matrix M ∈
Rn×n. Cluster Tree TI [3] is constructed based on nested dissection ordering [7] provided by graph partition
packages in [12, 18]. In the implementation of proposed H -matrix based solver, we choose Scotch [18] for
more balanced cluster tree compared with smaller separator by Metis [12]. Balanced tree structure will ease
the construction of block cluster tree TI×I , which determine the recursive H -matrix block data structure.

By nested dissection ordering, computational domain is recursively divided into subdomains and one
separator, namely t0

0 = {t1
0 , t

1
1 , t

1
2} as shown in Fig 2.2(a). t0

0 is the computational domain at upper level. t1
0

and t1
1 are subdomains which are completely separated by separator t1

2 , which means in sparse matrix M
matrix block M(t1

0 , t
1
1 ) and M(t1

1 , t
1
0 ) are zero block and they will be preserved during LU factorization, so

that we can save time and memory by avoiding operations on those zero blocks. Here M(r,c) denotes a
matrix block in matrix M in which row cluster is r and column cluster is c. The nested dissection will be
recursively done on subdomains and for separator normal bisection will be applied. Domain subdivision for
both domain and separator stop when size of domain or separator reaches certain predefined value, namely
leafsize. If upper domain is chose to be the parent of subdomains and its separator, a tree structure can be
built, which is the cluster tree TI . Generally the size of separator is smaller than the size of subdomains, the
tree structure will become imbalanced. So if (2.2.2) is satisfied, separator Sk

i is pushed one level down as
shown in Fig 2.2(b).

α#(Sk
i )< #(Dk

j) (2.7)
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FIG. 2.2. Cluster tree TI separator relocation

Here, #(Sk
i ) denotes the size of the separator i at level k and Dk

j is the domain j at level k, α is a control
constant, usually α ∈ [1,2]. After pushing down separator when it is necessary, the cluster tree TI is truncated
at its minimum depth. We can have the following,

1. The size of each cluster at the same level is in comparable size.
2. The union of all the clusters at same level is equal to the whole computational domain I.

The remaining problem is to calculate the distance between two clusters and the diameter of a given
cluster in (2.2.2). A graph Gi(Ei,Vi) is constructed for each cluster ti ∈ TI . The diameter of a cluster ti is
estimated by calculating the radius of corresponding graph Gi(Ei,Vi). Radius of one graph can be estimated
by breadth first search. In implementation of proposed solver, breadth first search is done twice on one
graph in order to achieve more accurate result. One is started from vertex with maximum degree and the
other one is started from the root from the first search. The maximum depth represents the radius, namely the
diameter of one cluster. For graph Gi(Ei,Vi), time complexity is O(|Ei|+ |Vi|) in the worst case. So overall
complexity of calculating diameter for all clusters in cluster tree is O(N logN), since the depth of cluster tree
is logN. To determine the distance of two clusters, one way is to calculate the shortest path between two
set of vertices. However, this cannot be finished in polynomial time complexity. In order to keep the merit
of H -matrix-based solver, almost linear complexity, an approximated way [2] to determine the distance is
implemented.

DEFINITION 4 (Neighbored Clusters). Two cluster t1, t2 ⊂ I are denoted as neighbored clusters if there
exists an edge in GI(EI ,VI) connecting indices of t1 and t2, i.e. ∃i ∈ t1, ∃ j ∈ t2 such that (i, j) ∈ EI .

A cluster t is called contiguous cluster if there are two indices imin and imax such that t = {i : imin ≤
i < imax}. Note that checking whether two contiguous cluster t1 and t2 are neighbored can be done with
O(min(|t1|, |t2|)) operations. It is shown in the following, if we assume #(t1)≤ #(t2)

1. Find the neighbor vertices of t1, denoted as Nt1
2. If ∃k ∈ Nt1 such that it2min ≤ k < it2max, t1 and t2 are neighbored clusters.

All clusters in cluster tree TI are contiguous clusters if the index of vertices in each cluster is ordered. To
achieve this, we just need to change the index of the graph VI ∈ GI according to the ordering results from
nested dissection, which can be done in O(|EI |+ |VI |), namely O(N logN) logarithmic linear complexity.
And if t1 and t2 are neighbored clusters, the distance in between is 0.

If t1 and t2 are not neighbored, approximated distance is estimated by the length of shortest path in a
newly constructed graph GD using Dijkstra’s algorithm, which can be done with O(|VGD |2) operations. The
edges in GD are based on the neighbored clusters from the same level. Each edge has a weight w that is
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calculated by the following,

w = |(lt1 − l′t1)− (lt2 − l′t2)|+1 (2.8)

where l denotes the current level and l′ is the virtual level, the level where cluster t locates before pushing
down. Only for separator clusters l and l′ are different. And distance is calculated between domain cluster
and separator cluster, so either lt1 − l′t1 or lt2 − l′t2 is 0. It is proved that vertices VGD in the graph GD is
bounded [2]. Hence, the approximate distance can be computed with a bounded number of operations.

The previous approach can be refined by the following iterative procedure. Dijkstra’s algorithm not only
computes the distance between t1 and t2, but also the nodes of the shortest path. We construct a new graph
consisting of vertices from level l +m for some m rooted at the shortest path nodes. Its edge are defined as
in the previous graph GD. The computation of the shortest path between t1 and t2 in this graph will lead to
an improved approximation of diam(t1, t2).

3. Numerical Experiments. To demonstrate the efficiency and accuracy of proposed solver, two set
of examples are simulated. One is from finite element method and the other one is from circuit analysis,
namely modified nodal analysis (MNA).

3.1. Wathen Examples. Wathen examples are two dimensional finite element problem generated from
Matlab gallery function. There is no geometric information available in Matlab, so it would not be feasible
for conventional H -matrix solver. The total number of unknown ranges from 30,401 to 12,008,001. In
proposed solver, leafsize is 16, η in admissibility condition is 5 and truncation error ε is 10−5. Other state-
of-the-art sparse direct solver are also tested, like KLU [6], UMFPACK [5], SuperLU [14] and MUMPS [1].

Simulation time of proposed solver and other sparse direct solvers is shown in Fig 3.1. Compared
with other solvers, superior performance of proposed solver is demonstrated. All other sparse solver cannot
solve the largest 12 million problem but proposed solver can factorize and solve it within 1 hour. And time
complexity from Fig 3.1 is close to linear. And in Fig 3.2, solution error of proposed solver is shown. Error
is measured in relative residue of solving one random right-hand-side. Error across different test cases is
well controlled, which is close to 10−9.

In Fig 3.3, different configurations of proposed solver are tested. By letting η be zero, there are no low-
rank approximated block generated during LU factorization, all blocks are stored in exact format. At this
time, proposed solver acts like an exact sparse matrix solver. By comparison of two different configurations,
we can conclude that H -matrix is very efficient and play a key role in proposed solver.

3.2. IBM Powergrid Examples. IBM power grid examples [16] of different number of unknowns are
tested. The sparse matrices are generated from DC analysis and transient analysis using modified nodal
analysis. As shown in Table 3.2, the performance of proposed solver is competitive to other sparse solvers.
For examples with small number of unknowns, proposed solver is slower than KLU, which is specifically
designed to solver circuit problem. But for examples with large number of unknowns, proposed solver is
faster. And another observation is that due to very sparse property of circuit problem, there are very few
blocks in the low-rank approximated form. Even for the largest example, proposed solver only takes close
to 1 minute to finish the simulation. Due to very few low-rank approximated blocks, proposed solver acts as
an exact direct sparse matrix solver, so the solution error is in the same order to other direct sparse solvers.

4. Conclusions and Future Works. In this work, we proposed and developed an H -matrix-based
linear sparse matrix solver with logarithmic linear complexity. Also, we adopt algebraic admissibility con-
dition in our proposed solver to handle the problem without geometric information. By simulating two set
of examples, superior performance and good accuracy is achieve by comparing with other state-of-the-art
direct sparse solvers.
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FIG. 3.1. Simulation time

Currently, the proposed solver is only capable of handling symmetric sparse matrix. In the future, the
application of proposed solver could be further expanded by making it able to handle asymmetric matrix.
And for circuit problem, the very sparse property of matrix itself should be considered in order to improve
the ratio of the low-rank approximated blocks.
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KKT PRECONDITIONERS FOR NON-HERMITIAN INDEFINITE PDE SYSTEMS

STEPHEN D. SHANK∗, PAUL TSUJI1, RAY TUMINARO2, AND DENIS RIDZAL3

Abstract. This paper is concerned with KKT preconditioning in the context of PDE-constrained optimization. An all-at-once
approach for quadratic minimization problems with linear constraints as well as a more general trust region SQP method are considered
with an emphasis on situations where the associated PDE problem has an operator which is indefinite. We analyze the effectiveness of
an approximate Schur complement method to preconditioning KKT systems, extending existing results to non-Hermitian and indefinite
systems. The performance of the proposed preconditioner is illustrated on problems from acoustic control.

1. Introduction and Motivation. This paper considers the iterative solution of linear systems associ-
ated with equality-constrained optimization

min
z,u

F (z,u)

subject to G (z,u) = 0, (1.1)

where F is the objective function, G specifies constraints representing a PDE that characterizes the physics
of the model, u represents a physical state such as displacement or velocity field, and z is a variable of interest
related to the specific type of optimization. In parameter estimation problems, z might represent material
parameters such as the bulk modulus, while in optimal control problems z might correspond to an input into
the system. Problems of this type arise in a wide range of different contexts. In this paper, we focus on
Helmholtz operators and contrast this with the better studied case where G (z,u) is associated with a Poisson
operator. Our analysis is also useful for optimization problems with other non-Hermitian operators, such as
those arising in convection-diffusion and nonlinear elasticity.

The main goal of this paper is to extend results for a general KKT preconditioning strategy proposed
by Rees, Dollar, and Wathen [16] (both theoretically and computationally) from symmetric positive-definite
PDE systems to non-Hermitian and indefinite systems. The KKT preconditioner in [16] is motivated by an
all-at-once approach applied to a class of distributed control problems with linear constraints and a quadratic
objective function. The underlying linear systems have block structure2βM 0 −M

0 M G ∗u
−M Gu 0

 (1.2)

where M is a finite element mass matrix, Gu is the matrix operator associated with the linear PDE constraints,
and ∗ denotes the conjugate transpose. This KKT system arises from a specific quadratic minimization
problem which includes a penalty parameter β ; the minimization problem along with a preconditioner are
discussed in [16] (and further described in Section 2). In addition to computational results, a convergence
proof demonstrates the optimality of the preconditioner for a class of problems where the underlying discrete
PDE operator is a symmetric positive-definite (SPD) matrix. Our key result centers on extending these results
theoretically and computationally to systems which are not necessarily SPD. In particular, we illustrate that
when the resulting preconditioner is applied to indefinite problems, the corresponding convergence behavior
is relatively insensitive to changes in the mesh spacing.

∗Temple University, Philadelphia, PA 19122
1Sandia National Laboratories, Livermore, CA 94550
2Sandia National Laboratories, Livermore, CA 94550
3Sandia National Laboratories, Albuquerque, NM 87123



S. D. Shank, P. Tsuji, R. Tuminaro, and D. Ridzal 49

We then apply this preconditioning strategy within a more general inexact sequential quadratic pro-
gramming (SQP) trust region framework [7, 8, 17], applicable to nonlinear functions F and G . A natural
requirement in many applications is that the objective function and control may only involve quantities within
a subregion of the physical domain. An important feature of the inexact trust-region SQP algorithm is that it
remains applicable in this setting. The underlying linear subsystems that must be solved have structureI(z) 0 G ∗z

0 I(u) G ∗u
Gz Gu 0

 (1.3)

where Gu and Gz are matrices associated with a linearization of G (z,u) corresponding to the Jacobian of the
governing PDE, and I(u) and I(z) are identity matrix operators. It is important to notice that these subprob-
lems do not depend on F , which might include regularization or penalty parameters. Furthermore, the 2×2
upper-left block matrix is always well-conditioned regardless of the specific nature of the objective function
or control (e.g., whether these are defined within a subregion or globally). This means that a general pre-
conditioning strategy can be employed over a wide range of different optimization scenarios. This situation
is in contrast to Equation (1.2) which includes the β term, and where the natural generalization of the M
terms to locally defined (subregion) control and/or optimization may lead to rank deficient operators. Thus,
the inexact SQP trust-region framework is widely applicable and generally leads to better conditioned KKT
systems.

2. KKT Preconditioners for SPD systems. Rees, Dollar, and Wathen [16] consider the control prob-
lem

min
u, f

1
2
||u− û||2L2(Ω) + β || f ||2L2(Ω)

subject to −∆u = f in Ω (2.1)
u = 0 on ∂Ω.

The discrete version of this problem is of the form

min
u,f

1
2

u∗Mu−u∗b+β f∗Mf

subject to Ku = Mf (2.2)

where K ∈ Rn×n is a finite element discretization matrix of ∆ on Ω, M ∈ Rn×n is the mass matrix, and u,
b, and f are n-vectors of coefficients for u, Mû, and f . For the Lagrange multipliers λ ∈ Rn, the discrete
Lagrangian for this problem is

L (u, f,λ ) =
1
2

u∗Mu−u∗b+β f∗Mf+λ
∗(Ku−Mf) . (2.3)

To satisfy the first-order optimality conditions, u, f, and λ must satisfy2βM 0 −M
0 M K∗

−M K 0

 f
u
λ

=

0
b
0

 . (2.4)

We denote this 3×3 block matrix as A . In [16], the authors propose the preconditioners

P1 =

2βM 0 0
0 M 0
0 0 1

2β
M+KM−1K∗

 & P2 =

2βM 0 0
0 M 0
0 0 KM−1K∗

 , (2.5)
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where P1 uses the exact Schur complement, S = 1
2β

M + KM−1K∗ while P2 uses an approximation,
S̃ ≈ KM−1K∗. From a practical perspective, P2 is much more attractive, as one typically wants to re-
place inverses within the preconditioner by an easy-to-compute approximation. In the case of P2, one
might apply a single multigrid V-cycle for the matrices K and K∗ as a replacement for K−1 and K−∗. As
Rees/Dollar/Wathen demonstrate, this replacement typically does not degrade the overall convergence rate
associated with using the exact solves.

For P1, the preconditioned linear system given by P−1
1 A has three distinct eigenvalues, which implies

that GMRES converges in at most three iterations; this is given by [13], as the matrix in (2.4) can be written
as a block 2× 2 saddle-point system. Further, [16] shows that the condition number of the preconditioned
linear system P−1

2 A does not grow as the mesh is refined under some assumptions on the discrete PDE
operator. These assumptions include that the discrete PDE operator K is SPD, and that certain bounds exist
on the eigenvalues of M and K. We now formally summarize Proposition 3.2 in [16]. Specifically, let µ be
an eigenvalue of P−1

2 A , then

either µ = 1,

or
1
2
(1+

√
1+4µ̃1)≤ µ ≤ 1

2
(1+

√
1+4µ̃n),

or
1
2
(1−

√
1+4µ̃1)≤ µ ≤ 1

2
(1−

√
1+4µ̃n) (2.6)

where 0≤ µ̃1≤ ...≤ µ̃n are the eigenvalues of the preconditioned Schur complement, 1
2β
(KM−1K∗)−1M+I.

Furthermore, if the stiffness and mass matrices satisfy

c1h2 ≤ x∗Mx
x∗x

≤ c2h2, d1h2 ≤ x∗Kx
x∗x

≤ d2 (2.7)

with constants c1, c2, d1, and d2 independent of h and β , then

either µ = 1,

or
1
2

(
1+

√
5+

2a1h4

β

)
≤ µ ≤ 1

2

(
1+

√
5+

2a2

β

)
,

or
1
2

(
1−

√
5+

2a2

β

)
≤ µ ≤ 1

2

(
1−

√
5+

2a1h4

β

)
.

with constants a1 and a2 independent of h and β . Thus, the eigenvalues of the preconditioned system P−1
2 A

are clustered in a few distinct intervals.
The eigenvalue bound assumptions given by (2.7) typically hold for standard linear finite elements and

second-order finite differences when the underlying mesh is shape regular, and when M corresponds to a
mass matrix defined over the entire domain. This result certainly holds true for the Poisson problem, if the
discretization is a standard finite element discretization with linear basis functions on a quasi-uniform mesh.
There are two limitations with this particular eigenvalue clustering result. First, the control problem given
by (2.2) assumes that one is interested in evaluating the state misfit and the control penalty terms over the
entire domain. This leads to the appearance of the mass matrices on the diagonal of the 2×2 upper left block
of (2.4). In many situations, it is natural to only minimize the data fit or apply control within a subregion. In
this case, M must be replaced with rank deficient versions where only subregions are populated with entries.
Here, the preconditioning method is not well defined. Second, as one considers smaller β , the clusters
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FIG. 3.1. Localized control where one seeks to create a plane wave in a given direction in the region of interest (ROI), while only
allowing a nonzero source in the control allowable area (CAA).

become less tight and one observes that the convergence of the associated preconditioner tends to degrade.
As small β is of interest, this is a bit problematic. It should, however, be noted that a recent proposed
preconditioning improvement by Pearson/Wathen in [15] appears to be significantly less dependent on β ,
allowing for solver convergence which is almost independent of both mesh size and regularization. Finally,
while the above preconditioning strategy appears limited to optimization problems of the form (2.2), one
can instead consider a class of SQP methods [7, 8, 17], applicable to a much broader range of problems. As
shown in Section 4, the same preconditioner strategy can then be used on the associated linear subsystems
generated by these SQP methods.

3. KKT Preconditioners for non-SPD systems. We now consider preconditioners when the discrete
PDE operator is non-Hermitian or indefinite (e.g., Helmholtz and advection-diffusion equations). For the
Helmholtz equation, the underlying control problem of interest is

min
u, f

1
2
||u− û||2L2(ΩI)

+ β || f ||2L2(ΩC)

subject to −∆u−ω
2u = f in Ω, supp( f )⊂ΩC (3.1)

∂u
∂n
− iωu = 0 on ∂Ω,

where ΩI ⊆ Ω is a region of interest in which one seeks to match the computed state u to some desired
state û. ΩC ⊆ Ω is a control allowable area, i.e., the portion of the domain where the source term may be
nonzero. We refer to the case ΩC = Ω as distributed control, while ΩC (Ω is termed localized control. Such
a localized control problem is illustrated in Figure 3.1.

In Equation (3.1), the last equation is a first-order approximation to the Sommerfeld radiation condition;
this boundary condition is used to simulate an infinite domain where wave energy propagates outward from
Ω. In practice, other boundary conditions such as perfectly matched layers can be used. The stiffness matrix
K in the previous section is now replaced with the discretization of the Helmholtz operator taking the form
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A=K+ iωC−ω2M; here, the damping matrix C only has nonzero entries on the boundary resulting from the
iω term of the radiation condition, and K is equivalent to the discretization of the Laplacian with Neumann
boundary conditions. This matrix is complex symmetric and, even for small values of ω , indefinite.

In this section we first consider a distributed control problem. The case of localized control is deferred
to Section 4. The corresponding KKT system is2βM 0 −M

0 M A∗

−M A 0

 f
u
λ

=

0
b
0

 . (3.2)

To distinguish the different KKT systems, the 3×3 matrix with the Helmholtz operator will be denoted as
AH . The proposed preconditioner is

PH =

2βM 0 0
0 M 0
0 0 AM−1A∗

 . (3.3)

As we consider general systems, our analysis is based on singular values instead of eigenvalues and relies
on the following assumption.

ASSUMPTION 3.1. Solutions of the discrete Helmholtz equation satisfy the following stability estimate

〈uh,uh〉 ≤
c3

ω
〈 fh, fh〉

where c3 is a constant independent of mesh spacing or frequency, 〈· , ·〉 denotes a standard L2 inner product,
and the functions uh and fh correspond to standard finite element representations. That is,

uh(x) = ∑
j

ū jψ j(x) and fh(x) = ∑
j

f̄ jψ j(x)

where ψ j(x) are nodal finite element basis functions, the ū j’s (and f̄ j’s) are scalars, and x denotes the vector
position in R2. Helmholtz stability estimates of this form can generally be found [2,10–12]. Typically, these
results include technical assumptions (e.g. regularity) and limitations on the shape of the domain and on the
type of boundary conditions. In general, the Helmholtz case is much harder to address than elliptic Poisson-
like problems. For example, one must exclude resonant cavities which give rise to singular systems. We do
not focus on these any further and point the interested reader to the references.

LEMMA 3.2. Assume that Assumption 3.1 holds with all the associated function and operator defini-
tions. Then, the corresponding Helmholtz discrete matrices satisfy

‖M1/2A−1M1/2‖2 ≤
c3

ω
.

Proof. Applying the definition of uh and the inner product, direct substitution leads to

〈uh,uh〉 =

√
∑

i
∑

j

∫
Ω

ūiū jψ j(x)ψ j(x)dx =
√

ū∗Mū

where ū is the vector comprised of the ūi’s. Likewise,

〈 fh, fh〉 =

√
f̄ ∗M f̄ ,
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and so Assumption 3.1 implies that

√
ū∗Mū ≤ c3

ω

√
f̄ ∗M f̄

or equivalently √
f̄ ∗MA−∗MA−1M f̄ ≤ c3

ω

√
f̄ ∗M f̄ (3.4)

using the fact that ū = A−1M f̄ . Letting v = M−
1
2 f̄ and applying the definition of the vector 2-norm, (3.4)

can be transformed to

‖M1/2A−1M1/2v‖2 ≤
c3

ω
‖v‖2.

Recognizing that this inequality must hold for all v, the Lemma is completed simply by applying the defini-
tion of the matrix 2-norm.

COROLLARY 3.3. Assume that Assumption 3.1 holds. Then, the discretized Helmholtz operator A
satisfies

c4h2 ≤ Σ(M1/2A−1M1/2)≤ c3

ω

where Σ(M1/2A−1M1/2) are the singular values of M1/2A−1M1/2, and c3, c4 are positive constants indepen-
dent of h and β .

Proof. The upper bound is a direct consequence of Lemma 3.2. The lower bound is proved by first
recognizing that one can instead develop an upper bound for the largest singular value of the inverse of
M1/2A−1M1/2 (under an assumption that A and M are invertible) and then use matrix norm inequalities and
properties of the mass/stiffness matrices for standard nodal finite elements. In particular,

σmin(M
1
2 A−1M

1
2 ) = σmax(M−

1
2 AM−

1
2 )−1

= ‖M−
1
2 AM−

1
2 ‖−1

2 .

Decomposing the matrix A into its individual components, we have

‖M−
1
2 AM−

1
2 ‖−1

2 = ‖M−
1
2 (K + iωC−ω

2M)M−
1
2 ‖−1

2

≥ 1

‖M− 1
2 ‖2(‖K‖2 +ω‖C‖2 +ω2‖M‖2)‖M−

1
2 ‖2

=
1

‖M−1‖2(‖K‖2 +ω‖C‖2 +ω2‖M‖2)

≥ c1h2 1
‖K‖2 +ω‖C‖2 +ω2‖M‖2

where the last line is obtained via Equation (2.7). Since the damping matrix C is comprised only of mass
matrix terms on the boundary, there exist constants b1 and b2 such that b1h≤ ‖C‖2 ≤ b2h. Additionally, we
can use the previously established upper bounds given in Equation (2.7) on the norms of K and M to obtain

‖M−
1
2 AM−

1
2 ‖−1

2 ≥ c1h2 1
d2 +ωhb2 +ω2h2c2

.
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Finally, assuming that there is a constant number of discretization points per wavelength Nppw and using the
relation ω = 2π

Nppwh , we have

‖M−
1
2 AM−

1
2 ‖−1

2 ≥ h2 c1

d2 +
2π

Nppw
b2 +

4π2

N2
ppw

c2
= c4h2

where c4 is a constant independent of frequency. This requires that d2 be chosen sufficiently large so that it
dominates other terms in the denominator for realistic values of Nppw (needed for the discretization stability
and accuracy). In Section 6, we give further numerical evidence for this result. With the above corollary
bounding the singular values, we now prove our main result about the preconditioned linear system.

THEOREM 3.4. Consider µ , an eigenvalue of the preconditioned system P−1
H AH . Given that Assumption

3.1 holds, there are positive constants a1, a2 independent of h and β such that

either µ = 1,

or
1
2

(
1+

√
5+

2a1h4

β

)
≤ µ ≤ 1

2

(
1+

√
5+

2a2

β

)
,

or
1
2

(
1−

√
5+

2a2

β

)
≤ µ ≤ 1

2

(
1−

√
5+

2a1h4

β

)
.

Proof. Consider the singular value decomposition

M1/2A−1M1/2 =UΣV ∗.

If we right-multiply with the transpose, we obtain

M1/2A−1MA−∗M1/2 =UΣ
2U∗,

which implies

M1/2(A∗M−1A)−1M1/2 =UΣ
2U∗.

So the eigenvalues of M1/2(A∗M−1A)−1M1/2 are equivalent to the singular values of M1/2A−1M1/2 squared,
i.e. Λ(M1/2(A∗M−1A)−1M1/2) = Σ(M1/2A−1M1/2)2. Corollary 3.3 implies that

c2
4h4 ≤ Λ(M1/2(A∗M−1A)−1M1/2)≤ c3

ω
,

Making a similarity transformation and shifting, we get

1+ c2
4h4 ≤ Λ(I +(A∗M−1A)−1M)≤ 1+

c3

ω
. (3.5)

The proof is completed by plugging these bounds into Equation (2.6).
The key is that both the exact Schur complement, 1

2β
M +AM−1A∗, and the approximate Schur com-

plement, AM−1A∗, are both positive-definite even though A is indefinite. Thus, the preconditioner is well-
behaved even if A is not positive-definite. In essence, what matters is that the singular values of A−1M are
bounded independent of the mesh resolution.
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4. Inexact SQP Methods. Sequential quadratic programming methods have been popularized in [1,
14]. Strategies for solving nonlinear equality-constrained optimization problems with inexact trust-region
SQP methods are proposed in [7–9, 17, 21, 22]. These works discuss several aspects: basic strategy, ro-
bustness, theoretical properties, inexact iterative methods for linear subproblems, parameter choices, solver
tolerances, and computational efficiency. The purpose of the current paper is to focus on the iterative lin-
ear solution strategy and preconditioning, which ultimately determines the efficiency of the overall strategy.
Before doing this, however, we briefly mention a few features of the inexact SQP method that are relevant
to our context.

Roughly, the derivation of an SQP algorithm for the equality-constrained optimization problem (1.1)
comes from considering Newton’s method applied to the optimality conditions associated with minimizing
a Lagrangian functional

L (z,u,λ ) = F (z,u)+ 〈λ ,G (z,u)〉

where 〈· , ·〉 denotes a suitable inner product. Each Newton step (applied to the optimality conditions)
requires the solution of a KKT system which in turn is equivalent to resolving a quadratic minimization
problem. This naturally leads to an approach based on solving a sequence of nonconvex quadratic trust-
region subproblems. A composite step scheme can then be considered in which one step focuses on reducing
linear infeasibility in what is termed a quasi-normal step. A second step, the tangential step, improves
optimality while inexactly staying in the null space of the linearized constraints. This tangential step in turn
involves solving a related optimization subproblem which can addressed by an inexact projected Steihaug-
Toint CG (ST-CG) algorithm. The details of the algorithm specifics are not important for this paper. The
key points to keep in mind are that the ST-CG algorithm handles the nonconvex trust-region subproblems
and is primarily responsible for minimization of the objective function. The ST-CG algorithm only utilizes
an iterative linear solver to perform null-space projections associated with the PDE constraints and these
linear systems have the form (1.3). Further, the method is well-defined with a corresponding convergence
theory when these null-space projection linear systems are solved inexactly (assuming appropriate stopping
conditions are used).

To summarize, PDE preconditioning techniques are only needed for (1.3). Optimization parameters
(e.g., a β regularization term) do not appear in these linear subproblems and the method is completely defined
even if the minimization or control is only considered locally within subregions. All of this means that
the KKT preconditioning strategy of Rees, Dollar, and Wathen can be applied to a broad class of nonlinear
problems via this inexact SQP methodology. Of course, generality comes with trade-offs. Now, the objective
function is addressed by the ST-CG algorithm which requires several inexact iterative linear solves (along
with a couple of additional (1.3) system solves associated with pre- and post-processing) as opposed to a
single linear system of the form (3.2) when considering the more restrictive optimization problem (3.1).
Thus, the choice of optimization approach depends on whether one is interested in the more restrictive
case or not. Finally, it is worth pointing out that inexact SQP methodology is attractive from a software
perspective as a wide range of optimization problems can be addressed with the same software utilizing an
iterative linear algebra package for systems which only involve PDE equations.

5. Solution of the Forward Problem. We use a shifted Laplacian preconditioner [4, 5] for the for-
ward Helmholtz solves within P−1

H . This consists of applying a solver to a damped system Pν = K− (1+
.5i)ω2M, where the complex frequency perturbation introduces damping that smooths out solutions. Multi-
grid methods, which often have issues on undamped Helmholtz problems (see for instance [3, 6]) are much
more effective on these damped problems. Solves were carried out using a slightly modified smoothed ag-
gregation AMG, where the prolongation and restriction operators are constructed using a discretization of
the Laplacian, and the damping parameter varies between multigrid levels [19].
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FIG. 5.1. Eigenvalues of the matrix pencil Λ(K,M) for a finite difference discretization of the Helmholtz equation, plotted in
red (left). Green (blue) lines with constant imaginary (real) part are drawn to cover this pencil, changing from light to dark as the
imaginary (real) part grows. These eigenvalues and lines are mapped by the Moebius transformation (right). The background contour
plot represents the distance from 1.

An analysis of shifted Laplacians is given in [20] illustrating how eigenvalues of the preconditioned
system depend on eigenvalues of the matrix pencil Λ(K,M). More precisely, Λ(P−1

ν A) = m(Λ(K,M)) where
m(z) = z−ω2

z−(1+.5i)ω2 . Results are provided describing circles in the complex plane containing the eigenvalues
of the preconditioned system. Loosely speaking, this is explained by observing that A is near-Hermitian, so
its eigenvalues may be near a line, and m(z) is a Moebius transformation that maps lines to circles. When
eigenvalues lie exactly on a circle as in Figure 5.1, approximation theory results indicate that the convergence
of Krylov subspace solvers may degrade to that of classical methods. Such details are outside the scope of
this paper, but we refer readers to [18] and provide some numerical evidence in Section 6.

6. Numerical Results. We begin by clarifying some remarks in the previous section concerning shifted
Laplacian preconditioning and convergence degradation in Krylov subspace methods. Figure 6.1 contains
a Helmholtz solution for ω = 40π as well as convergence curves comparing full GMRES, GMRES(5),
GMRES(25), and preconditioned steepest descent, which is defined as the iteration xk+1 = xk +αkP−1

ν rk;
here the scalar αk is chosen to minimize the norm of the current residual. We observe that steepest descent

Solution of the forward problem
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FIG. 6.1. Residual convergence plots of GMRES & steepest descent on the forward problem.

attains nearly the same optimal convergence as GMRES, at a fraction of the overall storage cost and work
per iteration; thus, we believe it is a viable option within the overall KKT preconditioner as a replacement
for the forward solves.
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We now consider Assumption 3.1 which leads to the upper bound in Corollary 3.3. This upper bound is
equivalent to

‖M1/2A−1M1/2‖2 ≤
c3

ω

for c3 independent of the mesh width h and frequency ω . Table 6.1 displays values of ‖A−1M‖2 which is a
related (more easily computed) quantity for varying ω and mesh width. It is clear that for a fixed frequency

ω / n 10 20 40 80 160 320
2π 5.64E-02 5.79E-02 5.82E-02 5.82E-02 5.82E-02 5.81E-02
4π 2.83E-02 2.88E-02 2.90E-02 2.91E-02 2.91E-02
8π 1.53E-02 1.56E-02 1.57E-02 1.57E-02

16π 7.94E-03 8.02E-03 8.05E-03
32π 4.08E-03 4.22E-03
64π 2.06E-03

TABLE 6.1
Values of ‖A−1M‖2 for varying ω and n, the number of subintervals in a given direction.

‖A−1M‖2 approaches an asymptotic value (and so is bounded) as the mesh is refined. Further, the actual
asymptotic value appears to be inversely proportional to the frequency (consistent with the Corollary).

Now, convergence curves corresponding to residual reduction are provided for solving the distributed
control KKT system (3.2) via GMRES with preconditioner (3.3) to a tolerance of τout = 10−5. Figure 6.2
contains GMRES convergence curves for varying ω and mesh widths. Inner forward solves corresponding
to A−1 and A−∗ required to apply P−1

2 are accomplished via MATLAB’s backslash. These results clearly
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FIG. 6.2. Convergence curves for KKT systems. In each plot the ω is fixed while mesh width varies; here n denotes the number
of subintervals in a given direction.

demonstrate mesh insensitivity and only a modest sensitivity to frequency. Interestingly, the number of iter-
ations required for a residual reduction of 10−4 drops as the frequency increases while the trend is reversed
if one considers a residual reduction of 10−5. Clearly, this needs further investigation.

We also study sensitivity to inexactly solving the forward problem; In particular, A−1 and A−∗ are re-
placed by shifted Laplacian preconditioners. For the fully inexact case, the forward solution is approximated
by 5 steps of preconditioned steepest descent, with the preconditioner being one V-cycle of algebraic multi-
grid on a damped Helmholtz problem. αk is computed initially and then reused for subsequent computations;
what results is a stationary iteration that does not require use of a flexible Krylov method. Again, KKT sys-
tems are solved to τout = 10−5. Though there is some sensitivity to the inner solver, the AMG inner solver
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(AMG preconditioning on shifted problem).

is by far the least expensive. These results are illustrated in figure 6.3.
Finally, Table 6.2 contains data relative to the full inexact-SQP algorithm in the case of control and

minimization being restricted to subregions of the domain. We again experiment with different linear solvers
and varying mesh widths. Forward solves are now performed using preconditioned BiCGStab to a tolerance
τ = 10−5. We note that forward problem solves for SL-Direct and SL-AMG typically took less than 20 and
35 iterations, respectively. It is observed that the number of forward solves, ST-CG iterations within the SQP

n Solver Forward solves ST-CG iterations SQP iterations
100 Direct 2065 278 6
200 Direct 1923 263 6
100 SL-Direct 4011 275 6
100 SL-AMG 2577 164 4

TABLE 6.2
SQP algorithm convergence for ω = 5.0265; here n is the number of subintervals in each direction, solver corresponds to the

forward problem, and SL stands for shifted Laplacian.

approach, and outer SQP iterations do not vary largely as different options are exercised.

7. Conclusions. We have extended a KKT preconditioning strategy originally developed for PDE con-
straints associated with symmetric positive definite operators to the indefinite Helmholtz case. We have
shown both theoretically and practically that this strategy is insensitive to refinement in the mesh resolution
and modestly sensitive to frequency changes. When the strategy is incorporated within an SQP framework,
it can be used to solve a broad class of nonlinear equality constrained optimization problems. One key re-
quirement for the KKT preconditioner is a forward PDE solver. Some preliminary results using a shifted
Laplacian strategy combined with AMG indicate that these inner forward solves can be performed inexactly
without a large degradation in the performance of the outer iterative procedure. Additional work is needed
to better quantify this relationship between inner iteration accuracy to the overall robustness/efficiency of
the outer iterations.
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A GALERKIN RADIAL BASIS FUNCTION METHOD FOR NONLOCAL DIFFUSION

STEPHEN D. BOND∗, RICHARD B. LEHOUCQ1, AND STEPHEN T. ROWE2

Abstract. We introduce a meshfree Galerkin method for solving nonlocal diffusion problems. Radial basis functions are used to
construct an approximation scheme that requires only scattered nodes with no triangulation. A quadrature scheme specific to radial
basis functions is implemented to produce a Galerkin radial basis function method that yields fast assembly of a sparse stiffness matrix.
We provide numerical evidence for convergence rates using one and two dimensional nonlocal problems.

1. Introduction. Classical diffusion models are formulated as partial differential equations that rely on
Fick’s first law. However, it has been observed in cases such as diffusion through heterogeneous material that
the classical model is not an adequate description of diffusion [13]. Various models have been proposed for
these cases of anomalous diffusion, which include models based on fractional spatial derivatives or fractional
spatial differential operators, such as the fractional Laplacian. In this paper, we consider numerical methods
for solving a model for nonlocal diffusion. The nonlocal model allows for discontinuous functions and also
includes the fractional Laplacian as a special case. In this section, we introduce the nonlocal operator and
the problem which we propose a numerical method for solving [1, 3].

Let Ω⊂ Rn denote a bounded, open domain. For u(x) : Ω→ R, we define

L u(x) := 2
∫

Ω∪ΩI

(
u(y)−u(x)

)
γ(x,y)dy ∀x ∈Ω⊆ Rn, (1.1)

where γ : Ω∪ΩI ×Ω∪ΩI → R is a nonnegative symmetric map, i.e., γ(x,y) = γ(y,x)≥ 0. The operator
L is nonlocal because the pointwise value of L u(x) depends on points y , x. In contrast, the Laplacian,
∆u(x), requires only information about u at x.

The nonlocal operator (1.1) has applications in a variety of fields besides anomalous diffusion. Exam-
ples include image analyses, nonlocal heat conduction, machine learning, and peridynamic mechanics; see
the discussion in the paper [3].

Our goal is to solve the steady-state nonlocal diffusion equation. Given f : Ω→ R, the problem is to
find u : Ω∪ΩI → R such that {

L u(x) = f (x) x ∈Ω

u(x) = g(x) x ∈ΩI .
(1.2)

We refer to ΩI as the interaction domain, γ as the kernel, and f as the source function. For comparison, the
classical steady-state form of the diffusion problem is{

∇ · (C∇u)(x) = f (x) x ∈Ω

u(x) = g(x) x ∈ ∂Ω,
(1.3)

where C is the diffusion tensor. Comparing (1.2) and (1.3), we see at least two differences. The first
difference is that the nonlocal problem replaces a differential operator with an integral operator. The second
difference is that the boundary constraint on ∂Ω is replaced by a volume constraint on ΩI . Imposing the
volume constraint guarantees that the nonlocal problem is well-posed [3].

∗Sandia National Laboratories, sdbond@sandia.gov
1Sandia National Laboratories, rblehou@sandia.gov
2Texas A&M University, srowe@math.tamu.edu
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In this note, we propose a Galerkin radial basis function (RBF) method to numerically solve (1.2).
This method obviates the need to mesh the region. We also exploit a recently developed Lagrange function
quadrature scheme [5] for the necessary integrations. Consequently, our proposed method requires only
information at the radial basis function nodes and also yields a straight forward assembly of a sparse stiffness
matrix. A conforming discontinuous Galerkin method for a nonlocal diffusion problem was introduced in [3]
where the basis functions are given by discontinuous piecewise polynomials. Assembly of this stiffness
matrix results in a challenging problem in quadrature for two reasons. The first is that there are 2n iterated
integrals, and the second is that the regions of integration involve partial element volumes. In contrast,
the primary advantage of the Galerkin RBF method is that entries in the stiffness matrix only require a
pointwise evaluation of the kernel and multiplication by quadrature weights—complications arising from
overlapping partial element volumes are irrelevant. A disadvantage of the use of radial basis functions
relative to discontinuous piecewise polynomials includes a “Gibbs phenomenon” at any discontinuities of
the solution u for (1.2).

For a fixed x ∈ Ω, the horizon of γ at x is the radius of support of γ(x,y). It is possible for γ to have
multiple horizons that depend on x. The integrability of the kernel determines the smoothing action of the
inversion of L . We consider only integrable γ with no singularities, which implies that the inversion process
does not smooth the data. This should be contrasted with the case of a second order elliptic differential
operator, where the solution is two orders smoother than the data. In particular, discontinuous solutions are
to be expected for discontinuous source functions.

The meshfree Galerkin method we introduce uses radial basis functions (RBFs). Radial basis functions
have been extensively studied for meshfree interpolation and approximation. Radial basis functions have also
been applied in a variety of areas besides interpolation of scattered data on subsets of Rn. They have seen
notable success in collocation methods for elliptic, parabolic, and hyperbolic partial differential equations
and a variety of other PDEs, including stochastic differential equations. RBF Galerkin methods have been
investigated, but previously had difficulty with quadrature. In particular, RBF collocation methods are well
suited for high dimensional, high smoothness PDEs. In the setting of certain Riemannian manifolds such as
the n-sphere Sn, RBF methods can be extended and yield interpolation methods as well as collocation and
Galerkin methods for solving partial differential equations on spheres [2, 6, 7, 10, 11, 14].

In section 2, we discuss radial basis functions and interpolation. We motivate their use by considering
the question of scattered data interpolation in arbitrary dimensions, followed by a discussion of positive
definite and conditionally positive definite functions. We discuss a specific choice of basis, the Lagrange
basis, along with a quadrature method that is used in the Galerkin radial basis function (RBF) method we
introduce. In section 3, we consider a variational formulation of (1.2). Combining the variational form with
radial basis functions and the quadrature technique described in section 2, we propose a meshfree Galerkin
RBF method. We then present numerical experiments in both one and two dimensions and discuss the results
from the experiments in section 4.

2. Radial Basis Functions. In this section, we define radial basis functions and related concepts and
explain their interpolation and approximation properties.

To motivate radial basis functions, we consider the following problem: Let Ω⊂Rn and let {x1, ...,xN}=
X ⊂ Ω be a collection of scattered data sites (referred to as centers or nodes), and let {y1, ...,yN} be given
values corresponding to the centers in X . The interpolation of scattered data problem seeks an interpolant
s : Ω→ R such that s(x j) = y j for j = 1, . . . ,N. A further modification to the question is to consider finding
a subspace V = span{φ1, . . . ,φN} of continuous functions such that for any collection of scattered sites
{x1, . . . ,xN}, a unique interpolant exists in V . In the case of n = 1, if we let V = span{1,x, . . . ,xN−1}, the
interpolation problem has a unique solution. However, by the Mairhuber-Curtis theorem, for dimension n≥
2, the second question has a negative answer. Therefore, to guarantee a unique solution to the interpolation
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problem of scattered data, the interpolating functions must depend on the data sites [15].
Let Ω ⊂ Rn. We say that Φ : Ω→ R is radial if there exists ϕ : R+ → R such that Φ(x) = ϕ(‖x‖).

Given a set of scattered centers {x1, . . . ,xN}= X and a radial function Φ, we construct a collection of radial
basis functions φ j by defining φ j(x) = Φ(x− x j) = ϕ(‖x− x j‖). To interpolate a function f : Ω→ R on the
centers X , we construct an interpolant by enforcing

f (x j) =
N

∑
k=1

ckϕ(‖xk− x j‖) j = 1, ...,N,

which yields a linear system T c = f of N equations in N unknowns, with Tjk = ϕ(‖xk−x j‖) and f j = f (x j).
For the interpolation problem to have a unique solution for any collection of centers, the interpolation matrix
T must be invertible for any collection of centers. The set of functions which generate an invertible matrix
for any collection of centers is unknown, but the restriction to the set of functions which generate positive
definite matrices for arbitrary sets of centers has been studied. These functions are positive definite func-
tions and they uniquely solve the interpolation problem for any set of centers. They have been completely
characterized by Bochner’s theorem and its corollaries. For example, a continuous L1(Rn) function Φ is
positive definite if and only if it is bounded and its Fourier transform is nonnegative and nonvanishing. One
such example of a positive definite function is the Gaussian ϕ(r) = exp(−εr2), for ε > 0 [4, 15].

A popular choice of RBFs are the thin plate spline

ϕ(r) = r2 log r. (2.1)

The approximation and interpolation of the thin plate spline has been studied extensively, but the thin plate
spline is only a conditionally positive definite function. Let Π(1) denote the space of degree one polynomials
with a basis {p1, . . . , pn+1} in Rn. Given centers {x1, ...,xN} = X , define P|X = span{ρ1, . . . ,ρn+1}, where
(ρk) j = pk(x j). We say that the thin plate spline is conditionally positive definite if and only if for any
collection of scattered sites {x1, . . . ,xN}, the quadratic form ξ T T ξ is positive for all nonzero ξ orthogonal
to P|X , with Tj,k = ϕ(‖x j− xk‖). To ensure that interpolation with the conditionally positive definite thin
plate spline is well defined, a linear polynomial must be included in the interpolant. This has the advantage
of interpolating scattered data and reproducing constants and linear polynomials. The interpolant is of the
form

s(x) =
N

∑
j=1

ξ jϕ(‖x− x j‖)+
n+1

∑
k=1

ζk pk(x),

where n is the space dimension. The interpolation linear system is(
T P
PT 0

)(
ξ

ζ

)
=

(
f
0

)
(2.2)

where Tj,k = ϕ(‖x j− xk‖) is symmetric, Pk,l = pl(xk), and f j = f (x j).
Using (conditionally) positive definite radial basis functions, we can uniquely interpolate arbitrarily

scattered data by using translates of a fixed univariate function. The error between a function and its RBF
interpolant can be shown to decrease as the density of the centers increases. To quantify the density of the
centers {x1, . . . ,xN}= X ⊂Ω, we define the mesh norm (or fill distance)

h = sup
x∈Ω

min
x j∈X
‖x− x j‖ ; (2.3)
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see Figure 2.1. The convergence rate of the interpolant to the function depends on the smoothness of both
the function and the RBF, with smoother functions being approximated at faster rates. For an example of an
error estimate for a thin plate spline RBF in W m

2 (Ω), the Sobolev space of order m, we have
THEOREM 2.1. Given certain restrictions on Ω and for the thin plate spline in W 2

2 (Ω) and function
f ∈W β

2 (Ω) for n
2 < β ≤ 2,

‖ f − IX f‖W µ

2 (Ω) ≤Chβ−µ‖ f‖
W β

2 (Ω)
0≤ µ < β (2.4)

where IX f denotes the RBF interpolant of f on centers in X [12]. The restriction 2β > n guarantees that f
is a continuous function, by the Sobolev embedding theorem.

FIG. 2.1. The geometric interpretation of the mesh norm is the largest ball in Ω that does not contain any centers.
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FIG. 2.2. (a) A 1D Lagrange function constructed from 67 uniformly spaced points is displayed. (b) A 1D thin plate spline
centered at .57 is displayed.

Faster convergence rates are known when the function f is smoother than the RBF.
The thin plate spline was chosen over other RBFs due to its approximation properties and because the

corresponding Lagrange basis functions enjoy an exponential decay. Approximation theorems of the type in
Theorem 2.1 are known for thin plate splines, which are not known for all other RBFs. The Gaussians are
known to have spectral convergence, but these results are only known to hold for analytic functions. Unlike
the Gaussians and compactly supported Wendland functions, the thin plate spline does not require a “scale
parameter” to adapt the RBF to the density of the data. There is no known way of a priori choosing a scale
parameter, and this choice influences the conditioning and approximation of the RBF. In contrast, the thin
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FIG. 2.3. (a) A 2D Lagrange function constructed from 169 uniformly spaced points is displayed. (b) A thin plate spline basis
function centered at (.54, .54) is displayed.

plate spline Lagrange functions “self-scale” with the data density. Recent results have noted the Lagrange
functions of the thin plate spline decays exponentially away from its center, which is not known for other
RBFs [8, 9]. There is evidence that the Lagrange functions for the thin plate splines can be replaced with
local Lagrange functions, which are cheaper to construct than the Lagrange function. The local property has
been recently proven for spheres, and current work investigates these methods for domains in Rn [5, 6, 8].
The local property is due to results on both the decay of the Lagrange functions away from their centers
and the decay of the coefficients of the Lagrange functions. Numerical evidence suggests these results can
be extended to domains in Rn for Lagrange functions away from the boundary. The Lagrange functions for
Gaussians are not localized and the Gaussians have conditioning problems for even a few thousand points.
The compactly supported Wendland functions do have approximation rates analogous to Theorem 2.1, but
they require scale parameters and they are not known to have localized Lagrange functions.
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FIG. 2.4. The exponential decay of a Lagrange function away from its center is displayed. The Lagrange function was constructed
using 1681 centers and evaluated on 14400 points.
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2.1. Lagrange Basis Functions and Quadrature . In this section, we discuss an alternate basis for
RBF interpolation and a quadrature method unique to the basis. Given a thin plate spline and a set of centers
{x j}N

j=1, we can construct a Lagrange basis of RBFs, {χ j}N
j=1 that satisfy χ j(xk) = δ j,k and are given by

χ j(x) =
N

∑
k=1

ξkϕ(‖x− xk‖)+
n+1

∑
l=1

ζl pl(x).

The Lagrange function χ j is constructed by solving the linear system (2.2) with fk = δ j,k. Therefore, the
interpolation of a function f is given by

IX f (x) =
N

∑
j=1

f (x j)χ j(x).

Figures 2.2–2.3 display a thin plate spline and Lagrange basis function and explain the interest in the La-
grange function basis. Figure 2.4 demonstrates that the Lagrange basis function is essentially of compact
support due the associated exponential decay. A quadrature scheme can be constructed by using Lagrange
functions. Given F : Ω→ R and centers {x j}N

j=1, we define for S⊂Ω∫
S

F(x)dx≈ ∑
x j∈S

F(x j)w j, w j =
∫

Ω

χ j(x)dx. (2.5)

When S = Ω, we can derive the following quadrature error estimate:
LEMMA 2.2. Let Ω ⊂ Rn and X = {x j}N

j=1, {w j}N
j=1 be the quadrature weights in (2.5), and F(x) ∈

W β

2 (Ω) for n
2 < β ≤ 2. Then, the quadrature error is bounded by∣∣∣∣∫

Ω

F(x)dx−
N

∑
j=1

F(x j)w j

∣∣∣∣≤Chβ‖F‖
W β

2 (Ω)
.

Proof. This follows by an application of Theorem 2.1, (2.5), and the Cauchy-Schwarz inequality.∣∣∣∣∫
Ω

F(x)dx−
N

∑
j=1

F(x j)w j

∣∣∣∣= ∣∣∣∣∫
Ω

F(x)−
N

∑
j=1

F(x j)χ j(x)dx
∣∣∣∣

≤
√

µ(Ω)||F− IX F ||L2(Ω)

≤C
√

µ(Ω)hβ ||F ||
W β

2 (Ω)

where µ(Ω) is the measure of Ω, which we absorb into the constant C to achieve the result. A scheme for
directly computing the quadrature weights without computing the χ j is described in Section 3.1.

3. Variational Formulation. In this section, we derive a variational formulation of (1.2), which then
can be solved using a Galerkin method. We define the bilinear form a(u,v) by

a(u,v) =
∫

Ω∪ΩI

∫
Ω∪ΩI

(
u(x)−u(y)

)(
v(x)− v(y)

)
γ(x,y)dydx.
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We define the energy functional E by

E(u) =
1
2

a(u,v)−
∫

Ω

u f dx

subject to u = g over ΩI .

(3.1)

In [3], the problem of finding the minimum of the energy functional was shown to be well-posed for u in an
energy constrained space L2

c(Ω∪ΩI ). In contrast, we minimize the functional by the method of Lagrange
multipliers because the RBF basis is not contained in the energy constrained space. The Lagrangian is
defined as

L(u,λ ) = E(u)+
∫

ΩI

λ (y)
(
u(y)−g(y)

)
dy,

where λ ∈ L2(ΩI ) is the Lagrange multiplier. Then, for every v ∈ L2(Ω∪ΩI ) and w ∈ L2(ΩI ), we
minimize the Lagrangian by

d
dt

L(u+ tv,λ )
∣∣
t=0 =

d
dt

E(u+ tv)
∣∣
t=0 +

∫
ΩI

λ (y)g(y)dy = 0

d
dt

L(u,λ + tw)
∣∣
t=0 =

∫
ΩI

w(y)
(
u(y)−g(y)

)
dy.

Computing these derivatives, the variational form of the problem is to find u ∈ L2(Ω∪ΩI ) such that
for each v ∈ L2(Ω∪ΩI ) and each w ∈ L2(ΩI ),

a(u,v)+
∫

ΩI

λ (y)v(y)dy =
∫
Ω

v(x) f (x)dx

∫
ΩI

w(y)u(y)dy =
∫

ΩI

w(y)g(y)dy.
(3.2)

We discretize this system by choosing finite dimensional subspaces Uh⊂L2(Ω∪ΩI ) and Λh⊂L2(ΩI ).
Let Uh = span{φi}N

i=1 and Λh = span{ψk}NI
k=1. Then, we express the discrete solution and Lagrange multi-

pliers in these bases as

uh =
N

∑
i=1

αiφi λh =
NI

∑
k=1

βkψk.

To construct the linear system to solve for the coefficients of uh and λh, we insert uh and λh into (3.2), and
we choose v ∈Uh and w ∈ Λh. The resulting linear system is(

A B
BT 0

)(
α

β

)
=

(
b
c

)
, (3.3)

where the entries in the matrices are given by

Ai, j =
∫

Ω∪ΩI

∫
Ω∪ΩI

(
φ j(x)−φ j(y)

)(
φi(x)−φi(y)

)
γ(x,y)dydx (3.4a)

bi =
∫

Ω

φi f dy, Bi,k =
∫

ΩI

ψk φi dy, ck =
∫

ΩI

ψk gdy. (3.4b)
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3.1. Galerkin Radial Basis Function Method. We propose a Galerkin RBF method for two reasons.
First, the Galerkin RBF method leads to a sparse stiffness matrix by exploiting a Lagrange function quadra-
ture rule. Otherwise, since the basis functions are globally supported, the stiffness matrix is dense. The
second reason to consider this method is the ease of assembly of the stiffness matrix. In contrast with a
finite element method using discontinuous piecewise polynomials, assembly of the Galerkin RBF stiffness
matrix only requires pointwise evaluations of the kernel and multiplication by quadrature weights. However,
we must overcome the difficulty of computing the quadrature weights, which we discuss in the following
section.

We construct a Galerkin RBF method by using Lagrange function quadrature (2.5) on each of the entries
in the matrices and vectors in (3.4a) and (3.4b). Choose the approximation space Uh = span{χi}N

i=1, where
χi are the Lagrange functions of the RBF ϕ(r) = r2 log r over some collection of centers X ⊂Ω∪ΩI . Let
Λh = span{χ j(k)}

NI
k=1, where the function j : {1, . . . ,NI} → {1, . . . ,N} selects each index in {1, ...,N} such

that χ j(k) is centered at a point in ΩI .
A practical quadrature method is realized by a slight modification of a recent scheme proposed by

Fuselier, Hangelbroek, Narcowich, Ward, and Wright [5]. The necessary quadrature weights w j, see (2.5),
can be constructed by solving the linear system(

T P
PT 0

)(
w
d

)
=

(
ν

η

)
(3.5)

where νk =
∫

Ω
ϕ(‖x− xk‖)dx and ηl =

∫
Ω

pl(x)dx; see the paper [5] for further details. This choice of
quadrature scheme has important practical considerations; see §4.3.

In (3.4), we substitute φi(x) = χi(x) and ψk(x) = χ j(k)(x). We approximate the integrals by using the
Lagrange function quadrature. Using this quadrature rule, the entries in Ai, j are approximated by

Ai, j ≈ 2δi, jwi

∫
Ω∪ΩI

γ(x,xi)dx−2wiw jγ(xi,x j). (3.6)

We apply the quadrature scheme to the other values in (3.4) and compute

bi ≈ f (xi)wi1Ω(xi), Bi,k ≈ δi, j(k)wi1ΩI
(xi), ck ≈ g(xk)wk1ΩI

(xk),

where 1S is the indicator function for a set S defined by

1S(x) =

{
1 x ∈ S
0 x < S.

The sparsity of the Galerkin RBF matrix (3.6) depends on the mesh norm h and the horizon ε of the
kernel. For centers such that ‖xi− x j‖ ≥ ε , Ai j = 0. If the number of centers is increased, then the number
of centers such that ‖xi− x j‖ < ε can increase, which increases the number of nonzero entries per row. If
the Lagrange function quadrature is not used, then a dense stiffness matrix is generated due to the global
support of the Lagrange function.

4. Numerical Results. We present results from numerical experiments in both one and two dimen-
sions. We present the convergence rates in terms of a loglog plot of the L2 error versus the mesh norm h,
see (2.3). Since there is currently no approximation theory for the Galerkin RBF method, we also present
interpolation error rates on uniformly spaced centers as a comparison. The paper [3] establishes convergence
rates for a finite element discretization using a piecewise discontinuous polynomial basis.
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For all tests, we assume zero Dirichlet volume constraints (i.e., g(x) = 0 in (1.2)). In both one and two
dimensions, we consider an infinitely smooth kernel and a continuous, but not everywhere differentiable,
triangular kernel

γ(x,y) =

exp(− 1
1−ε−2‖x−y‖2 )1{‖x−y‖<ε}(x,y) Smooth kernel

(1− 1
ε
‖x− y‖)1{‖x−y‖<ε}(x,y) Triangular kernel

(4.1)

where 1{‖x−y‖<ε} is the indicator function for the set {(x,y) : ‖x− y‖ < ε}; see Figure 4.1. We consider

kernel functions of varying smoothness to observe how the smoothness of the kernel affects the convergence
rate of the RBF solution. The smoothness of the kernel affects the quadrature error induced by the Lagrange
function quadrature method when assembling the stiffness matrix, so we expect lower convergence rates for
lower smoothness kernel functions.

−0.5
0

0.5
1

1.5

−0.5

0

0.5

1

1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Mollifier kernel

−0.5

0

0.5

1

1.5

−0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

(b) Triangular kernel

FIG. 4.1. (a) The mollifier kernel γ(x,y) with y = (.5, .5) and ε = 1
4 . (b) The triangular kernel with y = (.5, .5) and ε = 1

4 .

4.1. 1D Experiments. We let Ω = [0,1] and ΩI = (− 1
4 ,0)∪ (1,

5
4 ), and we set ε = 1

4 . We choose
two solutions and we manufacture the corresponding source function for each. We consider continuously
differentiable and discontinuous solutions u1 and u2, respectively

u1(x) =
(
1− cos(2πx)

)1Ω(x) u2(x) = 1{0≤x≤ 1
2 }
(x).

For both u1 and u2, we solve the Galerkin RBF problem for both the smooth and triangular kernels, respec-
tively. We tested using uniformly spaced centers with mesh norm h = .005, .0025, .00125, and .0005. For a
second set of tests, we used the same sets of uniformly spaced centers, but the interior points were perturbed
by a random number bounded in magnitude by h

5 . Figures 4.2 and 4.3 display convergence rate plots for the
non-uniformly spaced centers experiment. Table 4.1 displays convergence rates for the uniformly spaced ex-
periments and the scattered experiments. For comparison, we display the convergence rate for interpolation
using the uniformly spaced centers. As can be seen in Table 4.2, the condition number of the stiffness matrix
is not increasing as the mesh norm decreases. In comparison, the paper [3] establishes that the condition
number of the stiffness matrix does not increase as the mesh size decreases for a finite element discretization
using a piecewise discontinuous polynomial basis.
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TABLE 4.1
Convergence rates for 1D experiments are displayed. The interpolation rates use the uniformly spaced centers.

Uniformly spaced Non-uniformly spaced
Smooth Triangular Smooth Triangular Interpolation

u1 2.2 1.9 2.2 1.9 2.3
u2 .52 .51 .53 .52 .51

TABLE 4.2
For 1D experiments, the mesh norm h, number of rows n of the stiffness matrix (3.3), and the reciprocal condition number for

(3.3) for both the smooth and triangular kernel is displayed.

Reciprocal Condition Number
h n Smooth Triangular

5.00e-3 303 2.43e-3 4.03e-3
2.50e-3 603 2.40e-3 3.95e-3
1.25e-3 1203 2.39e-3 3.98e-3
5.00e-4 3003 2.38e-3 3.93e-3

4.2. 2D Experiments. We let Ω = [0,1]× [0,1] and ΩI = ([− 1
4 ,

5
4 ]× [− 1

4 ,
5
4 ])\Ω. We consider two

solutions and we manufacture the corresponding source function for each. We consider the continuous
function w1 and the discontinuous function w2

w1(x,y) = sin(2πx)sin(2πy)1Ω(x,y)

w2(x,y) = (1− cos(2πx))(1− cos(2πy))1Ω1(x,y)

with Ω1 = [0, 1
2 ]× [0,1].

For both w1 and w2, we solve the Galerkin RBF problem for both the smooth kernel and the triangu-
lar kernel. We tested using uniformly spaced centers with mesh norm h = .06, .04, .02, and .014. For a
second set of tests, we used the same sets of uniformly spaced centers, but the interior points were per-
turbed by a random vector bounded in magnitude by 2h

15 . Figures 4.4 and 4.5 displays convergence rate
plots for the non-uniformly spaced centers experiment. Table 4.3 displays convergence rates for the uni-
formly spaced experiments and the scattered experiments. For comparison, we display the convergence rate
for interpolation using the uniformly spaced centers. The L2 error is computed by evaluating the solution
on a set of 14400 nodes. The evaluation point set Xe is constructed by taking tensor products of Gauss-
Legendre nodes on [− 1

4 ,
5
4 ]. In the case of non-uniformly spaced centers, the mesh norm h is approximated

by maxx∈Xe minx∈X ‖x− xe‖. As can be seen in Table 4.4, the condition number of the stiffness matrix is not
increasing as the mesh norm decreases

4.3. Computational Issues. In this section, we discuss some computational issues and aspects of the
Galerkin RBF method. We discuss the costs of assembly, computation of L2 errors, and construction of the
source function for the experiments in section 4.

Assembly of the stiffness matrix requires the construction of the Lagrange function quadrature weights.
The quadrature weights are constructed by solving equation (3.5), which is a dense, symmetric linear system
of size N×N where N is the number of basis functions. Future work will investigate ways of computing the
weights faster. Assembly of the sparse stiffness matrix with the quadrature weights follows by the formula
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FIG. 4.2. 1D experiments for the continuous solution u1 with both kernel functions using non-uniformly spaced centers are
displayed. The horizontal axis is the log of h and the vertical axis is the log of the L2 error of the solution and the approximate solution
uh.
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FIG. 4.3. 1D experiments for the discontinuous solution u2 with both kernel functions using non-uniformly spaced centers are
displayed. The horizontal axis is the log of h and the vertical axis is the log of the L2 error of the solution and the approximate solution
uh.

(3.6), which requires pointwise evaluations of the kernel and multiplication by the computed quadrature
weight.

The L2 error between the Galerkin solution uh and the solution u is computed on the set Ω∪ΩI using
Gauss-Legendre quadrature for 1D problems and tensor products of Gauss-Legendre nodes in 2D. For 1D
experiments, 10000 Gauss-Legendre nodes are used to compute the error. In 2D, 14400 nodes in total are
used, which are formed from products of 120 Gauss-Legendre nodes over [− 1

4 ,
5
4 ]. For a 2D discontinuous

solution, the domain is split into two sets, Ω1 and Ω2, on which u is continuous. On each set, products of
1D Gauss-Legendre quadrature weights are constructed and the L2 error is computed by

‖u−uh‖2
L2(Ω∪ΩI ) = ‖u−uh‖2

L2(Ω1)
+‖u−uh‖2

L2(Ω2)
.

For the experiments in §-4, we require pointwise evaluations of the source function f . We manufacture
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TABLE 4.3
Convergence rates for 2D experiments are displayed. The interpolation rates use the uniformly spaced centers.

Uniformly spaced Non-uniformly spaced
Smooth Triangular Smooth Triangular Interpolation

w1 1.49 1.49 1.5 1.5 1.5
w2 .56 .55 .51 .55 .56

TABLE 4.4
For 2D experiments, the mesh norm h, number of rows n of the stiffness matrix (3.3), and the reciprocal condition number for

(3.3) for both the smooth and triangular kernel are displayed.

Reciprocal condition number
h n Smooth Triangular

4.24e-2 1096 2.10e-3 5.42e-3
2.82e-2 2263 2.05e-3 4.93e-3
1.41e-2 9052 2.10e-3 5.03e-3
9.90e-3 18144 2.07e-3 5.01e-3

f (xi) by computing L u(xi) by (1.2). For one dimensional experiments, this is computed by using MAT-
LAB’s integral function. The integrand is written as an anonymous function, which is then integrated from
max(−ε,xi− ε) to min(xi + ε,1+ ε). For two dimensional experiments, the kernel is supported on a ball
of radius ε . Converting the integral to polar coordinates, we use tensor product Gauss-Legendre quadrature
weights over the rectangular region [0,ε]× [0,2π]. The right hand side vector is assembled by bi = f (xi)wi,
where wi is the Lagrange function quadrature weight. It has been observed that if f is discontinuous and
xi is placed on or near the discontinuity, the approximation bi = f (xi)wi did not perform well in experi-
ments. For these nodes, we instead apply Gauss-Legendre quadrature to compute bi = ∑ f (yl)ql , where yl
are quadrature nodes and ql are quadrature weights.

The RBF Galerkin solution uh suffers from a “Gibbs phenomenon” at a point of discontinuity of u.
In a neighborhood of the discontinuity, uh overshoots the values of u; see Figure 4.6. As the mesh norm
decreases, the width of the overshoot decreases, although the height does not.

5. Conclusions and Future Work. We developed a Galerkin method for nonlocal diffusion by using
Lagrange functions of radial basis functions and a recently developed quadrature method. We observed nu-
merical evidence of L2 convergence for both continuous and discontinuous solutions using kernel functions
of varying smoothness in one and two dimensions. Future work will experiment with three dimensional
problems. The construction of the quadrature weights is computationally intensive for small h in three
dimensional problems. As h decreases to zero, the number of rows of the dense quadrature weight system
(3.5) increases as N =O(h−3) for three dimensional problems in contrast to N =O(h−2) for two dimensional
problems. Regardless of the dimension, the sparse stiffness matrix is assembled by pointwise evaluations of
a radial kernel and multiplication by the computed quadrature weights. Further work is required to speed up
the computation of the quadrature weights, establish error estimates, consider kernel functions with multiple
horizons, and consider anisotropic kernels.

6. Acknowledgements. The authors would like to thank Francis Narcowich and Joseph Ward of Texas
A&M University for advice and assistance on the project. Their expertise was invaluable for shaping the
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FIG. 4.4. 2D experiments for the continuous solution w1 with both kernel functions using non-uniformly spaced centers are
displayed. The horizontal axis is the log of h and the vertical axis is the log of the L2 error of the solution and the approximate solution
wh.
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INCOMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS

KAI YANG∗, NATHANIEL TRASK1, AND MICHAEL L. PARKS2

Abstract. Incompressible Smoothed Particle Hydrodynamics has its advantage in solving the Navier-Stokes equations due to its
stability with respect to the time step size. However, it has the corresponding demand in fast linear solvers. We have implemented
IMPLICITSPH package within LAMMPS and incorporated Trilinos through a Solver Manager interface in order to solve the linear
systems efficiently. A numerical example of Taylor-Green vortex is shown for validation purpose.

1. Introduction. Smoothed Particle Hydrodynamics (SPH) was first introduced in [5,11] and has been
gaining recognition as a simulation tool. SPH can be used to simulate fluid motion, heat conduction, matter
diffusion and elasticity, etc. [14]

In this paper, we consider the application of SPH in an incompressible Newtonian fluid. Namely, we
want to solve the Navier-Stokes (NS) equations using SPH

du
dt

+
1
ρ

∇p− η

ρ
∆u = f in Ω,

∇ ·u = 0 in Ω,

u = 0 on ∂Ω.

(1.1)

For this type of problem, a large sound speed is usually set in order to apply compressible fluid model
[12, 13]. This approach is called weakly compressible SPH (WCSPH). The error introduced by the large
sound speed can be controlled at the expense of a stiffer CFL condition [2]. WCSPH is consistent only
for steady-state flows or for large sound speed, and at low Reynolds number the coupled system become
hyperbolic requiring appropriate non-reflecting pressure boundary conditions [9]. Alternatively, Cummins
and Rudman [3] used projection method to solve incompressible SPH (ISPH) by enforcing incompressibility
constraint. While this increases the computational cost and complexity, it removes the artificial stability
constraint imposed in WCSPH and, therefore, allows for larger time steps. Some more recent investigations
[7, 10, 17] also showed the effectiveness of ISPH.

In this proceeding paper, we first present some basic SPH discretization of differential operators and the
second order projection method, which is used to decompose the NS equations into Helmholtz equations,
pressure Poisson equations and a correction step. Then we introduce the SPH discretization of the NS equa-
tions and the corresponding pseudo code and algorithm. We implement the algorithms in the IMPLICITSPH
module within LAMMPS, employing Trilinos to solve linear systems. In the numerical examples we test
the IMPLICITSPH package with the Taylor-Green vortex problem. The delaying pattern of the numerical is
shown for validation purpose.

2. Basics of SPH . The SPH interpolant [14] of a quantity A(·) is defined by

AI(r) =
∫

A(s)Wh(r− s)ds,

where Wh(r) is a smooth interpolating kernel.
This integral is approximated by summation interpolant over mass elements

∗The Pennsylvania State University, yangkai1001@gmail.com
1Brown University, nathaniel trask@brown.edu
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As(r) = ∑
i

mi
Ai

ρi
Wh(r− ri).

Monaghan has the following discretization for derivatives [12]



〈
∇P
ρ

〉
i
= ∑

j
m j

(
Pj

ρ2
j
+

Pi

ρ2
i

)
∇iWi j〈

1
ρ

∇ · (κ∇T )
〉

i
= ∑

j

m j

ρiρ j

4κiκ j

κi +κ j
(Ti−Tj)Fi j

(2.1)

where

∇iWi j :=
∂W (r j− r j)

∂ri

and Fi j is defined by

∇iWi j = ri jFi j.

The discretization of ∇P is from the study of SPH for Euler equations. ∇ · (κ∇T ) is from the model of
heat conduction and Morris et al [15] applied this discretization to viscous term in the NS equations

〈
1
ρ

∇ · (µ∇u)
〉

i
= ∑

j

m j(µi +µ j)ri j ·∇iWi j

ρaρb(r2
i j +0.01h2)

ui j.

Hu and Adams [6] proposed particle-averaged discretization in the study of multiphase flow

〈
1
ρ

∇p
〉

i
=

1
mi

∑
j

(
pi

σ2
i
+

p j

σ2
j

)
∇iWi j〈

1
ρ

∇ · (η∇u)
〉

i
=

1
mi

∑
j

2ηiη j

ηi +η j

(
1

σ2
i
+

1
σ2

j

)
ui j

|ri j|2
(∇iWi j · ri j),

(2.2)

where the inverse particle volume σi is computed by σi = ∑ j Wi j.

3. Projection Methods. We want to solve the NS equations (1.1) by the second order projection
method [8], which decomposes the NS equations into the following equations

• Helmholtz equation


u∗−un

∆t
=−∇pn +

ν

2
∆(u∗+un), in Ω

u∗ = 0, on ∂Ω

(3.1)
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• Pressure Poisson equation 
∆p∗ =

∇ ·u∗

∆t
, in Ω

∂ p∗

∂n
= 0, on ∂Ω

(3.2)

• pressure and velocity correction. {
pn+1 = pn + p∗

un+1 = u∗−∆t∇p∗.
(3.3)

Boundary conditions
• Dirichlet boundary condition:

Morris et al. [15] proposed a simple way to apply Dirichlet boundary condition for SPH. For sim-
plicity we only introduce no-slip boundary condition.
For any particle a from the domain of interest, velocity of ghost particles outside the computational
domain is extrapolated using the following formula

vb =−
db

da
va.

da and db are the distance from particle a and particle b to boundary, respectively.
• Neumann boundary condition: skip ghost particles outside the domain
• Periodic boundary condition: have the particles interacting with its ghost

4. SPH discretization of NS equations. We apply the standard SPH discretization to calculate the
smoothed interpolant at the ith SPH particle

û(xi) = ∑
j∈Ni

u jW (||xi−x j||2)Vj (4.1)

Where W is a 1D kernel function that satisfies the property that
∫

Rd W (r)dr = 1, where d is the dimension of
the problem. For our applications we use the quintic spline function which has been demonstrated to provide
improved stability and accuracy in simulating viscous flows.

Wh(r) =C


(3− r

h )
5−6(2− r

h )
5 +15(1− r

h )
5 : r

h ∈ [0,1]
(3− r

h )
5−6(2− r

h )
5 : r

h ∈ [1,2]
(3− r

h )
5 : r

h ∈ [2,3]
0 : r

h < [0,3]

(4.2)

Where the constant C is selected such that
∫

Wh = 1.
Using this kernel, we compute the particle volumes via

(V̂i)
−1 = ∑

j∈Ni

W (||xi−x j||2) (4.3)

In the following, we use the discretizations in [1, 7]. For each particle i, i = 1, . . . ,n, we define the
following terms. The pressure gradient term in the momentum equation is discretized as(

1
ρ

∇p · e`
)

i
≈ 1

mi
∑

j∈Ni

(
V 2

i pi +V 2
j p j
) dW

dr

∣∣∣∣
i j

ri− r j

||ri− r j||2
· e` `= 1,2,3. (4.4)
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where e1 is a unit vector in the x direction, etc. The viscous term is discretized as(
η

ρ
∇

2u
)

i
≈ 1

mi
∑

j∈Ni

2ηiη j

ηi +η j

(
V 2

i +V 2
j
) dW

dr

∣∣∣∣
i j

ui−u j

||ri− r j||2
(4.5)

The SPH discretization of the momentum equation therefore gives three decoupled block systems for each
component of the velocity. To discretize the Poisson operator, we have(

∇ · ∇p
ρ

)
i
≈ 2

Vi
∑

j∈Ni

(
V 2

i +V 2
j
) dW

dr

∣∣∣∣
i j

1
||ri− r j||2

pi− p j

ρi +ρ j
(4.6)

and we discretize the divergence source term as

(∇ ·u∗)i ≈
1
Vi

∑
j∈Ni

(
V 2

i +V 2
j
) dW

dr

∣∣∣∣
i j

(u∗i +u∗j
2

)
·

ri− r j

||ri− r j||2
. (4.7)

We also define for convenience the matrix operator

W =
[
Wi j(

∥∥xi−x j
∥∥)] , j = 1, . . . ,n. (4.8)

where Wi j is defined in (4.2). We also make convenient definitions for vectors and matrices, such as m =
[m1,m2, . . . ,mn] and M = diag(m). Further, we define

M=

 M
M

M

 . (4.9)

For the volumes we define v = [V1,V2, . . . ,Vn] and V = diag(V).
We can rewrite the projection scheme in terms of these SPH operators by replacing the summations

in the above discretizations with the operators G, L, P, and DT , respectively. We utilize these operator
definitions because they preserve the symmetry or antisymmetry of each operation. The gradient is defined
as

1
ρ

∇p≈M−1Gp. (4.10)

with each component of the gradient represented as

1
ρ

∇p · e` ≈M−1G`p `= 1,2,3, (4.11)

G =

 G1
G2
G3

 (4.12)

The Laplacian, Poisson, and divergence operators are then defined as

η

ρ
∇

2u≈M−1Lu, (4.13)
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∇ · ∇p
ρ
≈ 2V−1Pp, (4.14)

and

∇ ·u∗ ≈ V−1DT u∗, (4.15)

respectively.

5. Pseudo code. From the user, gather initial position, velocity, density, viscosity and body forces, and
then solve successively at each time step the two linear systems(

M− δ t
2

L
)

u∗ = Mun +δ t
(
−Dpn +

1
2

Lun + fn+1
)
, (5.1)

Pδ p =
1

2δ t
DT u∗. (5.2)

Correct the particle velocity and pressure

pn+1 = pn +δ p, (5.3)

un+1 = u∗−M−1Gδ p, (5.4)

and advect the particles forward

xn+1 = xn +
δ t
2
(
un+1 +un) . (5.5)

At this point corrections can be made to final particle positions (anisotropy corrections or density/div-
free consistency corrections) and the particle connectivity can be recalculated.

6. LAMMPS and Trilinos & Solver Manager.

LAMMPS. LAMMPS1 is molecular dynamics code that has various functionalities for atomic, poly-
meric, biological, metallic, granular, and coarse-grained systems. It provides a platform to develop new
particle style, i.e. ISPH. Another importance reason that we want to implement SPH in LAMMPS is that
LAMMPS is designed for parallel computing with MPI. It can help with the modeling with millions of
particles.

Trilinos. Trilinos [16] is a collection of software that can solve large-scale complex multiphysics prob-
lems. The functionality we are specially interested in is it preconditioned Krylov solver. The related pack-
ages are Epetra, Belos, ML, etc.

• Epetra: provides basics linear algebra library and is compatible with most of other modules of
Trilinos
• Belos: provides commonly used preconditioned iterative solvers
• ML: provides algebraic multigrid preconditioned based on smoothed aggregation.

1http://lammps.sandia.gov
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Algorithm 4
1: Let there be N SPH particles. User specifies initial position (x0

i , i = 1 . . . ,N), velocity (u0
i , i = 1 . . . ,N),

density (ρi, i = 1 . . . ,N), viscosity (η), and body force (fi, i = 1 . . . ,N).
2: Let the initial pressure p0

i = 0, i = 1, . . . ,N.
3: Compute the volumes by solving W0v = 1.
4: Let the masses mi, i = 1, . . . ,N satisfy ρi = ∑ j∈Ni miWh(

∥∥xi−x j
∥∥), i.e., solve W0m = ρ0.

5: for n = 1 to · · · do
6: Compute V−1 = W1. . Compute the volumes.
7: Let b1 = Mun

1 +δ t
(
−G1 pn + 1

2 Lun
1 + f1

)
8: Let b2 = Mun

2 +δ t
(
−G2 pn + 1

2 Lun
2 + f2

)
9: Let b3 = Mun

3 +δ t
(
−G3 pn + 1

2 Lun
3 + f3

)
10: Solve

(
M− δ t

2 L
)
[u∗1 u∗2 u∗3] = [b1b2b3]

11: Solve Pδp = 1
2δ t DT [u∗1 u∗2 u∗3].

12: un+1
1 = u∗1−δ tM−1G1δp . Correct particle velocity

13: un+1
2 = u∗2−δ tM−1G2δp . Correct particle velocity

14: un+1
3 = u∗3−δ tM−1G3δp . Correct particle velocity

15: pn+1 = pn +δp . Correct particle pressure
16: xn+1

1 = xn
1 +

δ t
2

(
un+1

1 +un
1
)

. Advect particles
17: xn+1

2 = xn
2 +

δ t
2

(
un+1

2 +un
2
)

. Advect particles
18: xn+1

3 = xn
3 +

δ t
2

(
un+1

3 +un
3
)

. Advect particles
19: end for

IMPLICITSPH module and Solver Manager. The USER-SPH package [4] in LAMMPS is an ex-
plicit version of SPH implemented by Georg C. Ganzenmülcer and Martin O. Steinhauser. The discretization
related to NS equations is based on the work of Monaghan [14] and Morris et al [15]

Since we are using different SPH operator and implicit scheme, we have built another package IMPLIC-
ITSPH and the discretization we used is based on the work of Hu and Adams [6, 7] .

Our main contribution includes
• pair style: new pair style of Hu-Adams, i.e. discretization of differential operators. Implemented

in Force→ Pair.
• time integrator: Crank-Nicolson time integrator based on projection method. Implemented in

Modify→ Fix.
• solver manager: interface between LAMMPS and Trilinos in order to let Trilinos solve the linear

systems. Implemented in Force→ Pair.
In the following outline, the corresponding steps in Algorithm 4 are shown.
Outline of IMPLICITSPH

1. Initial intergrate (Step 6)
(a) Compute volume

2. Pair compute (Step 7–15)
(a) build & solve Helmholtz equation
(b) build & solve Poisson equation
(c) correct pressure
(d) correct particle velocity

3. Final integrate (Step 12–18)



80 Incompressible Smoothed Particle Hydrodynamics

FIG. 6.1. Class hierarchy of LAMMPS (http://lammps.sandia.gov)

(a) update particle position
Remark: In the steps of solving Helmholtz equation and Poisson equation, we assemble sparse linear

system with the solver manager and use Trilinos to obtain the solution. The solver we are using now is
block-CG (Belos) preconditioned by smoothed-aggregation AMG (ML).

7. Numerical Results: Taylor-Green vortex. For the NS equations on the 2-D square domain [0,2]×
[0,2] with periodic boundary condition, the analytic solution is given by

ux =U0e−2νπ2t sin(πx)cos(πy)

uy =−U0e−2νπ2t cos(πx)sin(πy)

p =
U2

0
4

e−4νπ2t(cos(2πx)+ cos(2πy)+2).

This is well known as Taylor-Green vortex problem. We use the corresponding initial value and start
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the simulation. The velocity fields at t0 = 0, t1 = 0.1875, t2 = 0.375 and t3 = 0.5625 are provided in Figure
7.1.

From the pattern of the velocity field, we can see that the numerical solution resembles the analytic
solution. And the numerical solution shows the decaying of the velocity magnitude over several time steps.
Quantitative convergence tests are under investigation.

FIG. 7.1. Velocity fields for 0s (top left), 0.1875s (top right), 0.375s (bottom left) and 0.5625s (bottom right)

8. Conclusions. In this proceeding paper, we present the SPH discretization of the NS equations and
implementation of ISPH in LAMMPS, where Solver Manager interface is built to employ the linear solvers
in Trilinos. We test the code with the Taylor-Green vortex problem. The velocity field of numerical solutions
shows the flow pattern and decaying of velocity magnitude over several time steps, which is consistent with
analytic solutions.

Future work includes quantitative convergence tests of the IMPLICITSPH package and investigations
of fast linear solvers for the Helmholtz and pressure Poisson equations.
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Combinatorial Algorithms and Visualization

Articles in this section focus on development of combinatorial algorithms, their implementation in mul-
ticore or manycore architectures, and visualization techniques. Their applications vary from usage in a single
graphic processing unit to a massively parallel supoercomputer.

Deveci et al. demonstrate a task mapping algorithm that partitions the geometric coordinates of nodes of
a supercomputer and the coordinates of the application in order to effectively do task mapping. They demon-
strate their result on a mini-applications on up to 6K processors. Miller and Moreland explore the use of
key-value reduction on disconneected geometric elements, implement it for different visualization operations
and demonstrate it is efficient in modern architectures. Tong and Moreland introduce a clipping technique
for parallel triangle clipping on the GPU. They apply the technique on unstructured data and demonstrate up
to 10x speedup over traditional methods. Ye and Moreland compare different search structures in graphic
processing units with respect to build time, query time and memory usage. They show that the selection of
the search structures is problem dependent. Slota and Rajamanickam present a multithreaded algorithm to
find the strongly connected components of a graph. They introduce a new method called multistep which
results in over 60x speedup over serial Tarjan’s algorithm. They present their results on various graphs from
social network analysis and compare their algorithm to state-of-the-art algorithms.

S. Rajamanickam
M.L. Parks
S.S. Collis

July 22, 2014
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TOPOLOGY AWARE TASK MAPPING USING GEOMETRIC PARTITIONING

MEHMET DEVECI∗, SIVASANKARAN RAJAMANICKAM1, KAREN D. DEVINE1, VITUS J. LEUNG1, KEVIN T.
PEDRETTI1, AND ÜMIT V. ÇATALYÜREK∗

Abstract. As supercomputers are reaching toward petascale, the number of nodes in supercomputers is increasing, along with the
number of processors in each node. This growth causes more sparse network allocations when working with thousands of processors.
As the sparsity of the allocated nodes may harm the scalability of the application, network-topology-aware task mapping becomes
important to reduce communication costs and congestion for parallel applications. In this paper, we try to reduce communication
overhead with topology mapping that uses a geometric partitioning algorithm. We show an application whose scalability can be
improved with a proper task mapping, and by using our speculative method we reduce the communication time up to 40%.

1. Introduction. The number of nodes in supercomputers is increasing rapidly. For example, Hopper,
a Cray XE6 machine at the National Energy Research Scientific Center (NERSC), has 6528 nodes with a
3D torus network topology; each node consists of 24 cores. Moreover, as supercomputers have increasingly
large diameters and many users, processor allocations (the sets of processors assigned by a job scheduler to
parallel jobs) become more sparse. These factors cause messages to travel long routes in the network, which
makes maintaining communication scalability in large scale machines difficult. In addition, if the underlying
tasks of a parallel job are not mapped properly to the processors, messages might travel very long distances,
or communication links might be congested by heavy traffic.

For a good mapping of the tasks to the processors, one needs to consider the underlying tasks with their
communication pattern and the physical processor topologies. This is called topology mapping. Usually, the
tasks’ communication patterns and processor topologies are represented as graphs.

There have been several methods that reduce communication overhead with better placement of tasks
on processors. For example, Bokhari [6] reduces the problem of task mapping to graph isomorphism and
proposes a heuristic to reduce the communication latency on array processors. Lee and Aggarwal [11] pro-
poses an automated two-phase mapping strategy, which is extended by Bollinger and Midkiff [7]. Moreover,
a task mapping method that uses recursive bisection of the graphs is included in SCOTCH package [13].
Different topology-aware mapping methods on BlueGene/L are studied by Yu et. al. [15]. Bhatelé et. al [5]
proposes an algorithm for load balancing and topology-aware mapping of tasks for CHARM++. Hoefler and
Snir [10] prove that the task mapping problem is NP-Complete. They study several graph-based mapping
methods (e.g., greedy, recursive bisection) and propose a method based on Reverse Cuthill McKee (RCM)
ordering. Aktulga et. al [1] reduce an eigenvalue solver application’s communication using topology-aware
task mapping methods.

Rather than address the expensive graph-based mapping problem directly, we propose in this paper a
topology-aware mapping algorithm that uses an inexpensive geometric partitioner. Communication between
tasks and network topology are approximated by the relative positions of tasks and processors on the coor-
dinate axes. The algorithm uses a geometric partitioning algorithm to reorder the tasks and processors, and
performs the mapping operation using the result of this reordering.

The rest of the paper is as follows. We give some background information in section 2. Then the
proposed topology-aware mapping method is explained in section 3. We present experiments and results in
section 4, and conclusions in section 5.

2. Background. We propose two metrics to represent communication in a network. However, because
communication is a real time process, it is affected by many outside factors. Therefore, these theoretical

∗The Ohio State University, {mdeveci,umit}@bmi.osu.edu
1Sandia National Laboratories, {srajama,kddevin,vjleung,ktpedre}@sandia.gov
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metrics can only approximate actual communication time. The first metric is called dilation. It is related
to the average length of paths taken by messages. The other metric is called maximum congestion, which
represents the maximum number of messages across communication links. In this paper, we assume static
routing of messages. Also, we assume that each message is transferred with a single path (the messages are
not split and sent through multiple paths), and all the links have the same capacity. The messages are routed
in the x direction first, then in the y and z directions, accordingly.

Let Gt(Vt ,Et) be the graph representing the task communication, where Vt is the set of tasks, and Et is
the set of edges that represents the communication pattern of the tasks. If t1, t2 ∈ Vt , then edge (t1, t2) ∈ Et
if and only if tasks t1 and t2 require communication between them. In the same way, let Gn(Vn,En) be the
graph representing the nodes together with the communication links between them. Vn is the set of nodes,
and En is the set edges that represents the physical communication links between the nodes. If n1,n2 ∈ Vn,
then edge (n1,n2) ∈ En if and only if nodes n1 and n2 have a connecting link between them. Let Γ be a
function for the assignment of the tasks to the nodes. That is, n1 = Γ(t1) if t1 is assigned to a processor in
node n1. Using these assumptions, we define the dilation as follows:

dilation(t1, t2) = SPL(Γ(t1),Γ(t2),Gn), (2.1)

where SPL is a function that returns the shortest path length between two nodes. Then, the total dilation can
be defined as following:

Dilation(Γ) = ∑
(t1,t2)∈Et

dilation(t1, t2) (2.2)

Dilation is related to the average number of edges traversed by each message, or the average hop count:

AverageHopCount(Γ) = Dilation(Γ)/|Et | (2.3)

In this paper, we measure the average hop count, and use the terms “hop count” and “average hop count”
interchangeably.

The other metric, congestion, is defined as follows:

Congestion(e) = ∑
(t1,t2)∈Et

inSP(e,Γ(t1),Γ(t2),Gn) (2.4)

where inSP returns 1 if and only if link e is in the shortest path between Γ(t1) and Γ(t2). Otherwise, it
returns 0. Therefore, the congestion of a link becomes the number of messages that go through it. Then the
maximum congestion becomes

MaxCongestion(Γ) = max
e∈En

Congestion(e) (2.5)

Maximum congestion represents the maximum number of messages that go through a link. We refer to
maximum congestion as “congestion” in the rest of this paper.

3. Methods. Our proposed topology-aware mapping algorithm represents the topology of a parallel
computer with the coordinates of processors (where proximity of coordinates approximates bandwidth be-
tween processors), rather than with a topology graph (in which bandwidths between processors are explicitly
given as edge weights). The algorithm uses a geometric partitioning algorithm. Thus, it requires both co-
ordinates for tasks (e.g., task centers) and coordinates for processors. The partitioning algorithm is used to
reorder the tasks and processors; the resulting ordering is used to determine a mapping.
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3.1. Multi-Jagged (MJ) Algorithm for Geometric Partitioning. Our task mapping algorithm uses a
geometric partitioner, the Multi-dimensional Jagged algorithm (MJ) [14] of the Zoltan2 Toolkit [8], to parti-
tion the task and machine coordinates. MJ partitions a given set of coordinates into a desired number of parts
(P) in a given number of steps which is called recursion depth (RD). During each recursion, one-dimensional
partitioning is done along a dimension, and this dimension is alternated at each recursion. Therefore, MJ is
a generalization of Recursive Coordinate Bisection (RCB) [4] in which MJ can do multisections instead of
bisections. Figure 3.1 shows possible 64-way partitioning of MJ with RD = 2,3 and 6.

(a) RD = 2 (b) RD = 3 (c) RD = 6

FIG. 3.1. The partitioning of the dataset into 64 parts using MJ with different recursion depths RD. Cutlines that are in the same
level of recursion share the same color.

Given a dataset to partition into P parts in RD steps, MJ partitions the data into pi = dP
1

RD−i
i e parts

during the ith step, where P0 = P. For each part obtained during the ith level, the future number of parts
Pi+1 is calculated, and the partitioning algorithm is repeated on each part. Simply, Pi+1 = dPi/pie for part
j if j < mod(Pi,Pj); otherwise Pi+1 = bPi/pic. For example, in figure 3.1(b), during the first step, data is
partitioned into P0 = 4 parts. Then, for all four obtained parts, the future number of parts is Pi+1 = 16, and
the partitioning is repeated on these parts.

3.2. Using MJ for Task Mapping. Although MJ is proposed as a parallel (MPI+OpenMP) algorithm,
it is used as a sequential algorithm in this context. Since current supercomputers have O(100K) processors,
partitioning in parallel such a small dataset is communication bounded; therefore, little or no speedup can
be obtained by parallelizing this process.

The proposed mapping algorithm is defined as follows: Given tdim-dimensional coordinates of tasks
(tc), and pdim-dimensional coordinates of processors (pc), together with the number of tasks (tn) and pro-
cessors (pn), the algorithm returns a mapping from processors to tasks (p2t) (and/or tasks to processors t2p).
Algorithm 5 gives the description of the task mapping algorithm.

Although MJ is a partitioning algorithm, its main purpose in this algorithm is to consistently number
the processors and tasks. MJ partitions the tasks and processors. assigning a part number to each processor
and task. The processors and tasks that are assigned the same part number are then mapped to each other
in GETMAPPINGARRAYS; the results of the mapping are stored in p2t and t2p. Since tasks and processors
are partitioned separately, the algorithm ensures that part number assignments are consistent between each
MJ call. In order to be consistent, first the minimum coordinate dimension is chosen between the tasks
and processors. For example, if pdim = 3 while tdim = 2, one of the processors’ coordinates is ignored
to ensure that the geometric partitioner follows the same order in both partitioning operations. Moreover,
the algorithm can follow different paths depending on the number of tasks and processors. There are three
possibilities:

1. tn = pn: When the numbers of processors and tasks are equal, there is a one-to-one mapping
between processors and tasks. If task t is assigned to processor p, t = p2t[p], and p = t2p[t].
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Algorithm 5 Task Mapping Algorithm using MJ
Require: tc, tdim, tn, pc, pdim, pn

minDim←min(tdim, pdim)
usedNumProcs← numParts←min(tn, pn)
if pn > tn then

procPerm←GETCLOSESTSUBSET(pc, pdim, pn, tn)
else

procPerm← range(0, pn)
end if
taskPerm← range(0, tn)
taskParts←MJ(tc, minDim, tn, taskPerm, numParts)
procParts←MJ(pc, minDim, usedNumProcs, procPerm, numParts)
(p2t, t2p)←GETMAPPINGARRAYS(taskParts, procParts, taskPerm, procPerm, tn, pn)

2. tn > pn: If there are more tasks than processors, a processor is assigned multiple tasks. Both
processors and tasks are partitioned into pn parts, with multiple tasks per part. The mapping results
will be t ∈ p2t[p] and p = t2p[t].

3. tn < pn: When there are more processors than tasks, the algorithm does not split a task among
multiple processors. Instead, during a preprocessing step, it chooses a subset of processors that has
size tn. Then mapping is performed within this subset as if tn = pn. Processors not in the subset
will be idle, as they are not assigned any tasks.

3.3. Choosing a subset of processors. The algorithm assumes atomicity of tasks. That is, it does not
allow multiple processors to share a task. When there are more processors than tasks, the algorithm chooses
a subset of the processors during a preprocessing step.

The quality of the mapping can depend on this subset selection. Since there are
(pn

tn

)
subsets, an exhaus-

tive search of all subsets has a cost that increases exponentially with pn. Instead, our mapping algorithm
adapts a greedy heuristic that tries to find a subset containing processors that are close to each other, so
that fewer hops are required for communication among the processors. Our greedy heuristic is an adapted
version of K-means clustering [9]. In our modified algorithm, each cluster is limited to have only a specified
number of points, tn in our case. Moreover, the clusters are allowed to overlap; that is, a coordinate can
be assigned to more than one cluster. Each cluster maintains a maximum heap with size tn, and only the
points with the tn smallest distances to the cluster center are kept in the cluster. When a point is processed,
its distance to all of the clusters is calculated. If the distance of the point is smaller than the maximum of
the heap, the point is inserted the cluster, and the point with maximum distance is discarded. This process is
repeated with a limit on the maximum number of iterations (10), or until the center of the clusters does not
move. At the end of the clustering algorithm, the distances of each coordinate are summed and the cluster
having the closest points is chosen as the subset.

The complexity of an iteration of the original K-means algorithm is O(pn× k) for k clusters. The
modified version has a complexity of O(pn× k× log(tn)). In order to relax the complexity, we set k =
2minDim + 1. Therefore, there are nine clusters for three-dimensional datasets. Eight of the clusters are
initialized with the eight corners of the dataset, while one is initialized to the center.

3.4. Improving the quality of the mapping. As the mapping algorithm uses the partitioning results of
MJ, the quality of the mapping depends highly on the partitioning results of MJ. There are various operations
that can effect the partitioning and the mapping quality which will be described in this section.
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(a) Task coordinates (b) Processor coordinates (c) Shifted processor coordinates

FIG. 3.2. An example showing the benefit of shifting the processor coordinates in torus networks. The processors and tasks
having the same part number are mapped to each other. Figure 3.2(c) shows the partitioning of processors after shifting around the
wrap-around link. The mapping at figure 3.2(b) has an average hop count of 3.66 and 3 on x and y directions, respectively. The
mapping obtained after shifting has an average hop count of 2 and 3 in x and y.

3.4.1. Shifting the processor coordinates. Many networks in current supercomputers have 3D torus
interconnection between the nodes. For example, the 6528 nodes of NERSC’s Cray XE6, Hopper, are laid
out in a 3D torus with dimensions 17x8x24 (with two nodes in each coordinate). The x coordinates of the
nodes range from 0 to 16, and there are wrap-around links between nodes 0 and 16 in the x dimension. Being
a geometric partitioner, MJ ignores this connectivity information. Figure 3.2 shows an example of mapping
eight tasks onto eight processors that have a 2D torus topology with dimensions 17x8 with wrap-around
links. MJ is used to partition (reorder) the tasks and processors, as indicated by the blue, grey and red lines
at recursion levels 0, 1, and 2, respectively. Processors and tasks that are assigned the same part number are
mapped to each other. Assume that each task in 3.2(a) communicates only with its neighbor tasks. According
to this communication pattern, while the mapping as a result of figure 3.2(b) obtains average hop counts of
3.66 and 3 in the x and y dimensions, respectively, the mapping in figure 3.2(c) achieves average hop counts
of 2 and 3. Therefore, mapping quality can be improved by shifting around wrap-around links.

MJ adopts a greedy heuristic for detecting the shift position. The shifting of the coordinates is per-
formed for each dimension independently. The algorithm finds the biggest gap between any two consecutive
processors along a dimension and treats this gap as if it were the link at wrap-around. For example, in fig-
ure 3.2(b) the biggest gap along the x dimension is found between the processors on coordinates 3 and 14.
Therefore, the heuristic shifts the coordinates of all processors that have x ≤ 3. If there is a tie on the gap
distance, the tie is broken by using the number of processors along these dimensions. In this case, the one
with the larger number of processors on the gap coordinates is chosen as the shift position.

Even though the list of processors is not sorted for any dimensions, this operation can still be performed
in O(pn) time by using counting sort algorithm. This is because the coordinates of the processors are
integers, and the minimum and the maximum coordinates are known and are expected to be reasonably
small numbers.

3.4.2. Rotating the processor and task coordinates. The quality of the mapping also depends on the
order of the dimensions according to which the partitioning is performed. For example, Figure 3.3 shows
how the quality of the mapping can change by choosing a different order of dimensions in partitioning.

It is difficult to predict which dimension ordering for partitioning will provide the best mapping quality.
One could choose a permutation of the dimensions based on the aspect ratios of the processor and task
coordinates. The permutation that makes the aspect ratios along dimensions closest can be chosen as the best
permutation. However, as our experiments will show, this greedy method fails to find the best permutation
in most of the mappings. To overcome this issue, we use a speculative method. Since the proposed mapping
algorithm is sequential, each of the processors calculates the same mapping independently. A reduceAll
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(a) Task coordinates (b) Processor coordinates (c) Rotated processor coordinates

FIG. 3.3. An example showing the benefit of rotating the processor orientation. Figure 3.3(c) shows the partitioning of processors
after rotation; the partitioning is performed on the y dimension first, and then on the x dimension. Assuming that communication is
required between only tasks 0 and 2, the mapping at figure 3.3(b) has an average hop count of 1 and 1 in the x and y directions,
respectively. The mapping obtained after axis rotation has an average hop count of 1 and 0 in x and y.

operation is performed at the beginning of task mapping operation in order to obtain all processor and
task coordinates. Then each of the processors performs the sequential mapping operation and obtains the
exact same mapping. However, as there are pn processors, it is possible to calculate different mappings
on each processor. Then, if a task communication graph that contains the communication pattern of the
tasks is provided, the quality of the mapping (in terms of hop count) can be evaluated. The algorithm can
compare these different mappings, and choose the one that has the best quality. This can be one with one
extra reduceAll and broadcast operation. If the dimensions of the tasks and the processors are tdim and
pdim, we can have (tdim)!× (pdim)! = rp different rotations. For a 3D torus with 3D task coordinates,
there are 3!× 3! = 36 different rotations. The processors are grouped into sets that have size 36, in which
each processor calculates a mapping using a different rotation. Using the task communication graph, each
processor calculates the quality of its own mapping. Then within each group, the processor having the best
quality mapping is determined, and this processor broadcasts its result to the other processors in the group.
When the number of processors is not divisible by rp, the remainder processors are distributed to other
groups to allow as many rotations as possible to be calculated within each group.

3.4.3. Reflection of processor or task coordinates on a coordinate axis. As with the rotation of
the coordinates, reflection of the processor coordinates along a dimension may increase the quality of the
mapping. Figure 3.4 shows an example how the reflection operation may improve the mappings.

Again, it is difficult to predict whether a reflection operation improves or degrades the quality of the
mapping. However, there is a limited number of possibilities for this operation. A task having tdim dimen-
sions can be reflected in 2tdim different ways; therefore, there are only eight different ways of reflecting 3D
task coordinates. In the mapping algorithm, the operation is performed on either processor or task coor-
dinates, whichever has the higher dimension. Therefore, the total number of different operations becomes
2maxDim, where maxDim = max(tdim, pdim). The processors can be grouped where each group has 2maxDim

processors that each calculate a different mapping. Combined with the rotation operation, the total number
of different solutions becomes 2maxDim× tdim!× pdim!, which is 288 for the usual case of a 3D torus with
three-dimensional tasks.

4. Experiments. The proposed mapping techniques are implemented in the Zoltan2 library [8]. Our
experiments are run in MiniGhost [3], a finite-difference proxy application that implements a finite difference
stencil across a three-dimensional uniform grid. Each task communicates with two neighbors along each
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(a) Task coordinates (b) Processor coordinates (c) Reflected processor coordinates

FIG. 3.4. An example showing the benefit of reflecting the processor coordinates. Figure 3.4(c) shows the partitioning of proces-
sors after the coordinates are subjected to a reflection operation on Y axis (scale with −1). Assuming that communication is required
between only tasks 0 and 2, the mapping at figure 3.4(b) has an average hop count of 3 and 0 in the x and y directions, respectively.
The mapping obtained after reflection operation has an average hop count of 1 and 0 in x and y.

dimension; tasks along a geometry boundary communicate only with neighbors interior to the boundary
(i.e., boundary conditions are non-periodic). Each task is assigned a subgrid of the 3D grid based on its task
number. The numbers of tasks in each dimension pnx, pny, pnz (with pnx× pny× pnz = pn) are specified
by the user. Subgrids of the 3D grid are assigned to tasks by sweeping first in the x-direction, then the
y-direction, then the z direction. Thus, task i shares subgrid boundaries (and, thus, requires communication)
with tasks i+ 1 and i− 1 to its east and west, respectively; with tasks i+ pnx and i− pnx to its north and
south; and with tasks i+ (pnx)(pny) and i− (pnx)(pny) to its front and back. In the default MiniGhost
configuration, task i is performed by rank i. As shown in [2], the run time of MiniGhost may not scale
well in weak scaling tests. We claim that scalability can be improved with topology-aware mapping of the
tasks onto the processors so that tasks that share boundaries are placed “near” each other in the processor
allocation. Therefore, we run experiments with MiniGhost and compare the effects of different mapping
strategies on the communication and total execution time. These mapping methods include

1. NR: The default MiniGhost mapping of tasks to ranks: task i is performed by rank i.
2. R: A MiniGhost option that reorders tasks into 16-task blocks, with 2x2x4 tasks per block. Ideally,

a block is assigned to cores within the same node, so that frequently communicating tasks are within
the same node. However, this mapping does not account for inter-node communication patterns,
since it does not use information about the position of nodes in the network. (This 16-task block is
not optimal for Hopper, which has 24 cores per node; results in [12] show performance of R relative
to other methods on a 16-core/node Cray. Future modifications to MiniGhost will accommodate
24-task blocks.)

3. RCB: Recursive Coordinate Bisection with a single rotation determined using the aspect ratios of
the task and processor coordinates [12].

4. MJ0: MJ with recursion depth RD = dlogPe (i.e., performing bisections at each level) and 36
different solutions calculated according to 36 different rotations; the solution with the lowest hop
count metric is chosen.

5. MJ1: MJ with an average recursion depth RD = dlogPe+3
2 , and 36 different rotations as in MJ0.

6. MJ2: MJ with the minimum recursion depth RD = minDim = 3, and 36 different rotations as in
MJ0.
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FIG. 4.1. Weak scaling results of MiniGhost.

7. MJ3: MJ with recursion depth RD = dlogPe, and 36 different rotations as in MJ0. Additionally, as
a preprocessing operation, coordinates are shifted to accommodate torus networks.

The reflection operation is not evaluated in this experiment, as MiniGhost tasks have a perfect uniform-
grid structure. Therefore, reflection would not change the quality of the solutions. Also, as MiniGhost
expects tn = pn, only this case of the algorithm is evaluated.

Figure 4.1 shows weak scaling results (total execution time and communication time) of MiniGhost with
the above task reordering methods. Figure 4.2 shows the calculated quality metrics (maximum congestion
and average x+ y+ z hops). All variants are run within the same processor allocation, and the results are
averaged for three different processor allocations. Only the mapping of the tasks to the processors differs
among the variants; each processor’s load and communication requirements stay the same. As seen in
Figure 4.1, the total execution time of MiniGhost can be reduced with the use of topology-aware mappings.



M. Deveci, S. Rajamanickam, K. Devine, V. Leung, K. Pedretti, U. Catalyurek 93

MJ3	
   MJ0	
   RCB	
   R	
   MJ1	
   MJ2	
   NR	
   MJ3	
   MJ0	
   RCB	
   R	
   MJ1	
   MJ2	
   NR	
   MJ3	
   MJ0	
   RCB	
   R	
   MJ1	
   MJ2	
   NR	
   MJ3	
   MJ0	
   RCB	
   R	
   MJ1	
   MJ2	
   NR	
  
768	
   1536	
   3072	
   6144	
  

Z	
   0.60	
   0.70	
   0.74	
   0.91	
   0.84	
   1.10	
   1.01	
   0.48	
   0.59	
   0.53	
   0.66	
   0.62	
   0.54	
   0.93	
   0.51	
   0.56	
   0.72	
   0.93	
   0.68	
   0.55	
   1.40	
   0.54	
   0.58	
   0.60	
   1.56	
   0.66	
   0.42	
   2.56	
  

Y	
   0.22	
   0.23	
   0.26	
   0.35	
   0.33	
   0.39	
   0.46	
   0.19	
   0.17	
   0.19	
   0.28	
   0.25	
   0.38	
   0.41	
   0.19	
   0.19	
   0.20	
   0.36	
   0.26	
   0.51	
   0.48	
   0.27	
   0.28	
   0.29	
   0.51	
   0.41	
   0.82	
   0.82	
  

X	
   0.47	
   0.47	
   0.48	
   0.65	
   0.52	
   0.55	
   0.77	
   0.34	
   0.35	
   0.34	
   0.43	
   0.46	
   0.65	
   0.55	
   0.35	
   0.36	
   0.29	
   0.56	
   0.45	
   0.86	
   0.83	
   0.44	
   0.52	
   0.52	
   0.88	
   0.65	
   1.05	
   1.42	
  

0.00	
  

1.00	
  

2.00	
  

3.00	
  

4.00	
  

5.00	
  

6.00	
  

Av
er
ag
e	
  
X+

Y+
Z	
  
ho

ps
	
  

(a) Average Hop Count along x, y and z dimensions

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

768	
   1536	
   3072	
   6144	
  

Co
ng
es
'o

n	
  
(M

ax
	
  #
	
  o
f	
  M

es
sa
ge
s	
  o

n	
  
a	
  
lin

k)
	
  

#	
  procs	
  

MJ3	
  

MJ0	
  

RCB	
  

R	
  

MJ1	
  

MJ2	
  

NR	
  

(b) Maximum Congestion

FIG. 4.2. Average Hop Count and Maximum Congestion Metric results.

For example, while R reduces the total execution time (communication time) from 8.89 (2.43) seconds to
8.16 (1.68) seconds, greater reduction of the total execution time and the communication time is obtained
with the use of topology-aware mapping methods.

Among the MJ variants, MJ0 and MJ3 obtain the best performance. As the recursion depth RD of MJ
increases, the quality of the mappings increases. For example, the average hop counts for MJ2 on 6144
processors are 1.05, 0.82, and 0.42 along x, y, and z dimensions, respectively. These numbers are 0.44,



94 Topology Aware Task Mapping using Geometric Partitioning

0.27, and 0.54 for MJ3. Also, as seen in Figure 4.2(b), MJ2’s maximum congestion (averaged over three
allocations) is 208.67, while it is 134.00 for MJ3. As a result, the communication time of MJ2 is 1.94
seconds, while it is 1.46 seconds for MJ0. This result is reasonable, since MJ uses more information for
partitioning when RD increases. For example, with 6144 processors, MJ2 (with RD = 3) partitions both
the task and processor coordinates into 19 parts along the first dimension. This partitioning is done using
information only about the x dimension of the tasks and processors; the algorithm ignores information about
the y and z dimensions. Therefore, the partitioning algorithm is intensively greedy, harming the mapping
quality. On the other hand, when MJ is used with RD = dlogPe, MJ partitions the coordinates into two parts
at each recursion level, and the information used in each dimension’s partitioning increases cumulatively as
the recursion depth increases. Therefore, MJ obtains the best results when it is used with bisection. Also,
the proposed shifting method that is applied with MJ3 reduces the runtime of MiniGhost, as it reduces the
hop count metric. In most instances, it reduces the communication time relative to MJ0 by 2%, while it
reduces the average hop count 5− 10%. The reduction in communication time is not as significant as the
reduction in hop count, as the proposed shifting method increases the congestion relative to MJ0. Moreover,
MJ3 is outperformed by MJ0 on 6144 processors. Although MJ3 obtains better hop counts in this instance,
its maximum congestion is higher than that of MJ0.

RCB is outperformed by MJ0 and MJ3, as RCB uses only a single rotation based on coordinate aspect
ratios of the tasks and processors. This result shows that a greedy choice of dimension ordering may not
find the best possible answer that can be obtained with RCB. Overall, MJ0 reduced the average hop count
relative to RCB by 2− 9% by performing speculative trials. Moreover, the method reduces the maximum
congestion of RCB by 15− 25% in the experiments. As a result, MJ0 reduces the communication time
relative to RCB by 10−14%

Figure 4.2 shows the quality metrics calculated for the experiments. As seen from the figures, average
hop counts follow the same trend as communication times with some exceptions. Differences in the conges-
tion metric explain cases where average hop count is not proportional to communication time. For example,
on 3072 processors, although MJ2 obtains better average hop count than NR, its communication time is
worse, as it has higher congestion. In most cases, a mapping algorithm with lower congestion and average
hop count obtains lower communication time. However, there are some exceptions. For example on 768,
1536 and 3072 processors, RCB obtains better hop counts and maximum congestion than R, although the
communication time of R is slightly better. Since two nodes share a single coordinate in Hopper, messages
that are exchanged between cores that share the same coordinate but reside on different nodes do not affect
the hop count metric. To explain the performance in these cases, we calculated the number of messages that
are exchanged between processors that are in different nodes but share the same coordinate. We call this the
number of “invisible hops.” As seen in Figure 4.3, the RCB implementation does not distinguish between
cores with the same coordinates. Therefore, it assigns many communicating tasks to processors on different
nodes. For example, the RCB mapping requires an extra 1024 internode message exchanges on 768 proces-
sors, while R requires only 168. Since the cores have the same coordinates, this difference is not captured
in the hop count metric. However, it still requires internode communication, which harms the performance
with RCB mappings. These results show the importance of optimizing intra-Gemini communications as
well as using the additional metric.

Overall, MJ0 and MJ3 reduced the communication time relative to the default MiniGhost mapping NR
by 8−40%. The reductions are 7−13% and 11−14% with respect to R and RCB, respectively.

5. Conclusion. We have proposed a new topology-aware task mapping method that uses geometric
partitioner MJ to reorder the task and processor coordinates. We show results with task mapping in the
MiniGhost proxy application. MJ obtained better mappings as its recursion depth increased, since the in-
formation used in each recursion increases cumulatively. We have also proposed techniques to improve the
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FIG. 4.3. The number of “invisible hops,” i.e., the number of internode messages that are sent between processors sharing the
same coordinate. Since these processors share one Gemini link, these messages do not affect the congestion or hop count metrics.

quality of the mapping. For example, by speculatively trying all permutations of dimensions, MJ reduces
the communication time 11− 14% with respect to RCB mapping. Moreover, the proposed processor co-
ordinate shift technique reduces the communication time by another 2%. On 6144 processors, the overall
reduction of communication time by MJ0 was 40% compared to the baseline in which no reordering of
tasks is performed. As future work, we will evaluate the mapping algorithms’ effectiveness on unstructured
applications with any number of processors and tasks. We will also study the impact of dynamic system
conditions, such as congestion and network contention, on mapping strategies.
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APPLICATIONS OF KEY-VALUE REDUCTION IN VISUALIZATION

ROBERT MILLER∗ AND KENNETH MORELAND1

Abstract. Graphics and visualization pipelines often make use of highly parallelized algorithms which transform an input mesh
into an output mesh. One example is Marching Cubes, which transforms a voxel grid into a triangle mesh approximation of an
isosurface. These techniques often discard the topological connectivity of the output mesh, and instead produce a ‘soup’ of disconnected
geometric elements. We explore the use of an algorithm called Key-Value reduction for a variety of computations on these output
elements.

1. Introduction. Many existing parallel graphics techniques are designed to generate geometry from
some form of input mesh. Such algorithms tend to have the attribute that computation of any given output
feature depends solely on a small set of input features. This provides a natural partitioning of the input
which can then be used to develop parallel algorithms. As an example, the Marching Cubes [9] algorithm
can be parallelized per voxel, so that only the data values at the voxel corners are necessary to generate the
geometry within the voxel (if any).

The problem with this naive parallelization is that it generates a “soup” of output primitives, with no
information about connectivity. The aforementioned Marching Cubes algorithm simply produces a set of
disconnected triangles. This is not a concern so long as all further computation on the output depends
exclusively on the local attributes of individual primitives and storage cost is not a primary concern, such as
is the case with rendering.

Rendering has often been the ultimate goal for the generated output of parallel graphics algorithms and
the size of the output is not a concern, so these techniques have been sufficient. When additional processing
of the output is desired that requires information about the connectivity between multiple primitives, the
situation becomes more difficult. Consider the calculation of the curvature of the isosurface generated by
Marching Cubes. Given only a triangle soup, there is no simple method to determine the neighbors of
any given triangle, which is a required step to compute the curvature. A more complex example would be
the case of a visualization pipeline, where different types of topological connectivity information may be
necessary depending on the structure of the pipeline.

This is not a new problem, and techniques exist to determine topological information about a primitive
soup [10]. Generally this approach starts by finding and coalescing duplicate vertices, which may require
a bounded-radius nearest-neighbor search to resolve vertices that are identical save for floating point error.
Next, the algorithm finds all primitives that share two or more vertices, and links them together as neighbors.
Finally, some “duplicate” vertices may not actually represent desirable connections, such as is the case
where two cones meet at their apices, so these vertices may need to be split in a final pass. This process is
computationally complex, and is specific to the topological connections between triangles.

We present a technique which applies equally well to other types of topological connections, such as
determining the neighboring facets of tetrahedra. Our technique makes use of the fact that in visualization
geometry is rarely generated in a vacuum; we usually have some information about how the geometry is
generated. To list a couple of examples demonstrated in Figure 1.1: Marching Cubes generates its output
vertices on the edges of a structured grid, and tetrahedralizations can be generated on an existing spatial grid
or mesh.

2. Related Work. We use Marching Cubes as an example of parallelized geometry generation [9].
There are myriad existing isosurfacing implementations on the GPU, dating from Rottger’s implementation
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FIG. 1.1.
Operations that generate geometry usually rely on a known input topology for that purpose. Marching Cubes
(left) generates all output vertices on the edges of a known voxel grid. By marking these output vertices with
the ID of their generating edges, connectivity information can be retained. The same process can be applied
to cell subdivision (center). Tetrahedralizations (right) are more complex, but still supportable by keying on
the input face as well as the input edge. In each figure, output topological connections known from input
topology are displayed by using identical colors to highlight connected vertices.

[11]. Dyken provides a fairly detailed overview of the advancements in GPU implementations of Marching
Cubes and Marching Tetrahedra [6].

Kipfer and Westermann [8] use the observation that polygon vertices from Marching Tetrahedra all lie
on tetrahedra edges to uniquely specify each polygon vertex. Our implementation of isosurface generation
uses a similar observation, but our technique is more general than Kipfer and Westermann’s and does not
require the auxiliary edge structure of their technique.

Stream compaction is an important element for efficient geometry generation on the GPU. Horn pro-
vides an early method for stream compaction on the GPU [7], which was improved upon by Sengupta [12],
who also provides a CUDA implementation. These approaches rely on the data parallelism technique and
the application of prefix sums as described by Blelloch [3, 4]. Dyken further optimizes GPU compaction
techniques by making use of a data structure called a Histogram Pyramid [6]. For our examples, we use
geometry generation methods that make use of the prefix-sum method of compaction, but other compaction
techniques such as histogram pyramids could be substituted for the prefix sum technique for increased per-
formance in any case where our method is applied.

Bell, a primary developer of the Thrust library, presents a vertex welding technique as an example
application of Thrust [2]. Bell also notes that GPU sorting techniques can be instrumental in the development
of high-performance GPU algorithms. The technique uses a lexicographic sort directly on the vertices
generated by Marching Cubes, then collapses duplicates to get the final welded surface. We find this sorting
approach well suited for topology construction in finely-threaded architectures and seek to improve and
generalize the technique into a new technique called Key-Value reduction.

The algorithm, hereafter referred to as Vertex-Weld, works as described in Algorithm 1. Vertices are
first sorted by some representation of their coordinates. Bell suggests a lexicographic sort where first the
x, then y, then z coordinates are compared. After the sort, vertices at identical locations are adjacent in the
array. These coincident points are marked and compacted. Note that the lexicographic sorting method is
very sensitive to floating-point error because small differences in either of the x or y coordinates may lead
to nonadjacent placement of otherwise identical vertices in the sorted array.

Vertex-Weld is relevant to topology reconstruction because it provides unique identities for distinct
topological features, such as vertices. Prior to the operation there may exist many instances of the same
topological feature. This makes it difficult to determine whether two facets connect to the same vertex,
for example. After the Vertex-Weld process is complete, it is simple to determine all facets that contain
a particular vertex, which can allow computation of incidence and adjacency lists. Vertex-Weld can be
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Algorithm 6 *
1: procedure Vetrex−Weld((vertices))

. vertices: Array of vertex data (i.e. coordinates).

. Sort vertices to make identical vertices adjacent.
2: sorted− vertices← Lexicographic−Sort(vertices)

. Copy first element of each group of duplicates.
3: welded− vertices←Unique(sorted− vertices)

. For each item in vertices find the corresponding

. index in welded− vertices.
4: cell− connections← Vectorized−Find(welded− vertices,vertices)
5: return (welded− vertices,cell− connections)
6: end procedure

Alg. 1: VERTEX-WELD, as demonstrated in the Thrust library examples, takes geometric soup as input
and produces a welded topology.

efficiently implemented using well-studied parallel algorithms. For example, the functions Lexicographic-
Sort, Unique, and Vectorized-Find are performed using the parallel Thrust functions sort, unique, and
lower bound, respectively.

Our approach has many similarities, but there are several cases where Vertex-Weld was not designed
to accommodate topological reconstruction. In particular, Vertex-Weld provides no way to make use of the
provenance of the disconnected geometry. Additionally, the Vertex-Weld algorithm as presented is unstable
in the presence of floating point errors because these can cause the Lexicographic-Sort to place “identical”
points in non-contiguous regions of memory, thus invalidating the algorithm. A more stable solution which
still uses bitwise comparison can be constructed by sorting on each dimension and removing duplicates each
time, but this is inefficient. Instead, we resolve both of these concerns by allowing a sort on input topological
features, and a generalized reduction/merge operation. These modifications give us the technique we are
calling Key/Value reduction.

We pattern our algorithms after some of the features of the MapReduce framework [5]. Like MapRe-
duce, our algorithms first map keys to values then collect keys and reduce the values. MapReduce is a
system that works extremely well in distributed computing, but is not designed to work efficiently on a sin-
gle node. Key/Value reduction is intended for use in highly threaded environments such as nVidia’s CUDA
or Intel’s Xeon Phi. Although we believe our algorithms could be implemented in a MapReduce framework
(an exercise we leave to the reader), it would require additional collection operations to resolve topological
connections. Other researchers [13, 14] have implemented visualization algorithms directly in MapReduce,
but they serve purposes other than those we address.

3. Methodology.

3.1. Using Input Mesh Topology. The essential idea behind Key/Value reduction is to use components
of the input topology as keys in a MapReduce-like framework as demonstrated in Figure 3.1. In this figure
we have labeled the major steps of our algorithm with the analogous component in MapReduce to facilitate
the understanding for those already familiar with this system.

The first step is a map operation that generates key-value pairs where the key is some component of
the input topology and the value is a generated component of the output topology. In the case of Marching
Cubes, the values are the vertices generated for the new surface mesh, and each vertex is keyed by an
identifier for the edge used to interpolate the vertex. The map operation may also generate elements that are
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Map
Generate new topology elements (values)
Identify spawning input elements (keys)

Reduce
Merge coincident components

Output connected topology

Partition
Group identical keys

Key/Value pairs

Values with 
identical keys

Unique
Components

Connection, Coordinate, and Field arrays

FIG. 3.1. Basic flow of an algorithm using input mesh topology to determine characteristics of an output mesh.

known to be unique and therefore do not need keys. For example, when subdividing cells, some vertices
come directly from the input vertices whereas others are interpolated and must be connected. The map
operation is designed such that key-value pairs can be generated independently, which allows us to safely
compute them concurrently on a very large pool of threads.

The second step is a partition operation that reorganizes the key-value pairs to group duplicate keys.
Like most MapReduce implementations, we find a parallel sort to be an efficient way to shuffle the data.
However, we can also take advantage of domain decompositions when available to shorten the partitioning
time.

The third step is a reduce operation that merges groups of coincident components identified by the parti-
tion and generates the connected structures. In the Marching Cubes example, this reduction means averaging
the field values on merged vertices and updating the triangle connection indices. Because all dependent op-
erations are collected into partitions, the reduce operations can also be safely computed concurrently.

Although our system is conceptually similar to MapReduce and we believe it possible to implement
in a MapReduce framework, we choose to implement our algorithms using the more imperative parallel
operations provided by Thrust. This makes it easier to take advantage of known properties such as domain
decompositions or implicitly unique keys. It also simplifies storing topologies in efficient indexed array
structures rather than collections of key-value entities.

3.2. General Merging Algorithm. Figure 3.2 provides a simple example of applying our technique
using input mesh topology, described in Section 3.1, to find connections among generated vertices. First, a
mapping operation generates the connections for a set of cells. Vertices are duplicated to allow independent
operation on multiple threads. For the purposes of this paper we assume the map operation is a previously
known algorithm such as Marching Cubes with the trivial extension that cell connection lists contain pairs
of input index (key) and output vertex (value) rather than just the output vertices.

Next, key-value pairs are partitioned by sorting the pairs based on keys. From the sorted list of keys
we can efficiently extract a list of unique keys, which serves to identify the connected vertices to be created.
This list of sorted unique keys can also used to look up where each original unsorted key resides in the final
list of merged vertices, which is how we generate the cell− connections array defining the cell topology.

The final step is to merge values with identical keys in the reduction phase. This reduction operation
provides an opportunity to combine neighborhood information such as averaging normals across surface
polygons. To facilitate averaging we also generate a counts array marking the number of cells incident
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FIG. 3.2. An example of using input mesh topology to find output vertex connections. A map operation, such as Marching Cubes,
defines some collection of cells as shown at left. A partition phase groups the keys and a reduce phase combines vertices and establishes
a connections array to the new indices. We collect the mechanisms of this process in an algorithm we call Key-Value-Reduce.

to each vertex. Although this array is not specifically necessary to describe the final topology, it can be
leveraged to find vertex incidence lists using the Vertex-Incidence-List method described in Algorithm 3.

We provide a generalized method that captures these partition and reduce phases named Key-Value-
Reduce that groups various types of geometric elements and then merge each group into single outputs. The
workings of Key-Value-Reduce are described in Algorithm 2.

The Key-Value-Reduce algorithm takes as its input data the result of a map operation. Also passed
to Key-Value-Reduce are a merge operation, which combines two values, and a transform operation, which
completes a reduction from a fully merged set. Together the merge and transform operations allow reductions
to take place iteratively, which can be important for distributed or streaming implementations.

Our Key-Value-Reduce algorithm is implemented wholly using the parallel operations provided by the
Thrust library. Steps 1 through 6 use functions that are analogous to those directly provided by thrust. Steps
7 through 18 in Key-Value-Reduce are described at a high level for clarity. For increased data parallelism,
we actually implement this portion of the algorithm using the Thrust library’s inclusive scan by key
and zip iterator. An example of how this algorithm works is provided in Figure 3.2.

We note that the Key-Value-Reduce algorithm combines features of both MapReduce and Vertex-Weld,
making it a curious amalgamation between the two. The remainder of this section describes applications of
Key-Value-Reduce as a typical vertex weld (albeit potentially faster than Vertex-Weld with a more robust
coincident point comparison). Subsequent sections apply the Key-Value-Reduce algorithm in more unique
ways to identify different topological connections.

3.3. Histograms. Histograms are probably the simplest example of Key-Value reduction. In this case,
generation of the keys simply requires that for each input element, we assign the index of the bin it should
fall into as the key. The reduction operator is a no-op, because for the histogram the size of each key group
is the output value.

3.4. Cell-To-Point. It is relatively common to have information about cells and need to interpolate to
find this information at the cell vertices. This can be easily accomplished by parallelizing on each cell. We
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Algorithm 7 *
1: procedure Key−Value−Reduce((keys,values,compare,merge, trans f orm))

. keys: An array of keys uniquely identifying elements.

. values: An array of mergeable elements for each key.

. compare: A key comparator compare(k1,k2)→ constbool.

. merge: A merging operator merge(m1,m2)→ m3.

. transform: A transformation trans f orm(m1,size)→ out.

. Sort values using keys to make groups.
2: (sorted− keys,sorted− values)← Key−Sort(keys,values,compare)

. Determine the new indices for each element.
3: unique− keys←Unique(sorted− keys)
4: cell− connections← Vectorized−Find(unique− keys,keys)

. Get a reverse map from output to sorted arrays.
5: reverse−map← Vectorized−Find(sorted− keys,unique− keys)

. Get the size of each group (one per unique key).
6: welded− size← Length(reverse−map)
7: counts←{}
8: for all i← 0 to welded− size−2 do in parallel
9: counts[i]← reverse−map[i+1] −reverse−map[i]

10: end for
11: counts[welded− size−1]← Length(sorted− keys) −reverse−map[welded− size−1]

. Merge each group into a single element.
12: welded− values←{}
13: for all weld− index← 0 to welded− size−1 doin parallel
14: sort− index− start← reverse−map[weld− index]
15: count← counts[weld− index]
16: v← sorted− values[sort− index− start]
17: for all group− index← 1 to count−1 do
18: sort− index← sort− index− start +group− index
19: v← merge(sorted− values[sort− index])
20: end for
21: welded− values[weld− index]← trans f orm(v,count)
22: end for
23: return (welded− values,cell− connections,counts)
24: end procedure
Alg. 2: The Key-Value-Reduce procedure welds vertices and allows multiple local samples of vertex at-
tributes to be merged to form a better sampling without non-local operation during geometry generation.

use the unique indices of its vertices as the keys, and the value that we wish to interpolate as a value. On
uniform grids, a simple averaging can function as the reduce step. For unstructured grids, generally we use
an inverse-distance weighted average function for the reduction operator.

3.5. Point-Curvature. Finding the curvature around a point may be estimated by parallelizing on
edges. During key-value generation, point IDs for the keys, and the curvature along the edge for the value
(calculable simply from the change in normal on the edge). The reduction step can then be a simple average
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Algorithm 8 *
1: procedure Vertex− Incidence−Lists((cell− ids,cell− connections,counts))

. cell-ids: An array of cell identifiers for each cell vertex.

. usually sequential repeated indices {0,0,0,1,1,1, ...}

. cell-connections: Result from Key-Value-Reduce.

. counts: Result from Key-Value-Reduce, cell counts per vertex.

. Use a key-sort with cell connections as the keys to

. group cell identifiers by vertices.
2: (−, links)← Key−Sort(cell− connections,cell− ids)

. The size of each incidence list is stored in count.
3: links− counts← counts

. Use an exclusive scan to find the offset to the

. incidence list for each vertex.
4: links−o f f sets← Exclusive−Scan(links− counts)
5: return (links, links− counts, links−o f f sets)
6: end procedure

Alg. 3: Vertex-Incidence-Lists takes the output of the Key-Value-Reduce algorithm and quickly generates an
incidence list, represented as an array of cell-ids and an array of pointers into cell-ids called links-offsets that
represents the start of each cell’s incidence list. Adjacency lists across edges may be produced by removing
incidences that do not occur exactly twice in a cell, and adjacency lists across faces may be generated
similarly.

FIG. 3.3. During the key-generation phase, each of the points assigns itself a bin ID based on the distance from a point of interest.
No real reduction is needed, but the number of values in each bin is required for the histogram.

to get the local curvature at each point.

3.6. Marching Cubes. In the case of Marching Cubes (or any variant like Marching Tetrahedra), we
know a good deal about the input topology on which the output is generated. Specifically, the output vertices
from Marching Cubes are generated only on the edges of input voxels.

For a structured voxel grid, we assign each unique edge an implicit integer index, then store the corre-
sponding edge index for each vertex generated by Marching Cubes. Because the edge indices are implicit,
we need neither to create nor to store an edge list. For unstructured grids, no such implicit edge identifiers
necessarily exist. However, each edge is uniquely identified by its two end vertices. We build unique local
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edge indices by concatenating these two end vertices in a canonical order (we put the smallest vertex first).
This unstructured approach works fine for voxel grids, but requires more bits in the indices than necessary
and can thus slow down the key sort.

The results of this keyed Marching Cubes map are completed using the Key-Value-Reduce process
described in Section 3.2, which results in a manifold surface. We also offer to blend other field information
at the vertices. This is particularly helpful for creating interpolated surface normals from flat triangle normals
or input gradients, which are not continuous across cell boundaries.

3.7. Mesh Coarsening. One of the more curious attributes of our topology construction is that there
is flexibility in how we record the history of topological elements, and changing the association between
input and output elements can have interesting and useful outcomes. In this section we describe how to
alter the topological provenance of the Marching Cubes algorithm to provide an effective but free first-level
coarsening of the resulting surface.

FIG. 3.4. When several Marching Cubes output vertices (blue) fall close to the same input vertex (black), small or skinny triangles
may be produced (red). Merging the nearby vertices collapses the skinny triangles into degenerate triangles, which are then removed.

The basic idea for our coarsening is described in Figure 3.4. Marching Cubes generates small or skinny
triangles when two adjacent output vertices are generated near the same input mesh vertex. These skinny
triangles are a problematic artifact of Marching Cubes. They lead to poor interpolation of surface normals,
shading, and other fields as demonstrated in Figure 3.5. The juxtaposition of skinny and fat triangles can also
cause irregularities in their orientations, which can yield a staircase-like appearance as evident in Figure 3.6.

Although our technique reduces the mesh size, philosophically speaking we are more interested in
improving the quality of the mesh than in reducing the number of triangles, which is the primary focus of
previous work. Specifically, it is our goal to eliminate poor quality triangles in the mesh while performing
minimal modifications to the others, without requiring an additional processing pass. We define triangle
quality Q as

Q =
4a
√

3
h2

1 +h2
2 +h2

3
, (3.1)

where hx are side lengths and a is the triangle area. This quality metric operates only on triangle shape, and
is agnostic to triangle size.

This measure of triangle quality considers only aspect ratio, and is such that triangles where Q > 0.6
are considered to be of acceptable quality, and Q = 1 when the triangle is equilateral [1]. This is equivalent
to the pdetriq function in MATLAB. We use this metric to empirically demonstrate the effectiveness of our
coarsening.

Figure 3.7 demonstrates the effect of our coarsening to the isosurface of the MRI head rendered in
Figure 3.6. In general the triangles that are removed by our coarsening (green) are either small or poor
quality as compared with other triangles in the distribution. Triangles that are not removed by the coarsening
(orange) are altered into the output triangles (blue) when point coordinates are averaged. Although not all
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FIG. 3.5. Marching Cubes output without (left) and with (right) coarsening on the tooth dataset. The top images highlight the
reduction of normal artifacts via our coarsening. The bottom images show improvement in mesh quality when coarsening is enabled.

FIG. 3.6. At left artifacts are visible due to sampling error caused by the local operation of our Marching Cubes implementation.
At center surface normals are averaged on merged vertices, and smooth shading attempts to make the bumps less noticeable. At right
we remove these artifacts using our coarsening without incurring additional performance costs.

passed triangles are improved by this coordinate averaging, there is a lower bound on produced triangle
quality. After coarsening, most of the triangles are relatively large and high quality. The cumulative triangle
distributions show that our coarsening reduces the size of the output mesh to approximately half of its
original size. The median quality of the removed triangles is approximately Q = 0.5 whereas the median
quality of passed and output triangles is approximately Q = 0.85.

A problem with the coarsening technique is that in some cases, such as the case shown in Figure 3.8,
non-manifold surface elements may be generated by collapsing vertices from different parts of the surface.
In this example, two vertices from different faces are merged and a 3D volume is collapsed into a single
plane. If such surface elements are undesirable, they may be eliminated in one pass by removing all triangles
containing an edge curvature of 180◦.
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FIG. 3.7. Left: Scatterplot of triangle area and triangle quality for the MRI head dataset as calculated in Eq. 3.1. Top Right:
Histograms of the quality of passed, removed, and coarsened triangles. Bottom Right: Cumulative distributions of triangles before and
after coarsening.

FIG. 3.8. An example of mesh coarsening causing a non-manifold, overlapping surface.

4. Results and Discussion. All tests were run on a Macintosh Pro with 2x2.26 GHz Quad Core Intel
Xeon processors, 6GB 1066 MHz DDR3 ECC memory, and an nVidia GeForce GT 120 512MB. Due to
space constraints, we are omitting the results for Tetrahedralization and Subdivision, but these perform
similarly to the Marching Cubes case on similar grid size, which is described below. In each of these cases,
performance is largely determined by the size of the final output grid.

4.1. Histogram. Performance results using the Key-Value reduce operation to create a histogram on
10,000,000 points and 5000 bins is shown in Figure 4.1. This point and bin count were chosen due to
contiguous memory limitations of the graphics card.

4.2. Overhead of Key-Value-Reduce. Figure 4.2 shows an example of taking a traditional vertex
welding approach on the output of Marching Cubes and replacing it with Key-Value-Reduce. Within the
variance of our tests, it does not appear to provide a significant loss of performance. The input grid is a
512x512x512 grid, with approximately 25% of the cells creating output geometry. The size of the input grid
is limited by available memory on the graphics card.
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FIG. 4.1. Time to run a histogram of 10,000,000 points with Key-Value-Reduce.
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FIG. 4.2. Vertex welding timing information on output from Marching Cubes on a 512x512x512 grid. Changing from the
specialized Vertex-Weld method to our Key-Value-Reduce method does not incur significant overhead.

4.3. Coarsening. Figure 4.3 shows that when using Key-Value-Reduce as a vertex welding operation
in conjunction with a coarsening operation, we can actually reduce execution time while improving triangle
quality as shown in Figure 3.5.

5. Conclusion. We implement the Key-Value reduction pattern for a variety of distinct visualization
operations, and demonstrate that it is efficient on both CUDA and OpenMP. The Key-Value pattern does
not fit all visualization operations, but where it fits, it allows for simple and efficient implementation in
finely-threaded environments.
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PARALLEL TRIANGLE CLIPPING ON GPU

XIN TONG∗ AND KENNETH MORELAND1

Abstract. Polygon clipping, the process of finding the intersection of two arbitrary polygons, is a well studied problem. However,
general algorithms have many cases and conditions. Such conditional execution is problematic when using a SIMD-like GPU to
concurrently clip many polygons with few vertices. We present a clipping technique specialized for triangles and quadrilaterals that
runs effectively when replicated in a thread warp. We apply our technique on spherical quadrilateral unstructured grid data, and achieve
more than 10 times speedup over traditional techniques.

1. Introduction. Triangle clipping is a simple case of 2D polygon clipping, a fundamental operation
in computer graphics [4]. Basically, it clips one polygon by another polygon, and generates a polygon that
is the intersection of the two input polygons. We can use the triangle clipping to solve the incremental
remapping problem.

Incremental remapping [3] [8] is a strategy to solve the standard transport or continuity equation, which
projects cell volumes along Lagrangian trajectories and then remap the resulting density distribution onto the
original mesh. There are two basic approaches to solve the incremental remapping: computing the cell-face
fluxes, and computing the cell area average of transported concentration. For regular grids, cell-face flux
is easier to compute with a computationally economic approach. But for unstructured grids, the flux area
is no longer easy to compute so we can instead compute the cell area average of transported concentration.
Computing the cell area average requires computing the intersection of two grids, one original grid of the
data(Figure 1.1(a)) and one warped grid (Figure 1.1(b)) generated by warping the original grid along the
Lagrangian trajectories. The polygon clipping process should output a clipped grid whose cells are the
clipped polygons generated by clipping the polygonal cells from the warped grid by the polygonal cell from
he original grid.

(a) Original Grid (clipping
polygons)

(b) Warped Grid (subject
polygons)

FIG. 1.1. Comparison between two sets of grid

Polygon clipping between two large grids is a computationally intensive work, because the number of
polygons to clip grows with grid size. The grid size becomes larger with the increasing of the computation
power. Thus, doing the polygon clipping fast is necessary for large size data.

Climate scientists perform simulation on different types of grids. In this paper, we use the grid from
the Community Atmosphere Model version 5 (CAM5) [2] as our input data. CAM5 is based on a cubed-

∗The Ohio State University, tong@cse.ohio-state.edu
1Sandia National Laboratories, kmorel@sandia.gov
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sphere grid, which allows quasi-uniform grids for the sphere, as in Figure 1.1(a). A cubed-sphere grid is a
coordinate system derived from central projections [13], which splits the earth into regions of quadrilaterals.

A parallel computation on a GPU can achieve a fast parallel clipping based on the independency property
of the computation. The traditional clipping algorithm is a serial algorithm based on CPU architecture, which
is not efficient for GPU computation. In this paper, we propose a parallel algorithm to perform triangle grid
clipping with a GPU program. This algorithm can trivially be run concurrently for multiple triangle pairs,
but it contains many cases and branches that make it inefficient on a GPU. So we use a lookup table to store
the branches and their corresponding instruction sets to minimize the number of instructions in the GPU
kernel program. We extend the algorithm to solve quadrilateral grid clipping by splitting each quadrilateral
into two triangles. The cubed-sphere grid from the CAM5 model is used in this paper as the quadrilateral
grid. A search structure is designed for the cubed-sphere grid to accelerate the process of searching triangle
pairs. Since incremental remapping only needs the integration over the clipped polygon, so our approach
can be applied to incremental remapping on any kinds of 2D grids that can be triangulated to triangle grid.

This paper proceeds as follows. First, We summarize the previous polygon clipping algorithm in Sec-
tion 2. Then, we discuss our parallel triangle clipping algorithm in Section 3, and the triangle search structure
in Section 4. At last, we evaluate the results and performance of our method in Section 5, and conclude our
work in Section 6.

2. Related Works. Polygon clipping against a fixed plane is a well studied area in computer graphics.
The clipping technique clips polygons against the screen boundary and remove the part of polygon that
lie outside of the screen so that they would not be rendered. Sutherland and Hodgman [14] proposed a
reentrant polygon clipping algorithm (Sutherland-Hodgman algorithm) that clips polygon against convex
windows. Liang and Barsky [7] provided a clipping method that can better handle the difficult case that the
clipping polygon surrounds a corner of the clip window than the previous methods. Maillot [1] simplifies the
Sutherland-Hodgman algorithm by only considering the polygon being triangle or quadrilateral. It achieves
better memory usage than the Sutherland-Hodgman algorithm. Maillot’s another paper [10] extends the
Sutherland-Cohen line clipping algorithm [11] to clip polygon against a rectangular window. The focus
of the paper is taking care of the turning point when a polygon is clipped by two planes at the corner of
the screen. McGuire also provided an efficient implementation of Sutherland-Hodgman algorithm to clip
triangle and quadrilateral against a fixed plane. This algorithm is implemented in GPU shader so that it is
efficient on a GPU parallel architecture. These clipping algorithms above clip polygon against fixed planes.
Our triangle-triangle clipping problem is to clip polygon against anther polygon. It is similar to the problem
of clipping against a fixed plane because both problems involve solving intersections and generating an
ordered sequence of vertices as the final output. But the polygon-polygon clipping problem has more cases
to consider and is more complex.

A few approaches are available to clip an arbitrary polygon by another arbitrary polygon. Weiler al-
gorithm [17] and Vatti’s algorithm [15] can clip between two arbitrary polygons. But both algorithms are
complicated to understand and to implement. Greiner and Hormann [4] proposed a simpler approach to clip
between two arbitrary polygons. The idea is to build a linked list of the vertices and intersection points for
each of the two polygons. Then the algorithm traverses the two linked lists to find the vertices of the clipped
polygon. This method removes the degenerate cases by perturbing the vertices. Other works [6] [9] extend
Greiner’s method to handle degenerate cases. The existing polygon-polygon clipping algorithms run on a
single CPU and achieves a reasonable performance. However, these algorithms are designed to clip arbitrary
polygon that has arbitrary number of vertices, which is not good for a GPU implementation. The relatively
simple Greiner’s algorithm requires the linked list data structure, which prevents the algorithm map on the
GPU memory well. Our method simplifies the problem by only clipping against two triangles that have
fixed number of vertices and does not require using linked list, which is easy to map onto GPU memory and
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achieve a high performance with a parallel GPU implementation.

3. Triangle Clipping Algorithm. The classic polygon-polygon clipping algorithm is about arbitrary
polygon based on a linked list data structure [4]. However, the size of linked list varies largely, making it
hard to map on GPU memory. Clipping on a big data set of polygons on a CPU is very time consuming, so
we want to modify the data structure and algorithm to make a clipping technique for the GPU. Our algorithm
restricts the input polygon to be triangle to simplify the data structure and reduces the number of cases to
consider when clipping triangles.

3.1. Algorithm Overview. The polygon-polygon clipping problem clips a subject polygon, against a
clipping polygon, and produce a clipped polygon. The vertices of the clipped polygon are either from the
vertices of the two input polygons, or their intersection points. The vertex of the clipped polygon from the
input polygons must be a inside vertex, which is the vertex of a polygon that is inside the shape of the other
polygon. The general approach for polygon clipping is first find out all the inside vertices and intersection
points of the two triangles, and then sort those points based on the geometry to assemble the clipped polygon.

Comparing to clipping between two arbitrary polygons, there are limited number of clipping cases
between two triangles. Each case shares the same set of standard operations to assemble the clipped polygon.
Note that in the triangle-triangle clipping, the subject polygon and the clipping polygon can be interchanged
without changing the result (the clipped polygon remains the same). So we do not differentiate the symmetric
cases. We differentiate the 6 cases by the number of inside vertices as listed below.

• None of the two triangles has any inside vertex
• One of the two triangles has one inside vertex
• One of the two triangles has two inside vertices
• One of the two triangles has three inside vertices
• One triangle has one inside vertex, the other has two inside vertices
• Both triangles have one inside vertex

After the 11 cases are determined, the next step is to use 14 instruction statements to generate the array
for clipped polygons. We first initiate an array of the space of 6 vertices, because we know there are at most
6 vertices in the clipped polygon. Then we fill this array by adding vertices one by one, and keeping the
count of added vertices so far. How to sort those points is the tricky part in designing a clipping algorithm,
which will be described below.

3.2. Clipping Cases. In the implementation we differentiate the symmetric cases, and enumerated 11
cases as shown in Figure 3.3. Each case shows a set of the possible intersection configurations. The the
green triangle is the subject triangle, and the red triangle is the clipping triangle. Case 1 shows the case that
none of the two triangle has any inside vertex. For case 1, there is no inside vertex for either triangle. The
clipped polygon is composed of only the intersection points of the two triangles. The number of vertices in
the clipped polygon can be 3, 4, 5 or 6, as shown in Figure 3.3. We consider them as the same case because
the clipping operations for generating the clipped polygon are the same. Case 2 and case 3 are symmetric
cases that one of the two triangles has one inside vertex. Case 4 and case 5 are symmetric cases that one of
the two triangles has two inside vertices. Case 6 and case 7 are symmetric cases that one of the two triangles
has three inside vertices. Case 8 and case 9 are symmetric cases that one triangle has one inside vertex,
the other has two inside vertices. Case 10 and case 11 are for the situation that both triangles have one
inside vertex. The last two cases are not symmetric. The first configuration of case 10 has two intersection
points. The difference between the second configuration of the case 10 and the case 11 is their directionality
of the vertices of the two triangles, clockwise or counterclockwise. The difference between case 10 and
case 11 is that in case 10 the vertices of two triangles have the same directionality, i.e. both are clockwise
or both are counterclockwise; while in case 11 the directionalities are different. The case 10 and the case
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11 can be differentiated by testing whether the edge s23 intersects with the edge c12. Note that we don’t
restrict the directionality of the input triangles to be the same. In our application of incremental mapping,
the directionality of the subject triangle is unpredictable because the directionality can change after warping.

0

1 2

0.5

1.4

2.7

FIG. 3.1. Relative position used to sort the intersection points and the vertices on a triangle. A point on the triangle boundary
has a relative position represented as a floating point number. The relative positions of 6 points are presented as examples marked on
the triangle.

After differentiate the 11 cases with the number of inside vertices from the two triangles, we detect all
the intersection points. Then we mark the intersection points with a value that gives the relative position on
one of the triangle. The relative position is a value in [0,3). The three vertices have a relative position of
0, 1 or 2. The relative position of a point on an edge of the triangle is a floating point value between the
relative positions of the two incident vertices of the edge based on its relative distance to the two vertices. We
know that the order of vertices and intersection points in one triangle should remain the same in the clipped
triangle. If we keep this value to order the vertices in the clipped polygon, we can only choose one of the
triangle to order the vertices in the clipped polygon. Here we choose the triangle has the larger number of
inside vertices. The inside vertice are swapped to the front of the vertex array, so their index is smaller than
the outside vertices. Because there are at most 6 vertices in the clipped polygon, we declare an array of 6
vertices. To assemble the clipped polygon of the case 1-7 that at most one of the triangle has inside vertices,
we first put all the intersection points into the array with the order of their relative position in the triangle
that has the inside vertices, and then put all the inside vertices into the result array according to its relative
position. To assemble the clipped polygon of the case 8 and case 9, we first put in the only two intersection
points, and the inside vertex from the triangle who has only one inside vertex between the two intersection
points. Then we append the two inside vertices from the triangle that has two inside vertices. For the case
10, we first add all the intersection points from the clipping triangle,

We enumerate 11 cases for the intersection of two triangles, as shown in Figure 3.3. 3 tests are performed
to distinguish the 11 cases. They are (T1) the number of inside vertices inside of the subject triangle, (T2)
the number of inside vertices of the clipping triangle, and (T3) an intersection test between two edges from
the two triangles, as shown in Table 3.1.

3.3. Tests on Spherical Coordinates. Inside Test and Intersection Test on spherical coordinates.
The clipping is performs with a few steps. The first step is figuring out which case the two triangles’

relation belongs to. To do this, we need a test to decide whether a point is inside a triangle on the sphere
surface. Note that the triangle is a spherical triangle, i.e. the edge between two points is on the great circle
of the sphere and also the shortest path between these two points on the sphere surface. Thus, edges of the
triangle are actually arcs on the surface of the sphere. In Figure 3.2, A, B and C are three points on the sphere
and form a triangle. O is the sphere center. The three planes OAB, OBC, and OCA bound the spherical
triangle. We define the normals to these three planes as NOAB, NOBC, NOCA, respectively. These normals have
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the property that they either all point into the triangle or away from the triangle. G is inside the triangle if
and only if the three dot products OG ·NOAB, OG ·NOBC, and OG ·NOCA are all positive or all negative.

A

B

C
O

D
E

F

FIG. 3.2. Inside test and intersection test for spherical triangle. The right figure is a magnified view of the triangle ABC in the
left figure

If both triangles have one inside vertex, we then perform an intersection test to distinguish between
cases 10 and 11. The subject triangle has the vertices s1, s2, s3, and the clipping triangle has the vertices c1,
c2, c3. As shown in cases 10 and 11 of Figure 3.3, the intersection is performed between edges s23 and c12.
We use plane intersections in Cartesian space to find intersections of arcs on the sphere. In Figure 3.2, we
need to know whether arc AC and arc GE would intersect at some point, say point F . We know that the line
OF is contained in both the plane OAC and OEG. So we have OF ·(OA×OC) = 0, and OF ·(OG×OE) = 0.
Besides, F is on the intersection line of these two planes 1 unit (the sphere’s radius) away from O, which is
easily computed. F is just the intersection point of the two great circles, which may lay outside of the arc AC
and BG. Then we test whether F is between A and C and between G and E. For example, if F is between A
and C, the three cross products, OA×OF , OF×OC and OC×OA should have same sign (same direction),
i.e. (OA×OF) · (OF×OC)> 0 and (OF×OC) · (OC×OA)> 0.

3.4. Branchless . As we know the branches in a GPU program kill the computation performance,
because a thread will run a branch as long as there is one thread in the same warp needs to go through
this branch. To minimize the amount of branching on the GPU, all the cases share the same instructions
for clipping and use a mask to determine which instructions get executed. This allows different cases to
share instructions among the threads in a warp. For the triangle clipping algorithm, we summarize 14 C++
instruction statements. Some of the statements are used by many of the cases, but we write this statement
only once in the GPU kernel method and execute it only for those cases that need it. Note that these 14
statements are in order. When running one statement for a certain case, the mask will have an effect on
determining whether to run this statement or not. The value of the mask is checked from Table 3.1 for each
case and each statement.

In Table 3.1,The first two statements(I1 and I2) are for adding all the intersection points to the clipped
triangle array. Each time a intersection point is detected, its relative position on the triangle is recorded.
There are at most two intersection points on one edge, so as long as we find a new intersection point whose
relative location is smaller than the previous intersection point on the same edge, we put the new point before
the previous intersection point, instead of appending to the clipped triangle array. Note that for the same
intersection point, its position values are different in the two triangles, which is why we differentiate the
intersection instructions by the statements I1 and I2. Instructions I3 to I14 are for assigning vertex values
and changing the valid size of the vertex array of each clipped polygon.
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Two triangles, subject triangle and clipping triangle, intersect in different orientations with a different
number of intersection points. To define the clipping process, the clipping triangle clips the subject triangle
and generates the clipped polygon, whose number of vertices varies from 3 to 6. As demonstrated in Fig-
ure 3.3, the vertices of the clipped polygon include all the intersection points and any inside vertex, which
is a triangle’s vertex that is inside the other triangle. However, in our simple case, we can exhaust all the
cases of triangle intersection and build a table for the methods of finding the clipped polygon for all different
cases. So the GPU program just needs to check the table to figure out how to build the vertex array of the
clipped polygon after figuring out the case of the intersection.

1
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FIG. 3.3. The 11 cases of clipping. The green triangle is the subject triangle, and the red triangle is the clipping triangle.

3.5. Parallel Results Reduction. The results are stored in two arrays. One array stores the coordinates
of the polygon vertices, where each polygon has the space to put 6 vertices. The other array stores the
number of vertices each polygon has. Even when a polygon’s number of vertices is less than 6, we still
reserve 6 vertices’ space for it in the vertex array. Then, we need to squeeze the array and remove the blank
vertices in order to store it in a VTK unstructured grid file. First we do a prefix sum for the array of vertex
counts and get the offset array for the position of writing the new tight vertex coordinates array. Then we
fill the new array with the value of the polygon vertex coordinates in parallel by referring the offset array to
know the writing position of the new array in parallel. After we get the array of vertex coordinates and the
array of number of vertices for each clipped polygon, we write them into the VTK unstructured grid file as
our final result.
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Index Descriptions 1 2 3 4 5 6 7 8 9 10 11
T1 number of inside vertices in the subject triangle 0 1 0 2 0 3 0 2 1 1 1
T2 number of inside vertices in the clipping triangle 0 0 1 0 2 0 3 1 2 1 1
T3 intersect s23 and c12 - - - - - - - - - 0 1
I1 Add intersection points from the subject triangle 1 1 0 1 0 0 0 1 0 0 0
I2 Add intersection points from the clipping triangle 0 0 1 0 1 0 0 0 1 1 1
I3 d[cnt] = d[cnt - 1] 0 0 0 0 0 0 0 1 1 0 0
I4 d[cnt - 1] = s[0] 0 0 0 0 0 0 0 0 1 0 1
I5 d[cnt - 1] = c[0] 0 0 0 0 0 0 0 1 0 0 0
I6 cnt++ 0 0 0 0 0 0 0 1 1 0 0
I7 d[cnt++] = s[0] 0 1 0 1 0 1 0 1 0 0 0
I8 d[cnt++] = c[0] 0 0 1 0 1 0 1 0 1 1 1
I9 d[cnt++] = s[1] 0 0 0 1 0 1 0 1 0 0 0
I10 d[cnt++] = c[1] 0 0 0 0 1 0 1 0 1 0 0
I11 d[cnt++] = s[2] 0 0 0 0 0 1 0 0 0 0 0
I12 d[cnt++] = c[2] 0 0 0 0 0 0 1 0 0 0 0
I13 d[cnt++] = d[0] 0 0 0 0 0 0 0 0 0 1 0
I14 d[0] = s[0] 0 0 0 0 0 0 0 0 0 1 0

TABLE 3.1
Tests and instructions for 11 cases. Each column is one case. Each row is a test(T1-T3) or a instruction(I1-I14). For the

instructions, 1 means executing the instruction, while 0 means not executing. s[] and c[] are arrays holding 3 vertices of triangle S and
C, respectively. Array d[] hold the vertices of clipped polygon. cnt is the count of valid vertices in array d[].

4. Triangle Search Structure. The input data are two quadrilateral grids. Since our clipping is based
on triangles, we break each quadrilateral into two triangles by adding an edge between the shorter diagonal
of the quadrilateral, which makes sure a concave quadrilateral is triangulated properly. Then, we have two
set of triangles S and C, which contain the number of ns and nc triangles, respectively. Theoretically, we
need to clip on ns×nc pairs of triangles. However, we do not have to do the clipping for two triangles that
are far away from each other. We design a search structure to help remove the far away triangle pairs with
lower cost and generate the clipping pairs candidates.

The search structure is built on two stages. The first stage divides the space into uniform partitions [5]
and finds all pairs of triangles contained in the same partition. The second stage makes a bounding box
intersection test for the triangle pairs to remove the pairs whose bounding box does not intersect. Because
of the spherical space, we use a cubed-sphere space to make partitions and build the bounding boxes of
triangles to achieve higher accuracy and balanced GPU workload.

4.1. Build Search Structure on Cubed-Sphere Grid. Our data is on the surface of the Globe. Parti-
tioning with 3D Cartesian coordinates is not useful because the there is no triangle inside the globe and the
triangles are not distributed uniformly in Cartesian space. On the other hand, spherical coordinates (latitude
and longitude) are not efficient either because the latitude-longitude regions at and near the poles make for
ineffective regions in a search structure.

The space we use in our search structure is cubed-sphere grid [12] [13] [16], which is the same as the
given data. This grid divides the sphere into 6 identical regions by the central (gnomonic) projection of the
12 edges of an inscribed cube in the sphere, as shown in Figure 4.1(a). Each of the regions on the sphere is
divided by the central projection of a regular grid on a face of the inscribed cube. We index the grid by a
3D tuple ( f , ix, iy), where f is the face integer in the range [0,5] and ix and iy are the 2D grid index on each
face. In this grid, each partition has similar area. As long as the triangles are relatively evenly distributed
on the sphere surface, this grid gives us a balanced workload. A further optimization would be building a
hierarchical search structure, e.g. quad-tree [18], to optimize the case that triangles are not evenly distributed,
which is a future work. This cubed grid partition conservatively removes non-intersecting triangles because
if the partitions of two triangles are not overlapped, the two triangles cannot intersect.

Our search structure tells which partition each of the triangles belongs to or which triangles are con-
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TABLE 4.1
Conversion from 3D angles to 2D local coordinates

(2, 0, 0)

(0, 0, 0)(4, 0, 0)

(5, 0, 0)

(1, 0, 0)

(2, 4, 4)

(2, 4, 3)(2, 3, 3)

(2, 3, 4)

(2, 3, 2)(2, 4, 2)

(a) Cubed-sphere partition index [16]

az
ax

ay
p

x

y

z

(b) 3 angles around the axis for point p

FIG. 4.1. Coordinate system on cubed-sphere grid

tained by the each of the partitions. One triangle can overlap on multiple partitions, and one partition can
contain multiple triangles, so this is a many-to-many relationship between triangles and partitions. This
relationship can be represented by a R×2 array, where each row shows a pair of numbers (t, p) showing the
overlapping of triangle index t and partition index p, as shown in Table 4.1(a) for the triangle set S in the
example given in Figure 4.2. This 2D array is the search structure we need to build for this set of grid. We
need the search structure for each of the two grids.

To build the search structure, we first need to figure out the 3D partition index ( f , ix, iy) for each triangle.
Each triangle vertex, (lon, lat), is contained in a unique partition ( f , ix, iy). To compute the ( f , ix, iy) from
(lon, lat), we need to convert (lon, lat) into a 3D coordinates (θx,θy,θz), where θx,θy,θz are the angle
around the x,y,z axis, respectively, as shown in Figure 4.1(b). We can see that θz is defined the same way
as longitude. From the three values θx,θy,θz we can get the face f and the local 2D coordinates (ix, iy) by
checking the Table 4.1. The local 2D coordinate is calculated with two values from θx,θy,θz, also shown
in Table 4.1. We can just use one integer to index the partition, which is f ×Nx×Ny +Nx× iy+ ix, where
Nx×Ny is the size of the grid on each face.

After finding out the partition for the triangle vertex, it is not hard to find out the overlapped partition
for the triangle. When we have the partition for the 3 vertices p1( f1,x1,y1), p2( f2,x2,y2) and p3( f3,x3,y3)
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(a)

S Partition
S1 p1
S3 p1
S1 p2
S2 p2
S3 p2
S1 p3
S3 p3
S2 p4
S3 p4
S4 p4

(b)

C Partition
C1 p1
C2 p1
C2 p2
C1 p3
C2 p3
C2 p4

(c)

S C
S1 C1
S1 C2
S3 C1
S3 C2
S1 C2
S2 C2
S3 C2
S1 C1
S1 C2
S3 C1
S3 C2
S2 C2
S3 C2
S4 C2

(d)

S C
S1 C1
S1 C2
S2 C2
S3 C1
S3 C2
S4 C2

(e)

S C
S1 C1
S1 C2
S2 C2
S3 C1
S3 C2

TABLE 4.2
Searching steps for the example given in Figure 4.2. (a):Search structure of triangle set S. (b)Search structure of triangle set C.

(c):Triangle pairs after comparing the search structures of the two sets. (d):Triangle pairs after removing duplicated pairs (e):Triangle
pair after checking bounding box

of a triangle, we first check their faces. For most of the cases, the 3 faces are the same, i.e. f1 = f2 = f3
. So the overlapped partitions of the triangle are the partitions within the axis aligned bounding box of the
partitions, i.e. [ f1,min(x1,x2,x3) . . .max(x1,x2,x3), min(y1,y2,y3) . . .max(y1,y2,y3)]. For the case that the
3 faces are not all the same, the triangle is located at the boundary of the faces. So we need to include the
partitions on each of the different faces. For each face, we treat all three vertices as in this face and compute
its local coordinates on this face by referring to Table 4.1, even for the vertex that is not on this face. In this
way, the triangle would not miss any intersections with the triangles of different faces. Then, we sort the
tuples based on the partition index and generate the search structure for one set of triangles, which is a 2D
array showing the relationship between each triangle and its overlapped partition, as in Table 4.1(a).

4.2. Search Triangle Pairs. With the search structure of both triangle sets, we can find the triangle
clipping pair candidates (Si,Ci), where Si is the triangle index of subject triangles, and Ci is the triangle
index of clipping triangles. We do this by comparing these two search structures and pair the triangles that
have the same partition index.

To compare the two search structures, we compute two arrays for each search structure. One array O is
to store the starting offset of the each of the partition on the search structure array, another array Q is to store
the number of the triangles for each of the partitions [18]. The two arrays have entries for all the partitions,
even for the partitions that do not have any overlapped triangle, where the number of triangles is set to be
0. In this way, the four arrays Os, Qs, and Oc, Qc, which are the offset arrays and count arrays for the two
triangle sets, have the same size(6×Nx×Ny), which will be easy to compare by GPU parallel programs.

Then, we need to build an array P that shows all the pairs of triangles in the same partition, (Si,Ci),
shown in Table 4.1(c). To know the number of rows for each partition in array P, we can simply do an
element-wise multiplication between the two array Qs and Qc, and get the array Qp. To know the starting
offset for each partition on array P , we perform a prefix sum on Qp, and get the array Op. Then we initiate
the array P with the length of (Op[last]+Qp[last]), which is also the sum of the array Qp. In the end, we fill
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p1 p2

p3 p4

ts1

ts2

ts3 ts4

tc1

tc2

FIG. 4.2. Example of triangles in 4 partitions.

the array Qp in parallel by referring the 7 arrays: Os, Qs, Oc, Qc, Op and the two search structure arrays As
and Ac. Generally, we read the triangle index from As and Ac, and Os and Oc tells the location to read, and
Qs and Qc tells the number of items to read. Then Op tells the location on P to write triangle pair indices.

There are some duplicated triangle pairs in the array P, because some triangles may have more than
one partitions in common. One triangle may pair with the same triangle in different partitions, including
different faces or same face but different 2D grids. In the example, we see duplicated pairs in Table 4.1(c).
After removing duplicated pair by performing parallel sort and unique operation, we get the unique pairs in
Table 4.1(d).

The size of the triangle pair array P, can be further reduced by removing the pairs that the two triangles’
bounding boxes do not overlap. We randomly pick one face from in the faces of the 6 vertices of the two
triangles, and calculate the 2D local coordinates on this one face for the 6 vertices. Then we check whether
the two triangles 2D bounding boxes have any overlapping. If they are not overlapped, we know the two
triangles would not overlap, so we remove the triangle pair from P. In the example of Figure 4.2, we remove
one pair (S4,C2), because their bounding box does not overlap. In the end, there are only 5 pairs of triangles
remains to be the clipping candidates, as shown in Table 4.1(e). Note that it does not matter if the order of
the last two operations, removing duplicated pairs and removing overlapping pairs, is reversed.

5. Results and Performance. The generated clipped polygon result is a very dense polygon grid. To
verify the correctness of the result, we give a close view of the result in Figure 5.1(b). To compare with the
result, we also show the input grids in Figure 5.1(a), where original grid is red and the warped grid is green.
Comparing Figure 5.1(a) and Figure 5.1(b), we can see that the edges in the result grid overlap with all the
edges of the two input grids, because the edges of clipped polygon come from the edges of subject polygon
and clipping polygon. The edges in the result grid that do not overlap with the input grids are the diagonal
lines that we added to the input grids in order to divide each quadrilateral into two triangles.

Performance was measured on a machine with Intel Core i7 2600 CPU, 16GB system memory, and
nVidia GeForce GTX 560 GPU with 336 cores and 2GB memory. The tests were run with the Linux
operating system, Ubuntu 12.04 LTS.

Figure 5.2 compares the performance of our GPU parallel program with a CPU serial program. We
tested the program with 8 cubed-sphere grids containing different number of triangles (after dividing quadri-
lateral), from 134,730 to 1,084,428 triangles. The Y axis represents the total running time of the clipping
program except the time of writing results to a file. One reason not including the time of file writing is that
the file writing takes much longer time than the computing, especially for a parallel program. Another reason
is that in the application of incremental remap, only the integration value over the clipped grid is needed,
so there is no need to store the clipped grid itself. The serial program performs a bounding box intersection
followed by a serial triangle clipping for all pairs of triangles. From Figure 5.2, we see that both programs
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(a) Input grids. red: original grid, green:
warped grid

(b) Result grid

FIG. 5.1. The close view of the inputs and result

FIG. 5.2. Total running time of the parallel program and serial program (file writing time is not included)

scale linearly with the data size. But the parallel program achieves around 10 times speedup comparing to
the serial program.

In order to test the effects of our optimization of avoiding branching in the clipping CUDA kernel
by sharing instructions among different cases, we measured the running times of the clipping kernel with
and without optimization, as shown in Figure 5.3. We see that both running times scales linearly with the
data size, but the one with optimization saved around 42% of the time. Thus, our optimization shows its
effectiveness.

In order to see the time use of of different steps in the GPU parallel program, we give a stacked bar
char in Figure 5.4. Note that the total height of the stacked bar is the same time measurement as the blue
curve in Figure 5.2. From Figure 5.4, we see that the searching step takes the largest amount of time.
The searching step includes the processes of building the search structure, generating pairs from the search
structure, reducing the pairs with bounding box intersection, and removing duplicated pairs. The searching
step helps to reduce a great number of triangle pairs that needs to be clipped, which allows the following
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FIG. 5.3. Running time of the clipping kernel

FIG. 5.4. Time uses in different steps for the parallel program. Dark blue(File reading): time to read grid files; light
blue(Searching): time to generate triangle pairs for clipping; yellow(Clipping): time to clip triangles; red(Data copying): time to
copy data from host memory to device memory

clipping step to do less work and use less memory space. Thus, the time spent in searching is very necessary
even though it is not part of the clipping algorithm. We can see that the percentage of clipping time over the
total running time increases with the data size. So comparing with the searching, the clipping becomes more
and more dominating in the entire computing process. The time to copy data from host memory (system
memory) to device memory (GPU memory) is small and is included in the searching time. From the figure,
the data copying from device memory to host memory takes a relatively long time, because the number of
polygons in the output data is much larger than in the input data.

Table 5.1 gives the number of input triangles, number of triangle pairs(a)(b)(c) in different stages of
searching, and number of clipped polygons in the result. In a brute-force searching approach, the number
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Triangles Pairs (a) Pairs (b) Pairs(c) Polygons in results
67K 8083K 4058K 1407K 841K
137K 11345K 5181K 2287K 1488K
198K 15408K 6761K 3307K 2162K
269K 21361K 8330K 4451K 2914K
332K 26648K 9728K 5483K 3583K
409K 34618K 11410K 6783K 4417K
470K 40504K 12720K 7786K 5064K
542K 47318K 14249K 8957K 5849K

TABLE 5.1
Number of triangle pairs reduces in the searching stage. pairs(a): number of triangle pairs using our search structure; pairs(b):

number of triangle pairs after bounding box intersection test; pairs(c): number of triangle pairs after removing duplicated pairs

of pairs of triangles to do intersection is the square of the number of triangles in one triangle set. From this
table, we see that after applying our search structure, the number of pairs (second column) is much smaller
than the square of number of triangles (first column). Then, after using bounding box test(b) and removing
the duplicated pairs(c), the pair number reduces again, which is only around 0.001% of the number of the
original pairs. A pair of triangles generates at most one polygon in the result. From the table, the number of
polygons in the result(last column) is over 60% of the number of pairs after the searching step, pair(c). This
means most of the triangle pairs generated from the searching stage can intersect with each other. Thus, the
searching step or the search structure really helps to reduce the computation and memory demands in the
clipping step.

6. Conclusions. In this paper, we present a parallel triangle clipping algorithm on GPU in order to
provide a strategy for solving the incremental remapping problem on unstructured grid. This algorithm
exhausts the 11 cases of intersection between two triangles and provides a set of operations of generating
clipped polygon for each case. The clipping algorithm is further optimized by using instruction masks to
allow sharing instructions among different cases in order to minimize the amount of branching on the GPU.
We also design a parallel triangle search structure for cubed-sphere grid in order to find triangle pairs before
the clipping process. The search structure partitions the space evenly based on the concept of the cubed-
sphere grid, which achieves a workload balance of the parallel searching process.

An implementation of our parallel program achieves 10 times speedup over a serial clipping program.
The optimization of minimizing branching in the GPU program is also verified to be effective, which saves
42% of the time in the clipping kernel. In one clipping program run, the step of searching triangle pairs
takes more time than the clipping step, but it significantly reduces the workload and memory demand for the
clipping work.

The concept of our parallel clipping algorithm is also applicable for 2D Cartesian coordinates, not only
for spherical coordinates. Our approach can solve incremental remapping on any kinds of 2D grid by first
triangulating the grid to triangle grid. This work can be extended to a triangle clipping on a distributed
memory system, which allows running incremental remapping over large scale simulation. Besides, the
searching performance may be improved with a hierarchical search structure.

7. Acknowledgement. Sandia National Laboratories is a multi-program laboratory managed and op-
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COMPARING GPU PARALLEL SEARCH STRUCTURES
USING DAX

YUCONG YE∗ AND KENNETH MORELAND1

Abstract. Particle advection is a valuable technique for many scientific simulations. It is the basis of generating streamlines,
pathlines, etc. While interpolation of particle properties in the uniform grid is trivial, interpolation in unstructured grid requires first
locating the containing cell before interpoloting the cell. As a result, search structures are often used to accelerate this process. Even
though search structures in CPU is well established, the introduction of GPGPU allows a parallel approach to search structures. In this
paper, we implemented 3 search structures using DAX(Data Analysis at Extreme) [8,9] and benchmarked them according to build time,
query time and memory usage.

1. Introduction. While working with unstructured grid, one common operation is locating cells, which
means finding the cell within the grid that contains a certain point. Once we are able to locate the cell, we
are able to perform many useful tasks, such as cell property interpolation. As a result, we use this specific
query task as a benchmark to compare the different search structures.

Search structure is a well established topic in the CPU realm. There are many types of search struc-
tures, including uniform grid, quadtree, octree, kd-tree, etc. They provide their own unique advantages and
disadvantages. Often hierarchical search structures are preferred in serial programming.

Since parallel architectures are getting more and more popular, people have been investigating into
parallel search structures. Most of the papers are constructing the search structures in a shared memory
multi CPU environment. Some were written for distributed environment. Only a handful of papers take
advantage of the extremely parallel architecture of GPUs. Within this handful of GPU search structure
papers, almost all of them are developed for ray tracing. We sampled 3 different implementations of GPU
search structures and implemented them using DAX. Modifications are applied to tailor them better for cell
locating.

For the benchmark, we are not using unstructured grid as the input. Instead, we are using random
spheres as the cells, so in the rest of this paper we will use primitives to describe the cells in a volume, and
spheres are primitives.

Parallel search structures have their own characteristics. Therefore they excel in different situations.
The strength of uniform grid is simplicity. It is easy to understand and straight forward to implement. Since
the construction process only takes 1 phase, the build time for a uniform grid is very short. On the other
hand, a uniform grid can be extremely imbalance due to skewed primitive distribution. As a result, the query
time of uniform grid is slower in general.

For kd-tree, it provides a mostly balanced search structure. It we are to build a kd-tree on top of a bunch
of points, we will get a completly balanced kd-tree because at the end all the leaf buckets in a kd-tree contain
the same amount of points. However, since the inputs are primitives, we need to duplicate the primitive IDs
as they overlap onto neighbor leaf buckets. As a result, the kd-tree for primitives are not entirely balanced.
Since its complicating to build a kd-tree, the build time is expected to be very long. On the other hand, since
a kd-tree is mostly balanced, each thread will perform the same amount of work while querying for points.
At the same time, there is the overhead of traversing the kd-tree in each thread. It ends up the query time is
longer than the other 2 search structures. Since there is no empty bucket in kd-tree, we expect the memory
usage of a kd-tree to be very low.

For 2-level grid, it seems to be the middle ground of uniform grid and kd-tree. It provides a limited

∗University of California, Davis Computer Science, ye@ucdavis.edu
1Sandia National Laboratories, kmorel@sandia.gov



124 Comparing GPU Parallel Search Structures Using DAX

hierarchy yet maintains the simplicity. It is expected to provide relatively low build time, relatively low
query time, and relatively low memory usage.

First of all, we are going to describe the specific task that we perform with the 3 search structures.
Secondly we will describe the details of each search structure. After all, we will present the benchmark
results and compare with our speculations.

Our main contribution is to benchmark different GPU search structures in order to better understand
their advantages and disadvantages. We hope that by providing the benchmark results and discussions, we
will have a better understanding of when to use which search structure.

2. Related Works. The development for better search structures has never stopped, especially for kd-
tree because it is the go to search structure for ray tracing. Within kd-tree, SAH(Surface Area Heuristic)
kd-tree has been the most popular among ray tracing applications. In [1, 10], Shevtsov and Choi both
described how to construct SAH KD-tree in parallel. While their algorithms are parallel, they both focus on
shared memory multicore CPUs, though Choi does claim that one of their algorithms should be applicable
to implement in GPU. Nonetheless, both papers do not provide what we need because we need an kd-tree
implementation that works in the GPU.

There are not only multicore parallel kd-tree algorithms, Zhou provided a SAH kd-tree construction
algorithm in GPU in [12]. Their approach to build SAH kd-tree is that they separate the construction process
into two stages, large node stage and small node stage. While in large node stage, Zhou proposed to use
spatial median split because SAH approximation is usually incorrect in large nodes. Also, the algorithm
parallelizes on triangles in the large node stage, which exploits maximum parallelization. While in the small
node stage, Zhou used a SAH cost function to determine splitting planes and the algorithm is parallelized on
nodes instead of triangles. Although Zhous approach provides good performance for ray tracing applications,
it does not fit cell locating. The purpose of using SAH(Surface Area Heuristic) is to split a node so that the
surface areas of the two children, weighted by the number of primitives, are equal, which is very beneficial
for ray tracing. However, for cell locating, we want to split a node so that its children contains the equal
amount of primitives. As a result, the leaves of the kd-tree will have a more balanced number of primitives,
therefore when locating primitives in GPU, each thread will need to go through a smaller set of primitives.

Since we have found no paper that introduces a suitable algorithm for us, we turn to existing li-
braries. PISTON is a portable cross-platform data-parallel visualization and analysis library developed in
Los Alamos National Security, LLC. They have an implementation of kd-tree using thrust, which is a library
for CUDA. The kd-tree is built by providing a point cloud and using a median splitting plane. Since a point
cannot overlap multiple buckets, every split produces two children that contains equal amount of primitives.
More specifically, the algorithm produces a kd-tree with log(n) levels where each leaf contains zero or one
point. We used the median splitting function with some modification to better suit our need.

Although SAH kd-tree algorithm is good for ray tracing, one downside would be the build time. Since
evaluating the SAH cost function is an expensive operation and there is no way to build the levels of a kd-
tree in parallel, the build time of an SAH kd-tree is usually the bottleneck. Kalojanov proposed to use a
parallel uniform grid for ray tracing [6]. The algorithm first uses the number of primitives and the volume
size to estimate the optimal grid resolution, and then parallelize on primitives to insert each primitive into
its corresponding bucket. It provides a faster build time and Kalojanov claimed that up to a certain amount
of primitives, the uniform grid outperforms the kd-tree.

Obviously, the uniform grid does not handle non uniform density dataset nicely. Therefore, Kalojanov
later on proposed 2-level grid for ray tracing [5]. The idea is to construct a coarser uniform grid as the
top level grid, and then for each bucket of the top level grid, evaluate the number of primitives inside and
construct a finer grid within each bucket. Kalojanov describes how to build the leaf level grids in parallel by
elevating sort.
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FIG. 3.1. The 3 search structures on top of the same set of input primitives (circles/spheres in this case). Left/Green: A 4×4
uniform grid. There are many empty buckets. Mid/Blue: 2-level grid first uses a coarse top level grid (2×2), and then construct finer
leaf level grids (2×2 in top left bucket and 3×3 in bottom left bucket) depend on the density of each top level buckets. Right/Red:
Kd-tree uses medians of the circle/sphere centroids as splitting planes, which the number of primitives in each bucket is more balanced.

Finally there is a GPU octree construction from Zhou in [11]. It is not building the octree for ray tracing
but surface reconstruction. However, the purpose of this octree algorithm is not for locating cells but finding
nearest neighbors. As a result, it cannot be used in our benchmark.

3. Methods. After sampling all the papers that implement a GPU parallel search structure, we decide
on implementing uniform grid, 2-level grid, and kd-tree. We chose them because uniform grid and kd-tree
stands on the two extremes of the scale where each of them have clear advantages and disadvantages. The
2-level grid tries to take the advantages from both ends. We implement the 3 search structures in DAX [8,9]
so it can both run in serial and CUDA. Below we will describe in detail the implementation of these 3
search structures. For each search structure we include a simple 2D diagram to help demonstrate the internal
structures in Figure 3.1.

3.1. Uniform Grid. The construction of uniform grid (Figure 3.1) is relatively simple. We model the
implementation in Kalojanov’s paper [6] and translate it into DAX. First, we compute the grid resolution
based on the number of primitives and the volume. We use the same equation as Kalojanov used which is
given in [2, 4]:

Rx = dx
3

√
λN
V

, Ry = dy
3

√
λN
V

, Rz = dz
3

√
λN
V

, (3.1)

where ~d is the size of the diagonal and V is the volume of the scene’s bounding box. N is the number of
primitives, and λ is a user-defined constant called grid density. Like Kalojanov, we set the grid density to 5.
For more information about choosing the optimal grid density, please refer to [3]. Since we can implicitly
represent a uniform grid by using 3 vectors, origin, spacing and extent, we do not need explicit specification
for each grid point, which reserves memory.

Second, we need to map all the primitives into its corresponding buckets. We use an array to store the
bucket IDs each primitive correspond to. Since there is no way to dynamically allocate memory in GPU,
when a primitive overlaps multiple buckets, we cannot increase the array size within the GPU. As a result,
we need to calculate and allocate the required memory beforehand. Therefore, two phases are required here:

Parallelize on each primitive, find out how many buckets each primitive overlaps, and then perform a
prefix sum operation to obtain the total number of duplicate primitives. Then the total number of duplicate
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primitives is used to allocate memory for the bucket IDs array, and the intermediate sums are used as the
starting index of each primitive in the bucket IDs array for the next phase. Then the same operation is
run again which instead of outputting the count of overlapping primitives, we output the bucket IDs of
each primitive into the bucket IDs array indexed by the intermediate sums from the first phase. The way
to determine what buckets a primitive overlaps is to use the AABB(Axis-Aligned Bounding Box). While
more accurate overlap tests can be used, they are usually more expensive and as a result hurts the overall
performance.

Third, after finding out all the bucket IDs, there are two arrays in hand, one is the bucket IDs, the
other one is the primitive IDs that duplicates for how many buckets each primitive overlaps. Sort by key is
performed using bucket IDs as the key, so the primitive IDs will be ordered so that all primitives in the same
bucket are consecutive in the sorted array.

Finally, we create an index array that maps bucket ID to the sorted primitive IDs. More specifically,
when we have a bucket ID, we can obtain the primitive count of the bucket and the starting index in the
primitive IDs array. With both the primitive count and the starting index, we can obtain all the primitives in
the given bucket.

After constructing the uniform grid, we also need a way to locate the cells. Since its a uniform grid, we
can compute the containing bucket by using the given point location, and because we have the containing
bucket ID, we can easily obtain the primitives in this bucket. Then we can search through this array of
primitives to test whether the given point is inside any of the primitives.

3.2. 2-Level Grid. For 2-level grid, we are modeling an implementation given by Kalojanov et al [5].
It uses the uniform grid as the basic implementation. The basic concept of 2-level grid is to first build a
coarse top level uniform grid of the volume, and then for each bucket in the top level grid, build another leaf
level uniform grid, as shown in Figure 3.1. Therefore, depending on the distribution of the input data, denser
region of the volume will have a finer leaf level grid. We will discuss in more detail the configurations of the
top level grid and the leaf level grids.

The construction of the top level grid is the same as the uniform grid. However, here we choose a small
grid density because we want the top level grid to only provide a base framework and allow the leaf level
grids to refine the details. The grid density we choose is the same as [5], which is 1

16 .
For the construction of leaf level grids, we do not want to iterate through the top level buckets and

perform uniform grid construction in serial. As presented in [5], the construction of leaf level grids can
be performed in parallel. The detailed steps are: After building the top level uniform grid, we obtain the
primitive count for each top level bucket. Using the uniform grid resolution equation above, we compute
the leaf level grid resolutions parallelize on top level buckets. The leaf level grid density is 1.2, which is the
same in [5] too. Here we use an array to store the resolutions of all the leaf level grids, whose length is the
same as the number of top level buckets. Also, since we know the resolutions of the leaf level grids, we can
compute the bounds and locations of the leaf level buckets and the leaf level bucket counts. Since we have
the bounds and locations of all the leaf level buckets, we can map all the primitives to the leaf level buckets
the same way as we map primitives into uniform grid. The only difference is that the computation of the leaf
level bucket location and bounds requires both the top level grid information and the according leaf level
grid information. Finally, we reduce the leaf bucket arrays to start index and primitive count which are used
to query the sorted primitives array. The sorted primitives array ensures that the primitives are sorted by the
leaf level bucket IDs so that primitives in the same leaf level bucket are consecutive in the sorted primitives
array.

Locating cells in 2-level grid is similar to the uniform grid too. First of all, given a point, we locate the
top level bucket the point is in. Secondly, leaf level grid resolution of the located bucket can be obtained, and
that allows us to locate the point in the leaf level grid. Finally, since we have the leaf level grid, we have the
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array of primitives that are in this bucket, so that we can iterate through this array and test for each primitive
whether the point is in the primitive.

3.3. Kd-Tree. Kd-tree is different from uniform grid or 2-level grid because its build process is directly
related to the input data. The structure of the tree is defined by the input data because we need to choose a
splitting plane for each node. There are many ways to choose a splitting plane. Splitting at space median is
the simplest case, which is splitting a node to two equal volumes. Splitting at points median computes the
median of all the points in the node, and splits there. Therefore, the split results in two children with equal
amount of points. Surface area heuristic (SAH) is another more advanced splitting function usually used
with ray tracing. In our case, we want the kd-tree to be more balanced according to the number of primitives
in the leaves so that when we do parallel primitive locating the work would be more balanced among the
threads. As a result, the points median splitting method provides the most benefit to us. However, the input
in our kd-tree is primitives instead of points. As a result, we use the centroids of the primitives as the points
to construct the kd-tree, as shown in Figure 3.1. Note that it might not be able to build a completely balanced
kd-tree, but in our tests, it is balanced enough.

We used the implementation of kd-tree from PISTON [7]. Their implementation uses points as input
and split by medians. Also, their kd-tree produces a log(n) level tree and each leaf bucket will have 0 or 1
primitive. In order to modify it for our case, we used a 2-stage approach to construct the kd-tree.

In the first stage, we compute primitive centroids and use them as input to the PISTON kd-tree. As the
output, we get the depth of the tree and the splitting values of all the nodes in an array. Since the PISTON
kd-tree is balanced, which means the depth for all the paths are the same, we can index the node in the tree
mathematically. For example, given a node with index n, the index of its first child would be 2n+1.

In the second stage, we map all primitives into the leaves of the kd-tree. First of all, we compute the
AABBs of all primitives. Secondly, we count how many leaves each primitive overlaps. And finally, we
query the leaf IDs of each primitive. In order to count overlapping leaves and query leaf IDs, each thread
bins the corners of the AABB into 1 leaf by querying the splitting values array. As a result, each thread has
a loop with number of iterations equal to the depth of the tree.

To query the kd-tree, we perform the same operations as mapping primitives into leaves, but with points.
More specifically, each thread bins the point location into a leaf by using the splitting values. And again
we need to iterate through the array of primitives in the bucket and determine whether the point is in any
primitive.

4. Benchmark Configurations. The major variables to compare are the build time, query time, and
memory usage. We want to compare with different input data sizes, different primitive sizes, and different
query locations. For the input primitives, we want a dataset that is non-uniformly distributed because uniform
grid would be good at handling uniformly distributed datasets. As a result, we randomly distribute the points
using polar coordinates. More specifically, we generate random r, θ and φ , and then use the following
equations to translate into cartesian coordinates:

x = r sin(θ)cos(φ),
y = r sin(θ)sin(φ),
z = r cos(θ).

(4.1)

By generating the points this way, the center of the volume will have higher density, as shown in Figure 4.1.
Also a fixed or varying radius is assigned to each point, so that they become spheres. For varying radius
spheres, we make radius larger when the sphere is farther from the center of the volume because the density
is lower when its farther away, as shown in Figure 4.1.
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FIG. 4.1. Fixed radius spheres (Left) and varying radius spheres (Right) as input to search structures. The spheres are more
dense in the center of the volume. With varying radii, the radii are linear to the distance from the center of the volume. That is, the
spheres are larger when they are farthur away from the center of the volume.

For querying points, we have two schemes. One scheme is to use the centroids of the original spheres,
which guarantees 100% hit rate. The other scheme is to use uniformly random points, which means low hit
rate.

As a result, these are the different configurations for the benchmark: different number of spheres (from
100 to 1,000,000), fixed sphere radii vs. varying sphere radii, and querying original sphere centers vs. query-
ing uniformly random points. From these configurations, we believe we will obtain a better understanding
of the three search structures.

5. Results. In this section we are going to first describe the testing machine and then we will present
the results and discussions. The testing machine has the following configuration:

• Processor: 2 x 2.26 GHz Quad-Core Intel Xeon
• Memory: 6 GB 1066 MHz DDR3 ECC
• Graphics: NVIDIA GeForce GT 120 512 MB

Because of the limited GPU resources, we did not run tests with more than 1 million input spheres.
In the benchmark, we compare the build time, query time, and memory usage of the 3 search structures,

which are uniform grid, 2-level grid, and kd-tree, with different set of configurations.

5.1. Build Time. For static scenes, build time would not be an important factor. However for dynamic
scenes, basically the search structure is needed to be rebuilt each time the scene changes. As a result, build
time is very important for dynamic scenes. From our observation, the build time is mainly constrained by
2 variables. One is the number of input spheres, which is linear to the build time. The other one is the
input sphere radii. As shown in Figure 5.1, when we use varying sphere radii, it appears that the search
structures require a longer build time. The reason is the spheres overlap more buckets when using varying
radius spheres. As a result, we are duplicating more primitive IDs in the sorted primitive IDs. The surprising
fact is that the sphere radii do not affect the kd-tree build time as much even though the number of duplicate
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FIG. 5.1. Build time of uniform grid (green bar), 2-level grid (blue bar), and kd-tree (red bar) when using different number of
input spheres and different schemes of sphere radii. Overall the build time is linear to the number of input spheres. The sphere radii
have a greater impact on uniform grid and 2-level grid than kd-tree.

FIG. 5.2. Query time of uniform grid (green bar), 2-level grid (blue bar), and kd-tree (red bar) when using different number of
input spheres and different hit rates. Overall the query time is linear to the number of input spheres. Uniform grid and 2-level grid are
able to take advantage of low hit rates while kd-tree performs worse with low hit rates.

primitives increase. That is because kd-tree uses the PISTON implementation and the PISTON only accepts
points as input, so it avoids the duplicating spheres overhead.

5.2. Query Time. Query time is the time to locate primitives in a search structure. We construct test
points to query with the same number as input spheres. There are 2 schemes of the test points as described
above, original sphere centers and uniformly random points. The major difference of these 2 schemes is the
hit rate. On the one hand, the hit rate is 100% when querying original sphere centers. On the other hand,
the hit rate should be close to 0% when querying at random coordinates. In Figure 5.2, the uniform grid
and the 2-level grid performs better at query time when the query points rarely hit because there are a lot of
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FIG. 5.3. Query Time vs. Sphere Radii with 1 million input spheres: In both cases, the 2-level grid achieves the fastest query
time while the kd-tree is the slowest. The query time is slower with varying radius spheres, where kd-tree almost doubles the query time
when switching to varying radius spheres.

FIG. 5.4. Histogram of the distribution of primitives in buckets for each search structure. All of the figures above are in log-log
scale. The buckets in Uniform Grid (Left/Green) have extremely imbalanced primitive counts, where there are many empty buckets
and there are a few buckets that have large amount of primitives. 2-Level Grid (Mid/Blue) produces a relatively balanced histogram.
Kd-Tree (Right/Red) is very balanced with fixed radius spheres where the number of spheres in all buckets are in the range of 10 100.
However, it produces even more imbalanced histogram than uniform grid with varying radius spheres.

buckets in these two search structures that are empty. Therefore many of the threads finish instantly. On the
other hand, kd-tree is unable to take advantage of misses because there are no empty buckets in kd-tree and
furthermore each thread in kd-tree has to go through the tree traversal loop.

Other than hit rates, input sphere radii also have a large impact on query time. As shown in Figure 5.3,
for 1 million input spheres, kd-tree almost doubles the query time when we switch to use varying radius input
spheres while the query time for uniform grid and 2-level grid only increase a little bit. When we use varying
radii, the spheres are likely to overlap more buckets in the search structures, especially in kd-tree. As shown
in Figure 5.4, for uniform grid and 2-level grid, when we switch from fixed radius spheres to varying radius
spheres, there are more buckets with more primitives, but not too much. However for kd-tree, it is really
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FIG. 5.5. Memory usage of uniform grid (green bar), 2-level grid (blue bar), and kd-tree (red bar) when using different schemes
of sphere radii. The search structures ordered from low to high memory usage are kd-tree, 2-level grid, and uniform grid. The sphere
radii affect memeory usage a lot and it has slightly less impact on uniform grid.

balanced with fixed radius spheres where all the buckets contain no more than 100 spheres. After we switch
to varying radius spheres, kd-tree has even more buckets than the uniform grid in the 1K 10K primitives
range. As a result, the kd-tree runs slower on query time when we are using varying input spheres.

5.3. Memory Usage. In Figure 5.5, we can observe that kd-tree uses the least memory, almost 8-10
times less than the memory usage of uniform grid. The 2-level grid is also faster than uniform grid, but still
2-3 times slower than kd-tree.

The behavior of memory ranking from kd-tree to uniform grid is expected. Recall that all 3 search
structures require a sorted primitive IDs array, which approximately uses the same amount of memory. As
a result, the memory usage depends on the amount of buckets in each search structure. Since uniform grid
is a flat grid with fine resolution, it has the most number of buckets. Therefore, the uniform grid takes the
most memory. 2-level grid provides a limited hierarchy. It uses a coarse top level grid and finer detailed leaf
level grids. As a result, it reduces the number of buckets, so it takes less memory. For kd-tree, our approach
guarantees there are only log(n) leaf buckets, which is significantly less than the other 2 search structures.
As a result, kd-tree uses the least memory.

One important factor of memory usage is the input sphere radii. As in Figure 5.5, when using varying
radius spheres as input, all the search structures use more memory approximately by a factor of 2. When we
use varying radius spheres as input, the spheres overlap significantly more buckets in the search structures.
As a result, it results in a larger sorted primitive IDs array, therefore uses more memory. Note that the overlap
effect appears more in the 2-level grid and kd-tree because they both have a finer resolution at the leaf level,
as shown in Figure 5.4. As a result, sphere radii have a larger impact on 2-level grid and kd-tree.

6. Conclusions. While uniform grid has low build time, short query time and high memory usage,
kd-tree is like the complete opposite. It provides long build time, long query time and low memory usage.
2-level grid seems to be the middle ground of uniform grid and kd-tree. It provides a limited hierarchy yet
maintains the simplicity. As a result, it depends on the distribution of the input data and the type of operations
to determine which search structure to use. If the input data is uniformly distributed in the volume, then we
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can use a uniform grid as the search structure. If memory is the constraint, then kd-tree provides a good
solution. For a more balanced approach, we can always choose 2-level grid.

7. Future Work. In uniform grid, we can specify a grid density to determine the resolution of the grid,
and in 2-level grid, we can specify both top level grid density and leaf level grid density. The values we have
now are coming from both [5,6]. Since they were designed for ray tracing, the grid density values might not
fit our case completely. As a result, we will try different grid density values and compare how they perform
with primitive locating.

In the construction of kd-tree, we use the PISTONs implementation. The main reason is that the im-
plementation of kd-tree requires a lot of segmented operations, such as segmented scan, segmented sort,
etc. Since we are using DAX, and DAX does not yet provide these segmented operations, we are unable to
have the full implementation in DAX. Also, the PISTON kd-tree is built for points and we modified it to use
primitive centroids, which is not the perfect condition. Therefore, we should be able to better utilize DAX
and have a better implementation of the kd-tree.
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PARALLEL DETECTION OF STRONGLY CONNECTED COMPONENTS IN MASSIVE
GRAPHS: THE MULTISTEP METHOD

GEORGE M. SLOTA∗ AND SIVASANKARAN RAJAMANICKAM1

Abstract.
Finding the strongly connected components (SCCs) of a directed graph is a fundamental problem used in many fields. For example,

it is part of computing the block triangular form of a sparse matrix. Tarjan’s algorithm is an efficient serial algorithm, but relies on
depth-first search which is hard to parallelize. Several parallel algorithms have been proposed, but show poor load balance and slow
performance on many real world graphs. This paper introduces the Multistep Method, which combines several parallel SCC finding
algorithms to deliver performance results with up to 60× speedup over the serial Tarjan’s algorithm, while being capable of fully
decomposing a 1.8 billion edge graph in under two seconds. As breadth-first search is a key component for finding SCCs, we also
demonstrate a fast implementation which delivers graph traversal speeds up to the equivalent of 18 billion edge traversals per second
on a single 16 core shared-memory machine.

1. Introduction. The strongly connected components (SCCs) of a directed graph are the maximal
subgraphs where every vertex within the subgraph can reach and can be reached by every other vertex within
the subgraph. The decomposition of a directed graph into its strongly connected components is a useful
analytic tool in many applications like social network analysis [17], compiler design, radiation transport
solvers [16], and computing the block triangular form for linear solvers and preconditioners [19, 21].

The optimal sequential strongly connected component algorithm is based on linear time Tarjan’s algo-
rithm [20]. Tarjan’s algorithm depends on a depth first search of the graph and is not an easy algorithm
to parallelize with good scalability. There are task-based algorithms to compute the SCC [16, 22] for
distributed memory computers and coloring based algorithms for both distributed memory and accelerator
based approaches [3, 18].

The increase in concurrency available within a single compute-node allows us to explore shared-memory
based algorithms for different problems. In addition, the increase in memory footprint allows us to analyze
very large graphs that would have been impossible a few years ago using shared-memory-based algorithms.
With a difficult-to-parallelize algorithm in distributed memory, a task-based algorithm that can exploit ex-
isting task-based shared memory programming models, and a coloring algorithm which depends on fine-
grained atomics, the problem of computing the strongly connected components is one of the ideal problem
to stress test shared-memory implementations.

Our contributions in this paper include an optimized implementation of existing parallel algorithms
using shared-memory programming models, a new parallel algorithm for computing the SCCs for real world
graphs that combines the benefits of previous algorithms while at the same time reducing and is up to ∼11×
faster on average with 16 cores, a fast atomic and lock-free breadth-first search (BFS) implementation that
can reach the equivalent of over 18 billion edge traversals per second (GTEPS) in a single shared-memory
node, and an experimental evaluation of several different parallel algorithms.

The rest of the paper is organized as follows. Section 2 describes the existing serial and parallel algo-
rithms for computing SCCs. Section 3 describes our multistep method to compute SCCs. Sections 4 cover
the implementation details in shared-memory architectures and Sections 5 and 6 demonstrate the benefits
our new algorithms for various real-world graphs.

2. Background. There are several existing serial and parallel algorithms that have been used to deter-
mine the SCCs of a graph. This section will give a general overview of several of the most widely used ones,
including Tarjan’s and Kosaraju’s algorithms, the Forward-Backward algorithm, Coloring, and Trimming.

∗The Pennsylvania State University, gms5016@psu.edu
1Sandia National Laboratories, srajaman@sandia.gov
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2.1. Serial Algorithms. The primary serial algorithms used for determining strongly connected com-
ponents within a graph are Tarjan’s [20] and Kosaraju’s [1] algorithms. Tarjan’s algorithm uses a recursive
depth first search (DFS) to form a search tree of explored vertices. The roots of the subtrees of the search
tree form roots of strongly connected components. Kosaraju’s algorithm performs two passes of the graph.
It initially performs a DFS, placing each vertex onto a stack after it has been fully explored. After all vertices
have been placed onto the stack, a vertex is popped from the stack and a DFS or BFS search is performed
on the transpose of the graph. All vertices that can be reached by this vertex (that have not already been
explored a second time) form an SCC.

Although the initial DFS in Kosaraju’s algorithm is very difficult to parallelize, the second searches of
the transpose can be parallelized quite trivially, due to the fact that the second search needs only to determine
reachability, rather than any specific ordering. As Tarjan’s algorithm only performs a single search of the
entire graph, its work is O(n+m), where n is the number of vertices and m is the number of edges in the
graph, and can therefore be considered asymptotically optimal.

2.2. Parallel Algorithms. As the above described serially algorithms are non-trivial to parallelize in a
scalable way, different algorithms have been proposed that allow parallel computation of strongly connected
components. Two of the most widely used are the recursive Divide-and-Conquer Strong Components al-
gorithm [22] (which has become more widely known as the Forward-Backward algorithm) and the iterative
coloring algorithm [18]. We will also discuss the trimming procedure which can be used to quickly eliminate
trivial SCCs and decrease the overall amount of work necessary for the primary algorithm. The trimming
procedure can be used as a pre-processing step for any of the algorithms described here.

2.2.1. Forward-Backward Algorithm. The Forward-Backward (FW-BW) algorithm is given in Al-
gorithm 9 and can be described as follows: Given a graph G, a single pivot vertex v is selected. This can be
done either randomly or through simple heuristics. A BFS/DFS search is conducted starting from this vertex
to determine all vertices which are reachable (forward sweep). These vertices form the descendants set (D).
Another BFS/DFS search is performed from v but on the transpose graph. This search (backward sweep)
will find the set (P) of all vertices than can reach v called the predecessors.

Algorithm 9 Forward-Backward Algorithm
1: procedure FWBW(G)
2: if G = ∅ then
3: return ∅
4: end if
5: select pivot v
6: D← DESC(G,v)
7: P← PRED(G,v)
8: R← (G\ (P∪D)
9: S← (D∩P)

10: S← S∪FWBW ((D\S))
11: S← S∪FWBW ((P\S))
12: S← S∪FWBW (R)
13: return S
14: end procedure

The intersection of these two sets form an SCC (S = D∩P) that has the pivot v in it. If we remove all
vertices in S from the graph, we can have up to three remaining distinct sets: (D\S),(P\S), and remainder
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R, which is the set of vertices that we have not explored during either search from v. The FW-BW algorithm
can then be recursively called on each of these three sets.

Possible parallelism exists for this algorithm on two levels. Primarily, as each of the three sets are
distinct, they can be further explored in parallel. In addition, each of the forward and backward searches can
be trivially parallelized using a standard parallel BFS or even DFS (since we don’t care about ordering, only
reachability).

2.2.2. Coloring. The coloring algorithm is given in Algorithm 10. This algorithm is similar to FW-BW
in that it proceeds in forward and backwards passes. However, the approach is quite different, as it generates
multiple pivots, or more commonly termed, roots, during the forward phase and only looks at a subset of G
for each pivot on the backwards phase.

Algorithm 10 Coloring Algorithm
1: procedure COLORING(G)
2: while G , ∅ do
3: initialize colors(vid) = vid
4: while not fully colored do
5: for all v ∈ G do
6: for all n ∈ N(v) do
7: if colors(v)> colors(n) then
8: colors(n)← colors(v)
9: end if

10: end for
11: end for
12: end while
13: for all unique c ∈ colors do
14: SCC(cv)← PRED(G(cv),c)
15: G← (G\SCC(cv))
16: end for
17: end while
18: end procedure

Given a graph G, the algorithm starts by assigning a set of unique (numeric) colors to all the vertices,
most easily as the vertex identifiers vid for all v ∈ G. These colors are then propagated outwardly from each
vertex in the graph. If a vertex v has any neighbors n ∈ N(v), where N is the neighbor list, with a color lower
than it’s own, the neighbors’ colors are updated to that of the vertex. This process continues until no more
vertices change their color.

We have now effectively partitioned the graph into distinct sets with separate colors c. As we started
with vid as our colors, for each distinct c, there is a unique vertex cv with that identifier. We consider cv as
the root of a new SCC, SCC(cv). The SCC is then all vertices that can be reached backward from cv that
are also colored with the same color. We remove SCC(cv) from G, find the rest of the SCCs for all c in the
current iteration, and then proceed to the next iteration and continue until G is empty.

Parallelizing this algorithm is easy, as both the forward coloring step across all v and the backward SCC
step across all cv can be parallelized quite trivially.

2.2.3. Trimming Procedure. The trimming procedure was initially proposed as an extension to FW-
BW [16], to remove all trivial strongly connected components. The procedure is quite simple as shown in
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Algorithm 11: all vertices that have an in degree or out degree of zero (without self-loops) are removed. This
can be performed iteratively or recursively as well, as removing a vertex will change the effective degrees
of it’s neighbors. We call performing a single iteration of trimming as simple trimming and performing
trimming iteratively as complete trimming. This procedure is very effective in improving the performance
of the FW-BW algorithm, but can be beneficial to use before running other algorithms, as well.

Algorithm 11 Trimming Algorithm
1: procedure TRIM(G)
2: while not fully trimmed do
3: for all v ∈ G do
4: if degreein(v) = 0 then
5: G← (G\ v)
6: else if degreeout(v) = 0 then
7: G← (G\ v)
8: end if
9: end for

10: end while
11: end procedure

2.3. Other Work. There has been other more recent work aimed at further improving upon the pre-
ceding algorithms, as well as developing newer algorithms to further decompose the graph and/or improve
performance and scalability.

One example is the OBF algorithm of Barnat et al. [4], which, like coloring, aims at every iteration to
further decompose the graph into multiple distinct components each containing a single SCCs. The OBF
decomposition step can be performed much quicker than coloring, however. Barnat et al. [3] further imple-
mented the OBF algorithm as well as FW-BW and coloring on the Nvidia CUDA platform, demonstrating
considerable speedup over equivalent CPU implementations.

More recently, Hong et al. [11] demonstrated several improvements to the FW-BW algorithm and trim-
ming procedure through expanding trimming to find both 1-vertex and 2-vertex SCCs, further decomposing
the graph after the first SCC is found by partitioning based on connected components, and implementing
a dual-level task-based queue for the recursive step of FW-BW to improve times and reduce overhead for
task-based parallelism.

3. The Multistep Method. We will now introduce our algorithm for graph SCC decomposition, the
Multistep method. The reason for this name comes from the fact that it is a combination of the previously de-
scribed algorithms stepped through in a certain order. This section will give our justifications for developing
the algorithm in this way, as well as provide detail into our algorithm’s specifics.

3.1. Observations. The FW-BW algorithm can be quite efficient if a graph has relatively small number
of large and equally-sized SCCs, as the leftover partitions in each step would on average result in similar
amounts of parallel work. The FW and BW searches could also be efficiently parallelized in this instance.

However, the structure of most real world graphs is very different. From observations, most real-world
graphs have one giant SCC containing a large fraction of the total vertices, and many many small SCCs and
often disconnected SCCs that remain once the large SCC is removed [17]. Running a naı̈ve implementation
of FW-BW would result in a large work imbalance after the initial SCC is removed, where the partitioning of
the remaining sets would be heavily dominated by the remainder set. Additionally, using a naı̈ve task-based
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parallelism model would add considerable overhead as each new task might only be finding an SCC of a few
vertices in size before completing. In general, the size of the recursive tree and therefore the overall runtime
of the FW-BW algorithm is dominated by the total number of SCCs that are in the initial graph.

Conversely, the coloring algorithm is quite efficient when the graph contains a large number of small and
disconnected components, as the runtime of each step is dominated by the diameter of the largest connected
component in the graph, or the number of steps needed to do the full coloring. This also leads to very poor
performance on real-world graphs, as the time for each iteration can be very large while the largest SCCs
remain, and there is no guarantee that these SCCs will be removed in any of the first few iterations.

It is also important to note that below a certain threshold of the number of vertices in a graph, the general
parallel overhead results in worse performance when compared to simply using Tarjan’s or Kosaraju’s serial
algorithm.

3.2. Description of Method. Based on the above observations, we therefore have developed what we
term as the Multistep Method. This method aims at maximizing the advantages and minimizing the draw-
backs of trimming, FW-BW, coloring, and a serial algorithm by applying them in sequence to decompose
large real-world graphs into their strongly-connected components.

An overview of the algorithm is given in Algorithm 12. There are four primary phases of the algorithm.
The first phase is trimming. We choose to do only a single iteration of trimming, as experiments have
shown that the vertices trimmed in the second or subsequent iterations can be more efficiently handled in the
coloring or serial phases.

Algorithm 12 Multistep Algorithm
1: procedure MULTISTEP(G)
2: Trimsimple(G)
3: select pivot v = max(vdg),where vdg = din(v)∗dout(v)
4: FWBWSCC(G,v)
5: while NumVerts(G)>Vcuto f f do
6: ColoringStep(G)
7: end while
8: Tar jan(G)
9: end procedure

In the second phase, we select an initial pivot vertex as the vertex in the graph that has the largest
multiplicative sum of its in degree and out degree. This is an attempt to increase the chances that our initial
pivot is contained within the largest SCC. Although there is no guarantee to ensure that, in practice with real
world graphs it acts as a very good heuristic.

With the chosen pivot we do one iteration of modified FW-BW algorithm. Our changes to the FW-BW
iteration avoid considerable work during this phase by not computing the three sets D, P and R and leaving
all the vertices that are not part of the one SCC we computed to the next step.

As we do not partition the vertices into three sets, but compute just one SCC, we do a full forward
search from the pivot and on the backward search explore vertices that were already marked as explored
on the forward search. While doing a BFS for the backward search, if we encounter a vertex not already
marked, we avoid adding it to the next level queue.

For a simple proof as to why this will work, assume by contradiction that a predecessor vertex pi we
find during the backward phase that was not marked during the forward phase has a predecessor p j that was
marked during the forward phase. This cannot happen as if the predecessor was previously marked, then



138 Parallel SCC Detection

the original predecessor pi, being a descendant of p j, would therefore have been marked as well. Since we
know that, in order to be in the SCC, a vertex must be marked as both a descendant and predecessor, then
we can safely ignore these pi. For certain graphs, this can result in a considerably shorted search during the
backward phase.

At the end of the FW-BW step, we simply take the remaining vertices and pass them all off to color-
ing. We run coloring until the number of vertices remaining crosses below a certain threshold (determined
experimentally), and then pass off the still remaining vertices to the final step, which is just Tarjan’s serial
algorithm.

4. Implementation Details and Optimizations. This section will provide a bit more detail into some
of the implementation specifics. All code was written in C++ using OpenMP for shared-memory paral-
lelization. We achieve most of our performance by using thread-owned queues, boolean arrays, and various
techniques to avoid work, as well as avoiding atomic or locking operations whenever possible by simply
accounting for any possible race condition.

4.1. Graph Representation and other Data Structures. We use a standard compressed sparse row
representation for our graph. Since most of our algorithms require both in and out edges, O(2m+2n) storage
is required for both the in and out edge and degree lists. In order to avoid having to explicitly modify the
graph structure, we keep a boolean array to signify whether a given vertex is still valid or not and unmark the
vertex when the SCC it is contained in is completely found. We also maintain a current running list of the
numeric identifiers of which vertices are still active, to greatly speed up loops that look across all vertices
remaining in the graph.

In order to track which SCC a vertex in, another integer array is maintained. At the start of finding a new
SCC (FW-BW, each root in each coloring step, each root in Tarjan’s) a running atomically-updated count
value is incremented and noted. If a vertex is found to be in that certain SCC this noted value is assigned to
it. All trimmed vertices are assigned the same value for simplicity.

4.2. Trim Step. We consider two different approaches for trimming. For simple trimming, we only
need to look at the degree values as initially set when the graph was created. Therefore, we just need to do a
single pass through all vertices, retrieve their in/out degrees, and flip their valid boolean if either is zero.

Complete trimming is a bit more complex. To greatly speed up processing during complete trimming,
we create current and future queues and an additional boolean array of values to signify for each vertex if
they are currently placed in the future queue. We place all vertices in the current queue to begin with.

We then determine the in and out degrees for all vertices contained in the current queue. If a vertex has
an effective in or out degree of zero, then it is marked as no longer valid. Additionally, any valid vertices
that the removed vertex was pointing to or had pointing at it is then placed in the future queue and marked as
such. After the current queue is empty, the queues are swapped, the marks reset, and this process is repeated
for as many iterations as necessary. The queues are used to avoid having to look through all vertices at each
iteration, as it has been observed that the long tendrils [6] of vertices in lots of real world graphs tend to result
in long tails of iterations where only a few vertices are removed at a time. The marking is done to prevent
a vertex from being placed in the future queue multiple times. To avoid the synchronization overhead that
would be required with a parallel queue, we maintain separate queues for each thread and combine them
into the next level queue at the end of each step. We perform a similar operation with our BFS, as we will
explain later.

As we will later show, although complete trimming is easily paralellizable and can be quite fast, with
the queues and marking being done very similarly to how we will soon describe our BFS, we find simple
trimming to generally perform better overall. It is observed that a single iteration will remove the vast
majority of vertices than can be removed, it does not require the explicit calculation or tracking of changing
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degrees at each iteration, and does not need queues or other such structures to maintain. Simply passing off
the vertices not trimmed in the first iteration to be handled by coloring or the serial algorithm gave us better
performance for all tested graphs.

4.3. Large SCC Search Step. For most graphs, determining the initial large SCC takes a majority
of the overall runtime. Because this initial search is essentially just two breadth-first searches, we have
developed and attempted to optimize for performance a BFS using techniques developed recently from a
number of sources.

4.3.1. Parallel BFS. An overview of the BFS used in our Multistep approach is given in Algorithm 13.
We will now describe some of the optimizations and design choices we implemented.

Algorithm 13 Multistep BFS
1: procedure MULTISTEPBFS(G, p)
2: queue← p
3: do hybrid← f alse
4: while queue , ∅ do
5: if hybrid = f alse then
6: for all v ∈ queue do in parallel
7: for n ∈ Nout(v) do
8: if visited(n) = f alse then
9: visited(n)← true

10: thread queue← n
11: end if
12: end for
13: end for
14: else
15: for all v ∈ G do in parallel
16: if visited(v) = f alse then
17: for all n ∈ Nin(v) do
18: if visited(n) = true then
19: visited(v)← true
20: thread queue← v
21: break
22: end if
23: end for
24: end if
25: end for
26: end if
27: Synchronize
28: Single thread does
29: hybrid← EvaluateHybridSwitch()
30: if hybrid = f alse then
31: for all thread queue do
32: for all v ∈ thread queue do
33: queue← v
34: end for
35: end for
36: end if
37: end single thread
38: Synchronize
39: end while
40: end procedure
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A typical BFS optimization is to use a bitmap of length n to signify whether or not a vertex has already
been visited, and to avoid further exploring the vertex if it has been. A bit vector is able to fit completely
in the last level cache on modern server-grade CPUs for graphs of up to tens of millions of vertices. It
is assumed that by staying in cache, a quick boolean check is possible and accesses to main memory are
minimized.

However, our experimentation has demonstrated that a boolean array actually outperforms a bitmap for
our test environment. The likely reason for this is two-fold. Firstly, in order to calculate the address for a
specific bit, at least an integer division, remainder operation, and bit shift is required. Additionally, since the
CPU on our testbed only guarantees atomic read/writes starting only at the byte level [12, s. 8.1.1], either
explicit atomic operations are needed or a more complex bit read/write function is required [9]. By using
a byte-addressed boolean array and avoiding explicit locks, we see considerably faster runtimes. Although
avoiding explicit locks might result in extra work (two threads see a vertex as unexplored, set the same bool
to the same value, and put the vertex in the next level queue twice), experimentation has shown this to be of
minimal concern.

As mentioned previously, we avoid additional locks and atomic operations by giving each threads its
own next level queue. At the end of each level, the vertices from each thread queue are collected and placed in
the frontier for the next level by a single thread. Although this is necessarily done is serial, experimentation
has shown it to be very fast, taking on the order of milliseconds even for millions of nodes, and greatly
outperforming a shared queue with locks. This step can also be skipped when we are going to run the hybrid
bottom-up BFS, which will be discussed next.

4.3.2. Hybrid BFS Approach. A hybrid bottom-up approach to the BFS was recently introduced by
Beamer et al. [5]. They noted that at certain levels of a BFS in real world graphs (small world, scale free),
it is actually more efficient to simply look in the reverse direction. Instead of all vertices currently on the
frontier looking at all their children, all unvisited vertices simply attempt to find their parent on the frontier.
It is not even necessary to check if the parent is explicitly on the frontier, but only if the parent has already
been marked as visited (the child would have already been discovered if the parent’s level is one previous to
that of the current frontier).

Beamer et al. found that this approach will vastly decrease the total number of edge examinations needed
during the BFS, improving search times by over 3×. Upon implementing their approach as described with
parameters (α = 15,β = 25), we noticed considerable speedup as well. A different design choice we had
to implement was to maintain the thread queues while we are currently running the bottom-up hybrid as
opposed to explicitly rebuilding the queue from scratch when we switch the hybrid off. This is due to the
fact that we do not maintain any explicit BFS tree as we only require the visited array to determine the SCC,
so we have no ability to track BFS level on a per-vertex basis.

4.3.3. Graph Partitioning Across Sockets. A final optimization we implemented was a per-socket
graph partitioning and exploration scheme similar to the ones described in Agarwal et al. [2] and Chhugani
et al. [9]. In this, we attempt to reduce a majority of cross-socket data travel by partitioning the graph across
the memory closest to separate sockets, and only loading edges of a vertex for a thread running on the CPU
closest to the socket by maintaining separate per-socket queues. We use the hwloc library [7] to enforce
locality. At the end of each level, vertices discovered by a socket not containing its edges are passed over
to the queue for the socket that has them. When we hit a level where we decide to switch to the bottom-up
approach, the vertices that are examined by each socket are simply the ones that is contained in that partition.

Another approach we attempted for our two-socket Compton testbed was by placing all in degree data
on one socket and all out degree data on the other, and then running both the forward and backward steps
concurrently. We then attempted to include the bottom-up approach in this scheme, by enforcing level
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synchronization between the two searches and moving the boolean visited arrays across socket when the
switch occurred. A variety of switch heuristics were explored, without much effect.

Although these partitioning approaches improved parallel scaling, it was only in a limited number of
instances that actual runtimes improved due to the additional overhead. A wide variety of parameters and
optimizations were explored, including reverting to actual bitmaps, partitioning based on number of vertices
and number of edges, and even randomly permuting the input graphs to improve work balance, among
others. However, no considerable and definitive improvements were ever noted over simply using our BFS
with the bottom-up hybrid, so this approach was abandoned.

4.4. Coloring Step. The coloring step of our coloring algorithm is implemented quite similarly to our
BFS and complete trimming algorithm, and is given in Algorithm 14. Initially, all valid vertices are assigned
a color as their vertex id vid , or index, in our graph structure. All valid vertices are then placed into the
queue. For all vertices in parallel that are contained in the queue, we check to see if they have a higher color
than their children. If they do, the color is passed to the child, and both the parent and child are placed in the
thread’s next level queue, and globally marked as such for all threads to see.

We place the parent in the queue as well to avoid explicit locks. It is possible and very likely that two
parents will have higher colors than a shared child, creating a race condition. Both parents will once again
examine their children to make sure that either the color that was given or a higher one has been placed.
Additionally, since only a higher color can be assigned, we can ignore the race condition created if a parent
has their own color overwritten before they assign their previous one to the child. This approach has been
experimentally determined to be much faster than explicit locks.

We also tried to avoid locks instead by going bottom-up and having children look at their parents’ and
own color and take the largest, avoiding the race condition entirely. However, this is much slower in practice,
because either all vertices need to be examined at each iteration, or the out vertices of the child need to be
examined to create the queue, effectively doubling the amount of memory transfer needed at each iteration.

Our parallel SCC finding step is fairly standard, as it is a trivial algorithm to parallelize. We simply
determine the root vertices by finding all unique colors in the graph, and then run a serial DFS on the
transverse graph from each root, only looking at vertices with the same color as the root. We use a DFS
here, since there isn’t further room for parallelism, and experimentation has shown our serial DFS to be
faster than our serial BFS.

4.5. Serial Step. We implement a simple and efficient recursive Tarjan’s for our serial algorithm. We
chose Tarjan’s as our serial algorithm over Kosaraju’s, based mainly on superior experimental runtimes.
Although Kosaraju’s can benefit from parallelization during the backwards step, the benefit when the graph
has a small number of (usually) disconnected SCCs, is quite small if not negative.

We experimentally determined that a cutoff of about 100,000 remaining vertices is a relatively good
heuristic for switching to the serial algorithm, although this is hardware specific. Some graphs benefit from
running coloring all the way to completion, while some others would benefit more from switching to serial
sooner. However, determining this cutoff without prior knowledge of the graph is quite difficult (possibly
some calculation based on the number of steps needed to fully color the graph?), and the difference is usually
close to negligible.

4.6. FW-BW Implementation. For comparison, we have also implemented the fully recursive FW-
BW algorithm. For the recursive calls at the end of each FWBW procedure, we use task parallelism via
#pragma omp task. Each recursive call recieves an array listing the numeric identifiers of vertices
currently active in that call. As opposed to a boolean array identifying which vertices are globally still
active, we use the integer array that was previously described as being used for marking which SCC each
vertex is in. For each new call, all of the vertices active for that call have the same unique (for that specific
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Algorithm 14 Multistep Coloring
1: procedure MULTISTEPCOLORING(G)
2: while NumVerts(G)> cuto f f do
3: for all v ∈ G do
4: color(v)← vid
5: queue← v
6: in next queue(v)← f alse
7: end for
8: while queue , ∅ do
9: for all v ∈ queue do in parallel

10: for n ∈ Nout(v) do
11: if color(v)> color(n) then
12: color(n)← color(v)
13: if in next queue(n) = f alse then
14: in next queue(n) = true
15: thread queue← n
16: end if
17: end if
18: end for
19: if any n changed color then
20: if in next queue(v) = f alse then
21: in next queue(v) = true
22: thread queue← v
23: end if
24: end if
25: end for
26: Synchronize
27: Single thread does
28: for all thread queue do
29: for all v ∈ thread queue do
30: queue← v
31: in next queue(v)← f alse
32: end for
33: end for
34: end single thread
35: Synchronize
36: end while
37: for allunique c ∈ colors do in parallel
38: SCC(cv)← PRED(G(cv),c)
39: G← (G\SCC(cv))
40: end for
41: end while
42: end procedure

call) value marked, which is retrieved from a global value. To check if a vertex is active for the call, we
simply need to check what value it has marked. For the active vertices not found in the SCC for the current
call, the global value is noted and atomically incremented by three, with the three skipped values being
assigned to vertices based on if they are in the R, (D\S), or (P\S) set.

5. Experimental Setup. Experiments were performed on a 2 socket machine with 64GB RAM and
Intel(R) Xeon(R) E5-2670 CPUs at 2.60GHz each having 20MB last level cache (Compton). Compton was
running RHEL 6.1 and compilation was done with icc version 13.1.2. The -03 optimization parameter
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Network n m davg dmax Dia. # SCCs max SCC

Friendster 66M 1.8B 53 5.2K 32 3M 63M
Italy Web 41M 1.2B 28 10K ∼830 30M 6.8M

WikiLinks 26M 0.6B 23 39K ∼170 6.6M 19M
HV15R 2M 183M 140 484 ∼85 25K 2M

LiveJournal 4.8M 69M 14 20K 18 970K 3.8M
WikiTalk 2.4M 5.0M 2.1 100K 9 2.2M 500K

CA Road Net 2.0M 2.8M 1.4 7 849 1.7M 302
Google Web 876K 5.1M 5.8 460 22 410K 430K

XyceTest 1.9M 8.3M 4.2 246 ∼91 400K 1.5M
R-MAT 20 560K 8.4M 15 24K 9 210K 360K
R-MAT 22 2.1M 34M 16 60K 9 790K 1.3M
R-MAT 24 7.7M 130M 17 150K 9 3.0M 4.7M

R-MAT 2v128e 2.0M 128M 121 8.7K 6 1.0M 1.0M
G(n, p) 2v128e 2.0M 128M 64 107 6 1 2.0M

TABLE 5.1
Network sizes and parameters for all networks used in our analysis.

was used with the -fopenmp flag. Environmental variable KMP AFFINITY and/or hwloc was used to
control thread locality when needed.

Several large real world graphs were used in the course of this work. They are listed in Table 5.1. These
graphs were retrieved from a number of sources, namely the SNAP Database [14], the Koblenz Network
Collection [13], and the University of Florida Sparse Matrix Collection [10]. The R-MAT [8] and G(n, p)
networks were generated with the GTGraph [15] suite using the default parameters.

Friendster and LiveJournal are social networks. Italy Web and Google Web are web crawls of the It
domain and Google, respectively. WikiLinks is the cross-link network between articles on Wikipedia, and
WikiTalk is a network of edits across user pages. XyceTest is a Sandia National Labs electrical simulation
network and HV15R is a computational fluid dynamics matrix of a 3D engine fan. R-MAT 20/22/24 are
R-MAT graphs of scale 20, 22, and 24, respectively, while R-MAT 2v128 is an R-MAT graph set with 2M
vertices and 128M edges. G(n, p) 2v128e is a G(n, p) random graph of the same size. Finally, CA Road
Net is a graph of the road network of California. For the graphs that were undirected (Friendster and CA
road network) we assign a random direction to each edge based on a random boolean initially seeded with
srand(0). This was done to transform the problems from finding only connected components to that of
finding strongly connected components.

These graphs were selected to represent a wide mix of graph size and structure. The number of SCCs
and max SCC both play a large role in the general performance of SCC decomposition algorithms, while the
average degree and graph diameter can have a large effect on the BFS necessarily used for these algorithms.

6. Results. In this section, we are going to compare our Multistep algorithm to the parallel baseline
FW-BW and Coloring algorithms, as well as to serial Tarjan’s algorithm. Additionally, we are going to give
justification for the algorithmic choices we have made and their influences on performance.

6.1. Comparison of Algorithms. Figure 6.1 gives a comparison on runtime with 16 cores on Compton
for Coloring, Forward-Backward, Multistep, and Tarjan’s algorithm on several graphs. Multistep is run as
previously described, doing simple trimming, the large SCC removal, coloring until 100K vertices remain,
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and then serial Tarjan’s. Coloring and FW-BW both run complete trimming, as Coloring greatly benefits
from it in the first steps, while FW-BW benefits from it in the later steps. As is apparent from the Figure,
Multistep demonstrates the fastest performance on all tested graphs with the exception of the CA road
network, where the serial algorithm performs fastest.

The likely explanation for Multistep’s performance on CA road network graph is twofold: Firstly, the
network is not very large, so parallel overhead can dominate the runtime, contributing to Tarjan’s superior
relative performance. Secondly, the structure of the graph created by randomly assigning edges to the
originally undirected network is very unique. Due to the low average degree and very wide diameter, random
edge assignments creates a very high diameter connected component with many small strongly connected
components. This structure lends to particularly fast performance of coloring with very slow performance
of FW-BW, as can be seen. This is not seen on Friendster due to it’s much higher degree, which results
in it maintaining its social-network-like structure with one massive and several small strongly connected
components. It should also be noted the CA road network is the only graph tested where our initial pivot
selection heuristic fails to land within the massive SCC, obviously due to the fact that it does not have one.

As mentioned previously, the number of SCCs (after trimming), is the dominating factor for the runtime
of FW-BW, while the largest diameter of the SCCs is the dominating factor for coloring. For graphs with
very high numbers of small but non-trivial SCCs (ItWeb, CARoad, WikiLinks), running FW-BW with naı̈ve
OpenMP task parallelism results in such high overhead that runtimes are several orders of magnitude greater
than the other algorithms. Coloring however, shows fairly consistent performance, about running as fast as
Tarjan’s for all networks.

This effect is further illustrated in Figure 6.1, which shows parallel scaling of the algorithms on the
Friendster and LiveJournal networks. Friendster only has several hundred SCCs after trimming, while Live-
Journal has several hundred thousand. As can be seen on LiveJournal, switching from simple recursion in
serial to two threads with task-based parallelism almost doubles the runtime. This is observed on several
other graphs as well.

6.1.1. Strong Scaling. Figure 6.3 gives strong scaling of our Multistep approach on CA Road Net,
HV15R, ItWeb, LiveJournal, R-MAT 24, R-MAT 2v128e, and Wikilinks. Running on 16 cores, we observe
a 3× to 5× speedup on all graphs. Although we can utilize hyperthreading to run up to 32 threads on
the test systems processors, we observe little to none (and sometimes worse) further speedup by doing
so. Runtimes for 16 threads on 8 cores was observed to scale fairly well, and is within about 10% of the
presented performance for all algorithms and graphs. As this is a heavily memory-constrained problem, and
we are running on a dual socket system, we attempted a variety of different methods to improve scaling,
which will be discussed later.

6.1.2. Weak Scaling. Finally, we analyze weak scaling of Multistep, Coloring, and FW-BW by using
the R-MAT 20, 22, and 24 graphs. The number of vertices, edges, SCCs, and maximal SCC size increases
by approximately 4× from R-MAT 20 to R-MAT 22 and from R-MAT 22 to R-MAT 24. Figure 6.4 gives
the results. From this graph, it appears that our approach scales better than either Coloring or FW-BW.

6.2. Bottom-Up BFS and hwloc. In order to improve runtimes and scaling of Multistep beyond 16
threads, we attempted several different methods, the results of which are give in Figure 6.2. For these
results, we consider the total time to do both the forward and backwards sweeps while finding the initial
massive SCC.

Our baseline approach (FWBW) is a simple parallel BFS utilizing our boolean ‘bitmap’. In this, we do
the complete forward and backward sweeps as would be done while running the FW-BW algorithm. The
first improvement is the hybrid bottom-up approach as described in a preceding section. An immediate 3×
to 4× improvement is readily apparent on both graphs. Next, we decrease the work needed on the backward
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FIG. 6.1. Runtimes on 16 cores for Coloring, FW-BW, Multistep, and Tarjan on a number of different graphs.

sweep by recognizing which vertices weren’t discovered on the forward sweep and not further exploring
them (MS). This is the approach we use for Multistep.

As can be seen on both graphs while using the FWBW-Hybrid and Multistep approaches, minimal to
no improvement is seen with hyperthreading. In an attempt to improve parallel scaling, we also investigate
partitioning our graph across both sockets.

The first attempted method (MS-hwloc) simply partitioned the graph based on an even split of the edge
adjacency lists. Splitting based on the number of vertices was also investigated, but found to be much slower
in practice due to severe balance issues. We also produced graphs with an even split of both vertices and
edges by doing random permutations of vertices (MS-hwloc Permutation). However, runtimes degraded
severely on smaller graphs by doing this, likely due to the loss of graph structure-based locality of vertices
and edges. On the larger networks such as WikiLinks, the graph structure’s locality doesn’t play as much
a role due to the wider spread of vertex IDs, so most new edges will need loaded from memory anyways.
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FIG. 6.2. Parallel scaling of algorithms on Friendster (n=66M, m=1.8B, numSCCs=3M, maxSCC=63M) and LiveJournal
(n=4.8M, m=69M, numSCCs=970K, maxSCC=3.8M)
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FIG. 6.3. Parallel scaling of Multistep on up to 16 cores for several graphs.

Although not attempted, a smarter partitioning or permutation methodology might be more beneficial.
The final attempted partitioning method simply put the out edge adjacency and degree lists on one socket

and the in edge lists on the other with both forward and backward sweeps being performed concurrently
(MS-hwloc Concurrent).

As can be seen in both Figures, none of the hwloc-based methods, while improving scaling through all
32 threads, decreased runtimes overall. This is most likely attributable to all of the extra overhead required,
such as explicitly determining ownership of each vertex, maintaining separate queues, etc.

6.3. Performance of BFS. Overall, our BFS implementation gives very fast single node performance,
with the equivalent of over 18 GTEPS on the R-MAT2v128e graph. We use the term ‘equivalent’, as while
a traditional BFS will examine every edge in the connected component it is exploring, the hybrid approach
does not. However, we still calculate our GTEPS values as Runtime/Ec, where Ec is the number of edges that
a traditional BFS would have visited. Additionally, it should be explicitly noted that we do not maintain a
BFS tree, as we only care to mark the vertices to find the SCC. The performance of our BFS implementation
on every test graph is given in Figure 6.6.

The performance of a standard BFS, and especially the bottom-up BFS, has a high dependence on the
average degree in the graph. This strong relationship is exemplified in Figure 6.7, which correlates the
GTEPS performance of each of our test graphs as a function of the graphs’ average degrees.

6.4. Trimming. Finally, we give justification to our simple trimming procedure, as opposed to the
complete trimming procedures employed in previous work. Figure 6.4 gives the runtimes at each level of our
Multistep procedure for LiveJournal and WikiLinks utilizing simple, complete, as well as no trimming. For
both of these graphs, as well as most other ones observed during testing, complete trimming decreases the
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costs of the FW-BW and coloring steps. It has also been observed that complete trimming has the additional
benefit of sometimes completely skipping the serial step, by letting coloring find all of the remaining SCCs
in parallel in a single step when the graph still has over 100K active vertices remaining. Likely due to the
fact that most trivial components are removed, letting only the larger and not usually inter-connected strong
components, which coloring can easily find, remain.

However, the benefits of complete trimming never balance out the additional costs, in some instances
resulting in overall performance worse than no trimming at all. The reason for this is due to the iterative
nature of trimming, and the occurrence of the long tails of small numbers of vertices being trimmed during
each iteration. This is especially apparent on certain graphs, such as WikiLinks and the It Web graph. A
recursive approach, while faster in serial, is very difficult to parallelize. Additionally, complete trimming
requires each examined vertex to look at all of its neighbors for validity to get the current effective in and out
degrees, while simple trimming only needs to look once through both of the degree lists. A single iteration of
simple trimming also removes a substantial majority of all possible vertices that can be removed for most of
the tested graphs, which makes even running single extra iteration of complete trimming usually ‘not worth
it’.

7. Conclusions. This paper introduced the Multistep method, a combination of previous algorithms,
for fast parallel strongly-connected component decomposition of billion-edged directed graphs. We also
evaluated the existing algorithms which partially comprise the Multistep method, and offered several im-
provements and optimizations.

Future work might further investigate the possibility of enforcing hardware-based graph partitioning,
especially on larger systems with multiple sockets and/or NUMA nodes. Additional improvements might
also be made to our trimming and coloring procedures.

Acknowledgments. This work was supported by the DOE Office of Science through the FASTMath
SciDAC Institute. Thanks are extended to Erik G. Boman for a number of helpful ideas, conversations, and
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Advanced Architectures and System Software

The articles in this section have an overarching theme of architectures and system sofware. Topic areas
of these articles include quantum information processors, resilience mechanisms and the energy case for it,
test environments for operating system development, and improving hard disk drive performance.

Scholten and Blume-Kohout deal with the distinguishability of quantum information processors and
present analytical work showing that the distinguishability depends on the eigenvalues of sequences of quan-
tum gates implemented by the quantum information processors. Mills et al. use an analytical model that
accounts for power consumptions and failures to study the performance of checkpoint and replication-based
techniques on current and future systems. They propose a replication protocol that can save 40% of the
consumed energy while also being 40% faster in exascale-class machines. Kocoloski et al. describe a test
architecture that allows development on the Kitten OS and runtime stacks without access to specialized
hardware. Their techniques allow deployment of Kitten Light Weight Kernel virtual machines without being
limited by the underlying hardware. Crume et al. use machine learning techniques for improved hard disk
drive performance. They show hard disk drive positioning times and request scheduling can be accurately
predicted using a neural net, and show that this approach results in lower errror than decision trees in all test
sets.

S. Rajamanickam
M.L. Parks
S.S. Collis

July 22, 2014
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DISTINGUISHABILITY OF QUANTUM INFORMATION PROCESSORS

T. SCHOLTEN∗ AND R. J. BLUME-KOHOUT1

Abstract. We consider the problem of distinguishing quantum information processors (QIPs). We show how classical statis-
tical distinguishability and quantum state distinguishability can induce a distinguishability measure between QIPs. However, such
measures are difficult to calculate in an analytical fashion. Under different assumptions, we present analytical work showing that the
distinguishability depends on the eigenvalues of sequences of quantum gates implemented by the QIP.

1. Classical Computer Verification. Given the ubiquity of computers in society today, as well critical
functions automated and maintained by them1, it is vitally important that computer hardware and software
behave not only in a logically consistent manner, but also consistent with our design intentions. To meet
this goal, stringent testing of computer software and hardware is necessary. Some tools - such as reviews,
proof-of-correctness techniques, and direct simulation - have been developed to aid engineers and software
designers in the testing of computers [1]. Additionally, by changing how programs are actually written (such
as the elimination of the infamous GO TO statement [6]), mistakes and mishaps are further reduced.

Sometimes though, errors slip through the cracks. For instance, Intel Corporation had a design error in
a chip manufactured in 1994, causing some special floating-point operations to give incorrect results [12].
Such a chip error was not detected during the usual verification process. This is not too surprising, as
verification is an incredibly hard task. If we assume the computer implements some function f (x) on an
n-bit string x, there are 2n possible inputs to check. Thus, it is just not practical to check every input. A
trade-off of sorts is in order. By checking that some inputs yield correct results, we can (hopefully) guarantee
some level of correctness for other inputs.

1.1. Towards QIP verification. By a QIP, we mean a simple device - harnessing a few qubits at most
- which performs some elementary information processing task. It is believed QIPs will provide significant
computational advantages in problems regarding the factoring of large numbers [17], as well as providing
provably secure cryptography [14]. In a way, a QIP should be thought of as more general than a quantum
computer (QC), insofar as every QC is a QIP. However, QIPs do not necessarily have to be universal, nor
scalable, as we will explain in section 4.

In contrast to classical information processors, few tools exist to verify QIPs. Tools already developed
include randomized benchmarking [13], as well as process tomography [4]. Why have more tools not been
developed? Perhaps the most significant complication arises when we consider the types of things a QIP can
do to quantum information. In a classical chip, there are certain fundamental gates (AND, NOT, etc) which
are concatenated together to perform more complicated logical operations. A QIP can, in principle, execute
a continuum of gates, so there are simply more gates which have to be checked.

The primary way to avoid the “infinite gates” problem is to use ε-universal gate sets2. That is, given
some gate U we wish to implement, one can use the Solovay-Kitaev algorithm [5] for constructing U from
a small number of primitive gates, up to an arbitrarily small error ε . Thus, if we build a QIP which uses just
those primitive gates, then we only need to verify a small number of gates.

In what follows, we wish to propose protocols for experimentalists in the field of quantum information,
computation, and/or optics can use to verify that their hardware works the way they intended.

∗Physics and Astronomy Department, University of New Mexico, tlschol@sandia.gov
1Sandia National Laboratories, rjblume@sandia.gov

1Some simple examples include: traffic light timing, aircraft control, and maintaining a particular ambient temperature and humid-
ity in a room. Another, more advanced example would be Google’s self-driving car project [18].

2The ambitious reader is urged to consult reference [16].
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2. Verification, Distinguishability, and Distances. What would it mean to “verify” a QIP? In general,
if you are handed a generic black box, there are at least four general statements you could make about it:

1. I have no idea what this box does. (Quantum process tomography will tell you!)
2. I have some idea of what this box does, say X, and I can enumerate a countable set of possible

alternatives, say A,B,C, etc. (Quantum hypothesis testing will help you!)
3. I have an idea of what this box should do, say X, but it might also do something else, and I do not

know what. (Quantum verification will tell you!)
4. I have an idea of what this box should do, say X, but if it doesn’t do that, then it does Y. (Quantum

verification will tell you!)
Clearly, scenario 1 is the most general. However, we focus our attention on scenarios 2, 3, and 4, for the
following reason. If we have a protocol for scenario 4, then we can solve the problem posed in scenario 2.
On the other hand, if no protocol exists, the problem in scenario 3 cannot be solved. Thus, the problem of
pairwise verification (4) is sufficient for distinguishing amongst countable alternatives (2), and is necessary
to solve the general problem of verification (3).

Yet how does distance figure into the picture? An intuitive notion of distance is “How far?”. Moreover,
things which are close together might be hard to tell apart. We therefore often equate the idea of distinguisha-
bility to the idea of distance. We should note that distance doesn’t always have to mean distance in space
- it is just a general notion that if things are farther apart, they have a larger distance. A well-established
example of this principle is the Rayleigh criterion. If we observe an image from a source, the criterion tells
us whether we should claim the source consists of a single source, or many. It thus turns the question “How
many sources?” into the question “If there were two or more, how far apart would they have to be before I
could tell them apart?”

Heuristically, if we can distinguish two things, then we should say they have some non-zero distance
between them. If they are maximally distinguishable (even if only in principle), we should assign a maximal
distance. If they are undistinguishable, then we should say they are distance 0.

In the rest of this report, we discuss ways of turning the above heuristic into a calculable and informa-
tionally useful quantity, where we focus on the problem of verification of QIPs as specified in scenario 4
above. A key conception we will explore is how to quantify the resources necessary to verify QIPs. Such
resources could include the number of times a particular experiment must be repeated, the number of ex-
periments we would have to do, or the amount of time one has to spend doing a particular experiment.
These notions will be made clearer in subsequent sections. Section 3 presents helpful background. Section
4 describes previous work on the subject. Our model of a QIP is given in 5. Sections 5.5 and 6.3 present
two approaches we attempted in defining distinguishability of QIPs. Sections 7 and 8 present an alternative
analytical approach under differing assumptions. Conclusions are given in section 9.

3. Quantum Systems, States, Gates, and Measurements. Readers already familiar with the field can
skip this section with no loss of continuity, although we do introduce the notation we will use for the rest of
the report. We will explain what states, gates, and measurements are in the quantum computation formalism.
For a more detailed reference, consult [15].

3.1. Systems. Before one can speak of quantum states, one must speak of quantum systems. By a sys-
tem, we mean any physical object or configuration of objects whose behavior exhibits quantum-mechanical
phenomena. An obvious example is atoms themselves. However, experimentalists have demonstrated even
macroscopic systems can exhibit quantum behavior [8].

3.2. States. In quantum mechanics, it is postulated that every physical system can be represented by
a state. A state ρ is a Hermitian d× d matrix satisfying tr(ρ) = 1 and ρ ≥ 0. In the parlance of quantum
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information, ρ represents the state of a system called a qudit. In general, we will refer to ρ as a density
matrix.

One representation of ρ comes from expansion in an arbitrary basis of d2 Hermitian matrices:

ρ =
d2

∑
i=1

ρiMi Mi = M†
i ρi ∈ R

d2

∑
i=1

ρitr(Mi) = 1 (3.1)

We can also collect the coefficients of this expansion together in a d2×1 vector:

|ρ〉〉=


ρ1
ρ2
...

ρd2

 ∈ Rd2
(3.2)

If d = 2, then ρ represents the state of a qubit, and the expansion and vector representations take on particu-
larly pleasing forms:

ρ =
1
2
(I + r ·σ) =

1
2

(
I +

3

∑
i=1

riσi

)
|ρ〉〉=


1
rx
ry
rz

=

(
1
r

)
(3.3)

The matrices {σi}3
i=1 are the usual spin-1/2 Pauli matrices.

The vector r is known as the Bloch vector, and satisfies 0 ≤ |r| ≤ 1. Thus, we can visualize qubits as
vectors which live inside the unit ball in R3. If |r|= 1, then we say the state is pure. A pure state may also
be written as the projection onto some vector in C2. That is, if ρ is pure, then we have ρ = |ψ〉〈ψ| for some
vector |ψ〉. If a state is not pure (i.e. |r|< 1), then the state is said to be mixed. Mixed states can be written
as convex combinations of pure states though:

ρ = ∑
i

pi |ψi〉〈ψi| ∑
i

pi = 1 (3.4)

3.3. Gates. Having specified what a quantum state is, we need to specify how the state changes as we
control it. Within a discrete time formalism, such dynamics are often referred to as quantum operations,
quantum processes, quantum maps, or superoperators; we will refer to them as quantum gates, usually
denoted by G. The action of a gate on a density matrix is denoted by G[ρ]. Gates act on states via a
previously specified program, which is classical in nature. That is, the program specifies which gate acts at
which time-step.

The best representation for the gate G depends on the representation given for ρ . A common represen-
tation - used when ρ is represented as a d×d matrix - is the Choi decomposition:

G[ρ] = ∑
i j

χi jMiρM†
j ∑

i j
χi jMiM

†
j = I (3.5)

The matrix χi j is called the process matrix for G. The matrices {Mi} are required to form a basis for d×d
matrices, but can otherwise be arbitrary, up to the condition in (3.5).

An alternative representation is realized when ρ is represented as a d2×1 vector. Then, the gate G can
be written as a d2×d2 matrix which simply multiplies the vector:

G[ρ] = G|ρ〉〉 (3.6)



156 Distinguishability of Quantum Information Processors

In this representation, we can compose quantum gates very easily: if we apply H to G, which is itself applied
to ρ , we have

H[G[ρ]] = HG|ρ〉〉 (3.7)

Thus, composition turns into regular matrix multiplication. In the Choi decomposition representation, it is
not obvious - nor easy! - to do composition.

Regardless of representation, a quantum gate G does need to satisfy one very important criterion. It
must be physically realizable. This means that it must map density matrices onto density matrices, even
if the gate acts trivially on some other part of the state. (For instance, a gate might flip one qudit, but do
nothing to another.) This condition is referred to as complete positivity:

(G⊗ I)[ρAB]≥ 0 ∀ ρAB ≥ 0 (3.8)

where ρAB denotes any bipartite state. Rather than check (3.8) for all bipartite states, it is instead sufficient
for the gate to satisfy

(G⊗ I)[|ψ〉〈ψ|]≥ 0 (3.9)

where |ψ〉〈ψ| is an arbitrary maximally entangled state. Under the condition in (3.8), the Choi representation
takes on the following form:

G[ρ] = ∑
i

KiρK†
i ∑

i
KiK

†
i = I (3.10)

The representation in (3.10) is called the Kraus representation, and is commonly used instead of the Choi
decomposition.

Another condition, unrelated to the physicality of the gate, is that the gate be trace-preserving1:

tr(G[ρ]) = 1 (3.11)

In what follows, we usually use the representation in which G is a matrix. Considering the case of qubits,
G is a 4×4 matrix; the requirement for G to be trace-preserving means the first row is given by (1,0,0,0),
while the rest is (as yet) unspecified:

G =

(
1 0
t S

)
0 = (0,0,0) t = (tx, ty, tz) S ∈ GL(C,3) (3.12)

One can check the action of G is to map the vector r to Sr+ t. The vector t and the matrix S are arbitrary, up
to the requirement of complete positivity specified in equation (3.8).

3.4. Measurements. In general, a quantum measurement on a qudit is specified by a set of Hermitian
d×d matrices M = {E1,E2, · · ·En} such that

0≤ Ei ≤ I ∀ i ∑
i

Ei = I (3.13)

1Trace-decreasing gates do exist, but we do not consider them here. Such gates always correspond to an operation in which we
post-select on a particular outcome. In contrast, trace-preserving maps can be implemented deterministically.
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Such a set is called a “Positive Operator Valued Measure1” (POVM), and each Ei is called a POVM effect.
As in the case of density matrices, we can represent effects as d×d matrices or d2×1 vectors:

Ei =
d2

∑
j=1

ei jM j |Ei〉〉=


ei1
ei2
...

eid2

 ∈ Rd2
(3.14)

For the case of qubits, the POVM effects take on a simple form:

Ei = αiI + ei ·σ (3.15)

If we measure a POVM, the probability we obtain outcome i, when we measure on a state ρ , is given by

pi = tr(Eiρ) = 〈〈Ei | ρ〉〉 (3.16)

The first quantity is used in the representation in which Ei and ρ are matrices; the second in the representation
where they are vectors.

4. A General Model of a QIP. As mentioned in section 1.1, a QIP can be thought of as a device
which uses a few qubits to do information processing tasks. A QIP could thus be thought of as a full-scale
quantum computer satisfying DiVincenzo’s criteria [7], except that it need not be scalable. Additionally, a
QIP receives program instructions from a classical computer - it is only the data which is quantum.

The canonical model of a QIP works as follows. We have access to certain quantum gates, the set of
which we will denote as G. An algorithm or subroutine executed by the QIP is specified by a particular
sequence of gates from the set G = {G1,G2 · · ·GK}:

SG = GS(L) ◦GS(L−1) ◦ · · · ◦GS(1) (4.1)

where Gi ∈ G ∀ i, Gi+1 is implemented after Gi, and ◦ denotes composition: (A ◦B)[ρ] = A[B[ρ]]. We use
the notation SG to make explicit the idea the gates in this sequence come from the set G. We note it depends
implicitly on the choice for the maps S(i), described below.

The map S(i) : {1,2, · · · ,L} → {1,2, · · · ,K} maps the position of the gate in the button-pushing se-
quence to an index in the set G. (Basically, S(i) takes as its input the ith button push, and tells us which gate
from G to put there.) It is specified by a classical string. As such, it renders the QIP as a programmable
device. To grant us the physical ability to manipulate the QIP, we assume the QIP has on it buttons whose
labels correspond to either preparing ρ , measuring M , or implementing one of the quantum gates.

The state of the art in verification of QIPs is process tomography [4]. By inputting a known state ρ ,
measuring a known POVM M , and picking sequences of gates from G one is able to invert the measurement
statistics and determine the matrix elements of the gates in G. By changing the order in which we push the
buttons for the gates, we specify a new function S, as well as a new sequence SG.

However, this model suffers from the following problem - if you are handed a QIP and told the state it
prepares is ρ , how do you know, to absolute certainty the state truly is ρ? What about the measurement? It
would seem you have to take the experimentalist on faith. If not, the only way to verify the QIP is to use
another QIP, generating a situation in which one must verify every QIP to verify just one!

1The word ‘measure’ here refers to the mathematical idea of a measure, not the idea of doing a measurement.
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5. A black box model of information processing. To avoid the situation in which we must trust the
experimentalist, we need a new model for a QIP, one which specifies as little as possible without simply
saying “I know absolutely nothing”.

In our model, a QIP is specified by a tuple (ρ,M ,G), where ρ is an unknown density matrix, and
M = {E, I−E} is an unknown 2-outcome POVM1. G represents a set of quantum gates.

We consider the problem in which we are handed a QIP whose tuple is (ρ,M ,F) or (ρ,M ,H), where
F = {F1,F2, · · ·FK} and H = {H1,H2, · · ·HK}. We are asked to determine whether the QIP uses the gates in
set F or those in set H. (We note this problem corresponds to the situation described by scenario 4 on page
4.)

Our model significantly relaxes the assumptions present in the general model regarding states and mea-
surements. Usually, a state prepared by a QIP is not known to exact precision; there is always some error.
Likewise for the POVM. Our model treats all possible states and measurements as being on equal footing,
which we think is a helpful feature.

By construction, we see the only thing we can do is the following:
1. Push the button to prepare ρ .
2. Push some, but not necessarily all, of the buttons which implement quantum gates.
3. Push the button to measure E.

One could argue a bootstrapping approach could be applied to this problem. For instance, why do we even
need step 2? Could we not just make ρ and measure E many times? Would that not specify some property
of ρ we could calculate and use? To answer this, we must return to the definition of the problem above.
Both ρ and E are unknown to us. Therefore, it is actually impossible for us to use the naive procedure of
just measuring ρ with E to learn anything about ρ . We must necessarily push some of the K buttons to
implement gates.

5.1. Black Box Statistics. Suppose we push a sequence of some (or all) of the K buttons which imple-
ment quantum gates a total of L > 0 times. We do not assume each button is pushed, nor do we assume each
button can only be pushed once. Hence, L can be greater than, less than, or equal to K. The representation
of this sequence was given in equation (4.1):

SG = GS(L) ◦GS(L−1) ◦ · · · ◦GS(1) (5.1)

In what follows, we pick the representation of the gates to be that described by (3.6), so that composition
corresponds to matrix multiplication. The state we obtain after this sequence is simply SG[ρ] = SG|ρ〉〉.
The probability of obtaining an outcome “Yes” is given, using equation (3.16), by2

p = tr (ESG[ρ]) = 〈〈E|SG|ρ〉〉 (5.2)

These probabilities are the only quantities we can measure using the QIP. Thus, they are what we will
have to use to predict which gate set the QIP is using. Therefore, the problem of determining the whether
the QIP uses the set F or H is related to determining the difference between the statistics generated by
sequences of gates in F and of those in H.

As was mentioned in section 2, we wish to quantify the resources necessary to solve this problem.
Below we present protocols used to distinguish classical probability distributions, and discuss the resources
required to achieve reasonable distinguishability.

1For simplicity, we will denote the outcomes of the measurement as “Yes”, associated with effect E, and “No”, associated with
effect I−E. Computer scientists might use “0” and “1”, whereas physicists would use |0〉〈0| and |1〉〈1|, or even |↑〉〈↑| and |↓〉〈↓|.
Some of the more ambitious among us might use |←〉〈←| and |→〉〈→|. “Yes” and “No” strike the authors as finding a happy medium.

2We use p to denote this probability to avoid writing p(“Yes”) all the time. Clearly, p(“No”) = 1− p.
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5.2. Distinguishability of Probability Distributions. A classical probability distribution over n vari-
ables can be represented as a vector p ∈ Rn. Such a vector must necessarily satisfy p≥ 0 and ∑i pi = 1.

5.3. Single-Shot Distinguishability. If we demand that we have to choose between two probability
distributions f and h and we are compelled to choose, and we can only sample from the distribution once,
then the probability we are correct depends on the one norm between the two vectors:

Pcorr =
1
2

(
1+

1
2
|f−h|1

)
=

1
2

(
1+

1
2

n

∑
i=1
| fi−hi|

)
(5.3)

For most interesting cases, f is close to h (in the Euclidean sense), and so Pcorr ∼ 1
2 + ε . Clearly, we need to

have access to more samples so as to raise Pcorr.

5.4. Many-Copy Distinguishability. If we have the ability to sample from the distribution many times,
the best measure of distinguishability comes from the Chernoff bound [2]. For distributions f and h, the
probability of guessing correctly, given access to N samples from the distribution, goes as

Pcorr ∼ 1− e−NC(f,h) (5.4)

where C(f,h) is the Chernoff exponent, given by

C(f,h) =− log min
0≤s≤1

n

∑
i=1

f s
i h1−s

i (5.5)

Although the Chernoff exponent looks difficult to calculate, there are convenient bounds on it in terms of
another quantity, known as the classical fidelity or statistical overlap, defined as F(f,h):

F(f,h) =

(
n

∑
i=1

√
fihi

)2

(5.6)

From the classical fidelity, we have

− logF
2
≤C ≤− logF (5.7)

So perhaps by using the Chernoff exponent or the classical fidelity, we could define a measure of distin-
guishability of QIPs, as explained in the next section.

5.5. Towards classical QIP distinguishability. The idea of statistical distinguishability would lead us
to consider defining a distance between the QIPs by using the classical statistics generated by them. Using
the two distinguishability measures given in the previous sections, a natural measure of distinguishability of
the QIPs could be

D(F,H) =
1
2
+

1
4

max
S
|f−h|1 or D(F,H) = 1−max

S
e−NC(f,h) (5.8)

where f = ( f ,1− f ) and h = (h,1− h). The probabilities f and h are defined using (5.2), where we take
G = F and G = H, respectively. The maximization is carried out over the sequence functions S, which
includes an implicit optimization over the sequence length L.

Unfortunately, numerical work indicates that trying to maximize over S results in a function which is
neither monotonic nor smooth in those variables. Therefore, we need to move to a regime in which the
quantum-mechanical nature of the black box. In the next section, we consider distinguishability measures
for quantum states.
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6. Common Distinguishability measures for Quantum States. As in the case of classical probability
distributions, various distinguishability measures for quantum states are motivated by different operational
concerns [9]. Consider the following problem: we are handed one of two states - say either ρ or σ - and
asked to choose which state we were given. In analogy with the previous analysis, we consider two cases.

6.1. Single-Shot Distinguishability. If we have access to only one copy of the state, then the Helstrom
measurement provides us with the information needed to make the best choice [11]. Using this measurement,
the probability of choosing correctly is related to the trace distance DT by

Pcorr =
1
2

(
1+

1
2

tr|ρ−σ |
)
≡ 1

2
(1+DT (ρ,σ)) (6.1)

In the event ρ and σ are qubit states with Bloch vectors r and s respectively, the trace distance is given
by

DT (ρ,σ) =
DE(r,s)

2
(6.2)

where DE is the usual Euclidean distance. Further, if ρ and σ are qubit pure states, which we will denote by
ρ = |ψ〉〈ψ| and σ = |φ〉〈φ |, then

DT (|ψ〉〈ψ| , |φ〉〈φ |) =
√

1−|〈ψ | φ〉|2 (6.3)

6.2. Many-Copy Distinguishability. As in the case of classical probability distributions, the many-
copy case involves a Chernoff exponent. However, it is sometimes easier to use the quantum fidelity F(ρ,σ),
defined by

F(ρ,σ) =

(
tr
√√

ρσ
√

ρ

)2

(6.4)

The fidelity has the property that is is doubly concave:

F

(
∑

i
pi |ψi〉〈ψi| ,∑

i
pi |φi〉〈φi|

)
≥∑

i
piF(|ψi〉〈ψi| , |φi〉〈φi|) (6.5)

From the fidelity, one can define a distance metric between states, known as the Bures-Uhlman metric:

DBU (ρ,σ) =

√
2
(

1−
√

F(ρ,σ)
)

(6.6)

In the case of qubit pure states, the fidelity takes a particularly simple form:

F(|ψ〉〈ψ| , |φ〉〈φ |) = |〈φ | ψ〉|2 (6.7)

If we have N copies of the quantum state ρ or σ , the fidelity is

F(ρ⊗N ,σ⊗N) = tr
(√√

ρ⊗Nσ⊗N
√

ρ⊗N

)2

= (F(ρ,σ))N (6.8)
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6.3. Towards quantum QIP verification. How does the above formalism relate to our problem? Re-
call that our QIP prepares an unknown state ρ , and after the sequence of gates specified by (5.1), the state
is SG[ρ]. Therefore, one measure of distinguishability between the gate sets F and H is to minimize the
fidelity between the output state if the gate set is F and that if the gate set is H:

D(F,H) = 1−min
S,ρ

F(SF [ρ],SH [ρ]) (6.9)

Why do we minimize over states? Although our QIP prepares an unknown state, the distinguishability
between (ρ,M ,F) and (ρ,M ,H) can only be less than the number given in (6.9). It should be noted that
to achieve that number, not only does ρ have to picked correctly, but so does the POVM M .

From the double concavity property, we see that to minimize the fidelity, we need to minimize the
fidelity with respect to pure states. As (6.9) is written, the sequences SF and SH come from very general
gate sets. To make the minimization more tractable, we need to make assumptions regarding the nature of
the sets F and H to be discussed in the next section.

7. Simplifying Assumptions. A general gate as described by equation (3.12) can not only rotate the
Bloch vector of the state of a qubit, it can also translate it, shrink it, and distort the Bloch sphere into an
ellipse. If we wanted to do the minimization described by (6.9), it might be easier to consider gate sets for
which some of these actions do not occur.

Moreover, these assumptions should be in align with what we would want a QIP to actually do. For
instance, if a gate simply takes every state to I/2, then such a gate is actually a bad one to use in a QIP,
as it essentially erases all the information we could have obtained about the state (and subsequently, the
computation)! Usually, we assume the gates are pure rotations in SO(3), meaning they take the form

Mi =

(
1 0
0 Ri

)
Ri ∈ SO(3) (7.1)

This representation is helpful when we think of the Bloch vectors. In what follows though, the fidelity
is easier to work with when we think of the density matrices as 2× 2 matrices, and not 4× 1 vectors.
Therefore, we will specify the gate as a 2× 2 unitary matrix. Abusing notation slightly, we will still write
G = {G1,G2, · · ·GK} to denote a gate set, but now, Gi ∈ SU(2).

Under this assumption and notational switch, every sequence SG specified by equation (5.1) is itself
just unitary matrix:

SG =
L

∏
i=1

GS(i) ∈ SU(2) (7.2)

As such, the problem of distinguishing F from H is related to the problem of distinguishing the two unitary
matrices generated from products of elements of F and H.

With this notation in place, let us re-consider the distinguishability measure in (6.9):

D(F,H) = 1−min
S,|ψ〉
|〈ψ|S †

F SH |ψ〉|2 (7.3)

In the above equation, we notice that, even though S†
F and SH represent the product of unitary matrices

from the two sets, the product S†
F SH is itself a unitary matrix. Let us use the notation UFH to denote this

matrix. Then, (7.3) takes the suggestive form

D(F,H) = 1−min
S,|ψ〉
|〈ψ|UFH |ψ〉|2 (7.4)
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Therefore, the problem of distinguishing F from H is related to finding an optimal sequence S such that UFH
is distinguishable from the identity I.

One way to think about this characterization is to recognize that, within the Bloch sphere representation
of the state, the action of the sequence is to rotate the Bloch vector, such rotation depending on which gate
set we have. So we can picture the evolution of the Bloch vector as two tracks on the Bloch sphere, where
each track is generated by the action of one of the gate sets. If we enter a rotating reference frame which
rotates with one of the tracks, thereby freezing on of the tracks in place, the other track evolves under the
action (SO(3) representation) of UFH .

We have thus transformed the problem of distinguishing F from H into the problem of distinguishing I
from S†

F SH . Equivalently, it is the problem of distinguishing I from UFH .

8. Optimal States for Unitary Distinguishability. In light of the previous section, we consider here
the question of what states will maximize the value of equation (7.4). We focus on states primarily because
the optimization over sequences S has no analytical solution, yet1.

As in the previous section let UFH be an element of SU(2). We expand UFH in its eigenbasis:

UFH = eiθ+ |u+〉〈u+|+ eiθ− |u−〉〈u−| (8.1)

Then, one can use the method of Lagrange multipliers to show that the optimum state |ψ〉 for maximiz-
ing (7.4) is given by

|ψ〉= 1√
2
(|u+〉+ |u−〉) (8.2)

The distinguishability is then given by

D(F,H) =
1
2

(
1−min

S
cos(θ+−θ−)

)
(8.3)

The geometric intuition for this result is as follows. The two eigenvectors of UFH form an orthonormal
basis for C2. As |ψ〉 ∈ C2, it is impossible for |ψ〉 to be orthogonal to both eigenvectors simultaneously.
To avoid having an overlap which is biased towards one eigenvector or the other - which would change the
relative weighting of the eigenvalues - one simply splits the difference, and takes an equal superposition of
both.

In passing, we note the above expression seems similar in spirit to that of (6.3). Whether such a con-
nection can be made more formal is at this time unknown.

9. Conclusions. Distinguishability of QIPs remains an open question. In pursuing an answer, we must
recognize QIPs are not classical computers, which means quantum analogues of classical protocols may not
be the best solution for a verification process. The best we can hope for is distinguishability up to some level
of (possibly statistical) error.

Even within the realm of known distance measures between quantum states, it is not trivial to generalize
to sets of quantum gates. Additionally, to avoid assuming a QIP prepares a known state, one must optimize
over all states, a task which is usually hard to do. However, by assuming QIPs use gates which are unitary,
some progress can be made in finding a distinguishability measure, and it is possible to do the minimization.
The analytical minimization over sequences does remain difficult to calculate though.

1Addtionally, convex optimization techniques inform us that to minimize a convex function over several variables, it suffices to
minimize over each individually [3]. Although (7.4) may not be convex in S, it is certainly convex in the state.
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We are optimistic that it should be possible to define distinguishability measures for QIPs without having
to specify an input state or POVM. We may have to augment our model with additional assumptions besides
that of unitarity of the gates in order to arrive at a tractable solution.

A distinguishability measure on quantum gates should ideally contain within it an interpretation of a
protocol or process by which experimentalists can use the measure to check their quantum devices. How
such a measure should be defined remains to be seen, but our work thus far does indicate it should be
possible.
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ENERGY CONSUMPTION OF RESILIENCE MECHANISMS IN LARGE SCALE SYSTEMS

BRYAN MILLS, TAIEB ZNATI, RAMI MELHEM∗ AND KURT B. FERREIRA, RYAN GRANT1

Abstract. As HPC systems continue to grow to meet the requirements of tomorrow’s exascale-class systems, two of the biggest
challenges are power consumption and system resilience. On current systems, the dominant resilience technique is checkpoint/restart.
It is believed, however, that this technique alone will not scale to the level necessary to support future systems. Therefore, alternative
methods have been suggested to augment checkpoint/restart – for example process replication. In this paper we address both resilience
and power together, this is in contrast to much of the competing work which does so independently. Using an analytical model that
accounts for both power consumption and failures, we study the performance of checkpoint and replication-based techniques on current
and future systems and use power measurements from current systems to validate our findings. Lastly, in an attempt to optimize power
consumption for replication, we introduce a new protocol termed shadow replication which not only reduces energy consumption but
also produces faster response times than checkpoint/restart and traditional replication when operating under system power constraints.

Disclaimer: This work is currently under submission to the Euromicro International Conference on Parallel, Distributed and
network-based Processing (PDP 2014).

1. Introduction. The race to build the worlds first exascale-class system has been underway for the
last 10 years and many challenges remain. Two of the biggest challenges facing these future systems are
power and resilience [13], each a direct result of the massive amount of parallelism necessary to achieve
this goal. Delivering exascale performance could require a system over a million sockets, each supporting
many cores [1]. This would result in a system with many-millions of cores including increases in memory
modules, communication networks and storage devices. With this explosive growth in component count will
come a sharp decrease in the overall system reliability and an increase in system power requirements.

System power is a leading design constraint on path to exascale, established by the DOE at no more
than 20MW [1]. This challenges the research community to provide a 1000x improvement in performance
with only a 10x increase in power. It is expected that exascale-class machines will be capable of consum-
ing more power than that set by the power cap. For example a system might have 150,000 sockets each
consuming 200 watts of power at full speed, therefore if all sockets were operating at full power we would
be consuming 30 mega-watts. To stay under the 20 mega-watt limit we would need to power off 50,000 of
these sockets, or reduce the power consumption of some or all of the cores to stay within budget. While this
may seem inefficient, as more hardware is available than can be supported by the power infrastructure, not
all applications will be capable of fully utilizing system.

Maintaining efficiency will also be a significant challenge due to the increasing number of expected
faults. As the number of components grow, system failures will become routine. Therefore, any resilience
scheme must consider its effect on the application’s energy and power consumption. In today’s systems the
response to faults mainly consists of restarting the application, including those components of its software
environment that have been affected by the fault. To avoid full re-execution, these techniques checkpoint the
execution periodically. Upon the occurrence of a hardware or software failure, recovery is then achieved by
restarting the computation from a known good checkpoint.

Given the anticipated increase in failure rate and the time required to checkpoint large-scale compute-
and data-intensive applications, it is predicted that the time required to periodically checkpoint an application
and restart its execution will approach the system’s mean time between failures (MTBF) [5]. Consequently,
applications will make little forward progress, thereby reducing considerably the overall performance of the
system [14, 16].

∗University of Pittsburgh Department of Computer Science, bmills,znati,melhem@cs.pitt.edu
1Sandia National Laboratories, kbferre,regrant@sandia.gov
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To increase overall system performance process replication has been proposed as a scalable fault toler-
ance method that can be more efficient in exascale-class systems [5]. A major criticism of replication is the
necessary additional resources, especially when considering the power limitations imposed in exascale-class
machines.

The objective of this paper is to compare the power and energy consumption of coordinated check-
pointing and replication techniques. By looking at fault tolerance from the prospective of power we have
found opportunities for making power-aware optimizations to replication. To this end, we propose shadow
replication, a power-aware process replication protocol which provides faster response times and is more
efficient than both checkpoint/restart and traditional replication. We show that shadow replication can save
40% of the consumed energy while also being 40% faster in exascale-class machines.1

The remainder of the paper is organized as follows: section 2 provides a description of the resilience
methods explored in this paper. Section 3 introduces the analytical framework used to model the behaviors
of these methods in large-scale systems, presenting this analysis in Section 4. We validate our methods in
current systems using experimental data presented in Section 5. In Section 6 we provide a brief review of
work in this area and have concluding remarks in 7.

2. Resilience Methods.

2.1. Coordinated Checkpointing. Coordinated checkpoint/restart methods are the most widely used
fault tolerance method in HPC environments. The dominant reason for this popularity is its simplicity to
implement and the natural synchronization points required are present in most applications. In coordinated
checkpointing, all running processes periodically pause their execution and write their state to a stable stor-
age device. Once they have finished writing, the application proceeds with its execution. In the event of a
failure, all processes restore from the last good checkpoint and resume execution collectivly from that point.

2.2. Uncoordinated Checkpointing. Another approach that has been suggested to improve the per-
formance of checkpointing systems is uncoordinated or asynchronous checkpointing [2, 10, 11]. In these
systems, nodes generally checkpoint and restore from local storage without the synchronization used by
coordinated checkpointing. To support a node restoring from a local asynchronous checkpoint, nodes in
this approach keep a log of recent messages that they have sent. When a node restores from a previous
checkpoint, it can then replay reception of messages using remote nodes’ logs.

While this approach can increase checkpointing performance, it also generally assumes the availability
of local storage. In addition, logging increases the latency of messaging operations and potentially takes
significant amounts of space. Finally, asynchronous checkpointing approaches can result in cascading roll-
backs; recent work attempts to bound the amount of rollback that may be necessary [7], but also places
non-trivial limits on application behavior.

2.3. Traditional Replication. Traditional replication is a method in which each application process is
replicated on independent computing nodes, such that if one process fails its replica process can continue
executing as if the failure did not occur. This is also referred to as process replication and has long been
deployed in mission critical applications. Replication in HPC has largely been dismissed because of the
additional resources required, but in recent years has been revisited [5] because of the increased failure
rates expected in exascale-class machines. Furthermore, in this paper we show that power-aware replication
techniques can mitigate this concern by using fewer resources.

2.4. Replication Optimizations. In this work we propose and analyze the potential of a number of
power-aware optimizations to tradtional replication termed stretched and shadow replication.

1Example shown in detail in Section 4, assumes a socket MTBF of 25 years and 53,000 sockets.
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2.4.1. Stretched Replication. Stretched replication works on the assumption that performing work
slowly can save energy. This is typically done through the use of dynamic voltage and frequency scaling
(DVFS); while this is widely available in modern HPC environments it is rarely used. Stretched replication
is a naı̈ve approach which slows down the execution of all processes to the slowest possible speed while
maintaining the applications targeted response time.

There are at least two reasons one might want to reduce the execution speed of nodes in an HPC envi-
ronment. The first we have already mentioned, reducing the execution speed might be necessary to satisfy
power limits. Another reason is that coordinated checkpointing already significanly increases the applica-
tion’s time to solution due to the checkpoints and restarts. If we can increase reliablity by slowing down
while still staying below this checkpoint slowdown, we can maintain an efficiency greater than that of tradi-
tional checkpointing.

2.4.2. Shadow Replication. Stretched replication assumes that by going slower one can always save
energy regardless of how long it actually takes to complete the job. This is not always the case in today’s
computers because machines require a base amount power to operate regardless of the processor speed, we
refer to this as the machine’s “overhead” power. Previous studies [6, 8] have shown this to be somewhere
between 50-85% of the computing nodes’ total power. Our experimental results show an overhead power
of 60-67%. As the time to solution is increased it results in more energy consumption over the entire job,
resulting in a balance between time and power consumption.

Exploring the energy consumption of replication led to the idea that the replica processes could execute
at different execution speeds, while still guaranteeing a response time as good or better than that provided
by checkpointing. For each process, shadow replication associates a suite of “shadow processes”, whose
size depends on the “criticality” and performance requirements of the underlying application. In order
to overcome failure, the shadow executes concurrently with the main process, with the shadow and main
processes on separate computing nodes. To minimize power, when multiple shadows of a single process
exist, each replica shadow operates at decreasingly lower processor speeds. The successful completion of
the main process results in the immediate termination of all shadow processes. If the main process fails, the
primary shadow process takes over the role of the main process and resumes computation, possibly at an
increased speed, in order to complete the task at a targeted response time.

Depending on the occurrence of failure, two scenarios are possible. The first scenario, depicted in Figure
2.1(a), takes place when no failure occurs1. In this scenario, the main process executes at the optimum
processor speed, namely the speed necessary to achieve the desired level of fault-tolerance, minimize power
consumption and meet the target response time of the supported application. During this time, the main
process completes the total amount of work required by the underlying application. However, the shadow
process, executing at a reduced processor speed, completes a significantly smaller amount of the original
work. Because the likelihood of an individual socket failure is low, this scenario is most likely to occur,
resulting in a relatively small amount of additional energy consumption to achieve fault-tolerance.

The second scenario, depicted in Figure 2.1(b), takes place when failure of the main process occurs.
Upon failure detection, the shadow process increases its processor speed and executes until completion of
the task. The processor speed at which the shadow executes after failure is determined such that the targeted
response time is acheived. To maximize energy savings failure detection should occur as soon as possible
but if this is not possible the shadow process could compute the time the main process should complete, then
if that time is reached and the shadow has not been notified, it can assume a failure has occurred.

As mentioned earlier, it is expected we will have additional sockets that will need to be powered off due

1For the purpose of this discussion, only a single shadow is considered. The discussion can be easily extended to deal with multiple
shadow processes
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FIG. 2.1. Shadow replication execution model.

to the power consumption limits. Given a power limit and socket power consumption there will be a fixed
number of sockets available at any one time. Coordinated Checkpoint/restart would use all of the available
sockets to perform work and in the event of failure rollback all sockets, therefore staying under the power
limit by restricting the number of sockets used. Traditional replication would take half of the available
sockets and use them as replicas, which has been shown to increase system efficiency in exascale-class
machines. In contrast, shadow replication has the ability to use additional sockets because the replica sockets
are consuming less power by running at a reduced speed. This has the added benefit of allowing additional
sockets to work as main processes while still providing system resilience as in traditional replication. In the
event of failure there is the potential delay in the time to solution because of the replica’s slower execution
speed. However, because of the ability to use additional sockets we can show that the expected time to
solution is actually faster than both checkpoint/restart and traditional replication methods.

3. Analytical Framework. To evaluate these methods on exascale-class machines we develop a frame-
work of analytical models that represent the energy consumed for each of these methods. We first develop
a model that describes the power consumption of a process or group of processes for a given type of work.
Next, we derive a model that describes the expected amount of time those processes will be performing
a given type of work. By combining these we can then estimate the total expended energy for a given
application and system.

3.1. Computational Model. We consider a distributed computing environment of a large number of
collaborative tasks (equivalent to ranks in MPI) which communicate frequently. The successful execution
of the application depends on the successful completion of all tasks. Therefore, the failure of a single task
delays the entire application. We assume the application is perfectly parallizable and has a total amount of
work to accomplish, W . The work is assumed to be evenly divided into N tasks which also correspond to
the number of system sockets. Because the work is evenly divided each socket will have Wtask =

W
N work

to complete. We assume an application with strong scaling, therefore as the number of sockets increases,
the amount of work each individual process performs decreases. The amount of work is given in number of
clock cycles and each computing socket has a variable speed, σ , given in clock cycles per second. Therefore
the total solution time for an application when all sockets are operating at maximum speed is Ts =

Wtask
σmax

.

Each task also has an associated targeted response time, tresp, which is the maximum time that the
process will complete it’s task. We will represent the targeted response time as a laxity factor, α , of the
minimum response time. For example, if the minimum response time is 100 seconds and the targeted
response time is 125 seconds, the laxity factor is 1.25. In contrast, checkpointing techniques assume that if
a failure occurs the system must always have enough time to re-execute. In our framework this results in
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α = 2.0. 1

3.2. Power Model. We start by considering the dynamic CPU power which is known to be affected
by the execution speed of the processor. Specifically, one can reduce the dynamic CPU power consumption
at least quadratically by reducing the execution speed linearly. Dynamic CPU power, P, can be determined
by knowing the chip activity factor, A, the capacitance C, operating voltage, V , and the frequency, f . The
dynamic CPU power is therefore represented by the function P(A,C,V, f ) = A×C×V n× f , where n ≥ 2.
In this paper we will be performing DVFS, resulting in a execution speed of σ . Because we are scaling both
voltage and frequency, the last component allows us to represent power as the function p(σ), represented by
a polynomial of at least second degree, p(σ) = σn where n ≥ 2. In the remainder of this paper we assume
that the dynamic power function is the cubic, P(σ) = σ3.

Next, consider the “overhead” power which is consumed regardless of the speed of the processor. This
includes both CPU static leakage and all other components consuming power during execution (memory,
network, etc.). In this work we define overhead power to be a fixed factor, ρ , of the power consumed when
the CPU is operating at full speed. The percentage of overhead power in a system is thus defined as ρ

ρ+1 . By
reducing the execution speed one can only change the dynamic power, the overhead power remains constant.

The energy consumed by a socket executing at speed σ during an interval [t1, t2] is given by:

Esoc(σ , [t1, t2]) =
∫ t2

t=t1
(σ3 +ρσ

3
max)dt = (σ3 +ρσ

3
max)(t2− t1) (3.1)

The last component we consider is the energy consumed during an I/O operation, assumed to occur
while writing or recovering a checkpoint. We handle this case separately because studies [4] have shown
that this operation consumes a significant amount of energy. Similar to overhead power, we define maximum
I/O power as a factor of the CPU when operating at full speed. This factor is defined as γ .

Eio([t1, t2]) =
∫ t2

t=t1
(γσ

3
max)dt = (γσ

3
max)(t2− t1) (3.2)

3.3. Failure Model. A failure can occur at any point during the execution of the main task and the
completed work is unrecoverable. Because the tasks are executing on different computing nodes we assume
failures are independent events and that only a single failure can occur during the execution of a task. We
further assume that a probability density function, f (t), exists which expresses the probability of the main
task failing at time t. In the remainder of this paper we use this exponential probability density function,
thus f (t) = 1

Msoc
e−t/Msoc where Msoc is the socket MTBF.

3.4. Checkpointing Energy Model. Coordinated checkpointing periodically pauses tasks and writes
a checkpoint to stable storage. If any one socket fails then this checkpoint is read into memory and used
to restart execution. Daly [3] computes the expected total wall clock time, tw, given the original total solve
time (Ts), a system MTBF (Msys), checkpoint interval (τ), checkpoint time (δ ) and recovery time (R). System
MTBF is dependent upon the number of sockets and the socket MTBF, Msoc, this assumes that socket failures
are independent events.

Tw = MsyseR/Msys(e(τ+δ )/Msys −1)(
Ts

τ
− δ

τ +δ
) (3.3)

1This assumes a single failure, if multiple failures occur checkpointing has the potential to have α > 2.0.
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Given this we can define the estimated energy required for a single process using checkpoint and restart
(CPR) as Ecpr.

Ecpr =Esoc(σmax, [0,Tw])

+Eio([0,δ )])×
Ts

τ
+Eio([0,R)])×

Tw

Msys

(3.4)

The first part of this equation is because at any given time all processes are either working, writing a check-
point or restoring from a checkpoint and all sockets are always executing at σmax. The second part adds
the energy required to write or restore from a checkpoint times the number of times we will be writing or
recovering from a checkpoint. Lastly, we multiply this by the number of sockets, N.

3.5. Replication Energy Model. In this section we develop a model which represents the energy con-
sumption of a replica pair. We then use this model to determine the energy consumption of the combination
of replication and checkpointing. This is equivalent to replacing a single socket in the checkpointing model
described above with a replica pair. Shadow replication has a main process executing at a single execution
speed denoted as σm. One of the primary goals of high performance computing is to achieve maximum
possible system throughput. Thus when we apply shadow replication to this environment we assume that
the execution speed of the main process should be the maximum possible execution speed, σm = σmax. If
no failure occurs then the task will be completed as soon as possible, known as the minimum response time.
In contrast, the shadow process executes at two different speeds, a speed before failure detection, σb, and a
speed after failure detection, σa. This is depicted in Figure 3.1.

main

shadow

σb
σa

σmax
X

t0 t f tc tresp

p

p

FIG. 3.1. Overview of Shadow Replication for HPC

We define some specific time points signaling system events. The time at which the main process
completes a task, tc, is given as tc = Wtask/σmax. Additionally, we define t f as the time at which a failure
in the main process is detected. If no failure is detected we assume that t f = tc, this is done just to make
the formulations below easier to understand. We can also define the time at which the shadow process will
complete a task regardless of a failure as, tr = t f +(Wtask−σbt f )/σa.

We define the expected energy of a shadow replica-set as the summation of the expected energy con-
sumed by the main and shadow process given our failure model. We assume at most one failure in the main
process occurs but this can easily be extended to support multiple failures. In our analysis we have found
that multiple failures made no discernible difference for socket MTBF’s exceeding one year – a reliability
easily reached for future systems.
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FIG. 4.1. Breakeven points for both energy and time given a fixed checkpoint time of 15 minutes and a system overhead power of
60%.

Erep =
∫ tc

t=0
(Esoc(σmax, [0, t])+Esoc(σb, [0, t])) f (t)dt

+
∫ tc

t=0
Esoc(σa, [t, tr]) f (t)dt

+(1−
∫ tc

t=0
f (t)dt)(Esoc(σmax, [0, tc])+Esoc(σb, [0, tc]))

(3.5)

The first part of this equation represents the expected energy consumed by the main and shadow process
before a failure occurs in the main process. This is the summation of the expected energy consumed by
the main plus the energy consumed by the shadow given our failure model over the total duration, 0 to tc.
The second part of this equation is the expected energy consumed by the shadow after failure occurs. The
duration of this is from the time of failure, t f , until the shadow completes execution, tr. The last part is the
expected energy consumed by the main and shadow processes in the event that no failure occurs.

This equation is then used as an objective function in the construction of an optimization problem used
to find energy optimal execution speeds. We let the speed of the shadow process after failure be σa = σmax,
this is because we can trade the power consumed by the main process with the shadow process after failure
of the main. This reduces the unknowns in the objective to the speed of the shadow process before failure,
σb. Using traditional optimization techniques we take the derivative, set the result to zero and solve for σb.
Additionally, we must constrain σb such that if the main process fails the shadow process will be able to
complete the given work, W , by the targeted response time, R. This is known as the “work constraint” and
is represented by the following inequality.

tc ∗σb +(tresp− tc)∗σmax ≥W (3.6)

In addition to providing a model for shadow replication this can be used to represent traditional replica-
tion and stretched replication. Traditional replication would be represented by letting σm = σb = σa = σmax.
Stretched replication is represented by letting σm = σb = σa =

Wtask
tresp

.

4. Analysis. Our analysis finds several system parameters to be important in determining which fault
tolerant method is most efficient.

• I/O Bandwidth - This dictates how long it will take to write or recover a checkpoint.
• System Size - The number of total sockets.
• Socket MTBF - Reliability of a single socket in the computing system.
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• Overhead Power - The overhead power consumed by the socket, as described in Section 3.2.
When comparing fault tolerant methods, we calculate the energy consumption and time using the power,
failure and energy models described in the previous section.

4.1. Scaling and Failure Rates. We compare fault tolerance efficiencies by identifying the breakeven
point at which the replication technique is equivalent to that provided by coordinated checkpointing. We use
two different breakeven metrics, the expected energy consumed and the expected time to solution. These
are related to one another because energy is a function of time, but due to overhead power they are not
equivalent. All of the area above the breakeven curve is where the replication technique is more efficient than
coordinated checkpointing. Breakeven values are calculated by computing the energy and time required for
coordinated checkpointing and comparing that to the energy and time required for the replication technique,
when those values match that is the breakeven point.

Figure 4.1(a) shows the energy breakeven point varying system size and socket MTBF using a fixed
checkpoint time of 15 minutes. These results show that shadow replication can provide a significant energy
savings over traditional replication. For example when socket MTBF is 25 years traditional replication is
viable at 96,700 sockets whereas shadow replication is more efficient at 53,100. This represents a 46%
energy efficiency gain. Unfortunately, stretched replication turns out to be less energy efficient because of
the increased time to solution and the presence of overhead power.

Shadow replication achieves this energy savings by slowing down the replicas, this raises the question
of how this will effect the expected time to solution. Figure 4.1(b) plots the time to solution breakeven point,
and shows that even though shadow replication slows the replicas the expected time to solution is actually
shorter than that provided by traditional replication. For example, when socket MTBF is 25 years traditional
replication is viable at 97,600 sockets, whereas shadow replication is more efficient at just 52,700 sockets,
representing a 46% improvement in expected time to solution.

The improvement in time to solution is because shadow replication can utilize additional sockets while
consuming the same power because the replicas are consuming less power. This is illustrated in Table 4.1
which shows the active socket counts allowable given a 20 mega-watt fixed power budget. Both stretched
and shadow replication have the ability to use additional sockets because they reduce the power consumed by
the individual sockets. Stretched replication reduces the power consumed by all processes equally whereas
shadow replication only reduces the power consumed by the replica sockets. This is the reason that the
expected time to completion of shadow replication outperforms traditional replication. Stretched replication
is able to add additional nodes but because it also reduces the processor speed of the main processes, the
time to solution is higher than both traditional and shadow replication.

In pure replication the total amount of work remains constant but the the number of sockets is half
of that available to coordinated checkpointing. Our model assumes a strongly scaled application which is
a fair comparison because each socket would have less work to accomplish in coordinated checkpointing,
thus in a failure free case it would be faster than replication techniques. However, because with replication
there are two sockets instead of one, the MTBF for the pair is greater than that provided in the single-socket
case. The change in MTBF is what allows replication to out perform coordinated checkpointing at large
scale. In shadow replication, instead of assuming half of the original sockets are replicas, we calculate the
energy optimal σb for α = 2.0. Then “add” additional sockets remaining under the original power limit, but
continuing to use half the sockets as replicas. Stretched replication is similar to shadow replication but both
the replica and main use less power.

The conclusion is that shadow replication is both more energy efficient and produces solutions faster
than traditional replication in power-limited systems. This is true for the majority of the exascale design
space, illustrated by the region in the grey box in Figure 4.1. We assumed a fixed checkpoint time of 15
minutes [5] and a overhead power of 60% which are reasonable system parameters given expected exascale
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Overhead % Method # Sockets # Main Sockets

60% Checkpointing 100,000 100,000
60% Traditional Replication 100,000 50,000
60% Stretched α = 2.0 153,846 76,923
60% Shadow α = 2.0 124,998 62,499

80% Checkpointing 100,000 100,000
80% Traditional Replication 100,000 50,000
80% Stretched α = 2.0 120,230 60,115
80% Shadow α = 2.0 110,636 55,318

TABLE 4.1
Available sockets assuming a 20 mega-watt power limit and 200W per socket.

I/O bandwidth and increased system efficiencies. In the next sections we further relax these assumptions
and study the models sensitivity to these parameters.

4.2. Scaling at Different Checkpoint I/O Rates. The checkpoint write times have a significant effect
on the efficiency of coordinated checkpointing. These times are directly related to the available I/O band-
width, as modeled in [14]. Figure 4.2 uses these models to determine the energy breakeven points for I/O
bandwidth rates from 500GB/s to 50TB/s, representing a wide range of potential values for an exascale-class
machine. For space reasons we only show results for shadow replication, other replication techniques follow
a pattern similar to that in Figures 4.1(a) and 4.1(b). Shadow replication is viable for all but very extreme
levels of I/O bandwidth.
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FIG. 4.2. Shadow replication energy breakeven for differ-
ent I/O bandwidths. Assumes 16Gb per socket.
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4.3. Scaling at Different Overhead Power. Table 4.1 illustrated that the number of available sockets
decreases as the percentage of overhead power increases. Shadow replication can only reduce dynamic
power consumption, leaving it with less power headroom to improve efficiency. This means it can take
advantage of fewer main sockets as the available power headroom decreases. Figure 4.3 shows the affect
overhead power has upon the energy breakeven point. As expected, as the power overhead increases the
potential energy savings also decreases, moving the breakeven point further out into the exascale domain.
The conclusion is that overhead power does have an effect upon shadow replication but even if the overhead
is 100% it will be no worse than traditional replication. It is expected that future hardware will actually
reduce this overhead and therefore make shadow replication more efficient.

5. Implementation and Evaluation. To provide additional insight into the energy consumption of the
methods described in this paper and validate the results of our models, we implemented the replication tech-
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niques in MPI and measured the energy usage of several applications. Coordinated checkpointing is well
established in the HPC community. Instead of implementing our own version we choose to use BLCR in our
experiments. Replication has previously been implemented within MPI [16] but existing implementations
did not have the ability to change the execution speeds of the replicas. We implemented replication as a
MPI profiling library for OpenMPI that allows us to execute unmodified MPI applications using the replica-
tion techniques discussed in this paper. To determine optimal execution speeds for shadow computing, an
estimate of the total amount of work is needed. Most production job queue systems require applications to
estimate their execution time before submitting a job and we use that estimate to determine the execution
speeds in our library.

To measure the power consumption of each of these techniques we use a computing cluster that is
equipped with component-level power measurement instrumentation. This cluster contains 104 nodes, each
with a AMD Llano Fusion, which is a 4-core AMD K10 x86 paired with a 400-core Radeon HD 6550D.
Additional details on the power measurement and validation of the system can be found in [9].

To evaluate the different methods of fault tolerance we selected three different MPI applications. The
first one is a production application called LAMMPS [15] which is a molecular dynamics code. The two
others are mini-applications from Sandia’s mantevo suite [17]: HPCCG (a conjugate gradient solver) and
miniFE (an implicit finite element method). These applications are important as they represent a range of
computational techniques, are frequently run at very large scales on leadership class systems, and represent
key simulation workloads for the U. S. Department of Energy.
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FIG. 5.1. Experimental results of the energy savings achieved by different replication schemas.

5.1. Experimental Results. The purpose of these small-scale experiments are to demonstrate that the
power-aware replication techniques can provide measurable energy savings for actual HPC applications. In
Figure 5.1 the average total energy consumption of multiple application runs are shown for each replication
technique, normalized to the energy consumed by traditional replication. This shows that power-aware
replication techniques do indeed reduce overall energy but also demonstrates that the amount of savings
is application dependent, as previous studies have found [8]. HPCCG and miniFe both demonstrate the
maximum energy savings over traditional replication. This is because they are simple applications that are
processor bound. Looking at LAMMPS, which is a production application, one can see that the energy
savings follows the same trend but the amount of energy saved is less than for the mini-applications. While
it is hard to predict exactly what the energy savings will be, it is clear that our proposed techniques do have
the potential to save energy.

To confirm our assumptions about overhead power we looked at the component level energy usage over
runs of real applications. In Figure 5.2 we show the percentage of energy consumption by component for
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FIG. 5.2. Component level energy usage for LAMMPS

multiple runs of the LAMMPS application. The first chart is the energy consumed when running LAMMPS
at the lowest possible execution speed. In this case, the CPU consumes 39% of the overall energy. The
second chart shows the energy consumption when running at full power in which the CPU consumes 72% of
the overall energy. From this the estimated amount of overhead power is 67%, we observed a similar pattern
for other applications, concluding that overhead power in our system is 60-67%.

6. Related Work. The analysis of energy/power concern and resilience for HPC is still in its formative
stages and as such we are only aware of two papers which look at the energy consumption of fault tolerance
schemes. In [4], the authors measure energy consumption of the three main tasks associated with checkpoint-
restart methods: writing the checkpoint, recovering from a checkpoint and message logging. They make
no attempt to optimize these tasks nor do they explore replication techniques. In [12], the authors look
at three different checkpointing techniques and evaluate the energy consumption required. They find that
uncoordinated checkpointing with parallel recovery was the best technique at both small and large scale
saving up to 17% at 256,000 sockets. Also they show that as the number of sockets grows beyond 256,000
the trend in energy savings of parallel recovery is decreasing. Our work shows that replication increases
energy savings as the system size grows, in contrast to this fault tolerance technique.

While not focused upon energy consumption, there is much research attempting to expand checkpoint
techniques to exascale-class machines. This work revolves around two main concepts, reducing the check-
point time and enhancing uncoordinated checkpointing. To our knowledge there is no work looking at
optimizing the energy/power consumption of replication to make it a more viable solution for exascale-class
environments.

7. Conclusions and Future Work. In this work we show under what circumstances replication is the
most energy and time efficient fault tolerance mechanism available. Furthermore, we show the benefit of
power-aware modifications to replication. Replication can be made 40% more time and energy efficient
using a simple protocol termed shadow replication. This savings makes replication a viable fault tolerance
solution through the majority of the exascale-class design space. Additionally, we demonstrate at small
scale that the proposed modifications actually produce energy savings for actual HPC workloads. Most
importantly, this work demonstrates the need to consider power as a first order design constraint in fault
tolerance methods for exascale systems.

While these results are promising, there are several avenues of future work being pursued. First, due to
the reduced speed of the replicas one concern is the growth of the message queues between replica and their
leaders, which occupy memory on the replica nodes. The rate of this queue growth depends highly upon an
application message rate. While we are still investigating possible solutions, the most promising draws an
analogy between these queues and the message logs used in uncoordinated checkpointing techniques. The
idea, therefore, is to use an applications send-determinism property [7] to reduce the size of message logs
while avoiding cascading rollbacks. Lastly, we are continuing to explore other power-aware modifications
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to replication and ways to efficiently pair replication with checkpointing.
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A VIRTUAL CLUSTER TEST ENVIRONMENT FOR OPERATING SYSTEM AND RUNTIME
DEVELOPMENT

BRIAN J. KOCOLOSKI∗, KEVIN T. PEDRETTI1, RYAN E. GRANT2, AND DAVID DEBONIS3

Abstract. Lightweight kernels (LWKs) are valuable operating system substrates in the high performance research community, but
their deployment in new environments can be problematic as they are built for a set of highly specialized hardware that is typically only
found in supercomputers and large-scale data centers. Developing and testing new features that leverage this hardware typically requires
access to such a specialized system, and this access can be very expensive. The problem is particularly relevant for collaborators on
the Kitten LWK project at Sandia National Laboratories that work on developing such features, but have difficulty deploying them on
Kitten without access to Sandia’s specialized systems.

In this paper, we describe a virtual test architecture that allows development on the Kitten OS and runtime stacks without access to
specialized hardware. Our solution, which leverages a modification to the Portals message passing interface, makes it simple for users
to deploy a cluster of fully-featured Kitten LWK virtual machines in a way that is not limited by the underlying hardware. We also
discuss some interesting software techniques that Kitten leverages, including various different uses of Portals, to support scalable, high
performance networking for user-level applications.

1. Introduction. Lightweight kernels (LWKs) are ideal choices for supercomputing operating systems
(OSes) for a variety of reasons. They provide the bare minimum level of software support to interface
users with hardware, and as such they avoid inducing overhead to applications with complicated resource
allocation schemes. Accordingly, LWKs have shown to provide better performance, particularly at large
scales, than their more full-fledged counterparts [4,5]. In addition to improved performance, researchers are
attracted to LWKs as OS substrates because they have relatively small, simple code bases that provide little
resistance to change and thus lend themselves to a variety of research uses [2, 6]. This is in stark contrast to
the painstaking experience of trying to add a small feature to a complicated OS architecture like Linux.

Although LWKs are beneficial for these reasons, some factors have limited their deployment to date.
First and foremost, by their nature LWKs do not have widespread driver support for commodity hardware
devices, as they are built specifically for the specialized hardware required in supercomputers and large-scale
data centers. This is typically due to the fact that LWKs are developed from a very small initial code base
and functionality is added only as it is desired. This is in contrast to a full-weight kernel (FWK) approach to
high performance computing in which a full-fledged OS is stripped down by removing extraneous features
with the goal of improving the performance of isolated subsystems. The Kitten LWK1 developed at Sandia
National Laboratories provides a fitting example of this distinction. Kitten now has support for five network
devices. For comparison’s sake, as of this writing the Linux kernel supports over sixty wireless network
devices alone.

Because of this bottom-up, minimalistic approach to development, whenever a user wishes to deploy
an LWK on a new or different set of hardware, compatibility issues are likely to arise. Researchers without
direct access to supercomputers and high performance systems are confronted with the problem of figuring
out how to deploy the kernel on their systems. Specifically, this problem has manifested itself to our research
collaborators on the Kitten LWK project that would like to leverage high-speed network protocols and mod-
els, including the Portals [3] message passing interface, in Kitten, but do not have access to the systems
that Sandia’s on site developers do. Frequently these protocols, such as MPI, SHMEM, and various PGAS

∗Department of Computer Science, University of Pittsburgh, briankoco@cs.pitt.edu
1Sandia National Laboratories, ktpedre@sandia.gov
2Sandia National Laboratories, regrant@sandia.gov
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1Kitten is available at http://software.sandia.gov/trac/kitten
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models are built to operate over a variety of high-speed network devices which are expensive, or in the case
of Portals, simply do not exist in any commodity hardware.

To ameliorate this issue, we have developed a solution that allows users to deploy instances of the
Kitten LWK and run any upper-level protocol built for the Portals API in the Kitten user environment by
supplementing Portals with functionality for non-specialized hardware. Portals’ key contribution in this case
is that a protocol built for Portals does not change regardless of how Portals is implemented. Obviously, a
high-speed interconnect must be present if performance is the key concern, but in cases where development
and testing are the focus, the key is that Portals simply works, not necessarily that its performance is optimal.
In this spirit, Portals has been supplemented with support for a UDP transport, and thus can operate on any
system with a UDP stack and hardware capable of transferring IP datagrams. Accordingly, we have also
implemented driver support in the Kitten kernel for an Ethernet device, and have incorporated a UDP stack
into the kernel that is capable of implementing the functionality required by the Portals UDP transport layer.

It is our vision that these changes can be particularly useful to our collaborators if used in the context of
a virtual environment. By using a virtual machine (VM) image that emulates our newly supported Ethernet
device, users can quickly and easily deploy a cluster of virtual Kitten instances, connected over the virtual
Ethernet connection, and run any high-speed network protocol as long as it uses the Portals API. The key is
that users can do this without any regard to the hardware present on their physical host machine.

In section 2, we will first discuss the specifics of the virtual architecture that we envision, including
details of a virtual cluster that we perceive to be useful for development and testing. Then, in section 3 we
will discuss the use of Portals in our architecture, including the support that was added for UDP transports
and the factors that went into its integration with Kitten. Finally, we will give an overview in section 4
of the Kitten user-level architecture, including some of the techniques that have been developed to enable
high-speed, scalable network performance. We will provide concluding remarks in section 5.

2. A Virtual Development Cluster. Our main goal in this work was to create a development envi-
ronment that is general enough to be useful to a wide range of users on a wide range of systems, but still
expressive enough to allow for the development of high performance protocols that may require specific
system and device configurations to achieve optimal performance. Our solution to this goal has two main
components. We achieve generality by embedding our development system in a virtual architecture that is
deployable on any system that supports the VMWare hypervisor.1 Additionally, our environment remains
expressive enough to support the development of high performance protocols by supporting the Portals mes-
sage passing interface. In this section, we focus on the former component.

By combining virtualization and hardware emulation, the VMWare hypervisor is an ideal choice for
providing an environment that is deployable on a wide range of systems. The hypervisor provides a com-
pletely software-based implementation of an Intel e1000 network card that can function in the absence of any
such device on the host machine. Additionally, the hypervisor implements a feature called “host-only net-
working” by which users can connect VMs over a virtual Ethernet network, effectively creating a cluster of
VMs. The resulting architecture, which is completely implemented in software, mimics that of a physically
networked cluster of machines. Guest operating systems perceive no difference between this architecture
and a physical cluster, outside of any performance impacts that they explicitly measure.

Through utilizing these tools, we envision an architecture similar to the one presented in Figure 2.1. Of
particular interest in this figure are the following components:

1. The Kitten VMs. These VMs are all running Kitten kernels with e1000 driver support as the guest
OS.

2. The front-end development VM. This VM runs the user’s favorite Linux flavor as the guest OS.

1VMWare Workstation and other VMWare products are available at http://www.vmware.com
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FIG. 2.1. A virtual LWK development cluster

3. The host-only network. This network connects the Kitten VMs, the front-end development VM,
and the host machine in one network.

4. The externally-accessible network. This network connects the front-end development VM, through
the host’s physical network interface, to the external network via the NAT protocol.

To generate an architecture similar to this one, a user first needs to create a VM and boot it with their
choice of Linux distribution as the OS. This VM will be designated the “front-end development” or simply
“front-end” VM. Ideally, if the host system has external network access, the user will create this VM with
two virtual network devices: one to support the host-only network, and another to give it external network
access through the host device.

Once the user has created the front-end VM, the simplest way to generate a cluster of Kitten VMs is
to download the Kitten source tree into the front-end VM and compile the kernel there. Then, to boot the
Kitten kernel, the user must create VM templates for the hypervisor to boot, but they do not need to specify
any guest OS to the hypervisor. Rather, using the “Preboot Execution Environment” (PXE) feature provided
by the hypervisor, the Kitten VMs can request a kernel image to boot over the host-only network. This mode
of operation requires that the user first configure both a TFTP server and a DHCP server in the front-end
VM to service PXE requests.

Note that of these components, only the externally-accessible network requires the presence of any
particular physical hardware device. As long as the host machine has a NIC through which it can access the
external network, the hypervisor’s “Network Address Translation” (NAT) feature, which effectively allows
VMs to “share” the host’s IP address, will allow the front-end VM to have external network access as well.
This characteristic means that our virtual development cluster is deployable on any system that supports the
VMWare hypervisor and has external network access.

3. Upper-Level Network Protocol Support in Kitten. In this section, we will describe the key fea-
tures that support the development of upper-level network protocols in our virtual development environment.

3.1. The Portals Network Programming Interface. The Portals network programming interface is
a low-level API that achieves scalable network performance on high performance systems. Portals, which
can be used on scales ranging from small Ethernet environments to massively parallel supercomputers, is
a message passing interface originally developed by Sandia National Laboratories and the University of
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FIG. 3.1. Upper-level protocols built for Portals don’t depend on how on the Portals API is implemented.

New Mexico; its detailed specification can be found elsewhere.1 The Portals specification provides building
blocks upon which upper-level protocols, such as the Message Passing Interface (MPI), can be efficiently
constructed. A key advantage that Portals provides in our development environment, illustrated in Figure 3.1,
is that protocols built for Portals do not depend on underlying Portals implementation details. By allowing
an additional layer to exist underneath Portals in the network stack, developers are not limited to systems
that include Portals hardware. Rather, they can continue to build protocols that leverage the Portals API
using a more commodity network device as the underlying transport layer. As demonstrated in Figure 3.1,
OpenMPI over Portals is one particular network stack that can leverage Portals for message transportation.
Of course, neither OpenMPI nor the other protocols shown in the figure are strictly tied to the Portals API.

An additional advantage of Portals that happens to be unrelated to its use as a high-performance network
layer is its utility as a Kitten system service substrate. As we will discuss in section 4, the Kitten user-
level environment implements a number of system services that provide various support to applications by
leveraging the Portals API. These services do not use Portals for performance reasons, but rather because
Portals provides an API that is sufficiently expressive, is relatively easy to program to, and is consistent
across the Kitten runtime environment. Using Portals in this fashion obviates the need to develop further
OS-level features to support these services.

Prior to this work, Portals could not be deployed in the development environment that we have advo-
cated for two reasons. First, Portals did not support a transport layer capable of communicating over an
Ethernet connection. The existing Portals implementation only included support for Infiniband and shared
memory transports. Therefore, we have supplemented Portals version 4.0 with the ability to communicate
over an underlying UDP transport, allowing it to be deployed over our virtual Ethernet network. The second
factor limiting the deployment of Portals in our development environment was that Kitten lacked a TCP/IP
network stack capable of transmitting UDP datagrams. As such, we have ported lightweight IP (lwIP2), a
small, system-independent implementation of the TCP/IP protocol suite, to Kitten and developed a simple
UDP layer in Kitten to interface with it. By combining the Portals UDP transport layer, the lwIP TCP/IP
implementation and the Kitten e1000 device driver, applications in Kitten can now utilize any upper-level
network protocol that is built for the Portals API in our development environment.

4. The Kitten User-level Architecture. For the remainder of this paper, we will focus on the Kitten
user-level architecture. Figure 4.1 gives a high-level illustration of the Kitten user-level architecture. Specif-
ically, this diagram illustrates the relationships between the following components:

1http://www.cs.sandia.gov/Portals/portals4-spec.html
2lwIP is distributed under a BSD license. It is available at

http://savannah.nognu.org/projects/lwip
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FIG. 4.1. The Kitten user-level architecture

• The SMARTMAP shared memory technique
• The application processes (APP)
• The Process Control Thread (PCT)
• The Portals Progress Engine (PPE) *
• The PMI-based job launcher (JOB LAUNCHER) *

While this project focused in general on the integration of each of these components to support the Kitten
user-level environment, the bulk of the project’s engineering work focused on the latter two components.
Many new features were added to the Portals UDP transport to support the PPE operating mode, which is
required for deploying Portals in Kitten. Furthermore, the PMI-based job launcher was implemented from
scratch. In the following sections, we will describe this architecture in detail, and we will highlight an
application’s interaction with each component.

4.1. SMARTMAP. SMARTMAP is an operating system technique that allows processes on a multi-
core processor to efficiently access each other’s memory without involving the kernel [2]. Initially built to
support shared memory operations between multiple processes of the same application, SMARTMAP has
been integrated into the user-level architecture to support communication between application processes as
well as the PCT. SMARTMAP takes advantage of Kitten’s very simple approach to memory management.
Namely, each process utilizes only one entry in its top level page table mapping structure (PML4, on X86-
64). On a 64 bit system, there are 512 entries in this table, which means that 511 of the 512 entries in the
PML4 table are unused. SMARTMAP takes advantage of this excess virtual address space by mapping each
process’ singularly used PML4 entry into every other process’ address space.

The mapping strategy for Kitten user-level processes is demonstrated in Figure 4.2. The current conven-
tion is that each application maps each other application process, as well as the PCT, into its address space.
The PCT also maps each application process into its address space. The diagram is interesting because it ap-
plies to every application process as well as the PCT. The only aspect of the picture that changes per process
is the field labeled “SELF”. Each process maps its own memory twice - once in PML4 entry 0 (that is, each
process “owns” the virtual address range 0x0-0x7FFFFFFFFF), and once in the PML4 entry associated with
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PML4 Entry Application Rank SMARTMAP Slot
511 509 510
... ... ...
3 1 2
2 0 1
1 PCT/PPE 0
0 SELF N/A

FIG. 4.2. SMARTMAP memory mappings for Kitten user-level components on x86-64

// 512 GB per PML4 entry
#define SMARTMAP_SHIFT (1 << 39)

void * remote_addr(unsigned int rank, void * addr)
{

unsigned int slot, pml_entry;

if (rank == PCT_SRC_ID) // Want to access PCT
slot = 0;

else
slot = rank + 1;

pml_entry = slot + 1;
return ((pml_entry << SMARTMAP_SHIFT) | addr);

}

FIG. 4.3. Function for calculating a remote SMARTMAP’d address from a local virtual address

its application rank.
Together, the following two factors make remote address calculations simple: (1) When a process wants

to access an address in another process’ address space, the PML4 entry to access is calculated simply and
deterministically, depending only on the remote processes’ application rank; (2) Addresses in Kitten pro-
cesses are symmetric, meaning the addresses of variables with global scope are the same in every process.
The formula for calculating a virtual address for a remote process is given in Figure 4.3.

4.2. The Portals Progress Engine. The Portals Progress Engine (PPE) was implemented as a way to
facilitate high performance in situations where many processes generate Portals operations. The PPE allows
multiple processes on the same node to issue portals operations without needing to contend for underlying
transport resources, such as access to UDP sockets or IB queue-pairs, as well as Portals resources, such
as event queues and match entries. Instead, applications share access to these resources by funneling their
requests, over a SMARTMAP-facilitated shared memory transport, to the PPE. When an application process
wishes to perform a Portals operation, it constructs a message consisting of the specific Portals operation,
as well as some book-keeping information about itself, and writes the message into a queue implemented
in the shared memory region. The PPE, which is a separate thread inside the PCT, simply loops over this
queue looking for Portals requests. Whenever it receives a message, the PPE performs the Portals operation
on behalf of the requesting process, and then signals the process by way of a SMARTMAP’d flag that the
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operation has completed.
The PPE allows for systems with large numbers of cores to create many application ranks without

forcing the processes to contend for underlying system resources, as well as memory and other resources
in the Portals layer itself. By providing a high performance communication medium via the SMARTMAP
transport, applications can scale to many ranks on the same node without suffering from overhead that would
otherwise result.

4.3. The PCT. The Process Control Thread (PCT) is a separate process in the Kitten user-level envi-
ronment. The first major responsibility of the PCT is to set up the application processes to execute a program.
This setup includes creating a specified number of processes and mapping the processes to each other and
to the PCT itself via SMARTMAP. Currently, the program to run in the application processes is compiled as
raw data from a Linux ELF executable directly into the PCT. Once the PCT has created the address spaces
for each process, it copies the raw data from the executable (which must be built statically on Linux) into the
Kitten processes’ program text segments. The PCT also sets up each of the processes’ initial environments.

Once the setup is finished, the PCT either starts each of the processes or waits for a signal from an exter-
nal process. As part of this work, the PCT has been modified to allow an off node process to communicate,
over Portals, that the application ranks should be started. Currently, this communication is accomplished
via a Process Management Interface (PMI) [1] message. PMI interfaces process managers with parallel pro-
gramming libraries in a unified, scalable fashion that eliminates overhead caused by many application ranks
contending for programming library resources. In this work, we implemented an additional feature in the
PMI API that allows an off-node process to signal to the PCT that it should start the application processes.

The other major responsibility that the PCT has is to service PMI requests from application ranks. The
PMI library that has been implemented for Kitten applications uses Portals as the transportation medium.
Therefore, when an application generates a PMI request, the request is first embedded in a Portals message.
The Portals message is then sent via SMARTMAP to the PPE. At this point, the PCT, which shares an
address space with the PPE, either services the message or generates a request to be sent to the master PMI
server, if the request cannot be satisfied locally. In either case, once the PCT has a response to the PMI
request, the PPE signals to the application that the PMI request is complete.

4.4. Application Execution Flow. With all of the components of the Kitten user-level architecture es-
tablished, we will now walk through the figure, illustrating the life of an application process, with particular
interest on the path that a Portals request generated by the application may take. We again direct the reader’s
attention to Figure 4.1. There are two general paths that are possible for a Portals message to traverse. The
first path is represented by the blue circles in the figure.

1. The PCT initializes the application processes at nodes 1 and 2.
2. An application process at node 1 generates a Portals message and signals the PPE.
3. The PPE sends the message to an off node destination via the UDP transport.
4. The PPE at node 2 receives the message and signals an application process of its arrival.
5. (Optional) The application generates a response and signals the PPE.
6. (Optional) The PPE sends the message back to node 1.
7. (Optional) The PPE at node 1 signals the application process of a response.

The other path that a Portals message can traverse is represented by the red circles. Note that steps 1, 2,
and 7 in blue are common for this path as well.

1. The PCT initializes the application processes at nodes 1 and 2.
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2. An application process at node 1 generates a Portals message and signals the PPE.
3. The PPE notices that the destination is the PCT and does not forward the message. The PCT

receives the message and generates a response or a request.
4. (Optional) The PCT generated a request, which the PPE sends to the job launcher.
5. (Optional) The job launcher generates a response and returns it to the PPE.
6. (Optional) The PPE notices that the destination is the PCT and does not forward the message. The

PCT receives the message and generates a response.
7. The PPE signals the application process of a response.

In either sequence of events, the PPE is responsible for transmitting all Portals messages. In the latter
case, some attention should be paid to messages delivered to the PCT. Because the PCT and the PPE share
an address space, Portals messages sent to the PCT do not need to be copied by the PPE into the PCT’s
address space, but rather need to copied to the memory descriptor(s) that the PCT had previously created to
receive messages. Conversely, when the PCT generates a message to send to the PPE it simply writes to the
same queue that application processes write to to signal the PPE; the only difference is that the queue is not
shared via SMARTMAP,1 but again exists in the PCT’s own address space.

5. Conclusion. Deploying LWKs can be significantly challenging for those without access to the high
performance systems they are built for. This is particularly true for the development of high-speed network
protocols that are programmed specifically for specialized low-level network devices and APIs, such as Por-
tals. In this work, we have developed a virtual cluster environment with a Portals network stack that allows
LWK and runtime development to proceed without access to specialized hardware. The key distinction is
that a protocol built for Portals does not change regardless of whether Portals is implemented in hardware or
on top of a commodity network device.

We have also given an overview of the Kitten user-level architecture. The shared memory strategy
SMARTMAP allows processes of the same application to access each other’s memory without operating
system involvement. SMARTMAP also removes extraneous memory-to-memory copies, which are required
by other shared memory implementations, because it allows processes to share page tables and write directly
into each other’s address spaces. With SMARTMAP and Portals as the transportation engines, the Kitten
user-level architecture is built to allow applications with many ranks on the same node to avoid overheads
that would otherwise occur in more traditional architectures.
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MACHINE LEARNING OF HARD DISK DRIVE PERFORMANCE
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Abstract. Predicting hard disk drive positioning times and request scheduling are crucial parts of predicting hard disk drive
performance in general. Existing approaches use white-box modeling and require intimate knowledge of the internal layout of the drive.
Automatically learning this behavior is a much more desirable approach, requiring less expert knowledge and fewer assumptions. A
barrier to machine learning of hard drive performance has been the existence of periodic behavior with high, unknown frequencies. We
show how hard disk drive positioning times and request scheduling can be accurately predicted using a neural net after these frequencies
are found using Fourier analysis.

1. Introduction. Hard disk drive modeling may be used as part of a much larger system simula-
tion [19]. Positioning time is a particularly difficult part of the model, due to the high information content
and difficulty of extracting this information. Tools such as DIG can extract this information [8]. Unfortu-
nately, they require assumptions about the internal structure of the hard disk drive. This structure is likely
to change in the future due to the introduction of shingled hard disk drives or other optimizations, as has
happened in the past. Manufacturers do not release this information, so researchers must reverse-engineer a
device before modifying DIG to support the new layout.

A more desirable approach is to use machine learning to reproduce the behavior with as few assumptions
as possible. Since this is a highly non-linear regression problem with interactions between features, neural
nets are a reasonable approach. One of the complications in the problem is the existence of unknown, high
frequency components caused by the rotational aspect of the drive. Unfortunately, a limitation of neural
nets (and many other approaches, including decision trees) is their inability to recognize periodic patterns
in the data. This can be seen with the checkerboard problem [25] (fig. 1.1(a)) as well as the two-spirals
problem [4, 23] (fig. 1.1(b)).

In fact, Specht and Shapiro found that classifying the points on an 8× 8 checkerboard required two
hidden layers, one with 200 neurons, and one with 50 [25]. Even so, the accuracy was only 90%. Note that
this is equivalent to predicting the sign of sin(x)sin(y) for x,y ∈ [0,8π]. Our problem is significantly more
complex, with each dimension being five orders of magnitude larger. Clearly, scaling up the neuron count is
infeasible. We overcome this by finding these frequencies with Fourier analysis, then feeding them into the
neural net explicitly by augmenting the feature vector.

Caching and readahead effects are outside the scope of this report. To avoid these effects, we assume
read-only workloads that read individual sectors. In this case, hard drive request latency consists largely of
two components:

1. Queue time — the time the request spends in the device’s queue, waiting to be processed. Requests
may queue to some maximum depth in the device, then be responded to out of order. This can be
cast as a classification problem with k classes, where up to k requests are in the drive’s queue, and
exactly one is scheduled to be processed next.
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FIG. 1.1. Classically hard periodic problems.

2. Positioning time — the amount of time it takes to start reading sector B, given that sector A was
just read. This includes seek time, rotational latency, and settle time. Medium and large seeks are
easy to model, because the time can be closely approximated by a simple, smooth function of the
logical block numbers (LBNs). Settle time can be modelled as a constant and is easily subsumed
into the seek model. Small seeks and rotational latency are difficult to model because these are very
high-frequency functions in LBN-space.

Breaking down latency into queuing time and positioning time requires two assumptions: 1) there is
exactly one queue, and 2) at most one request may be physically processed at a time. This is true for hard
disk drives but breaks down for many other storage devices. Future work may look at predicting latency
directly.

We assume that the positioning time and scheduling functions may have components that are locally
periodic. This is a fairly lax assumption. First of all, it is well-known that these functions do have locally
periodic components for existing hard drives, due to track lengths and track skews that are constant within a
serpentine. Periodicity is likely to occur in other devices as well, because of the benefits of regular repetition
in designs. Secondly, as described in section 3.1 the cost is minor if these functions do not have locally
periodic components.

One approach would be to use a sinusoidal transfer function in the neural net to capture the locally
periodic components. Unfortunately, this has a couple of problems: 1) the weights must be tuned very
precisely, and 2) many local minima are created near the true frequency values.

These effects are caused by the tunability of the frequencies. Fixing the frequencies externally and
feeding in sines and cosines ameliorates these issues. This is the basis of our approach.

One view of the utility of this approach is that it explicitly adds important features (the sines and cosines)
that are otherwise hidden. These are theoretically calculable from the existing features, but difficult to learn
for many common algorithms including neural nets and decision trees.

1.1. Terminology. The positioning time function is f (a,b), where a and b are the LBNs of the start and
end sectors normalized to the range [0,1], and f returns the positioning time in milliseconds. The Fourier
transform of f is f̂ (u,v).

Unless otherwise specified, times are in milliseconds, distances/periods/lengths are in sectors, and fre-
quencies are in cycles

237,631sectors .



186 Hard Drive Positioning Time

2. Related work.

2.1. Predicting request latencies. DiskSim [1] is a well-regarded disk model based on discrete event
simulation. It has been validated to produce request-level accuracy. However, it is computationally expensive
and difficult to configure for modern disks.

Many analytic models have been created, including work by Lebrecht, Dingle, and Knottenbelt [18].
Analytic models are relatively easy to understand and extremely fast due to their compact formulae. Unfor-
tunately, they require very detailed expert knowledge to create. Often, they are limited to certain classes of
workloads and are not useful alone in generalized contexts.

Kelly et al. describe a black-box probabilistic model [14] similar to table-based models such as the one
by Garcia et al. [6]. Requests are categorized based on features including size, LRU stack distance, number
of pending reads, number of pending writes, and some RAID-specific information. Table-based models are
limited by the table size. If too many dimensions are used, or the granularity within dimensions is too fine,
the table grows far too large. This limits the ability of the models to capture smooth transitions or complex
cross-dimensional features. The work by Kelly et al. ameliorates the issue by essentially not requiring the
entire table to be filled in, but the problem is not fully solved.

Mesnier et al. create a model for relative performance of storage devices [20]. This first requires
workload characterization, which may not be feasible ahead of time for a large-scale system simulation,
especially if the workload is dynamic. Furthermore, given a relative model for device B compared to device
A, simulating device B still requires a model for device A.

A popular approach is to use regression trees to predict response time. Dai et al. predict perfor-
mance with a combination of regression trees and support vector regression [2]. However, their models
are workload-specific, and their prediction errors are based on one-second averages rather than per-request
latencies. Wang et al. also calculate errors based on windows, using one-minute windows in their case [26].

None of the machine-learning-based approaches have shown low per-request errors.

2.2. Learning periodic functions. As stated in the introduction, traditional neural nets have trouble
predicting periodic patterns. Most solutions fall into one of four categories:

1. Direct prediction — Predicts the function directly from the input. These invariably use a fixed
interval with a very small number of periods [5, 9, 10, 22, 28]. Extrapolating beyond the training
range leads to poor performance [16].

2. Input preprocessing — If the function is known to have period p, map the input x into the range
(0, p) using x mod p. Common examples include time-of-day or day-of-year inputs for func-
tions that are daily or yearly periodic [3, 17]. An alternative is to map it to sin(2πx/p) and
cos(2πx/p) [7].
This leads to very large error if the period is not precisely known ahead of time, or if the input is
not exactly periodic. Mapping kp+ r for k ∈ Z, 0≤ r < p ∈ R should result in r. If the real period
is p+ ε , then mapping kp+ r = k(p+ ε)− kε + r yields r− kε (mod p+ ε). This means that the
error (kε) is proportional to k. Because k corresponds to the number of tracks on a hard disk, k is
on the order of a million for modern hard drives. So, if ε is even one millionth of p, the input could
be up to 180◦ out of phase.

3. Periodic activation function — Rather than using tanh(x) or 1
1+e−x as the activation function, use

sin(x). Lack of a saturation region can lead to instability [27]. Periodic activation functions also
introduce many local minima [24].

4. Recurrent or delay networks [12, 21] — Feeds the network back into itself, rather than using a
feedforward network. Predicts y values from other y values, rather than from x values.
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FIG. 2.1. Predicting positioning times using a recurrent net. Sample sparsity leads to deep recursion.

The recurrent network approach requires a bit more explanation. This amounts to predicting sin(x) and
cos(x) from sin(x− δ ) and cos(x− δ ), rather than predicting from x. For sine and cosine, this is actually
linear:

sin(x) = sin(x−δ )cos(δ )+ cos(x−δ )sin(δ )
cos(x) = cos(x−δ )cos(δ )− sin(x−δ )sin(δ )

where sin(δ ) and cos(δ ) would be constants. The linearity doesn’t hold for general periodic functions, but
this hints that it is a much easier problem than computing sin(x) from x directly.

Unfortunately, recurrent neural nets are not feasible for our problem. Since we have a 2D problem,
we would predict f (a,b) from f (a− δ ,b) and f (a,b− δ ). Since we only have a very sparse sampling of
f , we will almost certainly need to recursively compute f (a− δ ,b) from f (a−2δ ,b) and f (a− δ ,b− δ ),
and compute f (a,b− δ ) from f (a− δ ,b− δ ) and f (a,b− 2δ ), where δ = 1 sector (fig. 2.1). Limiting
the recursive computation to one million predictions would require sampling full rows and columns every
thousand sectors. Given that the size of the hard drive is approximately a billion sectors, this comes to two
million rows and columns, each with a billion entries. If we assume an average access time of 10 ms, it
would take 2×106 ·109 ·10 ms≈ 634,000 years to capture the dataset.

3. Fourier analysis. To find periodic behavior in f , the Fourier transform is an obvious place to start.
It cannot find periods that are not directly correlated to the value of f , but it is much faster than training
a neural net for every period to see which ones are useful. Furthermore, if many periods are useful, their
individual impact on the neural net’s accuracy may be swamped by noise. Using the Fourier transform
allows us to pinpoint useful periods relatively quickly and with high precision.
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Let us consider the time it would take to capture the necessary data for a tiny portion of the drive. The
first part of the first serpentine on the test hard disk drive is 94 tracks, or 237,631 sectors, which is 0.024%
of the drive. Since the range is small enough that seek time is negligible, the average latency is roughly
half a rotation, or 8.33/2 milliseconds. Capturing f for every pair of sectors just for this range would take
approximately 8.33/2×237,6312 milliseconds, or 7.46 years. Obviously, this is infeasible, so we are limited
to a very sparse sampling.

The sparsity means that we cannot use the FFT, so we fall back to the brute force method of calculation.
First, to keep expressions compact, let’s define the vectors x = (a,b) and ξ = (u,v). Then we have:

f̂ (ξ ) =
1
N ∑

k
f (xk)e−2πixk·ξ

=
1
N ∑

k
f (xk)cos(xk ·ξ )+ i

1
N ∑

k
f (xk)sin(xk ·ξ )

Only the magnitude is important, and our data is real-valued, so this becomes

| f̂ (ξ )|= 1
N

√√√√(
∑
k

f (xk)cos(xk ·ξ )

)2

+

(
∑
k

f (xk)sin(xk ·ξ )

)2

Calculating | f̂ | for M frequencies and N input points takes O(MN) time. Searching all frequencies in the 2D
space leads to infeasible computation time for large datasets or datasets over larger regions of the drive. Since
the positioning time depends mostly on the difference between the sectors, the most important frequencies
should occur along the diagonal v = −u. By searching only this diagonal instead of the entire space, the
computation time becomes feasible.

Off-diagonal frequencies occur, but they are mostly related in a straightforward fashion to frequencies
on the diagonal. An example would be a dataset that includes track sizes of 10 and 11. Strong coefficients
are likely at periods (10, 10), (10, 11), (11, 10), and (11, 11). Since the diagonal provides (10, 10) and
(11, 11) (or just 10 and 11 in 1D), the locations of the others could be inferred, although that is not actually
necessary.

Other off-diagonal frequencies are likely to be caused by the fact that track length is correlated with
the start and end sectors. We believe that we can ignore those and rely on the neural net to pick out which
frequencies are relevant for which portion of the disk.

To determine a threshold for strong frequencies, we sample 1000 frequencies at random. The threshold
is then set to the mean plus six standard deviations. Assuming the magnitudes are normally distributed, this
means that a frequency has roughly a 1 in 500 million chance of being spuriously flagged.

We scan across v =−u with a step size of 0.1, looking for local maxima above the threshold. The peaks
were often not centered on integer frequencies, which is why the step size is not 1. After finding a maximum,
we perform a local search to fine-tune its position.

Due to structures such as serpentines, f may have higher-order periods. In other words, f may have
period p1 for a subrange, then p2, then p1, then p2, etc., with the switch between p1 and p2 being peri-
odic. Currently, we have no method for detecting these explicitly, although we have seen them show up as
interesting periods in their own right. These actually cause further problems by reducing the utility of the
lower-level periods. The reason is that the multiple regions using period p may be out of phase, meaning
that no single sinusoid of period p correlates with f well, causing | f̂ | to drop. Essentially, this is a form of
mixed interference which can result in a weaker signal than if the signals interfered purely constructively.
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3.1. Input augmentation. Once all interesting periods have been found, the input vectors for the
neural net are augmented. Given an input (a,b) and periods p1, . . . , pk, the augmented input vector is (a,
cos(2πa/p1), sin(2πa/p1), . . ., cos(2πa/pk), sin(2πa/pk), b, cos(2πb/p1), sin(2πb/p1), . . ., cos(2πb/pk),
sin(2πb/pk)). We use sinusoids of a and b separately rather than sinusoids of b− a because the period
changes for each input separately. For example, if a is in a region where p1 dominates, and b is in a region
where p2 dominates, then sin(2πa/p1) and sin(2πb/p2) are useful, but sin(2π(b−a)/p3) is not likely to be
useful for any period p3.

If no interesting periods are found, then the input vectors are unchanged. This means that for devices
with no periodicity, the cost of the periodicity assumption is just the time to search for periods. The neural
net is unchanged, and therefore the accuracy is unchanged.

Neural nets are known universal function approximators, so they can find the shape of the periodic
waveform by themselves. The phase of the periodic signal is actually the important part. Sines and cosines
are used because linear combinations result in sinusoids with adjusted phase.

4. Shared weights. The best results were obtained when using subnets with shared weights. This
means that the weights on hidden neuron 1 in subnet 1 were forced to be equal to the weights on hidden
neuron 1 in subnet 2. The idea is that the subnets map from LBNs to geometrical space, and the main net
maps from geometrical space to time. Since the start and end requests share the same LBN to geometry map-
ping, the subnets should be equal. This is essentially a very simple convolutional neural net with only two
instances of the convolving subnet and no overlap of inputs. A similar approach was used by Kindermann et
al. for solving functional equations with neural nets [15].

More formally, the net assumes f can be expressed as

f (a,b) = h(g(a),g(b))

where g (the subnet) maps from LBNs to geometry, and h (the main net) maps from geometry to positioning
time. Reuse of g, which is equivalent to weight sharing in the neural network, formalizes the assumption
that all requests map to geometry in the same way. Technically, f is not restricted as long as the interme-
diate space is at least as large as the input space, since one could always use g(x) = x and h = f , but this
predisposes the neural net to learn more useful decompositions.

Each subnet has 32 hidden units and 10 output units, and the main net has 10 hidden units. All neurons
use a sigmoidal activation function except the final output, which is linear. The additional hidden units in
the configuration with 52 hidden units are intended to compensate for the units removed when subnets are
not used.

5. Experimental setup. The device we modeled is a Western Digital Caviar Black WD5002AALX.
It has a capacity of 500GB (976,773,168 sectors), rotational speed of 7200 RPM, cache size of 32 MB, and
a Native Command Queuing (NCQ) queue length of 32. The drive was connected with SATA. The host
runs 64-bit Ubuntu Linux, kernel version 2.6.35-28-server. It has an Intel Core i7 quad-core CPU (plus
hyper-threading) running at 2.80 GHz and 12 GB of RAM.

Block-level traces were captured using blktrace. Request latency was defined to be the device-to-
completion (D2C) time. This is the time between the operating system I/O scheduler’s sending the request to
the device driver and receiving a response from the device driver. Tracing was done below the I/O scheduler
because that is better understood and will likely be modelled separately. To the best of our knowledge, there
is no simple way to capture traces excluding time spent in the device driver, short of bus-level tracing. This
requires special hardware setup, though, and the benefit likely to be gained was very small compared to the
work required. Because of the speeds of modern CPUs compared to hard drives, the time spent in the device
driver should be negligible compared to the time spent in the hard drive.
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FIG. 4.3. Network architecture for scheduling prediction when subnets are used. Note that the weights are identical in each subnet.

The main dataset is of N = 32,000 random reads of the first 94 tracks, or 237,631 sectors, which is the
first 0.024% of the drive. This corresponds to the first part of the first serpentine, so all tracks have the same
size (2528 sectors). (It turns out that tracks within the same zone can have different sizes for this hard drive,
because they have different sizes on either side of the platter.)

We also used a dataset of N = 32,000 random reads of the first 32,712 tracks, or 83,167,036 sectors,
which is the first 8.51% of the drive. This corresponds to what may be considered the first zone. The track
length mostly alternates between 2528 sectors and 2573 sectors with a period of 653,018 sectors.

For positioning time, decision trees were tested with WEKA [11]. In all cases, the minimum leaf weight
(minNum) was set to 0. When using bagging, the bag size was set to 100.
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FIG. 4.4. Network architecture for scheduling prediction when subnets are not used.

To keep numbers small for the scheduling problem, we tested with a queue size of 4, even though the
maximum queue length for our drive is 32. Error is reported as the percentage of instances improperly
classified. A constant predictor that chooses the most popular index every time would have an error of
46.9%. The input vectors consisted of the LBNs of the queue entries, the ages of the queue entries, and the
LBNs of the two previously processed requests.

For the scheduling problem, decision trees were built with Avatar [13]. This software has the advantage
of automatically setting the bag size when using bagging. Unfortunately, Avatar does not currently support
regression, which is why the decision trees were built with WEKA for the positioning time problem. Avatar
was run on the dataset of random reads over the first part of the first serpentine using:

crossvalfc -o avatar --folds=10 -f out --bagging
--no-save-trees --output-accuracies
--output-confusion-matrix --output-predictions
--use-stopping-algorithm.

Neural nets were also tested for scheduling prediction, both with and without subnets. The output was
a 1-of-k encoding, where the target value for the correct class was 1 and the others were 0.

We trained and tested each configuration five times and reported the mean and standard deviation. For
tests with random periods, each run used different random periods between 0 and 5000 sectors.
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6. Results. For reference, we ran DIG on our test hard disk drive. From the DIG data, the track length
at the beginning of the drive is 2528 sectors, and the skew is 1.1908 ms, which corresponds to 361.37 sectors
(given the rotation time of 8.33 ms). We expected to see a dominant period of 2528− 361.37 = 2166.63
sectors, which over 237,631 sectors is a frequency of 237,631/2166.63= 109.68. From the Fourier analysis,
the actual dominant period is 237,631/107.38= 2213.05 sectors, which is close to our prediction of 2166.63.

Positioning time errors are listed in table 8.1, and scheduling errors are listed in table 8.2.
The lowest error achieved with neural nets was 0.830 ms.
When using decision trees, adding the sines and cosines as additional features reduced the error notice-

ably. Bagging the decision trees reduced error further, but only when the periodic information was included.
The lowest error achieved with decision trees was 1.1906 ms.

When using ensembles of decision trees for the scheduling problem, the overall voted error was 32.2%.
When adding sines and cosines of the LBNs of the queue entries, the error fell to 20.3%. With neural nets,
the lowest error without period information was 33.6%, and with period information it fell to 5.5%.

Most of the time, neural net tests with random periods fared worse than tests with no period information.
However, one test with random periods performed much better, although not as well as tests with the correct
period information. This appears to have been caused by one of the random periods being nearly equal to
twice the most important period.

7. Conclusions. Neural nets achieved lower error than decision trees in all tests. We suspect this is
caused by two things: 1) the structure imposed by weight sharing cannot be implemented with decision
trees, and 2) many important features are individually uncorrelated with the output, which decision trees do
not learn from well.

Adding periodic features requires only a mild assumption and improves multiple machine learning
algorithms significantly. This approach is likely to be a crucial part of behavioral modeling of hard disk
drive performance.

8. Future work. The analysis needs to be extended to an entire hard disk drive. Other types of devices
also need to be tested, such as SSDs and RAID arrays.

One large assumption made by this approach is that positioning time is a meaningful and useful concept.
For other block storage devices, this may not be the case, and removing this assumption would be useful
future work. Generalizing, we may predict the latency (not positioning time) of a request given k previous
requests. The neural net is easily extended to predict f (x1,x2, ...,xk) = h(g(x1),g(x2), ...,g(xk)) in time linear
to k. The difficulty lies in finding useful periods to feed the neural net. One possibility is to generalize the
diagonal search. Previously, we searched u = −v. Renaming u = ξ1 and v = ξ2, this can be expressed as a
line through the origin normal to ∑i ciξi = 0 with c1 = 1, c2 =−1. An intuitive expansion is all lines through
the origin normal to some hyperplane ∑i ciξi = 0 where ci ∈ {−1,0,1}. This yields 3k lines, but this is still
far better than searching an entire k-dimensional space.

8.1. Other ideas. Another way to approach the Fourier analysis is to use a search-based method, rather
than scanning uniformly. Assuming the number of strong frequencies is small, this should be much faster.
Unfortunately, the methods we found required first performing a convolution, and it’s not clear if performing
a convolution on sparse data is possible or meaningful.
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0
2000

4000
6000

8000
10000

12000

Start sector

0
2000

4000
6000

8000
10000

12000

End sector

0
1
2
3
4
5
6
7
8

Pr
ed

ic
te

d
po

si
tio

ni
ng

tim
e

(m
s)

0
1
2
3
4
5
6
7
8
9

FIG. 8.6. Predicted positioning time over the first 4 tracks of a hard drive.



A. A. Crume, C. Maltzahn, L. Ward, T. Kroeger, M. Curry, R. Oldfield, and P. Widener 199

matics, 7 (2008), pp. 333–338.



200 CSRI Summer Proceedings 2013



S. Rajamanickam, M.L. Parks and S.S. Collis 201

Computational Applications

Articles in this section discuss the use of computational techniques in physical simulations. Hanks and
Robinson investigate the ALEGRA shock hydrocode algorithms using an exact free surface jet flow solution.
They use a detailed and challenging test to explore the strengths and weaknesses in ALEGRA and provide a
summary of verification results. Merrell and Robinson review the theory behind ALEGRA’s spatial variation
capabilities and the contributions to ALEGRA software. They explain the significant changes made to the
ALEGRA code to increase the usability and coherence of ALEGRA’s spatial variation capability. Wolf
and Bettencourt describe a Particle-In-Cell method based on a unconditionally stable wave-equation solver
allowing much larger timesteps than previously allowed. They apply the method to 1D electrostatic test
problems and show that the results agree with the theory.

S. Rajamanickam
M.L. Parks
S.S. Collis

July 22, 2014
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INVESTIGATION OF ALEGRA SHOCK HYDROCODE ALGORITHMS USING AN EXACT
FREE SURFACE JET FLOW SOLUTION

BRADLEY W. HANKS∗ AND ALLEN C. ROBINSON1

Abstract. Computational testing of the general purpose arbitrary Lagrangian-Eulerian shock physics code, ALEGRA, is presented
using an exact solution that is very similar to a shaped charge jet flow. The solution is a steady, isentropic, subsonic free surface flow
with significant compression and release and is provided as a steady state initial condition. Ideally, there should be no shock and no
entropy production throughout the problem. The purpose of this test problem is to present a detailed and challenging computation
which provides evidence for algorithmic strengths and weaknesses in ALEGRA. The work is stored in a permanent testing framework
intended to be used to guide and enable future algorithmic improvements in the spirit of test-driven development processes.

1. Introduction. Shock hydrocodes can be used to model material interactions at very high pressures
due to high velocity impact. Modeling methodologies may perform well under many conditions but fail
catastrophically in other cases. This is especially true for highly complex general purpose modeling tools.
Due to the importance and breadth of situations a code must handle, constant testing is required for improve-
ment of the mathematical algorithms and their implementation. This type of test-driven development ensures
continuous improvement and quality maintenance of a code. Verification and validation are two separate and
distinct aspects of testing a simulation code. Verification compares the results of the code against known
properties of the mathematical equations. Validation involves comparison of the results against experimental
data for determination of the validity of the equations for the purposes intended. The results of such testing
guide necessary additions or improvements of the code. The theory and evaluation of an exact free surface
compressible jet flow solution which closely mimics that of a shaped charge jet is detailed in a 2002 SAND
report [15]. This work discusses a summary of the verification results obtained using ALEGRA, an arbitrary
Lagrangian-Eulerian shock code, with this exact solution similar to a shaped charge jet flow. A complete
report of the verification work of ALEGRA is available in a 2014 SAND report entitled, “Investigation of
ALEGRA Shock Hydrocode Algorithms using an Exact Free Surface Jet Flow Solution” [6].

ALEGRA is an arbitrary Lagrangian-Eulerian (ALE) shock physics hydrocode that has been developed
at Sandia National Laboratories since 1990 [1]. The code is designed for modeling shock waves and has
the ability to handle complex geometries with multiple materials. ALEGRA can simulate a wide variety of
scenarios involving shocks at high pressures.

A conical shaped charge includes a cylinder packed with a high explosive. A cone shape is hollowed out
of the explosive and replaced with a metal liner. Upon detonation of the explosive material, the conical liner
is collapsed forming a jet of metal. A shaped charge jet may be idealized during the quasi-steady collapse
phase with a steady compressible fluid model. Key features in this model include large velocity gradients
in small spatial regions as well as very large strains in a steady subsonic isentropic free-surface flow. The
features combine to generate computational difficulties with the shaped charge jet test problem. The shaped
charge jet is very difficult to model correctly by either a Lagrangian finite element code or an Eulerian code.
Lagrangian codes tend to experience severe deformation in the jet leading to a breakdown of the numerical
method due to element distortion. The Eulerian codes may have difficulty with interfaces and excessive
heating of jet material. This serves as an excellent test problem for ALEGRA executing in Eulerian mode
where the nodes move based on the velocity of the material (Lagrangian) and then the nodes are moved back
to their original positions and quantities are remapped back onto this mesh (Eulerian).

Expected numerical issues may include unrealistic temperature diffusion into the liner from the ex-

∗Brigham Young University, hanksb@byu.edu
1Sandia National Laboratories, acrobin@sandia.gov
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plosive products, unphysical numerical exchange of kinetic energy to internal energy and heating due to
artificial viscosity terms in high compression rate shockless processes [8, 11, 17]. Variations in numerical
algorithms can produce dramatic differences in estimates of internal energy and temperature. The numer-
ical difficulties may be particularly acute when the flow to be computed is isentropic. If confidence is to
be placed in calculations which purport to include advanced material models that are highly dependent on
temperature, it is necessary to develop reliable numerical methods and practical calculational rules of thumb
to deal with the shaped charge jet problem in the case of simple hydrodynamic material modeling. The
proper application of advanced material modeling in shaped charge simulations depends upon proper energy
partitioning in the numerical method. In particular it may be difficult for a numerical method to distinguish
a rapid shockless transition from a true shock which is to be captured by the numerical method.

This report is concerned with an exact steady solution imported into ALEGRA to test its ability to
correctly model shockless high-strain-rate isentropic subsonic flow. The steady subsonic isentropic flow is
a very complex and challenging simulation for a general purpose shock code like ALEGRA. The desired
results are that the entropy remains constant at all points while the temperature of any material point moves
toward the free-stream value as it flows into the fully released free-stream jet. The principal strategy and
purpose for this work in a test-driven development environment is to discover inconsistencies and anomalies
that provide direction as to which classical algorithms or newly implemented and proposed advanced algo-
rithms are proper candidates for acceptance as default algorithms or whether any of these algorithms need
additional improvement and development.

2. Evaluation of the Exact Solution. The conical shaped charge jet has been reasonably modeled in
a gross engineering sense for years by the assumption that the jet collapse process is approximately a steady
state in the frame of reference of the collapse point and that free-surface jet theory can be applied [2].

Steady compressible subsonic plane and axis-symmetric free surface jet flows may be effectively cal-
culated with specialized finite difference codes employing boundary fitting coordinate systems or by com-
puting in the hodograph plane [5]. By restricting to two-dimensional plane flows in hodograph coordinates,
significant progress can be made analytically. The hodograph plane uses velocity and flow angle, (q,θ),
as independent variables. Conservation of mass implies the existence of a stream function, ψ , such that
dψ =−ρvdx+ρudy represents the mass flux across a differential line element from left to right. Assuming
a one-to-one mapping between the physical plane (x,y) and the hodograph or velocity-angle space, (q,θ)
with (u,v) = (qcosθ ,qsinθ), one obtains equations for the variation of the stream function and velocity
potential in terms of q and θ . Thus

dz = dx+ idy =
eiθ

q

(
dφ +

i
ρ

dψ

)
. (2.1)

Since dz is a perfect differential one obtains after considering that φ and ψ are functions of q and θ and
equating the mixed derivatives of z with respect to q and θ , the equations

∂φ

∂θ
=

q
ρ

∂ψ

∂q
∂φ

∂q
=− (1−M2)

qρ

∂ψ

∂θ
. (2.2)

Elimination of φ leads to an equation for the stream function

q2 ∂ 2ψ

∂q2 +q(1+M2)
∂ψ

∂q
+(1−M2)

∂ 2ψ

∂θ 2 = 0 . (2.3)

This is termed the Chaplygin equation for the stream function. It is a separable linear second order equation
whose coefficients depend only on the speed q. This equation possesses separable solutions of the form
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ψ = ψn(q)einθ . In the case of the isentropic ideal gas relation, Chaplygin noted solutions of the form

ψ = τ
n/2Fn(τ)einθ = ψn(τ)einθ (2.4)

where

τ = (q/qmax)
2 = (γ−1)q2/2 (2.5)

and the Fn(τ) are particular Gauss hypergeometric functions.
These solutions can be used to solve certain problems of a particular form that arise frequently in free

surface flow theory. The original ideas and procedures are due to Chaplygin who solved the problem of a
plane jet emerging from a slot in a wall [4]. The Chaplygin procedure takes a solution of the incompressible
problem and provides a similar subsonic compressible solution. The incompressible wall jet solution for this
problem can be determined by standard complex variable techniques [3, 7]. The incompressible complex
potential, W = φ + iψ , is given by

W (Ω) = (q1/π)
{

log(1+Ωeiβ )+ log(1+Ωe−iβ )

−(1− cosβ ) log(1−Ω)− (1+ cosβ ) log(1+Ω)}
(2.6)

where Ω = (q/q1)e−iθ is the incompressible velocity in complex form. Another representation for this
solution may be given by expanding each of the log functions in a Taylor series about Ω = 0. The n = 1
terms in each series sum exactly to zero as a consequence of the required mass and momentum balance and
thus do not appear. The Chaplygin procedure for writing a corresponding subsonic compressible solution
from an incompressible solution is to make the correspondence(

q
q1

)n

⇒ ψn(τ)

ψn(τ1)
(2.7)

in the formula for the stream function ψ where τ1 is the value of τ on the free streamlines. Thus the stream
function for compressible flow is

ψ = ((ρ1q1)/π)

{
∞

∑
n=2

1
n

ψn(τ)

ψn(τ1)
sinn(θ −β +π)

+
∞

∑
n=2

1
n

ψn(τ)

ψn(τ1)
sinn(θ +β −π)

− (1− cosβ )
∞

∑
n=2

1
n

ψn(τ)

ψn(τ1)
sinnθ

+(1+ cosβ )
∞

∑
n=2

1
n

ψn(τ)

ψn(τ1)
sinn(θ −π)

}
.

(2.8)

An extra factor of ρ1 is applied in the above formula since the stream function in the compressible case
represents a mass flux. The convergence theory for this series, called a Chaplygin series, has been described
by Sedov [18] and a summary of the theory is given in a previous report [15].

Integration to obtain the physical plane may be accomplished in several ways since the physical plane
is independent of integration path in the (q,θ) plane. The evaluation code actually implements two different
approaches which utilize Equations 2.8, 2.1 and 2.2 to obtain a complex series for ∂ z/∂q and ∂ z/∂θ . In
the first ∂ z/∂q is evaluated for each point (q,θ) and then z(q,θ) is obtained by numerical integration with
respect to q subject to z(0,θ) = 0 using the trapezoidal rule. The second technique is to integrate ∂ z/∂θ

with respect to θ analytically and sum the resultant series of integrated terms to obtain the position z(q,θ).
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FIG. 3.1. Initial time step of the shaped charge test problem in ALEGRA.

3. Verification of the Exact Solution in ALEGRA. ALEGRA has been upgraded to support a special
Mie-Grüneisen equation of state in which the reference curve matches the exact solution on an isentrope.
The exact solution is imported into ALEGRA as an initial condition for testing purposes. The test is imple-
mented permanently in the ALEGRA test harness in the spirit of test-driven development and continuous
improvement of the numerical algorithms. Since the exact solution is a steady solution, we wish to import
this solution as an initial condition. We then expect this solution to be maintained for some time period
until the effects of the jet at “infinity” possibly interacting with mesh boundaries become apparent. Once
imported, a number of tests are run which are intended to highlight the status of the current numerical algo-
rithms in ALEGRA. Some algorithms are relatively new and others have been in the code for a long time.
The results of testing the default settings of ALEGRA, artificial viscosity options, midpoint time integration,
DeBar energy advection, the extended finite element method (XFEM), and mixed material/void algorithms
are summarized in the full report.

The complete verification report details multiple frames of reference and incident angles for the shaped
charge jet solution [6]. This report focuses on the stagnation point frame of reference and a single incident
angle, β = 45◦ with the inflow velocity set to .9 of the free stream sound speed. The stagnation point frame
of reference provides a simple way of viewing the simulation. In addition to the stationary imported solution
state, material in the free stream state is overlaid in the free stream jet regions to create a continuous jetting
flow as shown in Figure 3.1.

The testing in ALEGRA focuses on the under-resolved case of the test problem. The under-resolved
cases with larger errors provide great insight into algorithmic weaknesses. Mesh resolution is given by the
number of elements across the jet as shown in Figure 3.1. When β = 45◦, the typical under-resolved case
includes 5 elements across the jet. A simulation at high resolution includes between 9 and 17 elements
across the jet.

The results of a “perfect” simulation would not change as time progresses because the analytic solution
is for a steady state problem. The material would heat up as it compresses and then release and cool down.
The entropy would be constant and uniform throughout the whole problem. It is expected that some initial
small waves and oscillations will appear as the simulation begins due to finite resolution and imperfections
in the initial state. These oscillations may be expected to diminish and damp out as time progresses. The
oscillations may cause fluctuations in dependent variables such as temperature but should be small and reach
a quasi-steady state. Once a quasi-steady state is achieved, analysis is performed to view any variations from
the analytic solution.

Analysis of the results in the complete verification report is performed using multiple horizontal line-
outs for multiple variables which are compared against the analytic solution [6]. This report focuses on a
temperature line-out through the elements closest to the jet surface, where the majority of issues are visible.
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(a) Time = 0.0 µs (b) Time = 15.0 µs

FIG. 4.1. Verification testing of exact solution in ALEGRA.

FIG. 4.2. β = 45◦: Temperature line-out on the jet surface for various mesh resolutions.

The nature of the test problem allows for comparison of later time steps with the initial time step to provide
evidence for the correct subsonic isentropic flow.

4. ALEGRA Solution Using Default Settings. As the simulation begins, small oscillations occur near
the stagnation point and the corner where the jet is formed. These two areas are expected to be the most
difficult because of the high compression and release, and the sharp change in velocity around the corner.
These oscillations are not unexpected and are caused by small local interactions as the truncation errors in
the numerical solution try to adjust to the initial conditions given by the exact solution. These oscillations
are greatly reduced after a few ALEGRA time steps. At the final time step of 15.0 µs, the oscillations that
occurred at the beginning have diminished and the effects have been pushed farther along in the jet as more
material moves through stagnation point.

Figures 4.1(a) and 4.1(b) show the temperature for β = 45◦ at t = 0.0 µs and t = 15.0 µs respectively.
From these plots a more significant rise in temperature is seen along the surface of the jet, including a
particular increase in the corner where material flows into the jet. Important to note is the lack of temperature
rise along the slug. In the jet, the material at the free surface must turn a sharp corner at constant pressure
and the presence of numerical difficulties is perhaps not surprising.

Figure 4.2 plots the temperature line-out on the jet surface at t = 15.0 µs for various mesh resolutions.
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A spike in temperature happens as the material leaves the stagnation point region and enters the jet. The
nature of the analytic solution is such that after heating and compressing in the stagnation point region, the
temperature should decrease to its initial value. At greater computational expense, as the mesh resolution
increases, the temperature error decreases along the surface of the jet.

The oscillations from the initial time steps are seen clearly in Figure 4.2. As an example, with a mesh
resolution of 5 elements across the jet, from the position X = 1 to X = 2.5 , the temperature is constant at
about 600 kelvins which is an error of about 300 kelvins. This region for 1 < X < 2.5 represents a quasi-
steady state that has been reached. For X > 2.5, the effects of the initial oscillations in the stagnation point
are seen and are pushed out as the test is allowed to progress further in time. Figure 4.2 shows how the error
decreases to approximately 50 kelvins with 17 elements across the jet. In continuation, several algorithms
under current development in ALEGRA are tested for whether they provide improvements in temperature
along the jet surface for the 5 element case.

5. Artificial Viscosity and Time Integration Methods. Artificial viscosity algorithms in ALEGRA
were tested for improvement of their ability to correctly handle the shockless isentropic flow. With an
inflow velocity just under the sound speed and an initial exact steady state profile which is fully subsonic,
no shock waves should be produced. It is possible the high compression at low resolution may appear as
a shock to the hydrocode and additional entropy could be added through the artificial viscosity. Advanced
algorithms should be more proficient at differentiation between shocks and non-shock compression and
control of nonphysical numerical dissipation.

Artificial viscosity works by adding additional dissipation to smooth out the solution near shock dis-
continuities [20]. The default artificial viscosity seen in the previous section is tested along with two other
newer options called the limiter and hyperviscosity. The limiter works to monitor the artificial viscosity and
reduce or turn off its effects when the artificial viscosity may be unnecessary. In this case, where no shocks
should occur, the limiter should reduce the effects of the artificial viscosity adding entropy. Hyperviscos-
ity is an option designed to be utilized together with the limiter. Hyperviscosity is not applied where the
lower order artificial viscosity is applied. The use of hyperviscous dissipation helps to control small-scale
oscillations [12].

There are two time integration methods currently available in ALEGRA. The current default is the
central-difference time integrator that is second order accurate in space but has only a first order accurate en-
ergy equation update in time and exhibits instability in expansion [9,10]. The alternative predictor-corrector
or midpoint method is approximately twice as expensive as the central-difference algorithm in the ALEGRA
Lagrangian step but is fully second-order accurate in time and stable. Stability analysis of the midpoint time
integrator is discussed in [9] The midpoint method is intended as the future default.

With only 5 elements across the jet, Figure 5.1 shows that the limhyp artificial viscosity algorithm has
decreased the temperature along the surface of jet significantly. While it has reduced the excess heating, the
temperature remains high in relation to the analytic solution. Though results vary slightly between the two
time integration methods, overall the options do not have a strong effect on this test problem.

6. Debar Energy Advection. DeBar Energy Advection is an optional algorithm implemented in ALE-
GRA which conserves total energy [1, 16]. The DeBar method remaps the kinetic energy, then adds the dif-
ference between the remapped kinetic energy and the kinetic energy computed after the momentum remap
to the internal energy. The advection option does have the possibility of creating anomalously cold regions
or hot regions due to truncation errors but has shown excellent results with some shock simulations. The
DeBar method includes an option to limit its full application.

The challenge for the DeBar type of algorithm is to provide for high quality shock simulations while
still retaining thermodynamic robustness. The DeBar method is implemented when the code finds a shock
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FIG. 5.1. β = 45◦: Jet surface line-out for temperature showing the effects of midpoint and limited-hyperviscosity artificial
viscosity algorithms.

FIG. 6.1. β = 45◦: Jet Surface line-out for temperature with 5 elements across the jet showing results from DeBar energy
advection (Q/p = 0).

with a Q/p value greater than the value specified in the input deck, where Q represents the artificial viscosity
and p represents the pressure. If no value is specified, a default value of 0.0 is utilized.

Large errors appear with the DeBar option where Q/p = 0.0 including cooling anomalies along the
inflow and heating errors along the jet. Errors became so large for the limhyp option with central-difference
time integration that for some mesh resolutions the simulation failed. Figure 6.1 shows the line-out for
temperature along the jet surface. Values of Q/p ≈ .1 slightly improve the results and then continue to
improve until the DeBar method is completely off and the results are the similar to the default ALEGRA
code shown in Section 4. The plot also shows that none of the various options seem to make much difference
with the DeBar method implemented.
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FIG. 7.1. β = 45◦: Temperature line-out on the jet surface for the XFEM in ALEGRA. Compare to Figure 4.2.

The spurious effect that this algorithm causes at the free surface on this relatively benign quasi-isentropic
flow may be indicative of an implementation error of some sort for mixed cells. A thorough review of this
algorithm is required.

7. Extended Finite Element Method (XFEM). The extended finite element method (XFEM) in ALE-
GRA was developed in order to achieve better sub-cell resolution for multi-material elements. It is conceiv-
able that the issues that occur in multi-material elements in general and specifically on a material void
interface in this jet problem may be totally sidestepped using this algorithm. The standard finite element
method (FEM) basically binds two materials together and issues may occur when two materials experience
contact, slide past one another, or must release from each other. This is caused by the continuous velocity
field of the FEM [19]. One may speculate that the anomalous heating issues visible in the previous tests
are caused by the interface algorithms between a material and void. In the shaped charge test problem this
interface lies between the void background and copper jet where the significant anomalous heating of the
jet surface material occurs. Originally XFEM was used to model crack propagation and has since been
implemented in ALEGRA as a new algorithm for dealing with multi-material elements [14, 21]. The key
advances of this algorithm are additional kinematic degrees of freedom in a single mixed material element
and it seems appropriate to test this emerging ALEGRA capability on this test problem.

The XFEM has a significant effect on the shaped charge test problem at the jet surface for low mesh
resolution. Figure 7.1 shows the results and may be compared with Figure 4.2. When comparing the highest
resolution mesh, the default ALEGRA matches the analytic solution better than the XFEM. It is the low
resolution plots with only 3 and 5 elements across the jet where the XFEM in ALEGRA greatly reduces the
heating along the jet surface.

A subtle instability is a new problematic issue seen in the XFEM simulations. The issue is represented
by the development of a coarseness or waves seen in the plots. The default settings of ALEGRA are quite
stable and smooth while the XFEM plot exhibits instabilities that seem to worsen with increasing resolution.
These waves are clearly visible in Figure 7.1 when compared to Figure 4.2. The vertical lines present in
the XFEM plot represent small break-ups of the copper jet along its surface caused by these instabilities.
After further analysis, these instabilities appear to be related in some way to the relatively new second order
remap code associated with the XFEM algorithm. Reducing the remap to first order removes the waves and
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FIG. 8.1. β = 45◦: Temperature line-out on the jet surface for the CVFA without void compression. Compare with Figure 4.2.

instabilities yet the second order remap is essential for reducing the anomalous heating along the jet surface.

8. Multi-Material Algorithms and Void Compression. The XFEM simulation from Section 7 ap-
pears to be the best for reducing the heat along the surface of the jet. This suggests that an algorithm
required by XFEM may be related to this effect of reducing the anomalous heating. The constant volume
fraction algorithm (CVFA) and void compression algorithm are possible causes for the heat reduction seen in
XFEM. The CVFA was replaced by the isentropic multi-material algorithm (IMMA) as the default in ALE-
GRA [13]. The CVFA may be used with or without the void compression algorithm while IMMA forces
the use of void compression. These algorithms alter the way void interacts with material in ALEGRA.
This chapter provides further information relative to algorithmic issues that may exist on the material/void
interface by reviewing the effects of the CVFA and IMMA with and without the void compression algorithm.

Figure 8.1 shows results for the CVFA with void compression off. All resolutions have reduced surface
heating relative to default ALEGRA. This plot reflects similar results seen in Figure 7.1, particularly those
of 3 and 5 elements across the jet. Special code modifications in ALEGRA allowed for the IMMA to be
used without void compression. The results are essentially identical to the CVFA without void compression
for all resolutions. The CVFA and IMMA with void compression show increased temperatures along the jet
surface. These results reflect similar trends seen with the default ALEGRA simulations. For results of the
CVFA and IMMA with void compression see the complete verification report [6]. The behavior of the plots
with void compression off are similar to those shown in Chapter 7 which contains the ALEGRA XFEM
results. These plots show that a major factor in the heating of the jet surface is perhaps the void compression
algorithm. The CVFA and IMMA without void compression provide smooth solutions, reduced heating
along the jet surface, and do not exhibit the subtle oscillations and interface instabilities seen in the XFEM
simulations.

9. Conclusions. We have found that importing the exact solution into ALEGRA as an initial condition
allows for setting up this quasi-steady state subsonic flow problem in a way which we believe permits for a
significant test of the shock capturing and advection algorithms found in ALEGRA on a complex isentropic
shockless problem. We found that most of the default algorithms gave reasonable results; however, there are
still improvements to be made in the default as well as other proposed algorithms. The shaped charge jet test



212 Investigation of ALEGRA Algorithms

problem creates heating anomalies on the jet surface which may be associated with similar thermodynamic
issues which appear in other very complex ALEGRA simulations. We thus have provided a concrete test
problem for a difficult yet controlled simulation environment. Continued analysis of the simulation results
will allow for evidence based improvement of the ALEGRA algorithms.

The entropy should remain constant through the entire simulation because it is a near steady state sub-
sonic isentropic flow. Temperature should increase as the material passes the stagnation point then return to
its initial value. As shown, the heating along the jet surface can be very severe. Evidence shows that this
is primarily related to the mixed cell algorithms active in cells with partial void. The mixed cell constant
volume fraction algorithm and the isentropic multi-material algorithm singled out void compression as the
most important algorithmic variant which could be examined further to provide insight. This suggests that
heating issues may be unrelated to algorithms such as artificial viscosity and time integration due to their
minimal effects on the test problem.

New artificial viscosity algorithms were tested to see if they improved anomalous heating along the edge
of the jet. Specific parameters using the limiter and hyperviscosity were selected for the simulation. The
new parameters slightly reduced the heating along the jet surface yet results of the limiter and hyperviscosity
varied for other line-outs in the jet [6].

In general, time integration did not have a major effect on the accuracy of the simulation. In many cases
there was no visible difference between the central difference and midpoint time integrators.

DeBar energy advection was specifically tested for reducing heating on the edge of the jet. In each case,
DeBar has the adverse effect of increasing the heating along the jet. For this test problem DeBar also caused
heating issues in the slug and some negative temperatures along the inflow. This test case indicates a need
for more detailed analysis and improvements of this algorithm as a general purpose algorithm.

The XFEM algorithms appear to robustly run this test problem. However, some sort of anomalous wave
structure is created. Heating characteristics along the jet surface are excellent and are similar to results with
void compression off.

At lower resolutions a significant factor is the void compression algorithm. In current default settings of
ALEGRA, a user is forced to use void compression with the IMMA. Switching to the CVFA without void
compression or minor code modifications which allow IMMA to be used without void compression greatly
reduce the heating along the jet surface. At higher resolutions these algorithms do not have significant effect.

The default settings in ALEGRA with a highly resolved mesh appear to be the most accurate and
consistent results up to this point. All major issues in the simulation occur along the edge of the jet and
can be significantly reduced by increasing the mesh resolution. It has been determined that the cooling and
heating anomalies in the simulations are primarily related to mixed cells. Cells that include material and
void appear to be causing the anomalies and this work recommends a detailed look at current algorithms that
interact with mixed material/void elements.

The recommendations given herein are specifically for the version of the ALEGRA repository head code
as of August 2013. The test problem presented here is integrated into the ALEGRA test suite. ALEGRA
tools are utilized to compute the norm of the difference between the ALEGRA simulation and the exact
solution line-outs in the jet. This problem represents a clear example of test driven development principles
in which developers have an institutionalized running test case suite against which to improve algorithms.
Given success in algorithmic improvements, the test suite tolerances can be immediately reduced and thus
provide for a continually protected and improving metric of code quality.

Acknowledgement. The authors which to thank John Niederhaus for providing a helpful review.
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RANDOM FIELD SUPPORT IN ALEGRA

DAVID P. MERRELL∗ AND ALLEN C. ROBINSON1

Abstract. Spatial variation is easily observed in many engineering materials. This heterogeneity is important for engineering
design and modeling. It is desirable that simulation models be capable of representing spatial variation in material parameters or initial
thermodynamic state. This paper reviews the theory behind ALEGRA’s spatial variation capabilities and the authors’ contributions to
this aspect of the software are described. Additionally, further desirable enhancements to ALEGRA’s spatial variation capabilities are
outlined.

1. Introduction. ALEGRA is an arbitrary Lagrangian-Eulerian finite element code [1]. It is capable of
simulating physical systems involving several materials, which may move between solid, liquid, gas, and
plasma phases. ALEGRA simulations may also incorporate the effects of electromagnetic fields. Further-
more, it is well-suited for modeling physical systems undergoing shock propagation and large distortions.
It is frequently tested against analytical solutions and experimental data and strives to provide increasingly
realistic and relevant modeling.

It is desirable in ALEGRA to move beyond idealized representations of materials. In reality, materials
are heterogeneous, with model parameter values that are dependent on position within the material. It is also
desirable to be able to specify more than uniform values for initial temperatures and/or densities; in some
circumstances, the initial thermodynamic state of a system could vary randomly throughout its volume, and
hence require a statistical description rather than a nominal description. Such an initial state could also be
used to seed instabilities for example.

The variability requirements concerning material parameters and initial thermodynamic states will be
referred to as “spatial variation” issues. It is desirable to model spatial variation in material properties and
in initial densities and temperatures. ALEGRA is equipped with methods to incorporate spatial variation into
its simulations. In section 2, we will discuss the mathematical ideas underlying the methods. In section 3,
we will describe some improvements that have been made to the methods over the course of the summer of
2013. Lastly, section 4 will outline some desirable future improvements.

2. Theory. Currently, ALEGRA is equipped with two methods for the creation of spatial variation. The
first is known as the Space-Filling Curve (SFC) method. The second is known as the Karhunen-Loève
Random Field Expansion (KL) method. Each method has its own strengths and rationale for use.

The basic idea behind the SFC Method is to create a unique ordering for the elements in the domain,
and then perturb the value of interest (material parameter or initial state) according to some statistical dis-
tribution, making it vary spatially. This unique ordering of the elements is important; ALEGRA is intended
for parallel computation, and the spatial variation must be created consistently independently of the number
of processors used for the analysis. This consistent ordering is ensured in a rather simple (though effective)
way; each processor computes the unique ordering independently. In the sense that each processor is doing
the same computation independently, this algorithm is not scalable. However, even for large domains with
many elements, the computation is very fast and doesn’t add to the computational cost in any significant
way, allowing it to still be a useful method.

As indicated by its name, the Space-Filling Curve Method uses a space-filling curve to compute this
unique ordering. A space-filling curve is a map from [0,1] onto a higher dimensional region such as [0,1]2

or [0,1]3 such that |x(s)−x(t)|< c|s−t|where 0≤ s, t ≤ 1 and c is a constant. In ALEGRA the SFC algorithm
creates a box containing the domain under consideration. The algorithm then fills this box with a Hilbert
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space-filling curve. The unique ordering of the elements is determined from the element positions using an
inverse Hilbert curve mapping function and subdivided to give an approximate ”aggregate” size. Once this
ordering has been created, the algorithm steps through the elements in that order, perturbing the value of
interest as it goes. The perturbations are made so that the value of interest will conform to some statistical
distribution. At this point, the perturbation can correspond to either a uniform distribution or a Weibull
distribution. The uniform distribution is a simple way to perturb parameters and state variables when little
is known about their actual distribution in the real system. The uniform perturbations are made according to
the following formula:

Xperturbed = X̄ · (1+ ε(2 ·random()−1)) , (2.1)

where X̄ is the mean value, ε is given by the user, and random() is a random number between zero and
one.

The Weibull distribution is commonly used in material science. For many materials, the measured
strengths of a large sample set are distributed in a Weibull fashion. ALEGRA uses a modified form of
the Weibull probability distribution function (PDF) that accounts for the effects of element volume. The
difficulty of using this distribution is that several parameters are required to determine the distribution’s
shape, which would ideally be determined from experiment. These include the Weibull Modulus m, the
Modulus Scale Factor ms f , a Reference Volume Vre f , and a Volume Exponent k. The Weibull perturbations
are made according to this formula:

Xperturbed = X̄ ·
(

Vre f

V

) k
m
(

ln(random())
ln
( 1

2

) ) 1
m·ms f

, (2.2)

where X̄ is the median value, V is the volume of the element and random() is a random number between
zero and one.

Figure 2.1 shows various shapes for the Weibull distribution. Figure 2.2 shows a cylinder that has
had a material parameter perturbed by the SFC method. The Weibull method seeks to determine effective
material parameters so that probabilistic property variations at scales smaller than the finite mesh size are
still effectively modeled. This is why the model depends on volume. For example, such modeling can
be used to characterize damage in ceramics [6]. The Weibull theory is part of a large literature related
to extreme value statistics [5]. The Weibull methodology is appropriate when the correlation scale of the
material heterogeneities are smaller than the finite element size.

When the correlation length of the material heterogeneity is larger than the finite element size another
methodology is needed. A random field is a domain D ⊂ Rn, with a random variable defined at each point
within D. There is a rich mathematical theory established for random fields which provide a desirable
foundation for describing spatial variation [3, 7].

The KL method in ALEGRA utilizes the Karhunen-Loève (KL) expansion of a random field. The random
field X(~r) centered at zero has an associated covariance function K(~x,~y) = E(X(~x),X(~y)). The covariance
function expresses the correlation between each pair of random variables in the random field. The KL
expansion for X(~r) is its eigenfunction series expansion. By “eigenfunctions”, we mean φi(~x) satisfying∫

D
K(~x,~y)φi(~x)d~x = λiφi(~y) (2.3)

The eigenfunction expansion of X(~r) is then given by the Karhunen-Loève Theorem:

X(~r) =
∞

∑
i

ξi
√

λiφi(~r) (2.4)



216 Random Field Support in ALEGRA

FIG. 2.1. The Weibull distribution is commonly used in material science as a description for the distribution of strength in a set
of material samples. The shape of the Weibull distribution depends strongly on the Weibull Modulus m.

where the ξi are stochastically uncorrelated random variables.
The KL method in ALEGRA is based on this theorem. The user specifies the domain and covariance

function. ALEGRA then solves the eigenproblem 2.3 to produce the desired number of eigenfunctions and
eigenvalues. However, ALEGRA uses a slightly more general form for the series expansion:

X(~r) = X̄ +σ

N

∑
i

ξi
√

λiφi(~r). (2.5)

X̄ is the mean value and σ is provided to allow control over the scale of the spatial variation. Users should
use ξi that are independently normally distributed with zero mean and unit variance. The user also chooses
to limit the sum to a finite number of terms N, which we refer to as the KL dimension. An illustration of a
random field’s KL expansion is provided in Figure 2.3.

3. Summer 2013 Code Enhancements. The spatial variation cababilities in ALEGRA were improved
over the course of the summer. These aspects included the organization of the spatial variation code, the
logic of the spatial variation code, and the input syntax available to users.

At the beginning of the summer, the code in ALEGRA pertaining to spatial variation was scattered
across several unrelated classes. Several of these classes had nearly identical code within them. At the
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FIG. 2.2. The SFC spatial variation method has been applied to the yield stress of this cylinder, with perturbations of the Weibull
variety.

end of the summer, the code has been unified and focused on one class whose only purpose is to support
spatial variation. The code redundancies have been eliminated as well. Now spatial variability algorithms
and modeling can be applied much more easily and generally. The algorithms can be applied to any material
or any blocks (subdomains), or the intersection of the two. It is hoped that this more generalized and unified
user interface will encourage users to begin thinking about how they might productively consider the effects
of material variability in their modeling efforts. The end result of the work is a unified, sensible framework
that can be easily built upon as new insights are obtained or additional approaches are needed relative to
modeling spatial variation.

Although a basic code base for KL based random field descriptions was in place at the beginning of the
summer of 2013 due to prior efforts in this direction, the implementation did not carefully match up with
the mathematical discription discussed in section 2. The ξi in equation 2.5 were uniformly distributed and
generated internally by ALEGRA . Furthermore, the algorithm written to determine a unique sign for the
eigenfunctions was flawed, and would frequently cause failures.

These issues were corrected and the KL random field expansion code has been made consistent with its
mathematical basis. The ξi are now provided externally to the model. These random variables are thus now
easily available via the embedded DAKOTA-ALEGRA interface and the user can easily control and provide
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FIG. 2.3. An illustration of the KL expansion of a random field.

probabilistic assessment of quantities of interest associated with spatial variability via the algorithms found
in DAKOTA. The unique sign algorithm was also made robust. The unique sign algorithm is important
because one wishes to have a processor independent solution to the eigenvalue problem. The only time this
algorithm is known to fail to give the same result independent of number of processors used is if the problem
has a geometric symmetry which causes a repeated eigenvalue. This leads to uniqueness for the associated
eigenvectors only up to a basis which spans the associated invariant subspace. In this case, one can either
break the symmetry by slight modifications to the domain or restrict the stochastic analysis to a constant
number of processors and a single machine. Results from different machines or processors numbers will
vary in particulars. However, we expect the results to be stochastically equivalent.

At the beginning of the summer, the spatial variation input syntax available to users was in a somewhat
incoherent state. Spatial variation in material parameters and spatial variation in initial state had very differ-
ent input syntax. The fundamental differences between the SFC and KL methods were not enforced by the
input syntax since a user could input keywords used the SFC method in the same line as keywords meant
for a KL method. At the end of the summer, the spatial variation in material parameters and initial state
both have identical input syntax and the fundamental differences between the SFC and KL methods are now
respected by the input syntax, which enforces a much more intuitive and self-consistent user experience.

4. Prospects for Future Improvements. The work completed this summer provides a foundation for
future progress. The clean, unified spatial variation framework currently used by ALEGRA now provides fer-
tile ground for enhancements. Some enhancements to ALEGRA ’s spatial variation capabilities which could
be implemented in the future include empirically determined covariance functions and a robust methodolgy
for verification of random field capability.

The KL expansion of a random field is critically dependent on the random field’s covariance function. A
correct covariance function is essential to producing an accurate representation of spatial variation. However,
ALEGRA users only have two covariance functions to choose from at the present moment. They have the
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following form in 3D

K1(~x,~y) = exp(−(|x1− y1|+ |x2− y2|+ |x3− y3|)/Lc) (4.1)

K2(~x,~y) = exp(−((x1− y1)
2 +(x2− y2)

2 +(x3− y3)
2)/L2

c) (4.2)

and a similar form in 2D where Lc is user specified scalar correlation length. The covariance function is
then used to construct an n× n covariance matrix, where n is the number of elements in the domain which
approximates Equation 2.3. The KL expansion code then performs an eigensolve on this covariance matrix
to produce the λi and φi(~x). The covariance functions K1 and K2 capture the behavior we expect; points of
the field close to each other are highly correlated, while points of the field far from each other have little
correlation. However, they will certainly fail to capture the statistics of the true spatial variability for real
materials in many instances. Thus, an option that could benefit ALEGRA users would be to employ empirical
data to construct a customized covariance matrix. A user could create a set of sample data fields from
empirical measurements and then feed the matrix into ALEGRA , which would compute a sample covariance
matrix from the data. The KL expansion code would then perform an eigensolve on this sample covariance
matrix. The result would be a KL expansion which is highly customized to the particular material or initial
condition being simulated, and hence a much more accurate representation of the spatial variation. Details
of how this might work are given in [4].

With the capability to create spatial variation, there is a need to verify that capability. It turns out
that much is known relative to the structure of Gaussian random fields. For example, formulas for the
expected value of the Euler characteristic of the excursion sets of a Gaussian random field are available in
the literature [2,3]. This analysis could be used to verify whether random fields are being produced correctly.
It is thus important to provide robust support for verification capabilities in the ALEGRA development and test
environment. Currently, verification of ALEGRA solutions is performed by means of comparisons with single
forward executions or spatial convergence studies. However, problems involving spatial variation must be
verified through a statistical analysis of an ensemble of executions. The tools and/or examples necessary to
show how to do this effectively must still be developed in a form that is readily usable. This is especially
important to demonstrate in the case of KL expansions with high geometric symmetry as discussed above.
In this case distributional metrics should be able to be verifiable as long as each set of ensemble runs fixes
the machine and number of processors and the stochastic dimensions are properly converged.

5. Conclusions. In the summer of 2013, significant strides were made in terms of increasing the usabil-
ity and coherence of ALEGRA ’s spatial variation methodology. The groundwork laid provides a foundation
for future innovation and capability development. Many challenges and opportunities are in sight for the
development of spatial variation in ALEGRA and for providing more meaningful simulation analysis of real
systems.
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building the initial code base for the KL expansion capability in ALEGRA and Emily Fischer for additional
contribution to the random field coding. John Niederhaus provided a helpful review.
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A PARTICLE-IN-CELL (PIC) METHOD FOR THE SIMULATION OF PLASMAS

ERIC M. WOLF∗ AND MATTHEW M. BETTENCOURT1

Abstract. We propose a new particle-in-cell (PIC) method for the simulation of plasmas based on a recently developed, uncon-
ditionally stable solver for the wave equation. We describe the 1D implementation, and present the results of several standard test
problems, showing good agreement with linear theory.

1. Introduction. Collisionless plasmas - systems of charged particles interacting through electromag-
netic fields - are modelled by the Vlasov-Maxwell system of partial differential equations (PDEs), which
couple Maxwell’s equations, describing the evolution of the electric and magnetic fields E and B, to Vlasov
equations, a type of hyperbolic PDE describing the evolution of the phase-space probability density functions
(PDFs) fs of the various species s of charged particles:

∂ fs

∂ t
+v ·∇x fs +

qs

ms
(E+v×B) ·∇v fs = 0 (1.1)

1
c2

∂E
∂ t

= ∇×B−µ0J
∂B
∂ t

=−∇×E (1.2)

∇ ·E = ρ/ε0 ∇ ·B = 0 (1.3)

ρ(x, t) = ∑
s

qs

∫
v

fs(x,v, t)dv, J = ∑
s

qs

∫
v

v fs(x,v, t)dv (1.4)

In these equations, x and v represent position and velocity, J is the current density, ρ is the charge
density, qs and ms are particle charge and mass of species s, ε0 and µ0 are the electric permittivity and
magnetic permeability of the vacuum, and c is the speed of light in vacuum.

Particle-in-cell (PIC) methods [1], in development and use since the 1960s, combine an Eulerian de-
scription of the fields with a Lagrangian description of the PDFs; that is, fields are evolved on a mesh, while
PDFs are represented by moving particles whose trajectories are characteristics in phase-space of the cor-
responding Vlasov equation. Thus, PIC methods require a method to compute the fields on a mesh and a
method to compute particle trajectories, as well as interpolation tools to provide for their coupling. This
work focuses on a new method for the computation of the fields.

Under the Lorenz gauge condition, ∇ ·A+ 1
c φt = 0 (where the subscript t stands for partial differentia-

tion), Maxwell’s equations can be reformulated in terms of wave equations for the scalar potential φ and the
vector potential A:

φtt −
1
c2 ∇

2
φ = ρ/ε0 (1.5)

Att −
1
c2 ∇

2A = µ0J (1.6)

The electric and magnetic fields, E and B, are then given by

E =−∇φ −At (1.7)
B = ∇×A (1.8)
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Recently, a novel method for the solution of the wave equation [2,3], based on the Method of Lines Transpose
(MOLT) and a fast boundary integral solver, has been proposed that is unconditionally stable - that is, the
Courant-Friedrichs-Lewy (CFL) condition limiting the ratio of the time step size to the spatial step size,
typical of explicit methods, need not be obeyed to maintain numerical stability. Our goal is to apply this
wave solver to (1.5) and (1.6), in conjunction with an appropriate description of particles, to develop a PIC
method.

In the non-relativistic, zero-magnetic field limit, it is typical to make the electrostatic approximation,
E = −∇φ , −∇2φ = ρ/ε0, simplifying the Vlasov-Maxwell system to the Vlasov-Poisson system. Corre-
spondingly, we consider the same non-relavistic, zero-magnetic field limit, and drop A and the wave equation
(1.6) from our model. In the limit of particle velocities small compared to the speed of light, this will agree
approximately with the electrostatic case.

2. Description of Method.

2.1. Wave Solver. We summarize the basics of a recently proposed wave equation solver that is un-
conditionally stable, but refer the reader to the recent work [3] for the details. The solver is based on the
Method of Lines Transpose (MOLT), in which a semidiscrete equation is obtained by discretizing the time
derivative. While many time discretizations are possible, each leading to a different variant of the solver
with different properties, we presently use a backward difference formula (BDF):

φ
n+1
tt =

2φ n+1−5φ n +4φ n−1−φ n−2

∆t2 − 11∆t2

12
φtttt(η). (2.1)

Substituting into the wave equation (1.5) and rearranging gives the elliptic equation:(
∇

2− 2
(c∆t)2

)
φ

n+1 =−5φ n−4φ n−1 +φ n−2

(c∆t)2 −ρ(x, tn+1)/ε0 (2.2)

In one dimension, this elliptic equation may be solved by a boundary integral method. A naive implemen-
tation of this solution would cost O(N2) operations for N grid points; however, a fast convolution algorithm
was developed in [2, 3] that costs only O(N) operations, giving a method that is competitive with standard
finite difference methods for the wave equation (and, by the Lorenz gauge formulation, for Maxwell’s equa-
tions). In higher dimensions, alternating dimension implicit (ADI) dimensional splitting combined with the
fast 1D solver provides for a fast solution (with, however, an associated splitting error). We consider only
the 1D case at present.

The Green’s function of the one dimensional elliptic operator
(

1
α2

∂ 2

∂x2 −1
)

is G(x,y) = α

2 e−α|x−y|, so
that the solution to (2.2) in 1D is given by [2]

φ
n+1 (x) = α

∫ b

a
e−α|x−y|

{
5φ n−4φ n−1 +φ n−2

4
+

ρ(y, tn+1)

2α2ε0

}
dy

+Ae−α(x−a)+Be−α(b−x)
(2.3)

where α =
√

2/(c∆t), and where we assume that the support of ρ(·, tn+1) is contained in the interval [a,b],
and the constants A and B are chosen to impose boundary conditions at x = a and x = b. A number of
boundary conditions have been implemented, including Dirichlet, Neumann, periodic and outflow boundary
conditions. A domain decomposition method has also been developed and tested. The exponential decay of
the Green’s function allows for a fast recursive numerical computation of (2.3) on a mesh of points in the
interval [a,b], while providing for unconditional stability.
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2.2. Exact Integration of Particles. In PIC methods, particles are typically represented by shape func-
tions, so that ρ(x, tn)=∑i qiS(x−xn

i ), where the sum is over particles and S(x) is the shape function. For typi-
cal, piecewise polynomial shape functions, the contribution of α

∫ b
a e−α|x−y|ρ(y, tn)dy=∑i qiα

∫ b
a e−α|x−y|S(y−

xn
i )dy to (2.3) may be computed exactly. This step replaces the charge-accumulation step of a typical elec-

trostatic PIC algorithm.
In the special case of S(x) = δ (x) (point particles), we have

α

∫ b

a
e−α|x−y|S(y)dy = αe−α|x| (2.4)

More typical, however, are piecewise linear particles (sometimes called cloud-in-cell (CIC) interpola-
tion). In this case,

S(x) =

{
1−|x| |x|< 1
0 |x| ≥ 1

(2.5)

where we have normalized the particle width to 2 for simplicity, giving

α

∫ b

a
e−α|x−y|S(y)dy =

 2e−α|x|
α

(coshα−1) |x| ≥ 1

2
[
1−|x|− e−α|x|

α
+ e−α

α
cosh(αx)

]
|x|< 1

(2.6)

We can again use fast exponential recursion to evaluate these integrals; if there are P particles and N
grid points, we can evalute the integrals in O(P+N) operations (naive direct evaluation would take O(PN)
operations, an unacceptable cost). For any integrable function u(x), we have

I[u](x) = α

∫ b

a
e−α|x−y|u(y)dy = IL[u](x)+ IR[u](x) (2.7)

where

IL[u](x) = α

∫ x

a
e−α(x−y)u(y)dy, IR[u](x) = α

∫ b

x
e−α(y−x)u(y)dy. (2.8)

These satisfy

IL[u](x+∆x) = e−α∆xIL[u](x)+α

∫ x+∆x

x
e−α(x+∆x−y)u(y)dy (2.9)

IR[u](x) = e−α∆xIR[u](x+∆x)+α

∫ x+∆x

x
e−α(y−x)u(y)dy (2.10)

These relations provide the basis for the fast evaluation of the particle integrals. Consider a partition of the
interval x1,x2, ...,xN of the interval [a,b]. For simplicity, assume the partition is uniform (though this is not
necessary), so that x j+1 = x j +∆x for j = 1, ...N−1. We will initially compute

IL
j [u] = α

∫ x j

x j−1

e−α(x j−y)u(y)dy, j = 2, ...,N

IR
j [u] = α

∫ x j+1

x j

e−α(y−x j)u(y)dy, j = 1, ...,N−1

and define IL
1 [u] = 0 and IR

N [u] = 0. Then we perform a recursive update:
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for j = 1 to N−1 do
IL

j+1[u] = e−α∆xIL
j [u]+ IL

j+1[u]
IR
N− j[u] = e−α∆xIR

N− j+1[u]+ IR
N− j[u]

end for
Finally, we get I[u] = IL[u]+ IR[u].
Specializing to the particle integrals, we initialize IL and IR to zero and accumulate the contributions of

each particle:
for each particle i do

for each cell [x j,x j+1] overlapping with particle shape do

IL
j+1 = IL

j+1 +α

∫ x j+1

x j

e−α(x j+1−y)qiSi(y)dy

IR
j = IR

j +α

∫ x j+1

x j

e−α(y−x j)qiSi(y)dy

end for
end for

where Si(x) is the shape function of particle i. The integrals are evaluated analytically. On a uniform
mesh with a linear particle shape of width 2∆x, the particle shape overlaps with at most three cells, and
one evaluation of an exponential function is required per particle. Some care must be taken for particles
located in the first or last cell of the domain; in a periodic domain, the shape function should be periodically
extended.

Then, we perform the recursive update to IL and IR, and finally obtain I = IL + IR.
Further, we note that the contribution to (2.3) of a uniform background charge distribution may also be

computed exactly by evaluating

α

∫ b

a
e−α|x−y|dy = 2− e−α(x−a)− e−α(b−x) (2.11)

on the mesh and multiplying by the uniform background charge density ρback.

2.3. Particle Mover and Computational Cycle. The motion of charged particles is governed by the
Newton-Lorentz force law:

dxi

dt
= vi (2.12)

dvi

dt
=

qi

mi
(E+vi×B) (2.13)

where i is the index of the particle, xi is the position, vi is the velocity, qi is the charge and mi is the mass of
particle i. Various time stepping schemes have been developed for (2.12) and (2.13). In PIC methods, fields
are interpolated to particle locations to provide the accelerations of the particles, and particle locations and
motions are interpolated to the mesh to provide the charge density ρ and current J for the field equations.

There is a great deal of freedom in the choice of numerical scheme used to integrate (2.12) and (2.13)
(the particle mover), as it is largely independent of the field solver. Presently we consider the explicit
leapfrog scheme, as it is one of the simplest and most widely used choices; other particle movers can be
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easily incorporated. The explicit leapfrog scheme in 1D is given by

vn+1/2
i = vn−1/2

i +∆tan
i (2.14)

xn+1
i = xn

i +∆tvn+1/2
i (2.15)

The acceleration in our case is given by

an
i =

qi

mi
E(xn

i ) =
qi

mi

N

∑
j=1

En
j S(x j− xn

i ) (2.16)

where the sum in j is over grid points x j, and the electric field is given by the centered difference approxi-
mation:

E j =
φ j+1−φ j−1

2∆x
(2.17)

Thus, one time step of the overall algorithm can be summarized as follows and in Figure 2.3. Assume we
have the particle positions xn

i and velocities vn−1/2
i , the previous time steps for the potential φ n−2,φ n−1,φ n,

and the electric field at the particle positions En(xn
i ).

1. Update the particle velocities: vn+1/2
i = vn−1/2

i +∆tEn(xn
i )

2. Update the particle positions: xn+1
i = xn

i +∆tvn+1/2
i

3. Evaluate exact particle integrals from particle positions xn+1
i , perform numerical quadrature and

BC updates to compute φ n+1.
4. Compute En+1 on the grid from finite differences applied to φ n+1, interpolate to particle positions

to obtain En+1(xn+1
i ).

update
particle

velocities
and

positions

evaluate
exact

particle
integrals

compute
potential

compute
fields and
interpolate
to particles

FIG. 2.1. Cycle of one time step

2.4. Start Up. It is necessary to provide the wave solver with three initial time steps as an initial
condition. In the numerical examples below, this is done by computing the electrostatic potential from the
Poisson equation −∇2φ = ρ/ε0 through a standard finite difference method.

Alternatively, we could begin the time stepping with zero initial potential everywhere, and step the wave
solver to steady state (keeping the particles stationary), then use this steady state as the initial condition. This
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is possible because the BDF time discretization introduces numerical dissipation. While many time steps
may be necessary to reach steady state, it will not be overly expensive, as the expense of the particle mover
and exact particle integration is avoided. This approach avoids the construction and inversion of the Poisson
matrix, which is particularly helpful in higher dimensions with complex geometry.

3. Numerical Examples. We apply the proposed method to a number of test problems. First, we show
that, while the self-force of a single particle is not identically zero, it is not so large to render the method
useless. Second, we show that the method can capture the behavior of a two-body oscillatory system. Finally,
we apply the method to a number of standard electrostatic test problems, and show that the results agree with
linear theory.

3.1. Self-Force Test. Standard PIC algorithms on uniform meshes have the property of zero-self force
- a single particle placed in, say, a periodic domain with a uniform neutralizing background charge, will
not experience any acceleration, up to round off error. The key to this property is the use of the same
interpolation scheme in interpolating charge to the mesh points, and fields to the particle positions. Due to
the nature of the boundary integral solver, our proposed method does not have the same zero-force property,
as the Green’s function modifies the effective weighting of charge to the grid. In this section, we see that,
while a self-force error is present, it does not result in a catastrophic acceleration of the particle.

In this example, we consider a single particle in a periodic domain with uniform neutralizing back-
ground. We take the length of the domain to be 1, the mass of the particle to be 1, the charge of the particle
to be -1, and also set ε0 = 1. We vary the parameters ∆x, ∆t, and the speed of light c and investigate the
resulting self-force error, considering c∆t/∆x = 100 or 1000. We plot the momentum of the particle, which
is the time integral of the self-force error, over 10,000 time steps in Figure 3.1.

3.2. Two Particle Oscillation. In this section, we apply the proposed method to a two-body problem.
A light, negatively-charged particle (electron) is displaced by 5 cells from a heavy, positively-charged par-
ticle (ion), and the system oscillates. Because the electron is much lighter than the ion, the motion of the
electron is much larger; however, both particles are advanced according to (2.14) and (2.15). In this example,
the length of the domain is Lx = 1, the mesh size is ∆x = 0.01, the speed of light is c = 1, and the time step
size is ∆t = 10; the electron charge to mass ratio is −1, the electron charge is −4×10−8, the ion charge
to mass ratio is 1/2000, and the ion charge is 4×10−8. The oscillation of the electron over many periods
is displayed in Figure 3.2; the oscillation is well-resolved, with approximately 100 time steps per period of
oscillation, and does not degrade over many time steps and periods.

3.3. Cold Plasma Langmuir Wave. In the following three test problems, electrons are loaded from an
initial distribution of the form

fe(x,v, t = 0) = fe(v)
(

1+ xp sin
(

2πx
Lx

))
(3.1)

where Lx is the length of the domain, xp is the amplitude of perturbation, and fe(v) is the initial velocity
distribution. We take charge to mass ratio for electrons to be 1, and normalize time quantities to the plasma
frequency ωp and spatial quantities to the Debye length λD. We will consider a periodic domain with a
uniform neutralizing background charge, and further we set the speed of light c = 1000 and ε0 = 1.

We consider a cold plasma Langmuir wave [6] with fe(v) = δ (v). We use Np = 10000 particles, and
take xp = 0.01, ∆t = 0.1, and Lx = 1, with Nx = 500 cells in the domain. The potential energy is plotted in
Figure 3.3; we see that the plasma frequency is accurately reproduced.
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3.4. Two Stream Instability. We consider the two stream instability with fe(v) = δ (v−vbeam)+δ (v+
vbeam). According to the dispersion relation for the two instability from linear theory, we have

ω
4−2ω

2(ω2
p + k2v2

beam)+ k2v2
beam(k

2v2
beam−2ω

2
p) = 0 (3.2)

which gives the greatest growth rate, γ ≈ 0.3535, for k ≈ 3.06. We therefore scale the domain to this value
of k, and take Lx = 2π/3.06, ∆t = 0.1, Nx = 100, vbeam = 0.2, Np = 30000, and xp = 0.001. The growth of
the k = 3.06 mode of the electric field is shown in Figure 3.4, and agrees with the rate from linear theory.

3.5. Landau Damping. Finally, we consider Landau damping of Langmuir waves in a warm plasma,
with fe(v) taken to be Maxwellian. The dispersion relation from linear theory in this case gives a decay rate
of γ ≈ 0.154 for the k = 0.5 mode. We take Lx = 4π , ∆t = 0.1, Nx = 100, vtherm = 1, Np = 300000, and
xp = 0.1. The decay of the k = 0.5 mode of the electric field is shown in Figure 3.5, and agrees with the rate
from linear theory.

4. Conclusions. We have proposed a PIC method based on a novel wave equation solver applied to
the scalar and vector potentials in the Lorenz gauge. The wave solver is unconditionally stable, permitting
the use of time steps much larger than allowed by the usual CFL condition. Using explicit leapfrog as the
particle mover, we have applied this method to several standard 1D electrostatic test problems and found
results agreeing with linear theory. The presence of non-physical self-force is a drawback to the proposed
method, but one that does not seem to be fatal to the usefulness of the method. Future work will include
the incorporation of more advanced particle movers, with the ultimate goal of generating an implicit PIC
method that can take time steps much larger than the plasma period [4, 5], the extension of the method to
two and three dimensions, and the extension to the fully electromagnetic case.
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FIG. 3.1. Momentum due to self-force error with ∆x = 0.01 (top) and ∆x = 0.001 (bottom).
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FIG. 3.2. Position of electron oscillating about an ion. The well-resolved oscillation (approx. 100 time steps per period) does not
degrade over many time steps and periods of oscillations.
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FIG. 3.3. Cold plasma Langmuir wave. The plasma frequency ωp = 1 is accurately reproduced.
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FIG. 3.4. Two stream instability. The rate of growth in the k = 3.06 mode of the electric field is accurately reproduced.
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FIG. 3.5. Landau damping. The rate of decay of the k = 0.5 mode of the electric field is accurately reproduced.


