
CSRI SUMMER PROCEEDINGS 2009

The Computer Science Research Institute
at Sandia National Laboratories

Editors:
Zhaofang Wen and S. Scott Collis

Sandia National Laboratories

January 11, 2010

A Department of Energy
National Laboratory

SAND2010-3083P

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

ii CSRI Summer Proceedings 2009

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represent that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect
those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

Z. Wen and S.S. Collis iii

Preface
The Computer Science Research Institute (CSRI) brings university faculty and students to
Sandia National Laboratories for focused collaborative research on computer science, com-
putational science, and mathematics problems that are critical to the mission of the laborato-
ries, the Department of Energy, and the United States. CSRI provides a mechanism by which
university researchers learn about and impact national– and global–scale problems while si-
multaneously bringing new ideas from the academic research community to bear on these
important problems.

A key component of CSRI programs over the last decade has been an active and produc-
tive summer program where students from around the country conduct internships at CSRI.
Each student is paired with a Sandia staff member who serves as technical advisor and men-
tor. The goals of the summer program are to expose the students to research in mathematical
and computer sciences at Sandia and to conduct a meaningful and impactful summer research
project with their Sandia mentor. Every effort is made to align summer projects with the stu-
dent’s research objectives and all work is coordinated with the ongoing research activities
of the Sandia mentor in alignment with Sandia technical thrusts and the needs of the NNSA
Advanced Scientific Computing (ASC) program that has funded CSRI from its onset.

Starting in 2006, CSRI has encouraged all summer participants and their mentors to
contribute a technical article to the CSRI Summer Proceedings, of which this document is
the fouth installment. In many cases, the CSRI proceedings are the first opportunity that
students have to write a research article. Not only do these proceedings serve to document
the research conducted at CSRI but, as part of the research training goals of CSRI, it is the
intent that these articles serve as precursors to or first drafts of articles that could be submitted
to peer–reviewed journals. As such, each article has been reviewed by a Sandia staff member
knowledgeable in that technical area with feedback provided to the authors. Several articles
have or are in the process of being submitted to peer–reviewed conferences or journals and
we anticipate that additional submissions will be forthcoming.

For the 2009 CSRI Proceedings, research articles have been organized into the following
broad technical focus areas — computational mathematics and algorithms, discrete mathe-
matics and informatics, architectures and systems software, and applications and these areas
are well aligned with Sandia’s strategic thrusts in computer and information sciences.

We would like to thank all participants who have contributed to the outstanding tech-
nical accomplishments of CSRI in 2009 as documented by the high quality articles in this
proceedings. The success of CSRI hinged on the hard work of over 25 enthusiastic student
collaborators and their dedicated Sandia technical staff mentors. It is truly impressive that the
research described herein occurred primarily over a three month period of intensive collabo-
ration.

CSRI benefited from the administrative help of Deanna Ceballos, Bernadette Watts, Mel
Loran, Dee Cadena, and Vonda Coleman. The success of CSRI is, in large part, due to their
dedication and care, which are much appreciated. We would also like to thank those who
reviewed articles for this proceedings — their feedback is an important part of the research
training process and has significantly improved the quality of the papers herein. Finally,
we want to acknowledge the ASC program for their continued support of the CSRI and its
activities which have benefited both Sandia and the greater research community.

Zhaofang Wen
S. Scott Collis

January 11, 2010

iv CSRI Summer Proceedings 2009

Z. Wen and S.S. Collis v

Table of Contents

Preface
Z. Wen and S.S. Collis . iii

Computational Mathematics and Algorithms
Z. Wen and S.S. Collis . 1

Mesh Optimization with High-order Finite Elements
P. Knupp, N. Voshell, and J. Kraftcheck . 3

A Comparison of Nonlocal Diffusion Equations to their Classical Analogs
N.J. Burch and R.B. Lehoucq . 12

A Trilinos and hypre Interface
K. Fermoyle and M. Heroux . 24

Automatic Hexahedral Mesh Generation with a Refined Cartesian Grid
Data Structure
J.M. Kallaher and S.J. Owen . 31

A Preliminary Investigation into Uncertainty Quantification Methods Applied to
Network Coupled Systems
H.F. Stripling and E.T. Phipps . 38

A Fast ILU Preconditioning-based Solver for the Charge Equilibration Problem
H.M. Aktulga, A.Y. Grama, S. Plimpton and A. Thompson 50

A Study of Multilevel ILU Techniques For Circuit Simulation
E.C. Durant and H.K. Thornquist . 59

Comparisons between Finite Element and FC-AD methods with applications to
drug delivery
C.E. Beni, O.P. Bruno, P.B. Bochev, D. Ridzal, and K.J. Peterson 70

Assessment of Collocation and Galerkin Approaches to Stochastic PDEs
C.W. Miller, R.S Tuminaro, E.T. Phipps and H.C. Elman 80

Parallel Coordinates in VTK and ParaView
D.Y. Feng and A.T. Wilson . 90

GSA for Stochastic Collocation Expansion
Gary Tang, Laura Swiler, and M.S. Eldred 100

Discrete Mathematics and Informatics
Z. Wen and S.S. Collis . 111

Solving k-Detectability Sensor Placement Problem with Integer Programming
Models T.K. Feng, J.P. Watson, R. Carr and J.C. Beck 113

Semisupervised Named Entity Recognition
T.P. Turpen and D.M. Dunlavy . 120

A Study of Diversity in Ensemble Models for Classification Problems
S.A. Gilpin and D.M. Dunlavy . 127

Parallel Simulation of 3D Sintering
Cristina Garcia, Veena Tikare and Steven J. Plimpton 139

L1-MOR: An Automated Model Order Reduction Framework based on L1 Norm
and Moment Matching
P. Bhansali and K.R. Santarelli . 152

Architectures and Systems Software
Z. Wen and S.S. Collis . 165

An API for SMARTMAP and Its Applications
R. Brightweill, Z. Wen, J. Wu and L. Zhao 167

Root Cause Analysis of Errors for High Performance Computing
J.M. Vaughan, J.R. Stearley, S.A. Mitchell, G. Michailidis 177

vi CSRI Summer Proceedings 2009

Using Block RAM To Accelerate Matrix-Vector Product Calculations in FPGAs
D.W. Derek Woodman, D.D. Dwight Day and D.D. Douglas Doerfler 187

PSST: A Modular CPU Simulator for the Structural Simulation Toolkit
C.D. Kersey and A.F. Rodrigues . 191

Applications
Z. Wen and S.S. Collis . 197

Molecular Dynamics Simulations of Silica Nanoparticles decorated with PPEs
S. Maskey and G. S. Grest . 199

3D TCAD Modeling of Candidate Structures for the Silicon Qubit
N.L. Rowsey and R.P. Muller . 207

Particle Mesh Methods for Plasma Simulation
M.C. Kureczko and D.M. Day . 218

Interface Reconstruction Verification in ALEGRA
M.S Swan, W.J. Rider, and O.E. Strack . 228

Modeling a Resonant Tunneling Diode using Trilinos
A.S. Costolanski and A.G. Salinger . 236

Ab Initio Path Integral Molecular Dynamics Study of Intermolecular Proton Trans-
fer Reactions
A. Pérez, M.E. Tuckerman, H.P. Hjalmarson and O.A. von Lilienfeld 245

A two-temperature model of radiation damage in α-quartz
C.L. Phillips, P.S. Crozier, R. J. Magyar . 263

Z. Wen and S.S. Collis 1

Computational Mathematics and Algorithms

Articles in this section focus on fundamental numerical algorithms ranging from mesh
adaptation, optimal quadrature, and model reduction to numerical linear algebr, multigrid
algorithms and uncertainty quantification that each have broad potential for application in a
variety of computational disciplines.

Z. Wen
S.S. Collis

January 11, 2010

2 CSRI Summer Proceedings 2009

CSRI Summer Proceedings 2009 3

QUADRATIC TRIANGLE MESH UNTANGLING AND OPTIMIZATION VIA THE
TARGET-MATRIX PARADIGM

PATRICK KNUPP∗, NICHOLAS VOSHELL†, AND JASON KRAFTCHECK‡

Abstract. Meshes containing high-order nodes sometimes contain inverted elements due to the projection of
coarse elements onto the domain boundary. Usually, such meshes are problematic and fixing the associated problems
requires either re-meshing or post-processing techniques. Mesh optimization methods based on the Target-matrix
paradigm are studied as a post-processing step to determine if the approach gives a viable solution to both untangling
and improving the quality of a quadratic triangle mesh. Several preliminary algorithms are described, including one
involving two successive optimizations. For that algorithm, a first optimization using a non-barrier size metric with
a properly constructed target-matrix can potentially untangle the mesh. If the first optimization untangles the mesh,
a second optimization of that result using a barrier-based shape metric can improve shape while keeping the mesh
untangled. Numerical experiments applying the algorithms on planar quadratic triangle meshes demonstrate that
optimization-based node-movement methods can successfully untangle and improve element shapes in high-order
meshes. Further study of these algorithms is needed before they can be used with confidence on realistic meshes.

1. Introduction. To achieve high accuracy simulations, second-order finite elements
are sometimes used. Unfortunately there are no reliable tools for meshing curved geome-
tries known to the authors; however mesh generation packages usually follow an a posteriori
approach to create boundary-conforming, quadratic element meshes on complex geometries
by first creating elements with straight sides and then curving boundary sides by projecting
mid-side and mid-face nodes onto the bounding geometry [11]. The quality of the resulting
boundary elements can be poor, particularly if elements are large compared to the curvature
of the associated geometry. This impacts simulation accuracy, efficiency and, if the Jacobian
is negative, even the ability to proceed with the calculation.

The convergence theory of finite elements requires that mesh elements not be inverted.
Most elements are defined based on a mapping from a logical element and the Jacobian ma-
trix, J, of this mapping. The strict definition of an inverted element is that there exists a point
(ξ, η) within the logical element such that det(Jξ,η) ≤ 0. If such a point does not exist, then
the element is said to be non-inverted. Given an arbitrary linear planar triangle or quadrilat-
eral, it is simple to determine from this criterion whether the element is inverted because the
determinant is linear in the logical coordinates. However, for hexahedra, quadratic, and other
element types, it is difficult to find robust and efficient numerical algorithms for determining
whether a given element is valid.

The present work does not focus directly on the detection of inverted elements. Since it is
possible to improve mesh quality without knowing beforehand if the mesh contains inverted
elements, the question to be considered here is: given a mesh of quadratic elements, can we
improve shape and size quality, such that the result rarely contains inverted elements? It is
recognized that edge flipping and node insertion are powerful techniques in their own right.
However, the approach taken here is based on a node movement strategy called the Target-
matrix paradigm [6]. It is hoped that, once it is understood how to effectively optimize high-
order element meshes using node movement alone, all these techniques can be combined into
a single algorithm. The capability to optimize the quality of high-order finite element meshes
by node-movement was recently added to the Mesquite mesh quality improvement library
[1]. The present study uses the new capability to explore how one might improve meshes
containing high-order nodes. For simplicity, attention is confined to planar quadratic triangle

∗Sandia National Laboratories, pknupp@sandia.gov
†The Pennsylvania State University, njv116@cse.psu.edu
‡The University of Wisconsin, kraftche@cae.wisc.edu

4 Quadratic Triangle Mesh Untangling and Optimization

meshes, but the approach is generalizable to other types of high-order elements. Studies
involving other element types are planned for future work.

There have been limited studies that attempt to untangle or improve element shapes
within meshes that include high-order elements (which are elements that have polynomi-
als of degree greater than one defining their shape). Investigations defining valid regions
for the placement of mid-nodes to ensure untangled elements (and other properties) were
calculated in [13, 14], this could help in detecting untangled elements, or guiding vertex
placement. In [9, 10], a mesh modification technique is employed to improve the quality of
a high order element mesh (as well as enabling refinement and/or coarsening of the mesh).
The technique was developed using vertex insertion and removal, flipping of edges and faces,
along with other topological mesh modifications. One method for assessing the quality of
quadratic triangle elements (that could be extended to give quality metrics for mesh opti-
mization) was given in [12]. Proposed optimization-based node-movement strategies for im-
proving quadratic meshes appear to be limited to [2, 3]. In [3], a linear quality metric was
modified to be sensitive to high-order node positions by adding an angle-based penalty term.
The quality metric was extended to quadrilaterals in [2] and a node-movement strategy that
automatically switched between constrained Laplace smoothing and an optimization proce-
dure based on the linear quality metric and the penalty term was applied to improve quadratic
meshes. Limitations of the method include being applicable only to homogeneous, isotropic
two-dimensional meshes.

2. Quadratic Elements. Using the standard basis vectors for R2 one can define a log-
ical triangle which serves as the master element for the transformations used by quadratic
triangles. The other elements that are of interest in this work are the active element (which is
the element of interest in the mesh) and the target element (the desired element), which the
active element is compared to. Any given quadratic triangle can then be defined by six points,
corner vertices (x0, x1, and x2) and mid-edge nodes (x3, x4, and x5). A mapping from point
(ξ , η) of the logical triangle to point X of the quadratic triangle can then be defined using the
following equations:

X({xi}, ξ, η) = x0 + c1ξ + c2η + c3ξη + c4ξ
2 + c5η

2 (2.1)
c1 = −3x0 − x1 + 4x3 (2.2)
c2 = −3x0 − x2 + 4x5 (2.3)
c3 = 4(x0 − x3 + x4 − x5) (2.4)
c4 = 2(x0 + x1 − 2x3) (2.5)
c5 = 2(x0 + x2 − 2x5) (2.6)

The vertices of the quadratic triangle are enumerated 0, 3, 1, 4, 2, 5 in counter-clockwise
order (both vertices and mid-side nodes are in counter-clockwise order with mid-side node 3
following vertex 0). The Jacobian matrix for this transformation can be defined at each point
within the logical triangle using the following equation:

J =
[
c1 + c3η + 2c4ξ , c2 + c3ξ + 2c5η

]
(2.7)

Note that a linear mapping can be considered a special case of this in which the mid-nodes
are mapped to the mean of the two corner vertices they are connected to. This causes c3 =

c4 = c5 = 0, which gives a linear mapping function with the following constant Jacobian:

J = [c1 , c2] (2.8)

Given an active quadratic element (i.e., one that belongs to the mesh to be optimized) and a
sample point (ξk, ηk) within the logical element, we have Ak = Jactive(ξk, ηk). Similarly, given

P. Knupp, N. Voshell, and J. Kraftcheck 5

a quadratic target element, Wk = Jtarget(ξk, ηk). Thus for every sample point, we have the pair
Ak, Wk. When speaking in general about active and target-matrices, the sample point index is
suppressed, giving A and W.

From this one can define the Jacobian matrix for the mapping from the target triangle
to the active triangle (the inverse of logical 7→ target composed with logical 7→ active) as
follows:

T = A W−1 (2.9)

For an isotropic domain, there is no reason for the target element to break symmetry, so the
equilateral triangle is a good choice for the target. For theoretical reasons explained in [4],
we choose the area of the target equilateral element to be one-half. Then the Jacobian of the
logical to target mapping (up to multiplication by some rotation matrix) is as follows:

W =
1
√

2 4√3

[
2 1
0
√

3

]
(2.10)

3. Mesh Optimization. Mesh optimization, as the term is used here, is a technique
for modifying a mesh by moving vertices without changing the connectivity. In mesh opti-
mization one defines an objective function to quantitatively compare the quality of alternative
meshes. The optimal mesh has the best objective function score subject to constraints (on the
position of boundary vertices, for example). The best valid objective function value is found
using numerical optimization techniques. The objective function is usually some combination
of measurements of the quality of individual components (such as elements or vertices) in the
mesh. Most effort, as of this writing, has been on optimizing meshes composed of linear el-
ements. For these linear meshes, good element quality metrics have been found, particularly
to measure the shape of triangular elements.

In Mesquite there are four main options for the movement of each mesh vertex, which
form optimization constraints. The four options are (a) fixed (no movement permitted), (b)
free (any movement permitted), (c) constrained to the geometry (where the vertex is con-
strained to a lower dimensional space, such as the boundary), and (d) slaved (where a mid-
side node is constrained to the midpoint of the neighboring vertices). The first three options
apply to all vertices, while (d) applies only to mid-side nodes.

Some of the work on improving mesh quality has dealt with meshes where elements are
inverted. For quadratic element meshes, the issue frequently arises during mesh creation,
where curving the boundary of the initial linear mesh to conform to the geometry causes
some elements to be poorly shaped or even inverted. To eliminate inverted elements from
the mesh via optimization, a number of mesh untangling algorithms have been proposed
(see [5] and the references therein). Unfortunately, none of these algorithms guarantee that
the resulting mesh will, in fact, be untangled. Furthermore, by focusing exclusively on the
inversion issue, the untangling techniques ignore other important aspects of mesh quality.
To eliminate inverted elements and improve shape in quadratic element meshes we take a
different approach that does not use a direct untangling algorithm. The approach in this work
uses local quality metrics from the Target-matrix paradigm.

In the Target-matrix paradigm, each element of the mesh has a C1 mapping from a target
element to the active element. The Jacobian of this mapping (evaluated at sample point k) is
the matrix, Tk. Then the quality at k is measured by local quality metric µk = µ(Tk), which
gives a non-negative real number. The metrics measure the degree to which A is ’close’ to W,
in terms of properties such as shape, size, and orientation.

There are two basic types of local metrics in the Target-matrix paradigm, those having
’barriers’ and those which do not. Barrier metrics are used when the initial mesh is not

6 Quadratic Triangle Mesh Untangling and Optimization

inverted; the barrier guarantees that the optimal mesh is not inverted at the sample points.
Non-barrier metrics are used when the initial mesh contains one or more inverted sample
points. The optimal mesh resulting from a non-barrier metric may or may not contain inverted
elements. Since the initial quadratic meshes that we wish to improve are assumed to contain
elements which are inverted, we use non-barrier metrics to optimize the initial mesh. If
optimization with a non-barrier metric succeeds in creating a non-inverted mesh, the result
can be further optimized using a barrier metric.

The first non-barrier metric of interest is the Shape (S) metric given by:

µS (T) = ‖T‖2F − 2 det(T) (3.1)

In [6, 7] it was shown that µS ≥ 0 for all T and µS = 0 if and only if T is a scaled rotation
matrix. In that case, A has the form A = sRW with arbitrary scalar s and arbitrary rotation
R. Then the shape of the active matrix is the shape of the target-matrix, which in the present
case corresponds to the equilateral triangle. This is a non-barrier metric, so it can potentially
untangle an initially inverted mesh, as well as improve shape. The barrier form of the shape
metric is

µS B(T) =
‖T‖2F

2 det(T)
(3.2)

The second non-barrier metric of interest is the Size (Sz) metric, given by:

µS z(T) = (det(T) − 1)2 (3.3)

The metric obeys µS z ≥ 0 for all T and µS z = 0 if and only if det(T) = 1, i.e., det(A) = det(W).
Thus, at the minimum, the local areas of the active and target matrices agree. Because this
metric has no barrier, it can potentially untangle an inverted mesh as well as improve relative
size. It does not, however, encourage the shape of the active element to be close to the shape
of the target element. Thus, its primary use in the present application is to encourage mesh
untangling because det(W) = 1

2 .
Finally, we consider the Shape+Size (SS) metric, and it’s barrier form:

µS S (T) = ‖T‖2F − 2
√
‖T‖2F + 2 det(T) + 2 (3.4)

µS S B(T) =
1

2 det(T)
µS S (T) (3.5)

It was shown in the previously-cited references that the metric is non-negative and is mini-
mized for A = R W so that, at the minimum, both the shape and size of A agree with the shape
and size of the Target-matrix. The metric can also be used to encourage the untangling of
meshes.

Many of the issues involved in measuring sample point quality within an element are
described in [8]. That work specifically considers quality metrics of the form investigated
here, including results for quadratic triangular elements. It also introduces a relevant property
known as label invariance. Note that x0 can be assigned to any corner vertex, thus there are
three labellings for the corner vertices and mid-side nodes of a quadratic triangle element
that conform to the naming conventions. A local quality metric is label invariant if all three
labellings of the active element give the same quality. Different conditions are derived for the
metric formulation, sample point selection, and target element selection that guarantee label
invariance of the local quality. Specifically, if the target element is a straight edged equilateral
triangle and the sample points are selected to respect the symmetry of the element labellings,
then the resulting quality metric will be locally label invariant.

P. Knupp, N. Voshell, and J. Kraftcheck 7

An important issue concerns how to select the sample point locations within an element.
As mentioned in the Introduction, detecting inverted elements requires, in principle, an infi-
nite number of sample points. However, the present goal is not to detect inverted elements,
but simply to improve quality and attempt to untangle inverted elements. Thus, we investigate
whether it is sufficient to use a small number of sample points for this task. In particular, we
choose to place sample points at all the corners and mid-side nodes of each triangular element
in the mesh.1 Numerical experiments will reveal whether this collection of sample points is
sufficient for untangling realistic meshes.

Qualities, µk, at different sample points are combined into an objective function to be
used in our numerical optimization procedure. To do so, this study uses a power-mean, giving
the following objective function:

OF =
1
N

∑
S ample Point k

µk (3.6)

4. Numerical Examples. Because this is a preliminary investigation, the issue of al-
gorithm efficiency is not considered. Instead, algorithm effectiveness (robustness) is inves-
tigated. The numerical optimizations were carried out using Mesquite’s Feasible Newton
solver, global patch smoothing, and a termination criterion of 400 iterations. The solutions
were well-converged on the small meshes used in this study.

The a posteriori approach to quadratic mesh generation tends to localize poor quality (or
inverted) elements on a curved boundary (rather than the interior of the mesh), which guides
experiment selection. The initial experiment involves a small patch of six quadratic elements
sharing a vertex, with a fixed boundary (see Figure 4.1), where the two triangles at the bottom
of the patch are curved so that one element is initially inverted.

The figure depicts an investigation into which metrics and which combinations of free,
fixed, and slaved vertices give the best results. The pictures are arranged in normal (left to
right and top to bottom) order with the initial configuration first, then the results, with all mid-
side nodes slaved, optimizing for Size, Shape, and Shape+Size (respectively). All of these
meshes are inverted, however optimizing for Size comes closest to untangling, and optimiz-
ing for Shape+Size comes close to untangling while maintaining better shape. After these
come the results optimizing for the Shape+Size metric, but freeing some mid-side nodes,
first freeing only the interior mid-side nodes in the initially inverted element, then freeing all
the internal mid-side nodes. Both of these final two techniques untangled the mesh (with the
increased freedom creating more curved edges but better shape).

After modifying the geometry of this mesh a few times it was found that the Size metric
untangled more cases than the Shape+Size metric (which untangled more cases than the
Shape metric). An instructive investigation performed was one in which the leftmost vertex of
the small patch was moved to the right and the mesh was optimized for different metrics with
all internal mid-side nodes free. See figure 4.2 for a depiction of the results. A big challenge to
untangling this patch is that it significantly reduces the quality of the two leftmost elements
(especially the lower one) and perturbing the leftmost vertex exacerbates this competition
(making untangling the element more challenging). Optimizing with the Shape+Size metric
was unable to untangle perturbations less than 0.4, whereas optimizing with the Size metric
was able to untangle a perturbation of 0.6 (but not 0.7). In both cases the point at which the
problem with untangling first occurs is the lower left vertex (that starts out inverted). Note
that there exists an untangled mesh even when the leftmost vertex has been moved by 0.7, so
there are cases where optimizing for the Size metric is insufficient to find a valid untangled
mesh configuration.

1Note that, in this approach, a mesh vertex can have multiple associated sample points, as can a mid-side node.

8 Quadratic Triangle Mesh Untangling and Optimization

Fig. 4.1. Small Mesh Experiment: The initial mesh is given in the upper left figure. Then the Shape, Size,
and Shape+Size metrics are used (with all mid-nodes slaved) in the upper middle, upper right, and bottom left
(respectively). The bottom row also gives the results with the Shape+Size metric with none of the mid-side nodes
slaved (in the middle), and using a technique where the mid-side nodes are free in the initially inverted elements (but
are otherwise slaved), at bottom right.

Another, larger, mesh was created to give a more realistic test example and to emulate
longer range interactions among multiple nodes, as is commonly seen within larger meshes.
Based on smoothing tests it was confirmed that the Size metric was most useful in untan-
gling the mesh, with the downside that it tends to have poorly shaped elements. Further
investigation revealed that, in many cases, an untangled mesh with nicely shaped elements
could be found by first optimizing with the Size metric (to untangle), then optimizing with
the Size Barrier or Shape+Size Barrier metric (to improve element shapes while preventing
inversions). One drawback of this approach is that the second optimization causes many ver-
tices to return near to their position before the first optimization except, of course, for the
initially inverted regions of the mesh. The approach can potentially be improved by halting
the first optimization pass as soon as the mesh becomes untangled. Other approaches within
the Target-matrix paradigm can also be envisioned.

Some variations of the larger mesh were created, which increased heterogeneity in ele-
ment sizes, to investigate the importance of reference element size. One example is depicted
in figure 4.3. The intuition is that an inverted sample point will have a small negative det(T)
value. Comparing this to the det(T) value for an element that is optimally shaped, but scaled
much larger than the target element, the det(T) value for the inverted sample point will be
closer to the ideal value (of 1). These effects may cause the optimization to move vertices
more to improve elements that aren’t inverted, preventing the untangling of the mesh. How-
ever the meshes created to explore this effect didn’t substantially affect the ability of the
optimization process to untangle the mesh. Further experiments with more heterogeneity
could alter this conclusion.

Looking at figure 4.3, the experiment depicted starts with an initial mesh and looks into

P. Knupp, N. Voshell, and J. Kraftcheck 9

Fig. 4.2. Right Perturbation: The leftmost point of the small mesh is perturbed to the right and results are
depicted for optimizing the mesh using two different metrics. The initial mesh is shown in the top row, the Shape+Size
optimized mesh is shown in the middle row, and the Size optimized mesh is depicted in the bottom row. The left column
shows the unperturbed patch; in this case both metrics led to an untangled mesh. The middle column shows results
for a perturbation of 0.4, in this case the Size optimized mesh is untangled but the Shape+Size optimized mesh is
inverted. The right column shows the resulting meshes for a perturbation of 0.7, where both the Size and Shape+Size
optimized meshes are inverted.

different metrics for the second optimization pass. The initial mesh is shown in the upper left
corner, the areas range from around 1

8 to around 4 times the area of the target element. It
also has three inverted elements. The results after the first optimization pass, using the Size
metric, is depicted in the upper right of the figure. The mesh has been untangled, but the
element shapes have become quite poor (especially at right, where many small elements have
become stretched out). As has been described previously, the second optimization pass then
optimizes for a barrier metric to improve shape without inverting the mesh. Two metrics were
investigated for the second pass, the Size Barrier metric (at lower left) and the Shape+Size
Barrier metric (at lower right). The results indicate no clear winner for the second pass metric,
but do show that the two pass approach untangles the mesh and improves element shapes. One
alternative approach might be to intelligently slave more of the interior nodes during the first
step in which one optimizes with Size, to reduce the number of degrees of freedom and to
avoid the creation of unnecessarily curved edges.

10 Quadratic Triangle Mesh Untangling and Optimization

Fig. 4.3. Heterogeneous Mesh Experiment: The initial mesh is given in the upper left figure. Then the Size
metric is used (with no mid-side nodes slaved), and shown in the upper right. Optimization with other metrics didn’t
untangle the mesh, demonstrating the tendency of the Size techniques to perform better at untangling the samples in
this study. The Size optimized mesh is then used as input for optimization using the Shape Barrier (bottom left) and
Shape+Size Barrier (bottom right). Both of these ’two pass’ results produce untangled meshes with improved shape
compared to either the initial mesh or the Size optimized result.

5. Conclusions and Future Work. The Target-matrix paradigm provides an approach
to the smoothing of quadratic triangle meshes that involves the use of a target matrix based on
an equilateral element; Size, Shape, and Shape+Size local quality metrics (both barrier and
non-barrier); and an objective function that is defined in terms of the average of the sample
point quality metrics. For each element, six sample points were selected, one at each corner
vertex and one at each mid-side node. Non-barrier metrics are used on the initial mesh since
it is expected to contain inverted elements. One promising strategy in eliminating inverted
elements and improving shape is to fix all the boundary nodes, free all the interior corner
and mid-side nodes, and optimize using the Size metric first. That tends to make local sizes
equal and thus to remove outliers such as those corresponding to inverted elements. This is
followed by an optimization of the untangled mesh with a barrier metric to improve Shape or
Shape+Size. The optimizations did not make use of the concept of element quality; instead,
optimizing local quality was sufficient to untangle and improve the test meshes. Of course,
this method does not work on all triangle meshes, but the results suggest that this approach
may lead to a useful algorithm.

The formulation of the objective function and its component parts in this study can be
readily extended to other element types such as high-order quadrilaterals, tetrahedra, and
hexahedra. The effectiveness of the algorithm on such elements remains to be determined.
It may also be worthwhile to investigate different combinations of fixed, free, and slaved
vertices in order to maintain as many straight-sided elements in the interior as possible, along
with allowing boundary nodes to move along their associated boundary instead of being fixed.
Future work also includes investigations of different sets of sample points; using an effective
untangling metric; optimization based on element quality instead of sample point quality; and
applications to real meshes.

REFERENCES

[1] M. Brewer, L. Diachin, P. Knupp, T. Leurent, and D. Melander, The Mesquite mesh quality improvement
toolkit, Proceedings of the 12th International Meshing Roundtable, (2003), pp. 239–250.

P. Knupp, N. Voshell, and J. Kraftcheck 11

[2] Z. Chen, J. Tristano, and W. Kwok, Combined Laplacian and optimization-based smoothing for quadratic
mixed surface meshes, Proceedings of the 12th International Meshing Roundtable, (2003), pp. 361–370.

[3] , Construction of an objective function for optimization-based smoothing, Engr. w/Cmptrs., 20 (2004),
pp. 184–192.

[4] P. Knupp, Construction of target-matrices for the target-matrix paradgim, manuscript in progress.
[5] , Hexahedral mesh untangling & algebraic mesh quality metrics, Proceedings of the 9th International

Meshing Roundtable, (2000), pp. 173–183.
[6] , Local 2D metrics for mesh optimization in the target-matrix paradigm, Sandia National Laboratories,

(2006), pp. SAND2006–7382J.
[7] , Analysis of 2D, rotation-invariant, non-barrier metrics in the target-matrix paradigm, Sandia Na-

tional Laboratories, (2008), pp. SAND2008–8219P.
[8] , Label-invariant mesh quality metrics, to appear in Proceedings of the 18th International Meshing

Roundtable, (2009).
[9] X. Luo, M. Shephard, L. Lee, L. Ge, and C. Ng, Moving curved mesh adaptation for higher order finite

element simulations, Engineering with Computers, submitted., (2006), pp. 42–142.
[10] X. Luo, M. Shephard, L. Lee, C. Ng, and L. Ge, Tracking adaptive moving mesh refinements in 3d curved

domains for large-scale higher order finite element simulations, Proceedings of the 17th International
Meshing Roundtable, (2008), pp. 585–601.

[11] S. Robert, R. O’bara, andM. Shephard, Curvilinear mesh generation in 3D, Proceedings of the 8th Interna-
tional Meshing Roundtable, (1999), pp. 407–417.

[12] A. Salem, S. Canann, and S. Saigal, Robust distortion metric for quadratic trianglular 2D finite elements,
Trends in Unstructured Mesh Generation, ASME, AMD-Vol. 220 (1997), pp. 73–80.

[13] , Mid-node admissible spaces for quadratic triangular arbitrarily curved 2D finite elements, Int. J.
Numerical Methods in Engineering, 50(2) (2001), pp. 253–272.

[14] A. Salem, S. Saigal, and S. Canann, Mid-node admissible space for 3D quadratic tetrahedral finite elements,
Engineering with Computers, 17 (2001), pp. 39–54.

CSRI Summer Proceedings 2009 12

A COMPARISON OF NONLOCAL DIFFUSION EQUATIONS TO THEIR
CLASSICAL ANALOGS

NATHANIAL J. BURCH† AND RICHARD B. LEHOUCQ‡

Abstract. In this note, we investigate relationships between nonlocal diffusion equations and their classical,
local, analogs. For instance, we show how the latter can be derived from the former via truncation of higher-order
statistical moments in a Kramers-Moyal expansion. Further, we demonstrate, via random walks, Lévy processes, and
anomalous diffusion, that nonlocal diffusion equations generalize their classical analogs. We survey selected theory
of nonlocal diffusion equations and other emerging theories, such as nonlocal Green’s identities. From which, we
formulate a variational approach for nonlocal diffusion equations and discuss a Galerkin finite element formulation.
A means for comparing finite element approximate solutions of the nonlocal diffusion equation to those of the
associated classical equation is discussed and related to existing convergence results.

1. Introduction. Recently, nonlocal diffusion equations, e.g.,

∂u
∂t

=

∫
Rn

(u(x + s, t) − u(x, t))φ(s) ds, (1.1)

have been used as a model for various diffusion processes. A discrete-time variation of (1.1)
is used in [6] to study a single species population model following spatial redistribution and
local regulation laws. In [2, 3, 4], nonlocal effects arising from (1.1), e.g., diffusion cor-
relations, are investigated for the modeling of diffusion in fluids with large mean-free-paths.
Further, in [30], integrodifferential equations, such as (1.1), arise as models for the membrane
potential of nerve cells in neural networks. Moreover, applications of (1.1) to nonlocal image
processing are discussed in [15].

We contrast (1.1) with the classical, local, diffusion equation,

∂u
∂t

= D∆u. (1.2)

In the first part of this paper, we address several relationships between (1.1) and (1.2), es-
tablishing connections with random walks, Wiener and Lévy processes [8, 14, 18, 19, 23],
master equations [14, 17, 29], Fokker-Planck equations [8, 14], stochastic differential equa-
tions [22, 24], anomalous diffusion processes [5, 18, 23], and fractional diffusion equations
[5, 19, 25]. With these perspectives, we gain an understanding of how (1.2) can be presented
as a special case of (1.1). Moreover, we investigate potentially important dynamics that are
discarded when using (1.2) in place of (1.1).

In the second part of this paper, we present selected theory of nonlocal diffusion equa-
tions from [1, 7, 9, 10] and introduce Dirichlet and Neumann nonlocal boundary value prob-
lems, which are nonlocal analogs of the classical Dirichlet and Neumann problems. Finally,
we discuss the emergence of a nonlocal calculus [16], demonstrate its relationship to the
problem at hand, and perform a variational analysis. The latter is necessary for implement-
ing Galerkin finite element methods to approximate solutions to nonlocal diffusion boundary
value problems, which we briefly motivate.

2. Nonlocal Diffusion Equations and Classical Diffusion Equations.

2.1. Derivation of the Nonlocal Diffusion Equation via a Random Walk. Let u(x, t)
describe a density of particles at position x and time t, where a particle may represent, for
instance, a molecule in a fluid, an individual in a population, or a probability. We model the

†Colorado State University, Department of Mathematics, Department of Statistics, burchn@lamar.colostate.edu
‡Sandia National Laboratories, rblehou@sandia.gov

N.J. Burch and R.B. Lehoucq 13

movement of each particle with a discrete-time, discrete-space random walk on the grid kdx,
k ∈ Z. That is, in a short time interval τ, each particle moves a distance kdx, independent
of all other particles, with probability ψk. For future use, let φτ(s), s ∈ R, be a symmetric
probability density function and

ψk =

∫ (k+1/2)dx

(k−1/2)dx
φτ(s) ds ≈ φτ(kdx)dx.

Thus, the density of particles at position x and time t + τ satisfies [27]

u(x, t + τ) = u(x, t) +
∑
k,0

u(x + kdx, t)ψk −
∑
k,0

u(x, t)ψk. (2.1)

The terms on the right hand side of (2.1), from left to right, represent the particles present
at position x and time t, particles arriving to position x from other positions during the time
interval τ, and particles leaving position x during the time interval τ. Combining the sums in
(2.1) yields

u(x, t + τ) − u(x, t) =
∑
k∈Z

(u(x + kdx, t) − u(x, t))ψk. (2.2)

Taking dx→ 0, we obtain

u(x, t + τ) − u(x, t) =

∫
R

(u(x + s, t) − u(x, t))φτ(s) ds, (2.3)

which is the analog of (2.2) for a discrete-time, continuous-space random walk on R governed
by the probability density function φτ. Because φτ is a probability density function, we have
that (2.3) is equivalent to

u(x, t + τ) =

∫
R

u(x + s, t)φτ(s) ds, (2.4)

which is an equation familiar to several disciplines. For instance, (2.4) is often referred to as
Einstein’s master equation, or just a master equation, which Albert Einstein used to model
the movement of particles suspended in a fluid in his celebrated seminal paper on the theory
of Brownian motion [11].

Under appropriate conditions1, dividing (2.3) by τ yields the one-dimensional nonlo-
cal diffusion equation (1.1) in the limit as τ → 0. The integrodifferential equation (1.1)
has several aliases, such as master equation, Smoluchowski equation, and nonlocal diffusion
equation, which we use interchangeably.

2.2. Arrival at the Classical Diffusion Equation via a Kramers-Moyal Expansion.
It is well understood in the literature [8, 27] that the classical diffusion equation can be derived
through a special case of (2.2) when ψ1 = ψ−1 = 1/2 and all other ψk’s are zero. In this case,
(2.2) reduces to

u(x, t + τ) − u(x, t) =
1
2

(u(x + dx, t) − 2u(x, t) + u(x − dx, t)).

Dividing by τ and assuming the scaling of time and space satisfies

dx2 = 2Dτ,

1See [14, pp. 47-52], or [28], for a detailed account of these conditions and the ensuing derivation.

14 A Comparison of Nonlocal Diffusion Equations to their Classical Analogs

where D is the diffusion coefficient, we obtain (1.2) in one dimension in the limit of τ → 0.
Thus, both the nonlocal diffusion and the classical diffusion equations can be derived through
a random walk, with the latter arriving from a specific, localized, random walk. By local-
ized, we are referring to each particle’s random walk motion being restricted to immediate
neighboring nodes only. In this light, (1.1) is seen as a generalization of (1.2).

Another relationship between (1.1) and (1.2) shows how the latter is derived from the
former. Assuming appropriate regularity, we perform a Kramers-Moyal expansion [14, 29]
on the right hand side of (1.1) to obtain

∂u
∂t

=

∫
R

[
s
∂u
∂x

+
s2

2!
∂2u
∂x2 +

s3

3!
∂3u
∂x3 +

s4

4!
∂4u
∂x4 + · · ·

]
φ(s) ds

=
∂2u
∂x2

(
E(s2)

2!

)
+
∂4u
∂x4

(
E(s4)

4!

)
+
∂6u
∂x6

(
E(s6)

6!

)
+ · · · , (2.5)

where the odd moments disappear due to symmetry of φ. We suppose

E
(
s2

)
= 2D (2.6)

and that the larger than second-order moments of s are negligible. Thus, truncating (2.5)
again yields (1.2), which illustrates how, under appropriate regularity conditions, the classi-
cal diffusion equation is a second-order truncation of a series representation of the nonlocal
diffusion equation. Einstein, in [11], justified the truncation of (2.5) by assuming “φ(s) only
differs from zero for very small values of s” so that “every succeeding term is very small
compared with the preceding.” Truncating (2.5) after more terms than just the first gives rise
to a family of higher-order differential equations [26].

To reemphasize the important point, although the origins of both (1.1) and (1.2) can be
traced back to a random walk, the former should be understood as either a special case or a
second-order truncation of the latter. In the next section, we further develop this understand-
ing through a discussion of stochastic processes. The validity of truncating (2.5) to obtain
(1.2) has been a recent focus of attention. For instance, the authors in [2, 3, 4] show that
such a truncation is not valid for diffusion in fluids with large mean-free-path by comparing
analytic solutions (1.1) and (1.2), thus providing a convincing argument that nonlocal effects
present in (1.1) should not be ignored.

2.3. Master Equations, Fokker-Planck Equations, and Stochastic Differential Equa-
tions. The master equation (1.1) describes the time evolution of the probability density func-
tion, u(x, t), of the state of a system obeying a pure-jump stochastic process [14]. Such a
process, a specific type of Lévy process2, can be shown to have discontinuous sample paths
and is encountered when modeling anomalous diffusion, turbulent fluid flow, and ballistic
particle diffusion, to name a few [5]. In contrast, the approximating classical diffusion equa-
tion (1.2) is a Fokker-Planck equation [14, 29], named after Adriaan Fokker and Max Planck.
As such, (1.2) describes the time evolution of the probability density function, u(x, t), of the
state of a system obeying an Itō stochastic differential equation (SDE). That is, suppose that
the state of a system, Xt, is given by the Itō SDE

dXt = µ(Xt, t)dt + σ(Xt, t)dWt, (2.7)

where Wt is a standard Wiener process3 [8, 22, 24]. Loosely, (2.7) specifies that the amount
Xt changes in a small time increment is distributed as N(µ(Xt, t), σ2(Xt, t)t), where µ(Xt, t)

2A Lévy process is a general class of stationary stochastic processes restricted to start at the origin, have inde-
pendent increments, and be right continuous with left limits.

3A Wiener process is a specific case of a Lévy process in which any increment, Wt−Ws, is a zero-mean Gaussian
random variable with variance t − s.

N.J. Burch and R.B. Lehoucq 15

and σ(Xt, t) are commonly referred to as the drift and diffusion coefficients of the process,
respectively. Then, the Fokker-Planck equation associated with (2.7) is

∂u
∂t

= −
∂

∂x
(µ(x, t)u(x, t)) +

∂2

∂x2

(
1
2
σ2(x, t)u(x, t)

)
. (2.8)

Using the symmetry of φ, which induces a zero drift in the Itō SDE, and assumption (2.6),
(2.7) becomes

dXt =
√

2DdWt, (2.9)

while (2.8) becomes (1.2). The solution of (2.7) can be shown to have continuous sam-
ple paths almost surely. Consequently, although the underlying jump process of (1.1) has
discontinuous paths, the underlying Itō process of (1.2) has continuous paths, identifying a
limitation of using (1.2) in place of (1.1)

2.4. Anomalous Diffusion and Fractional Diffusion Equations. To understand the re-
lationship between diffusion and the master equation we invoke some basic theory of Fourier
transforms. Taking the Fourier transform of (1.2),

∂̂u
∂t

= −Dk2û(k, t), (2.10)

where û(k, t) represents the Fourier transform in space of the function u(x, t). Solving this
ordinary differential equation with initial condition u(x, 0) = δ(x) gives

û(k, t) =
1
√

2π
exp(−Dk2t),

which can be inverted to yield the fundamental solution of (1.2), denoted with g,

g(x, t) =
1

√
4πDt

exp
(
−

x2

4Dt

)
. (2.11)

From (2.11), given that a particle begins at the origin, its position after time t is given by a
zero-mean Gaussian random variable with variance 2Dt, characteristic of Brownian motion,
as witnessed also in (2.9). For (1.2) with u(x, 0) = u0(x),

u(x, t) = (u0 ∗ g)(x, t) =
1

√
4πDt

∫
R

exp
(
−

(x − y)2

4Dt

)
u0(y) dy. (2.12)

Rewriting (2.12),

u(x, t) =

∫
R

g(y, t)u0(x − y) dy,

which suggests that the solution u(x, t) is the probabilistic expectation of the initial density of
particles at position x − y that have diffused to position x in time t through Brownian motion.

Now, consider the nonlocal diffusion equation (1.1). Following work in [5], we define
the function

K(s) = φ(s) − δ(s). (2.13)

16 A Comparison of Nonlocal Diffusion Equations to their Classical Analogs

Using (2.13), simple calculations give a convenient form of (1.1),

∂u
∂t

=

∫
R

u(x + s, t)K(s) ds = (K ∗ u)(x, t), (2.14)

where the last equality follows from a change of variables and the symmetry of K. Taking the
Fourier transform of the convolution in (2.14) gives

∂̂u
∂t

=
√

2πK̂û.

Notice that if K̂ ≡ −(2π)−1/2Dk2, this situation collapses to the classical diffusion process.
When this is not the case, for instance when

K̂ = −(2π)−1/2D|k|αL , for αL ∈ (0, 2),

more interesting diffusion processes can be described. Such diffusion processes are referred
to as anomalous diffusion processes [5, 19, 20, 21, 23]. In this case, we solve the ordinary
differential equation

∂̂u
∂t

= −D|k|αL û, (2.15)

with initial condition u(x, 0) = δ(x), yielding

û(k, t) =
1
√

2π
exp (−D|k|αL t) .

Then, the fundamental solution, denoted with gαL , satisfies

ĝαL (k, t) =
1
√

2π
exp (−D|k|αL t) . (2.16)

Unfortunately, except for special cases of αL, finding a closed form of gαL (x, t) is nontrivial
[5, 19, 23]. When normalized appropriately, gαL (x, t) is a centered and symmetric stable
distribution, or Lévy distribution, characterized in [18, 19] by (2.16).

The case αL = 2 corresponds to the classical diffusion process, i.e., particles follow
Brownian motion, in which their mean-square displacement is 2Dt and sample paths are
almost surely continuous. However, when αL < 2, particles follow a Lévy process. Such
Lévy distributions have power-law tails, so that the mean-square displacement of a particle
is infinite. Consequently, sample paths of a Lévy process differ significantly from those of
Brownian motion, e.g., are discontinuous, due to the presence of more frequently occurring
long jumps. Finally, one can show that gαL (x, t) satisfies a fractional diffusion equation [23],
identifying an important relationship between nonlocal diffusion equations, Lévy processes,
and fractional diffusion equations [5, 19, 25].

3. Selected Theory of Nonlocal Diffusion Equations.

3.1. The Nonlocal Cauchy Problem. Performing a simple change of variables in (1.1)
and adding an initial condition, we arrive at the nonlocal Cauchy problem [7]ut(x, t) =

∫
Rn

(u(y, t) − u(x, t))φ(x − y) dy, x ∈ Rn

u(x, 0) = u0(x), x ∈ Rn.
(3.1)

N.J. Burch and R.B. Lehoucq 17

The authors in [7] show that if φ ∈ S(Rn), the Schwartz space of rapidly decreasing functions,
then the solution to (3.1) with u0(x) = δ(x) admits

u(x, t) = e−tδ(x) + v(x, t), (3.2)

where v is smooth. Unlike the fundamental solution of the classical equation (2.11), the delta
function remains in the fundamental solution of the Cauchy problem (3.2), decaying expo-
nentially for all time. This indicates that the solution to (3.1) is as regular, but no more, than
the initial distribution u0(x). The classical diffusion equation, on the other hand, immediately
smoothes, or regularizes, the initial condition. A special case of this phenomenon is observed
in [4] for diffusion profiles in fluids with large mean-free-paths.

In what follows, we add appropriate nonlocal boundary conditions to (3.1) to arrive at
nonlocal Dirichlet and Neumann boundary value problems, analogous to the classical Dirich-
let and Neumann problems. In [7], existence and uniqueness of solutions to such nonlocal
boundary value problems is demonstrated via a Banach fixed point theorem [13] argument.
For the duration of this paper, we assume that Ω ⊆ Rn is a bounded and smooth domain,
φ : Rn → R is a radial probability density function that is strictly positive in B(0, d) and
vanishes elsewhere, and that

Ω̃ ⊆ {x ∈ Ω | dist(x, ∂Ω) > d}. (3.3)

3.2. The Homogeneous Nonlocal Dirichlet Boundary Value Problem. Consider the
homogeneous nonlocal Dirichlet boundary value problem [7]

ut(x, t) =

∫
Ω

(u(y, t) − u(x, t))φ(x − y) dy, x ∈ Ω̃,

u(x, t) = 0, x < Ω̃,

u(x, 0) = u0(x), x ∈ Ω.

(3.4)

Since the integral in (3.4) is over Ω, particles may exit the region Ω̃. However, particles
entering Ω̃ is prohibited by the condition that u vanishes outside of Ω̃, which is seen by
rewriting the integral in (3.4) to obtain

ut(x, t) =

∫
Ω̃

(u(y, t) − u(x, t))φ(x − y) dy − u(x, t)
∫

Ω\Ω̃

φ(x − y) dy. (3.5)

An application of Fubini’s theorem, followed by a change of variables, shows∫
Ω̂

∫
Ω̂

(u(y, s) − u(x, s))φ(x − y) dy dx = 0, ∀Ω̂ ⊆ Ω. (3.6)

Integrating (3.5) with respect to time, then with respect to x, applying Fubini’s theorem, and
utilizing (3.6), we arrive at∫

Ω̃

u(x, t) dx =

∫
Ω̃

u0(x) dx −
∫ t

0

∫
Ω̃

∫
Ω\Ω̃

u(x, s)φ(x − y) dy dx ds. (3.7)

Applying the maximum principle for nonlocal diffusion equations [12], the rightmost inte-
grand in (3.7) is nonnegative and we conclude that the integrated density over Ω̃ decreases
with time. The unique stationary solution of (3.4) is u ≡ 0, as (3.7) and experience with the
classical homogeneous Dirichlet problem suggest.

18 A Comparison of Nonlocal Diffusion Equations to their Classical Analogs

3.3. The Homogeneous Nonlocal Neumann Boundary Value Problem. Next, con-
sider the homogeneous nonlocal Neumann boundary value problem [7]ut(x, t) =

∫
Ω

(u(y, t) − u(x, t))φ(x − y) dy, x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω.
(3.8)

Since the integral in (3.8) is over Ω, diffusion only occurs in Ω, i.e., no particles enter or
exit the region Ω. This condition is analogous to the Neumann boundary condition for the
classical diffusion equation. Consequently, we expect the integrated density over Ω to be
constant. To verify this, we integrate (3.8) with respect to time, then with respect to x, and
apply Fubini’s theorem to obtain∫

Ω

u(x, t) dx =

∫
Ω

u0(x) dx +

∫ t

0

∫
Ω

∫
Ω

(u(y, s) − u(x, s))φ(x − y) dy dx ds.

Using (3.6) ∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx

and conclude that the integrated density over Ω is constant for all time t. Stationary solutions
to (3.8) are constant in Ω and given by

u(x) =
1
|Ω|

∫
Ω

u0(x) dx.

3.4. The Inhomogeneous Nonlocal Neumann Boundary Value Problem. We expand
our analysis from the previous section and consider the inhomogeneous nonlocal Neumann
boundary value problem [7]ut(x, t) =

∫
Ω

(u(y, t) − u(x, t))φ(x − y) dy +

∫
Rn\Ω

G(y, t)φ(x − y) dy, x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω.

As before, the first integral illustrates that diffusion occurs exclusively in Ω. The second
integral represents particles entering or leaving Ω (depending on the sign of G) from y < Ω to
x ∈ Ω. Using the support of φ and (3.3), we introduce

h(x, t) =

∫
Rn\Ω

G(y, t)φ(x − y) dy, x ∈ Ω, (3.9)

and note that h(x, t) is only nonzero for x ∈ Ω\Ω̃. Thus, the inhomogeneous nonlocal Neu-
mann boundary value problem takes the formut(x, t) =

∫
Ω

(u(y, t) − u(x, t))φ(x − y) dy + h(x, t), x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω.
(3.10)

As expected, the integrated density of particles over Ω changes with time, unlike (3.8), as
seen with ∫

Ω

u(x, t) dx =

∫
Ω

u0(x) dx +

∫ t

0

∫
Ω

h(x, s) dx ds. (3.11)

N.J. Burch and R.B. Lehoucq 19

Differentiating (3.11) with respect to t,∫
Ω

ut(x, t) dx =

∫
Ω

h(x, t) dx. (3.12)

Suppose that G(y, t) = G(y), i.e., h(x, t) = h(x). Then, from (3.12), a necessary condition for
stationary solutions of (3.10) to exist is the compatibility condition∫

Ω

h(x) dx =

∫
Ω

∫
Rn\Ω

G(y)φ(x − y) dy dx = 0. (3.13)

As shown in [9], (3.13) is also a sufficient condition.

4. A Nonlocal Calculus and Variational Analysis.

4.1. A Nonlocal Calculus. Let V(Ω) denote the Hilbert space of test functions defined
in Ω and U(Ω) be that of trial functions. Suppose that f is an antisymmetric mapping from
Ω × Ω → R and that α is a symmetric mapping from Ω × Ω → R. We define D(f) : Ω̃ → R
via

D(f)(x) = 2
∫

Ω

f (x, y)α(x, y) dy, x ∈ Ω̃. (4.1)

Similarly, N(f) : (Ω\Ω̃)→ R by

N(f)(x) = −2
∫

Ω

f (x, y)α(x, y) dy, x ∈ Ω\Ω̃. (4.2)

Define the operator G acting on v ∈ V(Ω) by

G(v) = (v(y) − v(x))α(x, y), x, y ∈ Ω. (4.3)

Following [16], we formulate the variational problem of finding u ∈ U(Ω) such that∫
Ω

∫
Ω

G(v)K dy dx =

∫
Ω\Ω̃

v(x)h(x) dx, ∀v ∈ V(Ω), (4.4)

where K is a antisymmetric operator on U(Ω) × U(Ω) ×Ω ×Ω and h : (Ω\Ω̃)→ R.
We focus our attention on the case when K(u(x), u(y), x, y) = β(x, y)G(u), where β :

Ω × Ω → R is a symmetric function. Further, we assume both α and β are radial functions,
the latter having support in B(0, d). Omitting details, found in [16], the nonlocal Green’s first
and second identities, respectively, are∫

Ω̃

v(x)D(βG(u)) dx +

∫
Ω

∫
Ω

βG(v)G(u) dy dx =

∫
Ω\Ω̃

v(x)N(βG(u)) dx (4.5)

and ∫
Ω̃

v(x)D(βG(u)) dx −
∫

Ω̃

u(x)D(βG(v)) dx

=

∫
Ω\Ω̃

(
v(x)N(βG(u)) − u(x)N(βG(v))

)
dx.

(4.6)

Assume that the function h satisfies the compatibility condition∫
Ω\Ω̃

h(x) dx = 0, (4.7)

20 A Comparison of Nonlocal Diffusion Equations to their Classical Analogs

which corresponds to (3.13) if we trivially extend h to be zero in Ω̃. The variational formula
then reads: find u ∈ U(Ω) such that∫

Ω

∫
Ω

βG(v)G(u) dy dx =

∫
Ω\Ω̃

v(x)h(x) dx, ∀v ∈ V(Ω).

Application of the nonlocal Green’s first identity yields

−

∫
Ω̃

v(x)D(βG(u)) dx +

∫
Ω\Ω̃

v(x)N(βG(u)) dx =

∫
Ω\Ω̃

v(x)h(x) dx. (4.8)

Choosing appropriate test functions, (4.8) is the weak form of−D(βG(u)) = 0, x ∈ Ω̃,

N(βG(u)) = h(x), x ∈ Ω\Ω̃.
(4.9)

Denoting φ = 2α2β, we quickly see that (4.9) is equivalent to the steady-state form of (3.10).
Similarly, imposing a nonlocal Dirichlet boundary condition, we have−D(βG(u)) = 0, x ∈ Ω̃,

u = 0, x ∈ Ω\Ω̃,
(4.10)

which is equivalent to the steady-state form of (3.4). Thus, we have established a link between
the existence, uniqueness, and convergence results in [1, 7, 9, 10] and the emerging nonlocal
calculus theory in [16].

4.2. Convergence to Classical Diffusion Equation. For simplicity, consider the one-
dimensional case, i.e., Ω ⊆ R. Assume that α and β are radial functions and suppose, for a
given ε, that β satisfies

β(x − y) = 0, for |x − y| ≥ ε.

We use the notation βε in place of β to denote this dependence. For x ∈ Ω, define Ωε(x) =

B(x, ε) ∩Ω. We tak U(Ω) = V(Ω) and assume u, v ∈ U(Ω) are smooth so that, for instance,

G(v) = (v(y) − v(x))α(x − y) =

(
(y − x)

dv
dx

+ O(ε2)
)
α(x − y),

for all y ∈ Ωε(x). Thus, defining φε = 2α2βε,∫
Ω

∫
Ω

βεG(v)G(u) dy dx ≈
∫

Ω

dv
dx

du
dx

Dε(x) dx,

where

Dε(x) =
1
2

∫
Ωε(x)

(y − x)2φε(x − y) dy.

Notice, for x ∈ Ω̃, Dε(x) is a constant, namely

Dε(x) =
1
2

∫
B(x,ε)

(y − x)2φε(x − y) dy =
1
2

∫ ε

−ε

s2φε(s) ds.

N.J. Burch and R.B. Lehoucq 21

To ensure

D(x) = lim
ε→0

Dε(x)

is not the zero function, assume

φε(s) =
d3

ε3 φ

(
ds
ε

)
.

Thus, for x ∈ Ω̃,

Dε(x) =
1
2

∫ ε

−ε

s2φε(s) ds =
1
2

∫ d

−d
s2φ(s) ds.

Notice, for x ∈ Ω̃, Dε(x) is the usual diffusion coefficient in (2.6). As ε→ 0, Ω̃→ Ω and we
see that D(x) is constant on all of Ω.

Further analysis [16], in higher dimensions, demonstrates−D(βεG(u)) = 0, x ∈ Ω̃,

u = 0, x ∈ Ω\Ω̃,
→

D∆u = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(4.11)

and, similarly,−D(βεG(u)) = 0, x ∈ Ω̃,

N(βεG(u)) = h, x ∈ Ω\Ω̃,
→

D∆u = 0, x ∈ Ω,

(D∇ u) · η = h, x ∈ ∂Ω,
(4.12)

as ε → 0. These convergence results agree with similar results in [10], in which an ε-family
nonlocal diffusion problems, such as (3.4) or (3.10), is studied. Heuristically, the solutions
of this family of problems converges to the solution of the classical diffusion problem (1.2)
as ε → 0. With convergence results such as these in hand, we can study solutions of nonlo-
cal diffusion equations and compare them to solutions of their associated classical diffusion
equations.

4.3. Variational Analysis of Diffusion Equations. Let U(Ω) = V(Ω) and define V0(Ω) =

{v ∈ V(Ω) | v = 0 on Ω\Ω̃}. Then, the variational problem corresponding to (4.10) reads: find
u ∈ U(Ω) such that u = 0 on Ω\Ω̃ and∫

Ω

∫
Ω

βG(v)G(u) dy dx = 0, ∀v ∈ V0(Ω). (4.13)

Similarly, the variational problem corresponding to (4.9), with (4.7), reads: find u ∈ U(Ω)
such that ∫

Ω

∫
Ω

βG(v)G(u) dy dx =

∫
Ω

v(x)h(x) dx, ∀v ∈ V(Ω). (4.14)

Discretizing Ω and choosing appropriate test/trial spaces, e.g., discontinuous piecewise linear
functions on Ω, aided by the nonlocal Green’s identities, a Galerkin finite element approach
can be used to approximate solutions to (4.13) and (4.14).

Simultaneously, classical finite element theory, with continuous piecewise linear func-
tions for example, can be used on the classical diffusion equation. The convergence results of
(4.11) and (4.12) justify comparing the resulting finite element approximations of the nonlo-
cal and the classical diffusion equations. Preliminary results, not presented here, suggest that,

22 A Comparison of Nonlocal Diffusion Equations to their Classical Analogs

for small ε, the two approximate solutions are reasonably close, as theory suggests. However,
as ε increases, the nonlocal effects present in the nonlocal diffusion equation produce signif-
icant differences in the solutions compared to solutions of the classical diffusion equation.
This, for instance, confirms observations in [2, 3, 4], that the diffusion profiles of fluids with
nonzero mean-free-path (the nonlocal diffusion equation) differ significantly from those of
fluids with zero mean-free-path (the classical diffusion equation).

5. Conclusions and Future Research Direction. We have presented the classical dif-
fusion equation as both a special case of the nonlocal diffusion equation and as a second-
order truncation of a Kramers-Moyal expansion of the nonlocal diffusion equation. Through
which, we identified limitations of using (1.2) in place of (1.1), which involved discussions
on random walks, stochastic differential equations, Itō processes and Lévy jump processes,
anomalous diffusion, Fokker-Planck equations and master equations, and fractional diffusion
equations. Selected theory of nonlocal diffusion equations and a variational approach were
presented, both necessary for formulating finite element approximations of solutions to non-
local diffusion equations.

Continuing this work into the following year, the authors will investigate the effects of a
finite element method discretization on nonlocal diffusion equations. Resulting finite element
approximations will be compared to those of classical diffusion equations and deviations
between the two will be explored by investigating the discarded statistical moments in the
Kramers-Moyal expansion.

REFERENCES

[1] F. Andreu, J. Mazon, J. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann
boundary conditions, Journal de mathématiques pures et appliquées, (2008).

[2] G. Aranovich andM. Donohue, Eliminating the mean-free-path inconsistency in classical phenomenological
model of diffusion for fluids, Physica A: Statistical Mechanics and its Applications, 373 (2007), pp. 119–
141.

[3] , Limitations and generalizations of the classical phenomenological model for diffusion in fluids,
Molecular Physics, 105 (2007), pp. 1085–1093.

[4] , Diffusion in fluids with large mean free paths: Non-classical behavior between Knudsen and Fickian
limits, Physica A: Statistical Mechanics and its Applications, (2009).

[5] O. Bakunin, Turbulence and diffusion: scaling versus equations, Springer Verlag, 2008.
[6] C. Carrillo and P. Fife, Spatial effects in discrete generation population models, Journal of Mathematical

Biology, 50 (2005), pp. 161–188.
[7] E. Chasseigne, M. Chaves, and J. Rossi, Asymptotic behavior for nonlocal diffusion equations, Journal de

mathématiques pures et appliquées, 86 (2006), pp. 271–291.
[8] A. Chorin and O. Hald, Stochastic tools in mathematics and science, Springer Verlag, 2006.
[9] C. Cortazar, M. Elgueta, J. Rossi, and N. Wolanski, Boundary fluxes for nonlocal diffusion, Journal of

Differential Equations, 234 (2007), pp. 360–390.
[10] , How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion

problems, Archive for Rational Mechanics and Analysis, 187 (2008), pp. 137–156.
[11] A. Einstein, Investigations on the Theory of the Brownian Movement, Dover Publications, 1956.
[12] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in nonlinear analysis,

(2003), pp. 153–191.
[13] G. Folland, Real analysis: modern techniques and their applications, Wiley, 1999.
[14] C. Gardiner, Handbook of stochastic methods (for physics, chemistry and the natural sciences), Springer

series in synergetics, (2004).
[15] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, UCLA CAM Report,

(2007), pp. 07–23.
[16] M. Gunzburger and R. Lehoucq, A Nonlocal Vector Calculus with Applications to Nonlocal Boundary Value

Problems, Submitted for publication in Multiscale Modeling and Simulation, (2009).
[17] P. Hänggi, Langevin description of Markovian integro-differential master equations, Zeitschrift für Physik B

Condensed Matter, 36 (1980), pp. 271–282.
[18] B. Hughes, M. Shlesinger, and E. Montroll, Random walks with self-similar clusters, Proceedings of the

National Academy of Sciences, 78 (1981), pp. 3287–3291.

N.J. Burch and R.B. Lehoucq 23

[19] S. Jespersen, R. Metzler, and H. Fogedby, Levy flights in external force fields: Langevin and fractional
Fokker-Planck equations and their solutions, Physical Review - Series E, 59 (1999), pp. 2736–2745.

[20] J. Klafter, A. Blumen, and M. Shlesinger, Stochastic pathway to anomalous diffusion, Physical Review A,
35 (1987), pp. 3081–3085.

[21] J. Klafter, M. Shlesinger, and G. Zumofen, Beyond brownian motion, Physics Today, 49 (1996), pp. 33–39.
[22] G. Lawler, Introduction to stochastic processes, Chapman & Hall/CRC, 2006.
[23] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics ap-

proach, Physics Reports, 339 (2001), p. 1.
[24] B. Øksendal, Stochastic differential equations: an introduction with applications, Springer, 2003.
[25] D. Schertzer, M. Larcheveque, J. Duan, V. Yanovsky, and S. Lovejoy, Fractional Fokker–Planck equation

for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises, Journal of
Mathematical Physics, 42 (2001), p. 200.

[26] P. Seleson, M. Parks, M. Gunzburger, and R. Lehoucq, Peridynamics as an Upscaling of Molecular Dynam-
ics, Accepted for publication in Multiscale Modeling and Simulation, (2009).

[27] J. Sethna, Statistical mechanics: entropy, order parameters and complexity, Oxford University Press, USA,
2006.

[28] M. Ullah and O. Wolkenhauer, Family tree of Markov models in systems biology, Systems Biology, IET, 1
(2007), pp. 247–254.

[29] N. Van Kampen, Stochastic processes in physics and chemistry, North-Holland, 2007.
[30] L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differ-

ential equations arising from neuronal networks, Journal of Differential Equations, 197 (2004), pp. 162–
196.

CSRI Summer Proceedings 2009 24

A TRILINOS AND HYPRE INTERFACE

KELLY J. FERMOYLE§ AND MICHAEL A. HEROUX¶

Abstract. Trilinos and hypre are mathematical software libraries that solve large-scale scientific and engineering
problems. This work created an interface between the libraries to give Trilinos the full functionality of the hypre
preconditioners. Several different interfaces were created to cater to all the needs of Trilinos users. The interfaces
were designed to be as efficient as possible to minimize computational needs.

1. Introduction. Trilinos is a software library that uses an object-oriented framework
to solve large-scale, complex multi-physics engineering, and scientific problems [6]. hypre is
a separately developed set of preconditioners for solving large-scale structured and unstruc-
tured grid problems [1]. While Trilinos has always had many of the capabilities provided by
hypre, there were some preconditioners not available to Trilinos [5]. This paper describes the
project of interfacing Trilinos with hypre to give it the full functionality of the hypre linear-
algebraic system interface (IJ) library. In addition the interface gives users access to hypre’s
solvers without the need to learn a new library.

2. Hypre-Epetra Interface. Trilinos is composed of many packages (originally three,
but its capabilities have greatly expanded), each with different functionality [4]. Epetra is the
foundation for all of Trilinos and acts as a translator between the packages. Almost all of the
packages expect object types that are defined in Epetra. One of the most important classes
in Epetra is the abstract class Epetra RowMatrix, which defines the methods that distributed
(or serial) sparse matrices have. This base class is used as the matrix parameter for many of
Trilinos’s computational methods.

The first step of the interface is to allow preexisting hypre matrices to use the function-
ality of Trilinos solvers. This means that Trilinos will need to interpret the hypre matrix as
if it were an Epetra RowMatrix. The intended audience is users of hypre that would like to
take advantage of the resources provided by Trilinos. There are several different ways to ac-
complish this. The simplest can be done with a small programming effort by simply copying
row-by-row from the hypre matrix into a new matrix in Trilinos. However, this is inefficient
both computationally and for the limited memory system. We instead wrap the hypre matrix
in Epetra and call hypre’s internal methods.

Fortunately, Trilinos gives the developer a simple way to implement the methods of Epe-
tra RowMatrix, which is called Epetra BasicRowMatrix. Trilinos is primarily written in C++

giving it an object-oriented paradigm, which the developers have taken full advantage of.
Epetra HypreIJMatrix, the class used as our interface, inherits all of Epetra BasicRowMatrix’s
implementation and is still an Epetra RowMatrix. The BasicRowMatrix class is an adapter
that only requires implementation for a minimum of four methods, constructor and destructor.
It can use these methods to define the other 35 methods of Epetra RowMatrix. In addition
to the minimum implementation, the hypre interface implements the Multiply() and Solve()
methods to make these computations more efficient by calling hypre’s methods. The Basi-
cRowMatrix implementation defines the Multiply() but not Solve(). Multiply() uses a copy
of each row to do its computation and is not very efficient, so it was overwritten to avoid this.
Solve() just returns an error code, so the implementation overrides this and can use any of
hypre’s solvers and preconditioners.

The following methods were implemented in the hypre-Epetra interface:

§The Computer Science and Engineering Department of the Pennsylvania State University, kjf198@cse.psu.edu
¶Sandia National Laboratories, maherou@sandia.gov

K. Fermoyle and M. Heroux 25

f

//Using HYPRE IJMatrix A, and appropriate Vectors RHS, LHS
EpetraExt HypreIJMatrix Matrix(A);
//HYPRE Solver solver;
Matrix.SetParameter(Solver, BoomerAMG);
//HYPRE BoomerAMGCreate(&solver);
//HYPRE BoomerAMGSetup(solver, A, RHS, LHS);
Matrix.SetParameter(Solver, &HYPRE BoomerAMGSetTol, 1E-9);
//HYPRE BoomerAMGSetTol(solver, 1E-9);
Matrix.SetParameter(Solver, &HYPRE BoomerAMGSetMaxIter, 1000);
//HYPRE BoomerAMGSetMaxIter(solver, 1000);
Matrix.Solve(RHS, LHS);
//HYPRE BoomerAMGSolve(solver, A, RHS, LHS);
//HYPRE BoomerAMGDestroy(solver);

Fig. 2.1. A comparison between the hypre interface and Trilinos interface. Both of these codes would accom-
plish the same solve. Note that in the Trilinos code, Solver is an enumerated type and not a variable.

1. Constructor: Create the object as well as Epetra Map objects and set defaults for the
Solve() operation.

2. Destructor: Delete any created objects, but leave the underlying hypre matrix un-
touched so its use can continue.

3. NumMyRowEntries(): Determine the number of entries in a given row.
4. ExtractMyRowCopy(): Extract a copy of a specified row of the matrix.
5. LeftScale(): Scale the matrix by a vector on the left.
6. RightScale(): Scale the matrix by a vector on the right.
7. Multiply(): Multiply the matrix with a multivector (called by Apply()).
8. Solve(): Solve a linear system, taking a multivector (called by ApplyInverse()).
9. SetParameter(): Set parameter for the Solve method. Sets both the solver and pre-

conditioner options.

The SetParameter() method gives the user access to any option of the hypre solver library.
The user can choose to either use the solver or apply the preconditioner. Many of the SetPa-
rameter() calls will take a function pointer to the underlying method in hypre, to allow the
user to set whatever options necessary. This was needed because hypre is a third-party library
(TPL) developed independently of Trilinos and the methods may change. To avoid having to
change our methods in the interface, we instead rely on the user to pass the functions. Fig-
ure 2.1 shows an example of the way the interface could be used to solve a system. The code
segment gives a comparison of the interface in Epetra versus hypre.

From figure 2.1, we see the steps taken to create a solver and use it to solve a linear
system. Note that the first step is to create the EpetraExt HypreIJMatrix object. This takes
care of all the background details of creating and setting up the solver. It also chooses the
default parameters if we do not want to set our own. The next command sets this solver to
use the BoomerAMG solver (an enumerated solver type). The next two lines set specific
parameters for the solver by passing the function pointer and the one parameter needed. To
see the full range of hypre parameters use [2]. Finally the Solve() command is called, passing
the Epetra MultiVectors. We do not need to worry about destroying the solver object because
the class does that automatically when it is no longer used.

In addition to creating a wrapper for a hypre matrix, functionality has also been added
to read the disk output from a parallel hypre matrix and create an Epetra CrsMatrix with
identical distribution. This conversion allows a Trilinos user to use more than just the methods
provided by Epetra RowMatrix, but also the specific methods of Epetra CrsMatrix. There are
a number of solvers and other packages in Trilinos that require this kind of matrix.

26 Trilinos and hypre Interface

This method automatically determines the processor distribution given the file name.
This, of course, requires the user to use the same number of processors as when the matrix was
printed in hypre. Given the correct Epetra Comm object, it will find the files and create the
matrix, filling it row-by-row from the disk output. This method is also part of the EpetraExt
package in the class EpetraExt CrsMatrixIn. This class contains many different methods for
translating from a matrix type to another from disk output. No object needs to be created, so
the call is very simple:

1. Epetra CrsMatrix* A;
2. EpetraExt::HypreFileToCrsMatrix(“FileName”, comm, A);

This code assumes that the Epetra Comm object named comm has already been instanti-
ated. The first line just creates the pointer to an Epetra CrsMatrix A. The next line is the call
to the new method; the first parameter takes the name of the file on the disk, the second is
the Epetra Comm object so it knows the processor layout, and finally the pointer to the new
matrix. After this call, the pointer will be filled with the data from the disk. After these two
simple lines of code, the Epetra CrsMatrix A can be used just the same as if it were created
like any other matrix. This type of matrix is used in most of the Trilinos package.

3. Epetra-Hypre Interface. Another scenario is that the user has an Epetra matrix and
they would like to use the functionality of hypre without having to learn the intricacies of
another library. This is the more likely situation among researchers at Sandia because so
many are familiar with the Trilinos package and use it in their research. Ifpack is a pack-
age in Trilinos for preconditioned iterative solvers. We define a new class in Ifpack called
Ifpack Hypre that will be our interface. This interface will follow the same standards as any
other class in the Ifpack package. An Ifpack Hypre object can be created using the factory
class just like any other Ifpack object. After construction, the standard order of function calls
is: SetParameters(), Initialize(), Compute(), and ApplyInverse().

By carefully using the internal hypre methods, this class will use the same order. The
SetParameters() method takes the standard Teuchos::ParameterList, but the list is abnormal
because it will be calling a third-party library. As in the last section, we do not want this
class to require modification every time hypre changes its methods. So, the SetParameters()
is again forced to take function pointers from the user. This is done by creating an object
that stores the function pointer and its parameters until it is called later. To avoid the use of a
Teuchos::ParameterList, users can call SetParameter() and set the options one at a time.

Unfortunately, hypre uses a very different storage system for matrices than Epetra CrsMatrix
(the most commonly used matrix in Epetra), so the data must be copied into a new hypre ma-
trix row-by-row. hypre stores two different compressed sparse row (CSR, or CRS for com-
pressed row storage in Trilinos) matrices on each processor, one for the diagonal part – the
part used by the local processor most often, and an off-diagonal part – used by other proces-
sors more often. A visual reference of this can be seen in Figure 3.1. The example shows a
three processor distribution of a matrix. We see that each processor stores the two separate
CSR matrices. More on this can be found in [3]. Epetra CrsMatrix, on the other hand, only
uses a single matrix locally to describe all of its elements. Thus, there is no way to avoid
copying the matrix data if we need to use the hypre matrix struct. The creation and copying
of this data is done in the Initialize() call.

The solver is finally setup using the created hypre matrix in the Compute() method. This
setup will use all the parameters set earlier or a set of default parameters if none were given.
This is usually the most computationally intensive method, but all of the work is done in
hypre’s methods. After the preconditioner has been computed, it can be used to solve a
linear system. A system is solved using ApplyInverse() which takes a right-hand-side (RHS)

K. Fermoyle and M. Heroux 27

P1

P2

P3



x x
x x x

x x x
x x

x

x
x

x

x
x

x x
x x x

x x x
x x x

x
x

x

x

x x
x x x

x x



O1
→

O2
→

O3
→


x

x
x


x

x
x x

x x
x
x


Fig. 3.1. An example of a CSR matrix in hypre, distributed across three processors. The local matrices are

shown in boxes. The rest of a processor’s data is compressed into O1, O2, and O3.

//Using HYPRE RowMatrix A, and appropriate Vectors RHS, LHS
Ifpack factory;
Ifpack Preconditioner prec = factory.Create(“Hypre”, A);
RCP<FunctionParameter> parameters[2];
parameters[0] = rcp(new FunctionParameter(Solver, &HYPRE BoomerAMGSetMaxIter, 1000));
parameters[1] = rcp(new FunctionParameter(Solver, &HYPRE BoomerAMGSetTol, 1E-9));
Teuchos::ParameterList list(“Hypre settings”);
list.set(“NumFunctions”, 2);
list.set<RCP<FunctionParameter>*>(“Functions”, parameters);
list.set(“Solver”, BoomerAMG);
prec->SetParameters(list);
prec->Initialize();
prec->Compute();
prec->ApplyInverse(RHS, LHS);
delete prec;

Fig. 3.2. An example of a session using the Ifpack Hypre class. This will solve a linear system.

multivector and a left-hand-side (LHS) multivector. The solution will be placed in the LHS.
The Trilinos interface avoids copying the vector data by giving hypre a view of the data
pointers.

Figure 3.2 shows a common sequence that may be used in Ifpack Hypre to create the
object and proceed to set specific parameters before solving the system. The first line creates
an Ifpack object which is a factory for creating Ifpack Preconditioner objects. The factory
creates our object using a string describing what kind of preconditioner it is and the Epe-
tra RowMatrix it uses. Next we want to set the parameters that the solver will reference.
Ifpack objects always take a Teuchos::ParameterList in the call to SetParameters() method.
This class is different because one of the ParameterEntries is an object of type FunctionPa-
rameter. This object is created using a function pointer and the parameters to that function.
The ParameterList also needs to know how many FunctionParameter objects were created.

After the parameters are set, we call Initialize(), which behind the scenes creates the
hypre matrix and copies the rows over. The call to Compute() sets up the solver using the pa-
rameters (the parameters are required to be passed before Compute()). This call to Compute()
is the most computationally intensive. Next, ApplyInverse() solves the system with the two
Epetra MultiVector objects.

28 Trilinos and hypre Interface

Description String Default
Factorization level SetLevel (int) 1
Block Jacobi ILU SetBJ (int) 0
Print stats SetStats (int) 0
Print memory SetMem (int) 0
Drop tolerance SetSparse (double) 0.0
Scale values SetRowScale (int) 0
Use ILUT SetILUT (double) 0.0

Fig. 4.1. A list of the parameters that can be set in Ifpack Euclid. Should be used in the SetParameters() method
with each being a string and parameter pair.

4. Epetra-Euclid Interface. The interface described in section 3 is effective, but it has
a critical inefficiency, and when memory is limited and using a large matrix, it might be pro-
hibitive. The problem is that the entire matrix needs to be copied from the Trilinos platform
into something recognizable to hypre. This requires twice the memory capabilities as if we
did not have to make this copy. While we cannot solve this problem in general, there is a pre-
conditioner that we can use without making the copy. Euclid is an important preconditioner in
hypre that performs a parallel incomplete lower-upper triangular (ILU) decomposition. Eu-
clid is part of the hypre library, but was designed before hypre and it uses a different matrix
extraction scheme. This gives Trilinos the ability to interact with Euclid by just passing a
view of each row, and not a hypre matrix.

Using the Euclid preconditioner with a slightly modified matrix interface required chang-
ing it so that it called the correct method of Epetra CrsMatrix. The CrsMatrix needs to be
used instead of RowMatrix because we need to get a view of the row, not a copy. This is only
a method of the child class CrsMatrix. To provide this change to Trilinos, the Euclid files
were added to the Trilinos library as part of a new class called Ifpack Euclid. This class has
a much simpler interface than Ifpack Hypre because we are no longer using a TPL. Euclid is
now part of the Trilinos library, so it will not change by itself.

The Euclid files are in a subdirectory of Ifpack called Euclid and are still very simi-
lar to the hypre library except the file getRow. getRow is used by hypre as the interface to
get one row at a time from the Matrix. Instead of using the hypre call, it uses the method
from Epetra CrsMatrix. Since hypre is written in C, we need an intermediary method in a
file callEpetra. This file just passes the call in a way recognizable to both programs. This
is one of the few changes to Euclid to allow it to be used in Ifpack Euclid. It is used just
like other Ifpack classes except that it needs to take an Epetra CrsMatrix instead of an Epe-
tra RowMatrix. The SetParameters() method is simple like most Ifpack classes and does not
need to take function pointers. Similar to Ifpack Hypre, SetParameter() is implemented to set
options one at a time. The ApplyInverse() method takes Epetra MultiVectors for the right-
hand side and left-hand side of the linear system. It loops over the vectors making calls to the
Euclid solver.

All of the creation and setup of the Euclid solver is done automatically. Usage of the
class requires no prior knowledge of hypre and can be used with just Trilinos documentation.
The class can compute a condition estimate of the preconditioner from the Ifpack Condest
class that is a very helpful part of the Ifpack package. The class also implements the Print()
method, which helps the user to see details of how it has been used.

5. Conclusions. Trilinos and hypre are both very matured mathematical software li-
braries. This project worked to interface both of these libraries and make them easier to work
with. We created a hypre-Trilinos interface that allows users with a hypre matrix to use the

K. Fermoyle and M. Heroux 29

full workings of most packages of Trilinos. This interface required no copying of data from
the initial matrix to the new one, it instead wraps the matrix and translates any method on
Epetra RowMatrix to its equivalent in hypre. Capability was also added to create an Epe-
tra CrsMatrix using the disk output from a hypre call to print to a file.

The next interface that was created was for existing Trilinos users that just wanted to use
the hypre solvers. This class allows these users to either use default settings for the solver,
or set their own parameters. The parameters they pass may be a little complicated for novice
users, but the documentation makes it simpler. The class requires the matrix to be copied
because of the inherent difference in the way the matrices are stored. The time to copy data
isn’t nearly as important as the increased memory needs.

The problem of data copying can be solved if the user only wants to apply the Euclid
preconditioner. This independently developed preconditioner can access rows of an Epe-
tra CrsMatrix without the need for a hypre matrix. This makes it much more manageable for
large distributed systems that are running at the full capacity of the memory system.

6. Acknowledgements. We would like to thank Chris Baker, Todd Coffey, Jonathan
Hu, and Chris Siefert of Sandia National Laboratories for their support in this project. We
also thank Allison Baker, David Hysom and the rest of the hypre Support team for their help
with the internal methods in hypre.

30 Trilinos and hypre Interface

REFERENCES

[1] R. D. Falgout, A. H. Baker, V. E. Henson, U. M. Yang, and B. Lee, hypre User’s Manual, Tech. Rep. 2.4.0b,
Lawrence Livermore National Laboratory, 2008.

[2] R. D. Falgout, A. H. Baker, and B. L. Van E. Henson, Ulrike M. Yang, hypre Reference Manual, Tech. Rep.
2.4.0b, Lawrence Livermore National Laboratory, 2008.

[3] R. D. Falgout, J. E. Jones, and U. M. Yang, Pursuing Scalability for hypre’s Conceptual Interfaces, ACM
Transactions on Mathematical Software, (2004), pp. 3–10. Lawrence Livermore National Laboratory.

[4] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps,
A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and A. Williams, An Overview of Trilinos,
Tech. Rep. SAND2003-2927, Sandia National Laboratories, 2003.

[5] M. A. Heroux, J. M. Willenbring, and R. Heaphy, Trilinos Developers Guide, Tech. Rep. SAND2003-1898,
Sandia National Laboratories, 2003.

[6] M. Sala, M. A. Heroux, and D. M. Day, Trilinos Tutorial, Tech. Rep. SAND2004-2189, Sandia National
Laboratories, 2004.

CSRI Summer Proceedings 2009 31

AUTOMATIC HEXAHEDRAL MESH GENERATION WITH A REFINED
CARTESIAN GRID DATA STRUCTURE

JENNA M. KALLAHER∗ AND STEVEN J. OWEN†

Abstract. The embedding algorithm for hexahedral mesh generation [2] has the potential to become a robust
mesh generation algorithm; however, it still lacks the ability to handle many small features in geometry models.
Smart automatic mesh refinement of the Cartesian grid could provide further resolution to capture geometric features
in an arbitrary geometry model. This work deals with the construction of a smart refinement approach and a light-
weight data structure to hold the resulting enriched grid information.

1. Introduction. Several algorithms for hexahedral mesh generation have been created
to mesh specific geometries, but automatic hexahedral mesh generation remains an area of
continuing research. Reasonable quality tetrahedral meshes may be generated with very little
geometry decomposition for most geometry models; however, many analyses require hexa-
hedral elements or would generate more accurate results with a hexahedral mesh. A robust
algorithm for automatic hexahedral mesh generation would decrease the total time needed
to perform an analysis and also increase the accuracy of the results. Recently, an approach
was construced for the automatic hexahedral meshing of arbitrary geometries [5] by using
the concept of a fundamental mesh and viewing mesh generation as an optimization problem.
This work extended the class of geometries which can be meshed with hexahedral elements
and implemented an algorithm to mesh geometries composed of a single surface. The algo-
rithm was later extended to begin considering geometries with multiple surfaces, curves and
vertices. This work became the embedding mesh generation algorithm [2], which is a promis-
ing approach to generating hexahedral meshes for arbitrary geometries. The hexahedral mesh
generation process used by the embedding algorithm [2, 5] will be the basis of this work be-
cause of its initial use of a Cartesian grid. Many calculations can be performed more quickly
with a Cartesian grid whereas other mesh generation algorithms have used a full octree lattice
as a base [6, 1, 4]. Also, the memory requirements are smaller when using a Cartesian Grid
than when using an octree lattice [4]. Smaller memory requirements improve the ability to
scale this algorithm to create larger meshes for large geometry models or models where a fine
mesh size is required. Enriching a Cartesian grid only when necessary can provide the benefit
of quick calculations for most elements and also the enriched mesh necessary to capture all
features in a geometry model.

2. Previous Work on the Embedding Algorithm. The embedding mesh generation
algorithm [2] attempts to generate a hexahedral mesh by embedding geometry features in a
Cartesian grid. Each vertex is represented by a corresponding node, curves are represented
by a series of edges, surfaces are assigned faces, and volumes are assigned hexes. The asso-
ciation of edges with curves and nodes with vertices can be seen in Figure 2.1.

Following the embedding process, it is necessary to project the nodes, edges, and hexes
to the corresponding geometry. A problem arises when small features are encountered in
the model. The previously proposed embedding algorithm [2] fails when it encounters too
many vertices in one area of the model. The standard size of a Cartesian grid cell may not
always be able to capture all of the geometry features contained within it. In Figure 2.2, there
are not enough nodes to capture each vertex in the Cartesian grid. In that case, it becomes
necessary to refine the Cartesian grid cells to provide more nodes and edges for the embedding
algorithm. As shown in Figure 2.2, refinement of the Cartesian grid cells provides enough

∗The Pennsylvania State University, jmk5332@psu.edu
†Sandia National Laboratories, sjowen@sandia.gov

32 Refined Cartesian Grid Data Structure

(a) Node Mapping Process (b) Curve Mapping Process

Fig. 2.1. A potential solution for vertex mapping and curve mapping in the embedding algorithm.

information to capture the curves and vertices of the two-dimensional geometry model. This
work focuses primarily on how to automatically choose which Cartesian grid cells are refined
and how to store the resulting refinement data.

(a) Problematic area of a geometry
model.

(b) A Cartesian grid enriched
through refinement.

Fig. 2.2. Enrichment of the Cartesian grid ensures that an acceptable number of nodes are present to capture
all geometry features

3. Algorithm Overview. As shown in Section 1, there is a need to intelligently refine a
Cartesian grid and store the resulting data in order to improve the handling of small geometric
features in the embedding mesh generation algorithm [2]. Figure 3.1 demonstrates the entire
automatic mesh generation process.

(a) Geometry (b) Cartesian Grid (c) Embedding (d) Projection (e) Sheet Insertion

Fig. 3.1. The hexahedral mesh generation process for an arbitrary volume.

The work to be done in this paper occurs between Figure 3.1(b) and 3.1(c). At this point
a Cartesian grid has been established around the geometry, but the embedding process has not
yet occurred.

3.1. Initial Refinement Process. The first problem is determining where refinement
is necessary in a given geometry model. The Cartesian grid cells are unable to capture all
geometric features of a model when too many vertices exist in an area, indicating the relative
size of the model is small in the region.

J.M. Kallaher and S.J. Owen 33

(a) Original geometry (b) View of the Cartesian Grid from
the Top

(c) View of the Refined Grid from
the Top

Fig. 3.2. Comparison of enriched mesh and Cartesian grid mesh.

Geometry adaptive mesh sizing algorithms [3] generate mesh sizing information based
on an octree lattice [4]. These sizing algorithms may be queried at an arbitrary point on a
volume to determine what the mesh size should be at that point. This information can then be
compared to the existing Cartesian grid cell size. If the Cartesian grid cell size is significantly
larger than the sizing algorithm’s suggested size, the Cartesian grid cell must be refined. An
initial refinement process is executed based on data from geometry adaptive sizing algorithms
[3] and the resulting mesh is stored in an auxiliary data structure. Then an interface is pro-
vided for specific refinement cases encountered by the embedding mesh generation algorithm.
Figure 3.2 shows the results of an initial refinement process on a geometry model. In Figure
3.2, refinement was not necessary for the completion of the embedding algorithm process;
however, the adaptive sizing algorithm indicated that a better mesh would be produced by us-
ing a smaller size. In other cases, refinement will be necessary to completing the embedding
process such as in Figure 3.3.

(a) Original geometry (b) View of the Cartesian Grid (c) View of the Refined Grid

Fig. 3.3. Comparison of enriched mesh and Cartesian grid mesh.

3.2. Storing Refinement Information. If the initial refinement process produced a
modified mesh, the enriched Cartesian grid cell information must be stored in a data struc-
ture. Full data structures exist for the storage of complex hexahedral meshes; however, the
embedding mesh generation algorithm utilizes mesh refinement in a specialized way. Origi-
nal mesh sizes for the Cartesian grid may be chosen well enough to avoid refinement in most
areas of the grid. Only a few Cartesian grid cells will be refined in most cases. As a result,

34 Refined Cartesian Grid Data Structure

it is beneficial to preserve the Cartesian grid data structure. Most of the mesh can be created
using the Cartesian grid and necessary computations can be performed on the Cartesian grid
much more quickly than in a full data structure representation of the mesh.

An auxiliary data structure was created to hold enriched information for individual Carte-
sian grid cells. C++ Standard Template Library maps were created and added to the Cartesian
grid structure implementation to hold the relationship between Cartesian grid cells and the
auxiliary data structure. This allowed for a simple modification of the embedding algorithm.
While traversing the Cartesian grid cells to embed information, a check of the map will show
whether or not a grid cell has refinement data attached.

The auxiliary data is created after the completion of the refinement process. Newly cre-
ated elements from the refinement process are grouped according to the grid cell that contains
the element. These groups of cells are sent in to the auxiliary data structure constructor. A
new auxiliary data structure is created to hold the refinement information present for each
Cartesian grid cell that has been modified.

One task that the auxiliary data structures must perform is the assignment of continuous
and unique ids for each element. This becomes a problem because the auxiliary data creates
its own internal representation of data. Where the Cartesian grid and auxiliary data structure
overlap or where two auxiliary data structures overlap, the same mesh element can be as-
signed two different id numbers. The node, edge, face, and cell ids need to remain consistent
throughout the data structures.

Figure 3.4 demonstrates when data can be duplicated between the Cartesian grid structure
and the auxiliary data structure. The highlighted edges are a part of both a new quadrilateral
element and an existing quadrilateral element. The auxiliary data structure could attempt
to create a second representation of the highlighted edges because the edges are also part
of a newly created element from refinement. There should not be two ids representing the
same element. Figure 3.4 also demonstrates the potential for duplication of entities between
auxiliary data structures. The highlighted nodes are new; however, if another auxiliary data
structure assigns an id number, the id number should be maintained in all auxiliary data
structures.

(a) Duplicated edges (b) Duplicated nodes

Fig. 3.4. Edges, nodes and faces could be duplicated in the auxiliary data cells if new ids are not assigned
carefully. Edges and nodes that are at risk for duplication are highlighted in red.

This problem may be resolved through correctly ordered searches of existing data to
ensure that ids are assigned correctly. For example, data from the refinement operation may
be queried to determine if the nodes associated with an edge were newly created. If they were
not, the existing id may be determined from the Cartesian grid. If one or two of the nodes are
new, checks must be made to ensure that the edge is not already in an auxiliary data structure.
If it is already in an auxiliary data structure, the preexisting id may be assigned. Otherwise,
the next available edge id is assigned.

J.M. Kallaher and S.J. Owen 35

3.3. Accessing Refinement Information during the Embedding Process. Many types
of information are necessary for the embedding algorithm. For example, the embedding al-
gorithm may need to determine a tangent vector or a face normal vector. These functions
have been implemented in the Cartesian grid data structure representation. A second imple-
mentation of these functions was also placed in the auxiliary data structure. The Cartesian
grid functionality was modified to query the auxiliary data if information is needed about
refinement cells, faces, edges and nodes. These calculations become more complex in the
auxiliary data structure due to the representation of the grid no longer being a simple Carte-
sian grid. Some of the information may be contained in multiple locations. For example,
when determining cell adjacencies for a cell in auxiliary data, the adjacent cell might be in a
different auxiliary data object or even within the Cartesian grid. If these calculations are done
only in the Cartesian grid, many of the results may be determined implicitly. Element ids,
associativity, and many other properties are implicitly determined because of the Cartesian
grid structure. When these calculations are done on auxiliary data cells, the properties can no
longer be determined implicitly. Table 3.3 lists a few of the functions that must work for any
grid cell whether it was a part of the Cartesian grid or auxiliary data.

Selected Grid Functions
cell cells Determines all cells adjacent to a grid cell
mid cell Calculates the centroid of a grid cell
face normal Calculates the normal vector of a cell face
node in cell Determines if a node is a part of a cell
location Returns the location of a node
edge tangent Calculates the tangent vector of an edge

Table 3.1
A limited number of functions that must be implemented for the Cartesian grid cells and auxiliary data cells

3.4. Providing for Multiple Levels of Refinement. There may be rare cases where a
single level of refinement may not enrich the Cartesian grid enough to adequately capture all
geometry features. In this case, multiple levels of refinement are necessary. Two approaches
are taken to handle this. First, the initial refinement is able to run for more than one iteration
if the geometry adaptive sizing algorithm results indicate that some Cartesian grid cell sizes
remain too large. The total number of times that initial refinement may run is limited to
ensure that the mesh is not excessively refined by an unusual geometry case. The second way
to provide for this is to allow the embedding algorithm to trigger the refinement process on a
selected set of Cartesian grid cells.

The procedure called by the embedding algorithm is also equipped to handle the extrac-
tion of a currently refined mesh or plain Cartesian grid mesh, refine it and store the results
in the auxiliary data structures. The extraction of the mesh occurs by maintaining a map of
a grid cell to its auxiliary data structure. When extracting the mesh for the refiner, it is easy
to tell which original grid cells are used and also which grid cells contain new data that must
be included in the refinement process. After the refinement has occurred, the process to store
the data is similar to that described in Section 3.2.

4. Examples. The examples provided in this section are problems solved by this al-
gorithm or of calculations it performs. The figures demonstrate either scenarios where the
original embedding approach [2] would fail or some of the special functionality required by
the embedding algorithm [2].

Figure 4.1 demonstrates some of the functions necessary to the embedding process [2].

36 Refined Cartesian Grid Data Structure

(a) Quadrilateral Face Normal Vec-
tors

(b) Edge Midpoints (c) Cells Adjacent to a Node

Fig. 4.1. Various required functions for the embedding algorithm [2].

The normal vectors for the quadrilateral faces shown in figure 4.1 were computed by aver-
aging the cross product of each set of two edges that share a node. Edge midpoints were
calculated using a simple midpoint formula. Adjacencies in the grid are determined through
properties of the arrangement of the Cartesian grid and auxiliary data structures.

(a) Original Geometry (b) Refined Cartesian Grid

Fig. 4.2. A wedge-shaped model that requires an enriched Cartesian grid.

A geometry model which requires an enriched Cartesian grid is shown in Figure 4.2. Fig-
ure 4.2(a) shows that there are several small details present near the tip of the wedge-shaped
geometry where a Cartesian grid could not capture all of the features without refinement.
The enriched Cartesian grid for this model, shown in Figure 4.2(b), provides the necessary
resolution to capture the small features.

In figure 4.3, smaller holes and more curvature in the geometry causes the Cartesian grid
to be enriched at specific locations in order to more accurately capture the geometry. The
hole in the center of the geometry model may not require enrichment to be captured using
the existing grid cells at that location; however, the quality of the resultant mesh around that
boundary is improved through refinement.

5. Conclusions. The use of a Cartesian grid in the generation of a hexahedral mesh is
preferable because of the ease of calculations and the relatively small memory usage. Several
cases exist where the Cartesian grid may no longer provide sufficient information to ade-
quately capture each geometry feature. At this point, it becomes necessary to refine Cartesian
grid cells based on sizing information provided by the geometry adaptive sizing algorithm
[3] or based upon the mesh generation algorithm’s failure to capture the features in a specific

J.M. Kallaher and S.J. Owen 37

(a) Original Geometry (b) Refined Cartesian Grid

Fig. 4.3. A disk-shaped model that requires an enriched Cartesian grid.

area of the geometry. Features that are small enough to require enrichment of the Cartesian
grid are likely to be confined to a small section of the geometry because the initial choice
of mesh size can be done such that no more than a certain percentage of Cartesian grid cells
must be refined. Consequently it is beneficial to maintain the Cartesian grid structure and
attach auxiliary data to the grid cells that have been refined. This solution allows the majority
of calculations to be done quickly by using properties of the light-weight Cartesian grid data
structure. Significantly fewer calculations are done on the refined cells contained within the
auxiliary data structures. Also, the Cartesian grid structure has significant advantages over
using an octree lattice as a base because of memory requirements [4]. The Cartesian grid
requires much less memory, which allows for better scalability to create larger meshes for
large geometries and geometries that require fine meshes.

This work will allow the embedding mesh generation algorithm to handle a wider range
of geometry models. It will provide an enriched mesh base so that all features may be captured
by the embedding algorith [2]. Further modifications are still needed to provide a robust mesh
generation algorithm. Future work on this algorithm will include integrating the code written
into the current hexahedral mesh generation algorithm. Work may also be done to include
boundary sheet insertion and mesh optimization.

REFERENCES

[1] Y. Ito, A. Shih, and B. Soni, Octree-based reasonable-quality hexahedral mesh generation using a set of new
refinement templates, International Journal for Numerical Methods in Engineering, 77 (2008), pp. 1809–
1833.

[2] S. Owen and J. Shepherd, Embedding features in a cartesian grid. International Meshing Roundtable Paper,
Oct. 2009.

[3] W. Quadros, K. Shimada, and S. Owen, 3d discrete skeleton generation by wave propagation on pr-octree for
finite element mesh sizing, Engineering with Computers, 20 (2004), pp. 249–264.

[4] R. Schneiders, R. Schindler, and F. Weiler, Octree-based generation of hexahedral element meshes, in Pro-
ceedings of the 5th International Meshing Roundtable, 1996, pp. 205–215.

[5] J. Shepherd, Topologic and Geometric Constraint-Based Hexahedral Mesh Generation, PhD thesis, The Uni-
versity of Utah, Salt Lake City, UT, 2007.

[6] Y. Zhang, T. Hughes, and C. L. Bajaj, Automatic 3d mesh generation for a domain with multiple materials, in
IMR, 2007, pp. 367–386.

CSRI Summer Proceedings 2009 38

A PRELIMINARY INVESTIGATION INTO UNCERTAINTY QUANTIFICATION
METHODS APPLIED TO NETWORK COUPLED SYSTEMS

HAYES F. STRIPLING∗ AND ERIC T. PHIPPS†

Abstract. This paper summarizes an Uncertainty Quantification (UQ) analysis for a simple coupled network
problem. In this framework physical components interact along an intermediate barrier (the network) instead of
directly as in traditional multi-physics coupling. This additional barrier allows for another level of UQ analysis on
the system, as both the individual components and global network are subject to variability arising from uncertainty
in the underlying governing equations. We present a simple example of a network problem using neutron transport
and heat conduction. Then, we outline the development of a UQ method using polynomial representations of the
problem and the ability of this method to predict statistics and probabilities computed from the problem itself. The
major finding of this report is that, given proper assumptions and choices of method parameters, the UQ methods
described herein are capable of producing accurate representations of the problem and its outputs while affording
considerable computational savings.

1. Introduction. The past decade has seen rapid advancement in large computational
projects and increasing dependencies on these projects to support high-consequence deci-
sions. An immediate result of this trend is the need for improved uncertainty quantification
(UQ) methods in the models and algorithms which constitute these scientific simulations.
Increased research and development efforts have produced more rigorous UQ methods and
large-scale stochastic representations of systems which ultimately support decisions requiring
probability or statistical estimates.

The idea of uncertainty quantification becomes increasingly complex in software which
couples multiple sets of physics in overlapping and/or spatially separate domains. Besides
adding another dimension to the error in the model (that resulting from the coupling itself),
the computational burden of tracking uncertain or random parameters across component do-
mains can grow much faster than that of the computation itself. Thus, the idea of reducing
the dimension of uncertainty quantification methods in coupled systems without sacrificing
accuracy in reported results is an area of interest to many computational teams.

With this goal in mind, we present a project designed to investigate uncertainty quan-
tification and error propagation in coupled physical systems. Ultimately, the project aims to
use a combination of random field modeling techniques and global polynomial representa-
tions to lessen the computational burden mentioned above. For preliminary investigation, a
nuclear engineering example has been chosen in which the neutron diffusion equation and
heat equation govern the neutron flux and temperature profile (respectively) in a simple one
dimensional domain. These two sets of physics interact along a scalar dimension, and the
global problem consists of a network joining the two separate, independently operating sys-
tems.

The goal of the analysis presented in this paper is to understand how the perturbation due
to random uncertainty may effect certain quantities of interest. For example, common safety
parameters associated with nuclear engineering systems include maximum fuel temperature
and heat flux at fuel boundaries, both of which are directly affected by variation in material
or physical parameters. Our goal is to introduce these random variations in a simple problem,
propagate their effects through the network coupling, and develop some metric to quantify
the resulting system response. Then, specific questions such as “What is the probability that
a certain temperature in the medium or a certain heat flux at the fuel boundary will exceed a
safety threshhold?” can be asked and studied through rigorous numerical techniques.

∗Texas A&M University, h.stripling@tamu.edu
†Sandia National Laboratories, etphipp@sandia.gov

H.F. Stripling and E.T. Phipps 39

2. The Coupled Physical System. The simple nuclear engineering example problem
is defined on a one-dimensional slab that is infinite in the y and z directions and has thick-
ness L = 10cm in the x direction. At the left and right boundary of the slab, we assume
fluid coolant with constant bulk fluid temperature, T∞, but with potentially different convec-
tive heat transfer coefficients, hL and hR. The relevant physics is coupled neutron transport
and heat transfer. The material is metallic Uranium Dioxide, UO2, with a neutron source
distributed throughout. The neutron diffusion equation [9]

−
d
dx

(
D

dΦ(x)
dx

)
+ ΣaΦ(x) = νΣ f Φ(x) + S 0(x), (2.1)

governs the neutron scalar flux Φ(x) in the medium, where D is the diffusion coefficient, Σa

and Σ f are the neutron absorption and fission cross sections, respectively, ν is the number of
neutrons emitted per fission, and S 0(x) denotes the distributed neutron source. Heat transport
is governed by the heat conduction equation

d
dx

(
k(x)

dT
dx

)
= −q′, (2.2)

where T (x) is the temperature, q′ is a linear heat generation rate, and k(x) is the thermal
conductivity of the medium.

The diffusion equation is coupled to the heat equation through the temperature depen-
dence of the nuclear cross sections. Defining the spatially averaged temperature of the slab
as

T̄ =
1
L

∫
x

T (x)dx, (2.3)

then a simple approximation for the temperature dependence of neutron absorption cross
sections can be written as

Σ(T̄) = Σ(T0)

√
T0

T̄
, (2.4)

where Σ(T0) is a measured nuclear cross section at temperature T0 and is meant to represent
any absorption cross section (e.g. fission, neutron capture, etc...). Equation 2.4 is based on
the approximate inverse relationship of nuclear absorption with neutron velocity, which is
proportional to the square root of the temperature of the medium.

To couple the heat equation to the diffusion equation, the linear heat generation term q′

is calculated from the heat generated by fission in the medium:

q′ =
1
L

∫
x
Φ(x)Σ f E f dx, (2.5)

where E f is the energy produced per fission.
At the boundaries of the domain, we apply the ‘Marshak Vacuum’ or ‘extrapolated’

boundary condition to the diffusion equation, which stipulates no neutron ‘in-flow’ and an
extrapolation of the flux to zero at a distance 2D from the boundary:

Φ(0) = 2D
dΦ(0)

dx
, Φ(L) = −2D

dΦ(L)
dx

. (2.6)

Because of the surrounding fluid coolant, convective heat transfer boundary conditions are
applied to the temperature T at each slab boundary:

k(0)
dT (0)

dx
= hL(T (0) − T∞), −k(L)

dT (L)
dx

= hR(T (L) − T∞). (2.7)

40 Uncertainty Quantification in Network Coupled Systems

Table 2.1
Fission-Spectrum Cross Sections of UO2

at 300K

Σt .7788cm−1

Σa .0156cm−1

Σ f .0111cm−1

ν 2.2

Table 2.2
Physical Constants Chosen for the De-

terministic System

h1,h2 5 W
cm2K

T∞ 300K

Thermal Cond, k 10 W
cmK

Neutron Source, S 1012 n
cm2 s

To maintain realism, the physical parameters of the system (nuclear cross sections, tem-
peratures, physical properties, etc...) are chosen to be physically realistic. Here, UO2 is
chosen as a representative medium because its thermal and neutronic properties are well
documented. For preliminary analysis, a relatively cold (in a temperature sense) system is
modeled. The macroscopic cross sections [8] of 10 weight-percent enriched UO2 at 300K are
summarized in Table 2.1 while values for the convection heat transfer coefficients, bulk fluid
temperature, thermal conductivity, and neutron source are summarized in Table 2.2.

3. Numerical Solution to the Deterministic Coupled System. The nature of the ab-
sorption cross section temperature dependence described by Eq. 2.4 yields what the nuclear
engineering community refers to as a ‘negative temperature/power coefficient’, and is the
fundamental basis of what is sometimes called the ‘inherent safety’ of a reactor design. This
relationship stipulates that any event resulting in a large temperature increase will reduce the
absorption (fission) rate, thereby automatically shutting the reaction down. The net result
of this behavior is the existence of equilibrium points at which the simple system described
above is stable. To compute these equilibrium points, we apply Galerkin finite-element dis-
cretizations using linear, continuous basis functions to Eqs. 2.1 and 2.2 (for spatially uniform
neutron source S 0(x) and thermal conductivity k(x), analytic solutions to Eqs. 2.1 and 2.2
can be derived; however to incorporate random, spatially varying uncertainty later, numeri-
cal solutions are needed). After discretization, Eqs. 2.1–2.7 represent a simple example of a
network coupled system:

T̄ − g1(u1) = 0 s.t. f1(u1, q′) = 0,
q′ − g2(u2, T̄) = 0 s.t. f2(u2, T̄) = 0

(3.1)

where u1 and u2 denote the finite-element approximations to T and Φ, f1 and f2 are the
corresponding implicit finite-element equations defining u1 and u2, and g1 and g2 are given
by Eqs. 2.3 and 2.5. We refer to this as a network system because u1 and u2 are not directly
coupled, but instead interact through the network defined by Eq. 3.1. To solve these equations,
we applied a nonlinear elimination scheme [10, 15] where the NOX nonlinear solver package
in Trilinos [7] is applied to the equations f1 = 0 and f2 = 0 to ‘eliminate’ u1 and u2 from the
system:

T̄ − g̃1(q′) = 0, g̃1(q′) = g1(u1(q′)),
q′ − g̃2(T̄) = 0, g̃2(T̄) = g2(u2(T̄), T̄)

(3.2)

(while the equations f1 = 0 and f2 = 0 are linear, a nonlinear solver was chosen for generality
and flexibility). A third instance of NOX is then used to solve the (nonlinear) network defined
by Eq. 3.2. The immediate advantage to this type of approach is that the ‘inner’ solves
(those for the neutron flux and temperature profiles) are not required to exist in the same
software regime. Differences in linear/nonlinear solver packages, discretization schemes, or

H.F. Stripling and E.T. Phipps 41

Table 3.1
Equilibrium Heat Generation and Average Temperature Values

Heat Generation Rate 13.8144 W
cm

Average Temperature 325.3252K

other numerical techniques do not complicate the solution process. This independence can be
of great advantage for a problem involving vastly different physics which may operate more
efficiently in different software architectures. However, the nonlinear elimination approach
does introduce some computational costs because it may require calculation of many inner
solves while the outer network solver is far away from the solution.

Table 3.1 summarizes the numerical solution to the network system 3.1 using the tech-
nique described above, the values of the physical constants in Tables 2.1 and 2.2, and a
uniform spatial mesh size of h = 0.1cm. Moreover, Fig.3.1 illustrates the convergence of
the numerical solution to an approximate analytical solution obtained by replacing the fi-
nite element discretizations with known analytic solutions. The solution does converge with
decreasing mesh size, and this convergence occurs at a rate of h2, as is expected.

10
−3

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Mesh Size, h[cm]

er
ro

r,
 e

Heat Generation Rate
Average Temperature
Slope=2.0

Fig. 3.1. Convergence of the Finite-Element Solution

4. Uncertainty Quantification of the Network System. As described in the introduc-
tion, we are interested in understanding the effects of uncertainty in simulation input data on
the computed heat generation and average temperature values for this coupled system. In
reality, all of the input data listed in Tables 2.1 and 2.2 are subject to uncertainty arising from
material inhomogeneities and/or statistical models; for simplicity, however, we only treat the
thermal conductivity k and neutron source S 0 as uncertain parameters. To quantify the effects
of this uncertainty, we must make a mathematical model to describe it. An accepted strategy
for doing so is a probabilistic model, where the thermal conductivity and neutron source are
described by functions that vary randomly at each point in the domain. To this end, we intro-
duce an abstract probability space (Ω,B, P) where Ω is the set of outcomes, B is a σ−algebra
consisting of subsets of Ω specifying events, and P : B → R is a given probability mea-
sure. We assume k = k(x, ω) and S = S (x, ω) are random fields where for each x ∈ [0, L],
k(x, ·), S (x, ·) ∈ L2

P(Ω). We now seek random functions Φ,T : [0, L] × Ω → R such that the
following equations hold for any ω ∈ Ω, except possibly a set of measure zero (P-almost

42 Uncertainty Quantification in Network Coupled Systems

everywhere):

−
d
dx

D(T̄ (ω))
d
dx

Φ(x, ω) + Σa(T̄ (ω))Φ(x, ω) = νΣ f (T̄ (ω))Φ(x, ω) + S 0(x, ω),

d
dx

k(x, ω)
d
dx

T (x, ω) = −q′(ω),

T̄ (ω) =
1
L

∫
x

T (x, ω)dx,

Σ(T̄ (ω)) = Σ(T0)

√
T0

T̄ (ω)
,

q′(ω) =
1
L

∫
x
Φ(x, ω)Σ f E f dx.

(4.1)

By modeling the heterogeneity in the domain as random fields for k and S , we obtain in-
formation as to how this heterogeneity changes the solution to the coupled system. Typically
there is smoothness associated with material heterogeneity, i.e., values of k and S at some
point x are likely to be close to those at a nearby point x′. Thus we assume the random fields
are correlated with covariance functions given by

cov(x, x′) = A exp
(
−(x − x′)2

L2
c

)
(4.2)

where Lc is a correlation length such that random variables k(x, ·) and k(x′, ·) are essentially
uncorrelated if |x − x′| >> Lc (with a similar definition for S). It follows, then, that a correla-
tion length on the same order as the domain width will yield a lightly varying random field,
whereas a smaller correlation length will result in a field with higher-frequency oscillations.

It is well-known that the random fields for k and S can be represented through the
Karhunen-Loève (KL) expansion [12], e.g.,

k(x, ω) = k0 +

∞∑
n=0

√
ζnϕn(x)Yn(ω) (4.3)

where k0 is the mean about which the expansion should vary, and ζn and ϕn(x) are eigenvalues
and orthogonal eigenfunctions of the covariance function satisfying,∫

x
covk(x, x′)φn(x)dx = ζnφn(x′), x′ ∈ [0, L] (4.4)

and Yn are zero-mean, uncorrelated random variables defined by

Yn(ω) =
1
√
ζn

∫
x
φn(x)(k(x, ω) − k̄(x))dx. (4.5)

The resulting eigenvalues are non-negative and decreasing and therefore the expansion can
be truncated at some n = N for a given level of fidelity [4]. Thus the random fields can
be approximated by a small number of random variables. Doing so requires computing nu-
merically the KL eigenvalues and eigenfunctions that satisfy Eq. 4.4. The approach used in
this paper was to approximate each eigenfunction φn(x) with the finite element representa-
tion φn(x) =

∑Ne
i=1 φniBn(x), where Bn(x) is the same linear continuous basis originally used

to discretize the diffusion and heat equations and Ne is the number of finite elements. The
weak form of Eq. 4.4 is then generated using this finite-element representation, resulting in

H.F. Stripling and E.T. Phipps 43

0 2 4 6 8 10
9.92

9.94

9.96

9.98

10

10.02

10.04

10.06

Mesh Point, x [cm]
T

he
rm

al
 C

on
du

ct
iv

ity
, k

(x
)

[W
/c

m
*s

]

k(x)
k

0

(a) Thermal Conductivity

0 2 4 6 8 10
9.92

9.94

9.96

9.98

10

10.02

10.04

10.06
x 10

11

So
ur

ce
 S

tr
en

gt
h,

 S
(x

)
[n

/c
m

2 *s
]

Mesh Point, x [cm]

S(x)
S

0

(b) Neutron Source

an Ne by Ne generalized eigenvalue problem [14], which we solved using an ARPACK [11]
wrapper supplied by John Red-Horse of Sandia National Labs.

For a given n = N1, let ξ1 = (Y1, . . . ,YN1) be the random vector comprised of the KL
random variables of the random field k. Similarly, after applying a KL expansion to the
random field S truncated at a given n = N2, let ξ2 be the corresponding random vector.
Figures 4.1(a) and 4.1(b) illustrate one possible realization (using Eq. 4.3) of the truncated
KL expansion on [0, L] for Lc(k) = 6.0 cm, Lc(S) = 4.0 cm, N1=N2=5, and uniform Yn.
After applying the same finite-element discretizations to Eq. 4.1 with k and S replaced by
their respective truncated KL expansions, we obtain the stochastic version of the network
problem (3.1): Find q′, T̄ , u1, u2 ∈ L2

P(Ω) such that P-almost everywhere

T̄ − g1(u1, ξ
1) = 0 s.t. f1(u1, q′, ξ1) = 0,

q′ − g2(u2, T̄ , ξ2) = 0 s.t. f2(u2, T̄ , ξ2) = 0.
(4.6)

For simplicity in notation in what follows, define v = (q′,T), F = (T̄ − g1, q′ − g2), and
ξ = (ξ1, ξ2). With this, Eq. 4.6 can be written

F(v(ω), ξ(ω)) = 0, ω ∈ Ω. (4.7)

4.1. Polynomial Chaos Approximation. To approximate solutions to Eq. 4.7, a poly-
nomial chaos representation [6, 16] of v as a function of ξ is developed. Let N = N1 + N2 be
the total number of random variables and let ψi : RN → R, i = 0, . . . , P be a set of N-variate
polynomials that are orthogonal with respect to the inner product

(f , g) =

∫
Ω

f (ξ(ω))g(ξ(ω))dP(ω) =

∫
Γ

f (y)g(y)dµξ(y), f , g ∈ L2
µξ

(RN), (4.8)

where µξ = P ◦ ξ−1 is the distribution of ξ and Γ = ξ(Ω) ⊂ RN . We assume µξ is absolutely
continuous with respect to Lebesgue measure on RN so that dµξ(y) = ρ(y)dy where ρ : Rn →

R is the probability density function of ξ. Furthermore, we assume the components of ξ
are independent so that ρ(y) = ρ1(y1) . . . ρN(yN) factors. This assumption is actually true for
random variables arising from a KL expansion if each ξi is normally distributed (i.e., if the
random fields are Gaussian) since the KL representation guarantees the random variables are
uncorrelated. For simplicity, however, we will extend this assumption to uniform random
variables in order to proceed with the analysis. In any case, the polynomials ψi can be written
as tensor products of univariate orthogonal polynomials of total degree at most M (for some
M), i.e.,

ψi(y) = ψi1 (y1) . . . ψiN (yN), i1 + · · · + iN ≤ M, (4.9)

where ψi j is a degree i j polynomial orthogonal with respect to

(f , g) =

∫
Γi

f (yi)g(yi)ρi(yi)dyi, f , g ∈ L2
ρi

(R), (4.10)

44 Uncertainty Quantification in Network Coupled Systems

and where Γi = ξi(Ω). The collection of all such polynomials are dense in L2
P(ω) and thus v

can be represented by its Polynomial Chaos Expansion (PCE):

v(ω) =

∞∑
i=0

viψi(ξ(ω)), ω ∈ Ω (4.11)

where convergence of the above series is taken in the L2
P sense. Thus an approximation to

v can be be obtained by truncating the above series at some fixed order P. In the case of a
tensor product basis generated from univariate polynomials of order M as described above
we have

P =
(M + N)!

M!N!
. (4.12)

Several approaches are available for numerically approximating the coefficients vi in the
above expansion. The simplest to implement computationally is the so-called non-intrusive
polynomial chaos method [1, 3, 13] where orthogonality of the basis polynomials ψi is ex-
ploited to obtain

vi =
1
||ψi||

2

∫
Γ

v(y)ψi(y)ρ(y)dy ≈
1
||ψi||

2

Q∑
j=0

w jv(y j)ψi(y j), i = 0, . . . , P, (4.13)

where {y j : j = 0, . . . ,Q} and {w j : j = 0, . . . ,Q} are a set of quadrature points and weights
defined by ρ. For each j, v(y j) is computed by solving F(v j, y j) = 0 for v j. Such a method
is called non-intrusive because it merely requires solving the network system F at a given set
of realizations of the random variables ξ. Note however that Q >> P, so many more samples
of the network system must be generated than there are coefficients in the expansion.

Another more intrusive approach is to formulate Galerkin residual equations [6] for the
expansion coefficients {vi}:

Fi(v0, . . . , vp) =

∫
Γ

F(v̂(y), y)ψi(y)ρ(y)dy = 0, i = 0, . . . , P, (4.14)

where

v̂(y) =

P∑
i=0

viψi(y). (4.15)

This defines a new nonlinear system that must be solved to obtain all of the chaos coefficients
v0, . . . vP simultaneously. To apply Newton’s method to such a system we also require its
Jacobian (see, e.g., [5]):

∂Fi

∂v j
=

∫
Γ

∂F
∂v

(v̂(y), y)ψi(y)ψ j(y)ρ(y)dy

≈

P∑
k=0

Jk

∫
Γ

ψi(y)ψ j(y)ψk(y)ρ(y)dy i, j = 0, . . . , P,
(4.16)

where

Jk =
1
||ψk ||

2

∫
Γ

∂F
∂v

(v̂(y), y)ψk(y)ρ(y)dy, k = 0, . . . , P, (4.17)

H.F. Stripling and E.T. Phipps 45

are the coefficients of the polynomial chaos expansion of the Jacobian matrix ∂F/∂v. Using
the definition of F we have

Fi =

 T̄i||ψi||
2 −

∫
Γ

g1(u1(y), π1(y))ψi(y)ρ(y)dy
q′i ||ψi||

2 −
∫

Γ
g2(u2(y), ˆ̄T (y), π2(y))ψi(y)ρ(y)dy

 , i = 0, . . . , P, (4.18)

where π1(ξ) = ξ1 and π2(ξ) = ξ2. In the semi-intrusive approach, these integrals are evaluated
via quadrature, e.g.,∫

Γ

g1(u1(y), π1(y))ψi(y)ρ(y)dy ≈
Q∑

j=0

w jg1(u1(y j), π1(y j)) (4.19)

where u1(y j) is given by solving f1(u1, q̂′(y j), π1(y j)) = 0.
The Polynomial Chaos expansion used on the example problem depicted in this paper is

actually a hybrid of intrusive and non-intrusive techniques. The network PCE is computed
intrusively by solving Eq. 4.18. The expansions on the discretized Eqs. 2.1 and 2.2, how-
ever, are computed entirely non-intrusively using Eq. 4.19. Therefore, we term the PCE
technique applied to this problem as ‘semi-intrusive’. The Stokhos package in Trilinos was
used to perform these calculations based on sparse-grid quadrature methods [2] provided by
Dakota [3].

5. Selection of Stochastic Expansion Parameters. As mentioned in the introduction,
the goal of this analysis is to understand the procedure for reducing the cost of a given Uncer-
tainty Quantification method while maintaining a required level of accuracy. The cost of the
PCE method is directly related to Eq. 4.1, which is symmetric in both the stochastic dimen-
sion, N, and univariate polynomial degree, M. Therefore, we search for the minimum values
of these parameters such that the UQ method maintains the desired level of accuracy.

To help define this desired level of accuracy, we propose a Monte Carlo probability es-
timate of exceeding a predefined domain-averaged temperature, T̄lim, AND linear heat gen-
eration rate, q′lim. The expected error in such a calculation decays proportionally to 1

√
Ns

,
where Ns is the number of Monte Carlo samples. For the purposes of illustration, we let
Ns=1,000,000, making the error in the Monte Carlo probability on the order of 10−3. Thus,
the goal is to minimize M and N while maintaining at least this level of accuracy from the
stochastic system and its polynomial representation.

5.1. Choice of Minimum Stochastic Dimension using KL Truncation Analysis. As
discussed in Section 4, the KL expansion (Eq. 4.3) of the random field may be truncated at
some n = N to achieve a desired level of accuracy. Figure 5.2(a) illustrates the decay rate of
the eigenvalues for the two random fields pictured in Figures 4.1(a) and 4.1(b). Recall that
these random fields differ in their correlation lengths (Lc(k) = 6.0, Lc(S) = 4.0), and note that
the decay rate is larger in magnitude for increasing correlation length.

The L2 truncation error for stochastic dimension n = N can be calculated by computing
the proportion of the total sum of the KL expansion contributed by the truncated terms, n =

N + 1 . . .∞. To approximate this proportion, we approximate the infinite sum as a sum of the
first 100 eigenvalues and plot the truncation error calculated as a function of N:

e =

∑100
n=N+1 ζn∑100

n=1 ζn
. (5.1)

Figure 5.2(b) illustrates the results for the two correlation lengths defined in this problem.
The horizontal line at e = 10−3 indicates the maximum allowable error from the KL trunca-
tion. For these specific fields and this specific problem, we have chosen to use a minimum

46 Uncertainty Quantification in Network Coupled Systems

1 3 5 7 9 11 13 15 17 19
10

−15

10
−12

10
−9

10
−6

10
−3

10
0

Stochastic Dimension, n

E
ig

en
va

lu
e

L = 4
L = 6

(a) Eigenvalue Magnitude

1 3 5 7 9 11 13 15 17 19

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

Truncated Stochastic Dimension, N

er
ro

r,
e

L = 4
L = 6

(b) KL Truncation Error

0 1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

Polynomial Degree, m

er
ro

r,
 e

Uniform:A = .01
Uniform:A = .1
Gauss:A = .01
Gauss:A = .1

Fig. 5.2. Error in Truncation of KL Expansion

stochastic dimension of N = 5 for each of the inner solutions to the heat and diffusion equa-
tions. Thus, the stochastic dimension of the global problem is 10. At this truncation level,
we believe that the error in the KL expansion will not dominate the error in the Monte Carlo
results.

5.2. Choice of Minimum Polynomial Degree using Point-Wise Error Analysis. Af-
ter we choose the minimum stochastic dimension, we must decide upon the minimum re-
quired polynomial degree, M, in the chaos expansion to adequately represent the problem.
This value is a function of the non-linearity or complexity of the specific problem. In the
case of this example, the required polynomial degree mostly depends on the amplitude, A,
of the variability in the random fields of the thermal conductivity and neutron source terms
(at a given oscillation frequency governed by Lc). We control this parameter by changing the
range of the random variables Yn for a given KL realization.

For a given KL expansion with a set amplitude, A, a point error analysis can determine the
degree M required for a desired level of accuracy. This procedure involves the evaluation and
comparison of the system and its polynomial representation (for increasing m) at a specified
value of ξ. We repeat this process twice, once using Gaussian and once using uniform random
variables. Figure 5.2 illustrates this point error analysis for the semi-intrusive polynomial
expansion applied to the stochastic system.

As Fig. 5.2 indicates, the network problem with the larger amplitude requires a higher
order polynomial to resolve the larger range of the random parameters to a desired level of
accuracy. An interesting characteristic of the plot is that the Gaussian random variables are
more accurate than uniform random variables at lower polynomial orders, but the opposite is
true at higher polynomial orders. We believe this behavior occurs because the higher order
polynomials require more quadrature points for evaluation, and in the case of the unbounded
Gaussian variables, it is likely that more extreme (i.e. closer to zero) values of the KL real-

H.F. Stripling and E.T. Phipps 47

Table 6.1
Mean and Standard Deviation of System Solution

Value Network
Problem
[-1 1]

PCE,
Uniform
[-1 1]

PCE,
Gauss.
(σ = 1

3)

PCE,
Gauss.
(σ = 1

√
3
)

PCE,
Gauss.
(σ = 2.0)

Mean, q′[W
cm] 13.81174 13.81224 13.81368 13.81224 13.78728

St. Dev., q′ 0.59364 0.59359 0.34273 0.59360 2.05457

Mean, T̄ [K] 325.35293 325.35302 325.33447 325.35308 325.69672

St. Dev., T̄ 1.19375 1.19375 0.68832 1.19443 4.29663

izations are occuring. In the case of the heat equation, if the thermal conductivity approaches
zero, the problem becomes increasingly ill-posed. This error, then, would propagate through
the network and affect the accuracy of the entire solution.

Figure 5.2 indicates that the minimum allowable univariate polynomial order (i.e. that
which affords an error less than 10−3) is M=3. Thus, we believe that polynomial chaos
expansions or univariate order M=3 and stochastic dimension N=5 will be accurate to, at
least, the order of the error in a 1,000,000 sample Monte Carlo run.

6. Results from Monte Carlo Probability Calculations. The purpose of the Monte
Carlo calculations is two part: First, we are interested in comparing a probability calculation
arising from samples of the problem itself to that computed from samples of its polynomial
representation. Second, we are interested in understanding how the computations are affected
by the difference between Gaussian and uniform random input variables. First, the network
system will be sampled 1,000,000 times using uniform random variables on the interval [-1
1]. Then 20 batches of 1,000,000 samples each will be taken from each of four polynomial
representations: one expanded upon uniform random variables on the interval [-1 1] and
three from Gaussian random variables, each with different standard deviations: σ= 1

3 such
that ∼99% of the random values fall on the interval [-1 1]; σ= 1

√
3

to match the first two
moments of the uniform random distribution; and σ=2.0 to illustrate problem behavior with
highly varying inputs. In the end, we are interested to see the degree of accuracy of the
UQ problem and the extent to which the problem (which is defined with uniform random
variables) is sensitive to the use of uniform or Gaussian random variables.

Table 6.1 lists the mean and standard deviation of temperature and heat generation solu-
tions computed from the samples of the problem and computed from first two moments of the
four different polynomials. As expected, the reported means of the first two columns (those
generated from uniform distributions) agree to three digits of accuracy. The means computed
from expansions on Gaussian random variables seem to be on the right order, but are diverg-
ing with increasing σ. Also of interest is the changes in the standard deviation with changes
in the Gaussian input standard deviation. As expected, if the input random variables are given
a higher standard deviation, then the output parameters will also vary about a wider margin.
Additionally, this relationship appears to be linear through the range of standard deviations
tested in this report.

Of further interest, however, is an example calculation of the probability that a single
instance of the problem will result above T̄lim and q′lim. In an effort to limit the number
of required samples, we choose to calculate a probability that we know to be on the order
of 5%: the probability of exceeding temperature and power limits of 327.2K and 14.51 W

cm
respectively. Table 6.2 summarizes the results of this calculation.

48 Uncertainty Quantification in Network Coupled Systems

Table 6.2
Example Probability of Exceeding Operational Limits

Value Network
Problem
[-1 1]

PCE,
Uniform
[-1 1]

PCE,
Gauss.
(σ = 1

3)

PCE,
Gauss.
(σ = 1

√
3
)

PCE,
Gauss.
(σ = 2.0)

Probability 5.1661% 5.1950% 0.00% 0.31854% 35.7000%

St. Dev. n/a 0.01655% 0.00% 0.00520% 0.04933%

Tables 6.1 and 6.2 reveal that, in the case of this problem, we are able to compute the
statistics and probability estimates to the desired level of accuracy given the correct choice
of stochastic dimension, polynomial degree, and random input distribution. The choice of
input distribution is especially important; in this case, we know that the input distribution
to the problem itself is uniform and therefore expect a polynomial representation expanded
about uniform random variables to produce accurate calculations. In testing the Gaussian ran-
dom variables, we see that the difference in the distribution affects the probability calculation
despite the first two moments being relatively accurate. Therefore, we find that the correct
choice of UQ input distribution must carefully consider the original problem definition and
the distribution of its uncertain parameters.

Another important result from the course of this study is that, given the proper choice of
UQ method and parameters, the use of the Polynomial Chaos representation of the network
problem affords massive computational savings while preserving the desired level of accu-
racy. For example, the time required to perform 1,000,000 samples and compute statistics
for this (simple) network system is on the order of days. Alternatively, the time required to
compute the polynomial expansion about the system, take 20,000,000 samples, and compute
the same statistics is on the order of minutes. Yet, as illustrated by Tables 6.1 and 6.2, the
statistics for the valid UQ method are within the accuracy bounds specified in Section 5. We
predict that the same cost savings would extend to more complex systems as well.

7. Conclusions. This simple coupled network problem serves as a baseline example of
the kinds of systems in which UQ methods can provide large advantages and new capabilities.
Using a careful definition and understanding of the underlying problem and goals, we were
able to develop a UQ problem with specific parameters and features to achieve a desired level
of accuracy in the final result. We then tested our choices of these parameters by comparing
the actual system behavior against both the behavior of the chosen UQ method and a different
UQ method based on a different set of assumptions. Our finding was that the proper choice of
UQ parameters and assumptions is crucial to adequate problem representation and that, given
the proper choice of these parameters, we achieved our desired level of accuracy while saving
orders of magnitude in computational time.

REFERENCES

[1] S. Acharjee and N. Zabaras, A non-intrusive stochastic galerkin approach for modeling uncertainty propa-
gation in deformation processes, Computers & Structures, 85 (2007), pp. 244–254.

[2] V. Barthelmann, E. Novak, and K. Ritter, High dimensional polynomial interpolation on sparse grids, Ad-
vances in Computational Mathematics, (2000).

[3] M. Eldred, C. Webster, and P. Constantine, Evaluation of non-intrusive approaches for Wiener-Askey gener-
alized polynomial chaos, in 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, April 2008.

[4] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems with stochastic coeffi-
cients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205–228.

H.F. Stripling and E.T. Phipps 49

[5] R. Ghanem and R. Kruger, Numerical solution of spectral stochastic finite element systems, Computer Meth-
ods in Applied Mechanics and Engineering, 129 (1996), pp. 289–303.

[6] R. G. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral approach, Springer-Verlag, New York,
1991.

[7] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski,
E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, and K. Stanley, An
overview of the Trilinos package, ACM Trans. Math. Softw., 31 (2005).

[8] K. A. E. R. Institute, Table of nuclides. website: http://atom.kaeri.re.kr, 2000.
[9] J. R. Lamarsh and A. J. Baratta, Introduction to Nuclear Engineering, Prentice-Hall, Upper Saddle River,

New Jersey, third ed., 2001.
[10] P. J. Lanzkron, D. J. Rose, and J. T. Wilkes, An analysis of approximate nonlinear elimination, SIAM J. Sci.

Comput., 17 (1996), pp. 538–559.
[11] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems

with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.
[12] M. Loève, Probability theory, Springer-Verlag, New York, fourth ed., 1977. Graduate Texts in Mathematics,

Vol. 45 and 46.
[13] M. Reagan, H. Najm, R. Ghanem, and O. Knio, Uncertainty quantification in reacting-flow simulations

through non-intrusive spectral projection, Combustion and Flame, 132 (2003), pp. 545–555.
[14] C. Schwab and R. A. Todor, Karhunen-Loeve approximation of random fields by generalized fast multipole

methods, Journal of Computational Physics, 217 (2006), pp. 100–122.
[15] J. T. Wilkes, A new method for solving systems of nonlinear equations in circuit simulation, tech. rep., Cite-

Seer [http://cs1.ist.psu.edu/cgi-bin/oai.cgi] (United States), 1994.
[16] D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations,

SIAM J. Sci. Comput., 24 (2002), pp. 619–644 (electronic).

CSRI Summer Proceedings 2009 50

A FAST ILU PRECONDITIONING-BASED SOLVER FOR THE CHARGE
EQUILIBRATION PROBLEM

HASAN M. AKTULGA∗, ANANTH Y. GRAMA†, STEVE PLIMPTON‡, AND AIDAN THOMPSON§

Abstract. Charge equilibration (QEq) is the problem of assigning partial electrostatic charges to individual
atoms in a molecular dynamics (MD) simulation. It utilizes the neighborhood information of atoms to determine
partial charges which minimize the electrostatic energy in the system subject to the constraint of fixed total charge.
The formulation of the QEq problem gives us a large sparse linear system of the form Ax = b which can be solved
using well-known Krylov subspace methods uch as CG or GMRES. However, application of these solvers to the
QEq problem only with simple optimizations such as a diagonal preconditioner and a good initial guess does not
yield satisfactory results. Instead, we present an ILU preconditioning-based algorithm which can solve the QEq
problem much faster while still using the CG and GMRES solvers. We demonstrate the performance of the ILU
pre-conditionaer on some sample systems. Due to the poor scaling of ILU factorization algorithms, we restrict our
attention to single-processor calculations and small (< 104 atoms) systems. We briefly point out some potential
problems on a large-scale parallel simulation (> 106 atoms) and some solution approaches that can be used to deal
with these large systems.

1. Introduction. Molecular simulation methods has been an attractive field of study for
many scientists and researchers in various areas. Molecular simulation methods span a wide
scale ranging from ab-initio methods to classical MD methods. While ab-initio methods
treat electrons explicitly making it possible to observe reactions in the system of interest
and to analyze it in great detail, classical MD simulations model electrons together with the
nuclei as a single point in space. Fixed bonds and fixed partial charges assumptions used in
most classical MD methods together with the lost electronic degrees of freedom restrict the
application areas of these methods but gives them speed-ups that can never be achieved by
ab-initio methods while still producing valuable results.

ReaxFF is a force field developed by Adri van Duin et. al [7] to bridge the gap between
ab-initio and classical MD methods. It still treats electrons together with the nuclei as a
single point in space but it does not have any fixed bonds or fixed charges restrictions making
it possible to study systems with reactions, hence the name ReaxFF. In a reactive system the
partial charges on atoms keep changing as a result of reactions. Indeed, even in the absence
of reactions partial charges constantly fluctuate as the neighborhood of atoms change. In
ReaxFF, we use the charge equilibration (QEq) method to address the problem of determining
the partial charges at any given timestep during the course of an MD run. The basic idea
behind the QEq method is to utilize the neighborhood information of atoms to determine
partial charges with the objective of minimizing the electrostatic energy in the system subject
to the constraint of fixed total charge. We refer interested readers to [6] for more details.

Polarizable force fields which are essentially classical MD methods without the fixed
charges assumption have started becoming popular in recent years [1]. We believe that po-
larizable force field methods can also benefit from the QEq method, therefore we have im-
plemented the QEq method as a fix in the popular LAMMPS package from Sandia National
Laboratories [4]. Readers who want to use the QEq method embedded in LAMMPS can refer
to the LAMMPS documentation website [5].

In Section 2 we present the mathematical formulation of the QEq problem. Later in
Section 3 we show how the QEq solver used in our current implementation of ReaxFF starts
dominating the computation time as the tolerance value used as a stopping criteria for the

∗Purdue University Computer Science Department, haktulga@cs.purdue.edu
†Purdue University Computer Science Department, ayg@cs.purdue.edu
‡Sandia National Laboratories, sjplimp@sandia.gov
§Sandia National Laboratories, athomps@sandia.gov

H.M. Aktulga, A.Y. Grama, S. Plimpton and A. Thompson 51

iterative solver is decreased In Section 4, we propose a new algorithm to solve the QEq
problem for moderate sized systems and analyze the algorithm in detail. Later in Section 5,
we summarize the results of some experiments we have performed in Matlab to compare the
performances of the proposed algorithm and the method currently being used. Finally, in
Section 6, we briefly discuss some potential problems that can be encountered while solving
the QEq problem for a large-scale system in a parallel setting and we point out to some
possible solution approaches that can be used to generalize our new algorithm for dealing
with large scale systems.

2. Theory. In this section we present the formulation of the charge equilibration prob-
lem as presented in [3]. QEq is an approximation to the problem of determining partial
charges on atoms for a given configuration. It is a simplified alternative to the much more
expensive (but also highly accurate) way of computing partial charges using an ab-initio
method. The basic idea behind the QEq method is to assign partial charges to atoms so as to
minimize the electrostatic energy of the system subject to the constraint that the net charge
remains constant (the net charge of a neutral system is 0 which is what we will be assuming
for the rest of this section). In mathematical terms, the problem can be stated as:

Minimize Eele =
∑

i

χiqi +
1
2

∑
i< j

Hi jqiq j

where Hi j = Jiδi j +
1 − δi j

r3
i j + γ−3

i j

1
3

subject to
∑

i

qi = 0

The method of Lagrange multipliers is used to solve the above minimization problem
and we obtain the following linear systems:

−χk =
∑

i

Hik si (2.1)

−1 =
∑

i

Hikti (2.2)

Finally, charges are computed from the solutions to these two linear systems:

qi = si −

∑
i

si∑
i

ti
ti (2.3)

3. Performance. Charge equilibration is just a precursor for computing the electrostatic
energy of the system and the resulting linear systems given in (2.1) and (2.2) can certainly be
solved using a direct solver. But the coefficient matrix H is an N × N matrix where N is the
number of atoms in a given system and a direct solver would scale with O(N3) in this case.
This makes direct solvers unsuitable for even moderate sized systems on a single processor
which have a few thousand atoms only. The fact that H matrix is not diagonally dominant
makes basic iterative schemes such as Jacobi, Gauss-Seidel or SOR methods also infeasible.

However, H is a sparse linear system so we can use well-known Krylov subspace meth-
ods such as CG or GMRES algorithms for solving the linear systems shown in (2.1) and (2.2).
The sparsity of the coefficient matrix comes from the fact that no matter what the system size

52 ILU Preconditioning-based Solver for QEq

is, we use the neighboring atom information within a given cutoff distance, rcut (typically
rcut = 10 Å). Even though rcut and the number of atoms that can be found inside the sphere
with the radius rcut will change from system to system, we can safely say that it will be on the
order of a few hundred atoms. Therefore the number of non-zeros in H will be on the order
of a few hundred entries per row.

Based on our observations on many different molecular systems, we can say that H car-
ries a heavy diagonal and this property gives us an easy to apply preconditioner, namely the
diagonal preconditioner. Another observation is that in MD simulations timestep lengths are
chosen to be very short (on the order of a few femtoseconds, in fact less than a femtosec-
ond in ReaxFF) and therefore positions of atoms change very slightly between consecutive
timesteps. This observation leads to the fact that the solutions to (2.1) and (2.2) in the previ-
ous timestep give very good initial guesses about the solutions to the systems at the present
timestep. Indeed, making linear or quadratic extrapolations on the solutions of the last few
steps, better initial guesses can be made.

We come up with a quite simple linear solver in the light of the observations above. In
the current implementation of ReaxFF, we are using the GMRES algorithm with a diagonal
preconditioner which does a linear extrapolation from the solutions of two previous timesteps
to make a good initial guess about the problem at hand. We have also implemented the CG
algorithm with the same optimizations to see how it compares to the GMRES method for the
QEq problem. As can be seen in tables in the upcoming sections, GMRES is a much better
solver for our needs. But the CG algorithm can be made parallel very easily, so it has its own
advantages.

3.1. QEq Dominance. The downside of using a Krylov subspace method over a direct
solver is that the solution we get is actually an approximate solution within the tolerance
specified. For this reason it is crucial that we can solve the QEq problem with great accu-
racy because small errors in atomic charges can accumulate as the simulation progresses and
remove energy from the system. In addition, we need to come up with a good solution in a
reasonable amount of time so that the linear solve routines do not become the bottleneck in
the simulation.

To illustrate how QEq calculations can start dominating the computational time, we have
chosen to work with a 343 molecule hexane system, C6H14. We have taken a snapshot of the
hexane system equilibrated under 1 atm and 200 K. In table 3.1, we show how the amount of
time spent in QEq increases as we decrease the QEq tolerance. In order to achieve the lower
tolerance, GMRES has to make more iterations thus increasing the time spent in QEq and the
percentage of QEq calculations in total computation time. The fact that we need to spend 68%
of the total computational time in QEq when we lower the tolerance to 1e − 8 demonstrates
the potential QEq dominance in ReaxFF simulations and the need for much better solvers.

Table 3.1
QEq Dominance: Columns 3-5 show the amount of time (in sec.) spent on each major component of our

ReaxFF code: neighbors generation, bonded interactions, non-bonded interactions. Since QEq is a pre-cursor
to electrostatic energy computations, we have included the QEq part within non-bonded interactions. The last 3
columns give detailed information about the QEq part: time spent in QEq (in sec.), average number of matrix-vector
multiplications at each step, percentage of QEq calculations in total computation time.

tolerance total neighbors bonded nonb QEq matvecs QEq%
1e − 4 4.49 0.46 0.31 3.67 1.74 10.36 39%
1e − 5 4.71 0.47 0.32 3.87 1.95 11.42 41%
1e − 6 5.16 0.47 0.33 4.30 2.38 14.94 46%
1e − 7 6.32 0.46 0.32 5.49 3.58 27.03 57%
1e − 8 8.30 0.43 0.29 7.54 5.64 55.64 68%

H.M. Aktulga, A.Y. Grama, S. Plimpton and A. Thompson 53

4. Proposed Algorithm. One of the most popular preconditioning techniques is using
the L and U matrices from the incomplete LU (ILU) factorization of the coefficient matrix.
Table 4 summarizes how we can improve the number of iterations of our linear solvers by
applying an ILU preconditioner on the H matrix. Using an ILU preconditioner gives us
an excellent improvement over the diagonal preconditioner when we look at the number of
iterations required to solve the QEq problem. However, we cannot see any improvement on
the time required to solve the same problem and timing is what we are ultimately interested
in. The reason for the large numbers in ILU preconditioned solvers’ timing columns is that
given times include the time required for performing the ILU decomposition in addition to
the time taken by the linear solve procedures themselves. Matlab provides the luinc(•, •)
routine where the first argument is the matrix to perform the ILU decomposition on, and the
second argument defines the threshold for the ILU decomposition algorithm. In our case,
times required for completing luinc(H, 1e − 1), luinc(H, 1e − 2) and luinc(H, 1e − 3) on the
coefficient matrix were 0.33, 4.20, 15.1 seconds, respectively.

Based on the data at Table 4, there is another advantage of using an ILU preconditioner
to solve the QEq problem. As can be seen, when we use an ILU preconditioner, we can
lower the QEq tolerance at the expense of much fewer extra iterations compared to using the
diagonal preconditioner.

Table 4.1
Effect of the ILU preconditioner on the number of iterations and total time required for solving the QEq problem

using Matlab 7.6 on a machine with a 2.66GHz Intel i7 processor and 6 GB of memory. These data was obtained
using a snapshot from a 6540 atom bulk water system equilibrated at 200 K under 1 atm pressure.

tol=1e − 6 tol=1e − 10
solver iterations time (sec.) iterations time (sec.)
pcg, diagonal 34 0.78 98 2.11
pcg, luinc(1e − 1) − − − −

pcg, luinc(1e − 2) 5 4.56 16 4.86
pcg, luinc(1e − 3) 3 15.5 8 15.7
gmres(50), diagonal 12 0.22 74 1.07
gmres(50), luinc(1e − 1) 6 0.76 37 1.38
gmres(50), luinc(1e − 2) 3 4.47 11 4.63
gmres(50), luinc(1e − 3) 2 15.5 7 15.6

Despite the gains of reduced number of iterations and a much well-behaved coefficient
matrix, using the ILU preconditioning technique is still not preferable over a QEq solver with
a diagonal preconditioner. This is solely because of the large amount of time required to
compute the L and U factors. However, the context of the QEq problem that we are dealing
with gives us an opportunity to offset this disadvantage. Like in any other MD simulation,
in ReaxFF the displacement of atoms between consecutive timesteps is very small (on the
order of picometers???). This means that the coefficient matrix H, which is computed based
on the pairwise distances between atoms, will most likely retain its structure and contain very
similar values in its entries between consecutive timesteps. This presents us the opportunity
to use the L and U matrices computed at a timestep as nice preconditioners in subsequent
timesteps as well.

Let us denote the matrices resulting from an ILU factorization at timestep t by Lt and Ut,
and the number of iterations required to solve the QEq problem at timestep t by using Lt and
Ut as preconditioners by nt,t. Similarly, let nt2,t1 denote the number of iterations for solving
the QEq problem at timestep t2 by using Lt1 and Ut1 as preconditioners. Clearly, for t2 , t1 we
would expect to have nt2,t2 ≤ nt2,t1 . This is because of the fact that H matrix changes over time

54 ILU Preconditioning-based Solver for QEq

(even if it is a very slow change) and the best preconditioner for solving the QEq problem
at any timestep can most likely be obtained by performing the ILU decomposition of the H
matrix at that timestep. We will refer to the difference nt2,t1 − nt2,t2 as “excessive iterations”
at timestep t2. We denote by inst0 the ideal maximum number of subsequent steps following
step t0 so that ∀t : t0 ≤ t ≤ t0 + nst0 , nt,t0 is not more than some threshold determined by nt,t

and c where c is a parameter denoting the acceptable number of excessive iterations at any
timestep. More precisely,

inst0 = tmax0 − t0 where tmax0 = max
tm,tm≥t0

{∀t ∈ [t0, tm], nt,t0 ≤ nt,t + c} (4.1)

Ideally, we would compute the ILU factorization of the H matrix when we start an MD
simulation and use Lt0 and Ut0 matrices as preconditioners for the first inst0 timesteps. Then
we would recompute the ILU(H) at timestep tinst0

and start using the resulting upper and
lower triangular matrices as preconditioners in the following timesteps. But as noted, this is
only an ideal scenario. It is ridiculous to first compute Lt, Ut at timestep t and use them as
preconditioners to find out what nt,t is and then solve the QEq problem once more at the same
timestep to see how well nt,t0 compares to nt,t. Instead, we propose using nt0,t0 as an estimate
for nt,t in order to determine whether we should recompute ILU(H) or not. So we introduce
nst0 to replace inst0 :

nst0 = tmax0 − t0 where tmax0 = max
tm,tm≥t0

{∀t ∈ [t0, tm], nt,t0 ≤ nt0,t0 + c} (4.2)

Consequently, we propose the method outlined in algorithm 1 to solve the QEq problem.

Algorithm 1 The new ILU preconditioning-based algorithm that we propose for solving the
QEq problem.

ComputeH(H0)
L,U ← ILU(H0)
{use the initial ILU preconditioner typically for 2-3 timesteps}
{until we start obtaining good initial guesses}
for t = 0 to tinit do

QEq solve(Ht, L, U, tol)
t ← t + 1
ComputeH(Ht)

end for
{now that we can make good initial guesses}
{we can record our initial estimate for nt,t}

n← QEq solve(Ht, L, U, tol)
estn ← n
for t = tinit + 1 to maxt do

ComputeH(Ht)
if n > estn + c then

L,U ← ILU(Ht)
n← QEq solve(Ht, L, U, tol)
estn ← n

else
n← QEq solve(Ht, L, U, tol)

end if
t ← t + 1

end for

H.M. Aktulga, A.Y. Grama, S. Plimpton and A. Thompson 55

4.1. Analysis of the New Algorithm. The effectiveness of algorithm 1 ultimately de-
pends on two things: first how does the number of iterations required to solve a given system
using the new algorithm with pre-computed L, U matrices compare to the performance of the
method outlined in section 3, and second how large is nst typically for a timestep t that we
compute the ILU factorization in.

It is apparent why we are interested in fewer number of iterations performed by the linear
solver: fewer number of iterations means fewer number of matrix-vector multiplications and
fewer cpu cycles required to solve the problem at hand. However, we have to note that the
application of an ILU preconditioner is more costly than the simple diagonal preconditioner
because resulting L, U matrices have more non-zero entries. The number of non-zero entries
in L, U matrices depend on the threshold chosen: a lower threshold means more non-zero
entries. On the other hand, as can be seen in table 4, as we decrease the ILU factorization
threshold, we get fewer number of iterations required to solve the QEq problem no matter
which linear solver we use or how accurate we want the solution to be. So there is a clear
trade-off here and one needs to choose the ILU threshold carefully.

Our experiments, not shown in this paper, suggest that 1e − 2 is the best choice among
the thresholds used in table 4. Let L(h) and U(h) denote ILU factors using a threshold h.
L(1e − 1), U(1e − 1) is far from nicely approximating the real LU factors, so it requires a
lot more iterations than using L(1e − 2), U(1e − 2) as preconditioners. Also the number of
non-zeros in L(1e − 2), U(1e − 2) is not significantly larger than the non-zeros in L(1e − 1),
U(1e − 1) matrices, so there is not a significant difference in the time required to apply both
preconditioners. On the other hand, lowering the threshold to 1e−3 introduces too many non-
zeros making L(1e − 3), U(1e − 3) more expensive preconditioners to apply than L(1e − 2),
U(1e − 2). And the gain in the iteration count does not really compensate for the extra cost
in the application of L(1e − 3), U(1e − 3) as preconditioners, therefore we do not see a clear
improvement in the running time of the linear solver by decreasing the threshold from 1e − 2
to 1e − 3. Hence we have decided that 1e − 2 is the best choice among the three of them.

Now we discuss the second question we have raised at the beginning of this section. The
typical value of nst will vary depending on a number of factors that determine the mobility of
atoms in a system such as the very own ’characteristic of the system, the phase that the system
is in, whether the system has reached equilibrium or not, the temperature of the system, etc. In
addition to these, the QEq tolerance we have chosen and the number of acceptable excessive
iterations to us (denoted by c) will definitely affect the frequency of ILU factorizations to be
performed during the course of a simulation. For instance, the mobility of atoms in solid
systems is very low. Therefore we would expect to have very large nst values, on the order of
thousands of steps, while working with solid systems. But still a low QEq tolerance or a low
value for c would induce a lower nst value.

Even though ILU factorization is cheaper than computing the real LU factors, the algo-
rithm is essentially the same: A Gaussian elimination where resulting entries lower than the
specified threshold are dropped. So even a sparse implementation of the ILU factorization
algorithm is still very expensive and not quite scalable. Therefore the value of nst is crucial
to offset the cost associated with doing the ILU factorization at step t. The larger the nst is,
the lower the average cost of ILU factorization per timestep would be for subsequent steps.
In the next section, we will be showing by experiments that nst is large enough to amortize
the cost of the ILU factorization during a simulation.

On a side note, we would like to mention that in our new algorithm if we were to pick
up nt0,t0 as our first estimate, we would most likely never be recomputing the preconditioning
matrices L and U again during the entire simulation. Because we do not have a good initial
guess at the start of the simulation and nt0,t0 is most likely very large compared to the number

56 ILU Preconditioning-based Solver for QEq

of iterations that will be required in the upcoming steps. Therefore our algorithm would start
suffering from large number of excessive iterations as the simulation progresses. To alleviate
this problem, in algorithm 1 we do not record the number of iterations performed in the first
few timesteps of the MD simulation.

5. Experiments. In this section, we seek the answers to the two questions mentioned
in section 4.1 by working with two systems that has very different characteristics, a PETN
crystal and a bulk water system. Our goal is to demonstrate how effective the new algorithm
could be on real scenarios.

First we present our results on the PETN crystal which is a solid material. Figures 5.1(a),
5.1(b) compare the values of nt,0 and nt,t for a PETN crystal which contains 3712 atoms using
the PCG and GMRES solvers in Matlab. For PCG at both 1e− 6 and 1e− 10 QEq tolerances,
we get a significant improvement in terms of the iteration count using the new algorithm over
using the diagonal preconditioner (27 vs 4 at 1e − 6, and 115 vs 21 at 1e − 10 on average).
For GMRES, we do not get any improvement at 1e − 6 QEq tolerance (2 vs 2 iterations) but
again when we decrease the tolerance to 1e − 10 the gain in iteration counts is significant (82
vs 13 iterations).

Throughout the entire simulation (and most likely after the 10000 steps shown here) nt,0
follows nt,t very closely. This gives us the chance to perform the ILU factorization at a low
frequency so that the long time required to compute it will not be noticable over the entire
simulation period. As expected, there is a clear increase in the number of excessive iterations
when we lower the QEq tolerance to 1e − 10 but this increase is quite acceptable and its
side-effects might be offset with a clever choice of c.

(a) QEq tolerance = 1e − 6 (b) QEq tolerance = 1e − 10

Fig. 5.1. nt,0, nt,t values of PCG and GMRES solvers for the 3712 atom PETN crystal. Experiments are
performed in Matlab 7 for data obtained from every 200 steps of a 10000 step long NVE simulation with dt=0.0625 fs.
Temperature fluctuates between 350 K and 400 K. Performance of the solvers using diagonal preconditioners are
given at the title of each figure for comparison purposes.

We have performed the same type of analysis on a 6540 atom bulk water system. Charac-
teristics of bulk water is quite different from those of a PETN crystal. This is clearly reflected
in figures 5.2(a), 5.2(b) where we plot the values of nt,0 and nt,t during the course of a 10000
steps NVE simulation. As we can see, excessive iterations appear much more quickly and
their number increases more by time. Therefore we would have to perform an ILU factoriza-
tion more frequently while working with a water system compared to a PETN crystal and the
performance degradation due to ILU factorizations would be more apparent. But comparing
the number of iterations required by solvers using a diagonal preconditioner, we can easily

H.M. Aktulga, A.Y. Grama, S. Plimpton and A. Thompson 57

say that we would still benefit a lot from using the algorithm 1 for bulk water, too. For in-
stance, using PCG at QEq tolerance 1e− 6 and assuming c = 2, nst0 would be approximately
1800 steps and we would perform only 8 iterations at each timestep with the new algorithm
compared to the 34 iterations required by the PCG method with a diagonal preconditioner.
Using GMRES at QEq tolerance 1e − 10 and assuming c = 3, nst0 would be approximately
200 steps and we would perform only 8 iterations at each timestep with the new algorithm
compared to the 73 iterations required by the GMRES method with a diagonal preconditioner.

(a) QEq tolerance = 1e − 6 (b) QEq tolerance = 1e − 10

Fig. 5.2. nt,0, nt,t values of PCG and GMRES solvers for the 6540 atom bulk water system. Experiments are
performed in Matlab 7.6 for data obtained from every 10 steps of the initial 200 steps and then every 200 steps
afterwards. The entire simulation was a 10000 step long NVE simulation with dt=0.25 fs. Temperature fluctuates
around 200 K.

6. Future Research. All results we have shown in the experiments section come from
moderate sized systems. To be able to work with large scale systems, a parallel implemen-
tation is a must. However, the parallelization of ReaxFF introduces additional problems
regarding the QEq solvers. First of all, we have to switch from GMRES to PCG even though
the former one is a much better solver for the QEq problem as shown in our experiments in
section 5. This decision was made in the light of the fact that coming up with a scalable par-
allel implementation of the GMRES algorithm is not quite possible, on the other hand PCG
algorithm can be made parallel very easily.

Still, the parallel version of PCG requires 4 global communication operations (which
can be reduced to 3 by cleverly checking for the stopping criterion) at each iteration and this
situation can render the parallel ReaxFF code unscalable even if all other components are
scalable. QEq calculations already start dominating the total computation time in the serial
version as we decrease the tolerance, see section 3.1. Noting that scalability issues arise
in solving the QEq problem in a parallel setting, it is evident that the dominance of QEq
calculations will be even more apparent in a parallel implementation of ReaxFF.

All experiments we have presented so far were on small systems and clearly we can solve
the “QEq dominance” problem outlined in section 3.1 by using algorithm 1 for those systems.
However, as we have mentioned before, ILU algorithm is not really scalable since it is a
Gaussian elimination in essence. There are parallel implementations for the ILU factorization
(see for example [2]) but they do not really suit our needs. These algorithms are scalable upto
a point but they certainly do not scale upto billions of unknowns which is the point that we
ultimately want to reach.

Therefore we apparently need a more clever approach for solving the scalability problem.
A straightforward extension of our new algorithm would be to let every processor perform

58 ILU Preconditioning-based Solver for QEq

an ILU factorization within the diagonal block it owns. At the end, ILU factorization is an
approximation to the actual LU factors, and letting each processor perform ILU factorization
independently may still produce good preconditioners. We are also planning to try a flavor
of the SPIKE algorithm which uses ILU preconditioning within the diagonal blocks while
treating the off-diagonals specially.

7. Conclusions. ReaxFF is a force field developed for bridging the gap between ab-
initio systems and classical MD methods. What makes ReaxFF an important method is that
it makes the study of large scale reactive systems possible even on today’s common comput-
ing platforms. However, the charge equilibration method that ReaxFF depends for accurately
computing the partial charge distribution on atoms at any timestep may degrade the perfor-
mance of ReaxFF simulations and render the method unscalable as we have discussed. This
is due to the enormous number of CPU cycles required for solving the linear systems associ-
ated with the QEq problem when good solvers are not used. In a parallel setting, large number
of global communications are also required by the same QEq solvers making the scalability
problem even worse.

So we propose an ILU preconditioner based algorithm for solving the QEq problems for
moderate sized systems (around 10000 atoms) on a single processor. This new algorithm out-
performs Krylov subspace methods using a diagonal preconditioner in terms of both iteration
counts and running times. The expense associated with computing the ILU factorization at
each timestep is avoided by cleverly making use of the context of the QEq problem that we are
dealing with. The observation that the structure of the coefficient matrix in our QEq formula-
tion does not change drastically between subsequent timesteps lets us use the preconditioner
computed at a timestep quite effectively for a number following steps, too. Our experiments
on various systems confirm that enormous gains can be achieved by this new scheme on quite
different systems.

We anticipate that the scalability problems associated with the ILU factorization algo-
rithm can be overcome by using a simplified ILU factorization at each node independently
or by making use of the SPIKE algorithm. In this way, the method we have presented in this
paper can be generalized to deal with much larger systems, too.

REFERENCES

[1] T. A. Halgren and W. Damm, Polarizable force fields, Current Opinion in Structural Biology, 11 (2001),
pp. 236–242.

[2] D. Hysom and A. Pothen, A scalable parallel algorithm for incomplete factor preconditioning, SIAM J. Sci.
Comput., 22 (2001), pp. 2194–2215.

[3] A. Nakano, Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dy-
namics, Computer Physics Communications, 104 (1997), pp. 59–69.

[4] S. J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J Comp Phys, 117 (1995), pp. 1–
19.

[5] S. J. Plimpton, P. Crozier, and A. Thompson, Lammps users manual. http://lammps.sandia.gov/doc/
Manual.html.

[6] A. K. Rappe andW. A. G. III, Charge equilibration for molecular dynamics simulation, J Phys Chem, 95 (1991),
pp. 3358–3363.

[7] A. C. T. van Duin, S. Dasgupta, F. Lorant, andW. A. G. III, Reaxff: A reactive force field for hydrocarbons, J
Phys Chem A, 105 (2001), pp. 9396–9409.

CSRI Summer Proceedings 2009 59

A STUDY OF MULTILEVEL ILU TECHNIQUES FOR CIRCUIT SIMULATION

ELLEN C. DURANT∗ AND HEIDI K. THORNQUIST†

Abstract. Numerical linear algebra is at the heart of scientific computing. In large-scale simulations, the
linear solvers often account for more than 80% of computational time. For large, sparse problems iterative methods
are essential and preconditioning is key to iterative solver performance. Although a number of general-purpose
preconditioners perform well on discretized partial differential equations, they struggle with the differential algebraic
equations generated during circuit simulation. Here, we investigate various multilevel incomplete LU techniques and
compare them to classic incomplete LU methods for preconditioning circuit matrices.

1. Introduction. While advances in manufacturing enable the fabrication of integrated
circuits containing hundreds of millions of devices, the time-sensitive modeling and simula-
tion necessary to design these circuits pose a significant computational challenge. Currently
available Electrical Design Automation (EDA) tools such as Xyce, a highly parallel circuit
simulator developed at Sandia National Laboratories [1], often struggle with these complex
simulations. The principal reason for this is the time required for the non-linear solver to
compute the solutions of large linearized systems. To address this problem we investigate
more effective preconditioners for circuit matrices.

Iterative methods play a crucial role in solving large, sparse problems. Solver perfor-
mance depends on intelligent preconditioning. Several general-purpose preconditioners per-
form well on discretized partial differential equations; however, specialized preconditioners
are necessary for solving the differential algebraic equations generated through circuit simu-
lation. This is due to the conditioning and highly heterogeneous structure of circuit matrices.
It has been documented that preconditioners based on distributed Schur complements [3][4]
and multilevel incomplete LU (ILU) factorizations [12][7] are effective on this class of ma-
trices.

Here we investigate the multilevel ILU preconditioners generated by the Algebraic Re-
cursive Multilevel Solvers (ARMS) [11] package and ILU++ [6] and compare them with a
classic ILUT preconditioner to determine their effectiveness on circuit simulation matrices.
These preconditioners will be used with the generalized minimal residual (GMRES)[10] and
the stabilized bi-conjugate gradient (Bi-CGSTAB)[13] methods.

In this paper, except when specified otherwise, upper case letters (A, B, etc.) denote
matrices and lower case letters (x, y, etc.) vectors. Transpose is denoted by AT . We use
MATLAB notation to refer to elements, rows, and columns of matrices, respectively, A(i, j) =

ai, j the element of A at row i, column j; A(i, :) is the entire row i of A; similarly, A(:, j) is the
entire column j of A.

2. Preconditioners. Preconditioners transform linear systems into equivalent systems
with drastically improved properties for solution by an iterative method. Consider the original
linear system

Ax = b, (2.1)

where A ∈ Rn×n and x, b ∈ Rn. A preconditioner, P ∈ Rn×n, seeks to reduce the condition
number of A by its application on the left,

P−1Ax = P−1b, (2.2)

∗Texas Tech University, Dept. of Mathematics & Statistics, edurant@ttu.edu
†Electrical and Microsystems Modeling Dept., Sandia National Laboratories, hkthorn@sandia.gov

60 A Study of Multilevel ILU Techniques For Circuit Simulation

right,

AP−1Px = b, (2.3)

or both left and right (split),

P−1
L AP−1

R PRx = P−1
L b. (2.4)

A variety of different methods can be used to compute preconditioners.
Algebraic preconditioning methods, which include the ILU factorizations we will con-

sider in this paper, use the entries and underlying graph structure of A to generate a precon-
ditioner. The graph structure of a matrix is vital to the generation of an efficient precondi-
tioner, so to improve this structure permutations are often applied. These permutations seek
to improve diagonal dominance, remove dense rows and columns, or reduce fill in from the
incomplete factorization of the original matrix. For robustness, row and column scalings are
also used in generating preconditioners. Permutations and scalings, combined, can provide a
matrix that is easier to factor than the original, resulting in a more efficient and robust approx-
imation. It is necessary to acknowledge the separation between the permutations and scalings
from the factorizations, because certain types of permutations and scalings work well on cer-
tain classes of problems. The fact that the preconditioner is a composition of permutations
and factorizations, P = P1 · P2 · . . . · Pn, n ∈ Z, gives flexibility to the algebraic methods.

2.1. Preprocessing. Preprocessing refers to the analysis of the original matrix that leads
to the generation of permutations and scalings that are combined with factorizations to give
the resulting preconditioner. Preprocessing techniques can be structure based, requiring only
the graph connectivity, or value based, requiring the matrix entries. For instance, normalizing
the rows and/or columns of a matrix is a value based preprocessing technique. Other exam-
ples of common preprocessing techniques that will be discussed in this section are singleton
filtering, I-matrix reordering, reverse Cuthill-McKee (RCM) reordering, and PQ reordering.
It will be noted in this discussion which preprocessing techniques are structure based and
which are value based because the structure based techniques are preferable, as they can be
reused throughout a circuit simulation.

2.1.1. Singleton Filtering. A singleton row (or column) is a dense row (or column) that
corresponds to a column (or row) with exactly one non-zero entry. Such rows and columns
are frequently found in circuit simulation matrices, because power supply and ground nodes
are widely connected. Singleton filtering eliminates these rows and columns. Such filtering is
structure based and is sometimes required for generating effective preconditioners, especially
in parallel.

2.1.2. I-Matrix Reordering. I-matrix preprocessing [7] generates a non-sym-metric
permutation of the original matrix that results in maximal diagonal dominance. An I-matrix,
A ∈ Rn×n, has the following properties:

ai,i = 1, ∀i ∈ n
ai, j ≤ 1, ∀i, j ∈ n, i , j.

The goal of I-matrix reordering is to maximize the product of the diagonal entries of the
matrix. To compute the I-matrix reordering, we solve a multiplicative maximization problem
via an additive minimization problem by applying the negative logarithm to the absolute value
of the coefficient matrix. This preprocessing method is value based.

E.C. Durant and H.K. Thornquist 61

2.1.3. Reverse Cuthill-McKee Reordering. The goal of the reverse Cuthill-McKee
(RCM) [5] algorithm is bandwidth reduction. It uses a breadth-first search (BFS) of the
associated graph to reorder a matrix by grouping connected nodes together. The algorithm
will systematically find all the nodes connected to a root node. An example of the algorithm
is illustrated in figure 2.1. The nodes are numbered in the order that each node is found. In
the example, the algorithm starts with the root node, 1, and searches for its neighbors—nodes
2, 3 and 4 in (2.1). This search is repeated on the neighbor nodes (2, 3 and 4), continues until
all nodes connected to node 1 have been found.

Fig. 2.1. Breadth-first Search Illustration

When we preprocess A with RCM, whenever the algorithm has exhausted all possible
neighbors to the root node, we permute the corresponding rows and columns so that they are
rearranged together in the matrix. This procedure is usually structure based and generates a
symmetric permutation that can improve the numerical stability of the ILU factorization.

2.1.4. PQ Reordering. PQ reordering is a non-symmetric permutation algorithm that
is both structure and valued based. Unlike I-matrix processing, PQ accounts for structural,
in addition to numerical, diagonal dominance. This is accomplished by computing a weight
vector:

w(i) =
|max(A(i, i))|
‖A(i, :)‖

×
1

nz(A(i, :))
∀i ∈ n, (2.5)

where A ∈ Rn×n and nz(A(i, :)) denotes the number of non-zeros in row i of A. Using this
weight vector, the algorithm permutes the rows of A to have decreasing values of w and
permutes the columns of A to have the dominant elements on the diagonal.

2.2. Incomplete LU Factorization. ILU factorizations are considered to be excellent
all-purpose preconditioners [8]. ILU can be tailored to specific computational issues, such
as memory limitations, by implementing a drop tolerance (ILUT) or specifying an allowed
fill-in level (ILU(k)). ILUT can be implemented with diagonal modification, which replaces
zeros on the diagonal with a local drop tolerance, droptol∗A(:, j), where j denotes the column
index of the zero on the diagonal. This modification makes the overall preconditioner more
robust. However, ILU has its limitations.

2.3. Multilevel ILU. As systems become larger and more complex, ILU becomes less
practical, because it factors the entire matrix A. This may result in too crude of a factorization.
That is, as A gets larger, the residual R = LU − A becomes exponentially larger, because ILU
drops too many elements during the factorization.

62 A Study of Multilevel ILU Techniques For Circuit Simulation

Multilevel ILU alleviates this issue by first breaking A into block form:

A =

(
B F
E C

)
. (2.6)

Then it allows dropping to occur when computing the Schur complement, block C. Once
blocks B, F, E, and C are determined, we calculate block B’s LDU factorization, which results
in a complete multilevel LDU factorization:

A =

(
B F
E C

)
=

(
LB 0
EB I

)
×

(
DB 0
0 S

)
×

(
UB FB

0 I

)
, (2.7)

where LB, UB and DB are, respectively, the lower, upper, and diagonal matrices from the
LDU factorization, EB = EU−1

B D−1
B , FB = D−1

B L−1
B F, and the Schur complement is S =

C − EBDBFB. Next, we let A2 = S and repeat the process at the next level with A = A2.
This procedure continues until the maximum level is reached or until S is determined to have
sufficient properties for completely factoring the Schur complement.

The multilevel LDU factorization offers a framework in which to explore a number of
variations of preconditioners, such as the multilevel ILU factorization. Like ILU, the mul-
tilevel ILU factorization drops elements in order to keep matrices sparse. However, while
an ILU factorization may be too coarse to reach a solution, a multilevel ILU factorization
may be sufficient. That is because a multilevel ILU factorization can flexibly choose the type
of permutations and dropping strategy for each level, giving it the ability to balance quality,
computational cost, and robustness of the preconditioner. For our experiments we considered
the multilevel ILU factorizations provided by the ARMS and ILU++ software packages.

2.3.1. Algebraic Recursive Multilevel Solver. ARMS is a software package, written
for MATLAB, that generates two multilevel ILU preconditioners: ARMS2 and ARMS-C.
ARMS2 takes the matrix Al, where l denotes the level, and uses a symmetric permutation
matrix, Pl, to reorder Al as follows:

PlAlPT
l =

(
Bl Fl

El Cl

)
, (2.8)

where Cl = Al+1 represents the Schur complement. The algorithm to determine the blocks
Bl, Fl, El, and Cl utilizes an independent set reordering algorithm [9], inspired by a multigrid
technique that separates unknowns into two sets: coarse and fine [12]. In both ARMS2 and
ARMS-C, we group together independent sets and permute these sets to block B, similar to
creating a coarse set, leaving the leftover points to a fine set for further processing.

The permutation algorithm in the MATLAB version of ARMS2 begins by computing
weights, w, for each row of A,

w(i) =
|A(i, i)|
||A(i, :)||1

. (2.9)

The size of block B is determined by the number of normalized weights, w/max(w), greater
than a relative tolerance. Whenever a weight is greater than the relative tolerance, that row
is considered to have sufficient diagonal dominance. Then, the diagonally dominant rows are
permuted using a modification of the RCM algorithm (see section 2.1.3). The leftover rows
and columns are moved to blocks Fl, El, and Cl. The procedure then begins again, letting
Al+1 = Cl until the maximum number of levels is reached, or until the Schur complement has
sufficient properties for solution. The latter stopping criterion occurs when, at the next level,

E.C. Durant and H.K. Thornquist 63

(a) A (b) Level 1 (c) Level 2

(d) Level 3 (e) Level 4 (f) Schur Complement

Fig. 2.2. Matrix structure plots from ARMS2 preconditioner. Figure 2.2(a) represents the original circuit
matrix. Figures 2.2(b) through 2.2(e) show how each level is broken down into the block form, as in equation 2.8.
The red lines in the figures separate the blocks Bl, Fl, El and Cl. Figure 2.2(f) is the Schur complement.

all the elements in Al+1 get permuted to block Bl+1 (in other words, whenever Cl+1 is empty).
Figure 2.2 shows the application of ARMS2 to a test matrix from Xyce.

By comparison, ARMS-C implements a non-symmetric permutation of Al:

PlAlQT
l =

(
Bl Fl

El Cl

)
, (2.10)

where Pl permutes the rows, QT
l permutes the columns and Cl = Al+1 is the Schur comple-

ment. ARMS-C uses a PQ-type reordering to determine the blocks Bl, Fl, El and Cl.
The permutation algorithm implemented in the MATLAB version of ARMS-C uses a

variation of the PQ reordering described in section 2.1.4. The PQ-type reordering algorithm
in ARMS-C begins by checking to see whether or not the the largest value of each row is
greater than a relative tolerance, τ. The row and column indices of elements that pass this test
are stored in vectors, row and col. Next, we pass the vectors row and col to calculate a weight
vector, w, accounting for both numerical and structural diagonal dominance, as explained in
section 2.1.4. The MATLAB implementation of this algorithm is:

count = 1

For i = 1, 2, ..., n

If |max(A(i, :)| = |ai, j| > τ then row(count) = i, col(count) = j

count = count + 1

For k = 1, 2, ..., count

w(i) =
|arow(k),col(k)|

||A(row(k), :)||1
×

1
nz(A(i, :))

, (2.11)

64 A Study of Multilevel ILU Techniques For Circuit Simulation

We then reorder w in descending order, taking care to also reorder row and col to reflect the
new order of w. The PQ-type reordering then permutes the rows and columns of Al that are
stored in w to block Bl by creating independent sets and accounting for diagonal dominance
with ordered vectors row and col, as described in [11]. The reordering moves rejected rows
and columns to blocks Fl, El and Cl. This process iterates, letting Al+1 = Cl, until the
maximum number of levels is reached, or the Schur complement has sufficient properties for
solution. Figure 2.3 shows the application of ARMS-C to the same test matrix from Xyce as
in Figure 2.2(a).

(a) Level 1 (b) Level 2

(c) Level 3 (d) Schur Complement

Fig. 2.3. Matrix structure plots from ARMS-C preconditioner using same circuit matrix in Figure 2.2(a). Fig-
ures 2.3(a) through 2.3(c) show how each level is broken down into the block form, as per Equation 2.10. The red
lines in the figures show the separation the blocks Bl, Fl, El and Cl. Figure 2.3(d) is the Schur complement.

2.3.2. ILU++. ILU++ is a software package, written in C++, that provides a frame-
work for generating multilevel ILU preconditioners. Compared to ARMS, ILU++ offers
many options for the ILU factorization, level termination strategy, preprocessing, and drop
tolerances [6]. For example, Crout ILU (ILUC) and ILUC with dual-pivoting (ILUCDP) is
available. Crout ILU factors a matrix A ≈ LU so that U is unit upper triangular. When
dual-pivoting is allowed, rows and columns can be permuted independently—to encourage
sparsity and to avoid small pivots. Additionally, in ILU++ several level termination options
are accessible, such as ending the level once a maximum amount of fill-in has been reached
or stopping whenever a pivot is too small. Furthermore, ILU++ offers multiple preprocessing
techniques, such as normalization of rows and columns, PQ reordering and I-matrix reorder-
ing. Finally, drop tolerances can be easily edited by the user, like those specifying fill-in
for the overall preconditioner and the Schur complement or choosing a pivoting tolerance.
Where ILU++ excels in flexibility, ARMS only offers ILUT, with either RCM reordering or

E.C. Durant and H.K. Thornquist 65

PQ reordering, and limited customization features.

3. Results. In this section we will present the performance results from using the mul-
tilevel preconditioners provided by ARMS and ILU++ with GMRES to solve linear systems
generated by the Xyce circuit simulator. We assess the performance of each preconditioner
using GMRES iterations, instead of computational time, for fairness since ARMS and ILU++

are written in two distinctly different languages, MATLAB and C++, respectively. The matri-
ces under consideration come from a circuit that Xyce has trouble simulating using iterative
solvers.

To give our results some context, we will offer the GMRES iterations necessary for Xyce
to solve each linear system, using the default solver configuration, as well. By default, Xyce
uses an Additive Schwartz preconditioner, which is a one-level overlapping domain decom-
position preconditioner. With these types of preconditioners the unknowns are partitioned,
usually across processors, and the matrix is divided up in a compatible manner. The local
matrix is one where the unknowns designated to a particular processor match up with the
rows of the matrix also designated to that processor. Xyce uses no overlapping, by default,
resulting in a block diagonal preconditioner. Furthermore, for the local matrix solve, Xyce
uses an incomplete LU factorization (ILUT).

3.1. Voter Circuit. The CircuitSim90 circuit simulator benchmark suite is one of the
very few defacto standard circuit simulator benchmark suites that is in the public domain
[2]. The Voter circuit is one of the larger Level 2 MOSFET benchmark tests, generating a

Fig. 3.1. Condition estimates of the first 25 Voter matrices generated by Xyce

linear system with 10217 unknowns. To simulate this circuit through a full transient takes 4
hours with a serial build of Xyce, which uses direct solvers. Xyce has yet to complete a full
transient simulation of this circuit using iterative solvers.

The most dominant issue with the linear systems generated during the simulation of the
Voter circuit is their ill-conditioning. Figure 3.1 shows the estimated condition numbers of
the first 25 matrices generated by Xyce during the simulation of the Voter circuit. While
one of the goals of preconditioning is to improve the conditioning of the original matrix to
accelerate convergence of the iterative method, not all preconditioners are successful.

3.2. Xyce Performance. The default preconditioner in Xyce is not always effective in
solving these linear systems. Figure 3.2 shows (top) the number of GMRES iterations, maxi-
mum 500, required to achieve the requested relative residual, 10−9, and (bottom) what relative
residual was achieved. In 8 of the first 25 linear solves, GMRES was not able to reach 10−9

66 A Study of Multilevel ILU Techniques For Circuit Simulation

Fig. 3.2. Xyce iterative solver behavior for the first 25 Voter matrices

in 500 iterations. In fact, when GMRES did converge, it usually required more than 200 iter-
ations. The default preconditioner generated by Xyce is clearly not consistently effective on
these linear systems.

3.3. ARMS Performance. ARMS is a software package, written for MATLAB, that
generates two multilevel ILU preconditioners: ARMS2 and ARMS-C. These two precondi-
tioners generate a symmetric and non-symmetric permutation, respectively. The Voter ma-
trices are non-symmetric, so the ARMS-C preconditioner may be more effective in solving
these linear systems. However, in the course of our studies, we have found the implementa-
tion of the ARMS-C preconditioner provided by the ARMS software package is not robust
enough to handle these matrices. We routinely received errors from the code, such as those
shown in Figure 3.3. So, regrettably, we will be reporting results for GMRES preconditioned
with the ARMS2 preconditioner.

??? Improper assignment with rectangular empty matrix.

Error in ==> presel at 17

jcor(i) = row(k);

Error in ==> PQ at 8

[icor, jcor, count] = presel(A, tol) ;

Error in ==> armsC at 20

[ip, iq, nB] = PQ(S,tolInd) ;

Error in ==> demoArmsVoter at 172

PRE = armsC(A,ARMSopt) ;

Fig. 3.3. ARMS-C error output

ARMS2 offers a minimal set of options for the user to specify. The preconditioning
options mostly pertain to dropping tolerances, levels of fill, and maximum number of levels.
The GMRES solver options are for specifying the size of the Krylov subspace, maximum
number of restarts, requested relative residual tolerance, and maximum number of iterations.
The results presented here are obtained when the ILU tolerance for B (see Equation 2.7)

E.C. Durant and H.K. Thornquist 67

and the Schur complement (ilutolB and ilutolS, respectively) is changed to 10−3 and the
maximum number of levels (nlev) is set to 3. For the iterative solver, the size of the Krylov
subspace (k) and maximum iterations (maxits) was set to 500, while the maximum number
of restarts (maxrestarts) was set to 0. The convergence tolerance (tol) was set to 10−9.
These settings were chosen to allow comparison with Xyce’s default preconditioner.

Considering the fact that it uses a symmetric permutation, it is promising that the ARMS2
preconditioner is quite effective in solving a majority of these linear systems. Figure 3.4
shows that it only failed to obtain the requested residual of 10−9 in 2 of the first 25 linear

Fig. 3.4. ARMS2 preconditioned GMRES behavior for the first 25 Voter matrices

solves and, when it did converge, it usually required less than 25 iterations. However, when it
did fail, the resulting residuals were larger than with Xyce’s default preconditioner and in one
case GMRES returned NaNs. The two failures were on the second and fourth linear systems,
which have the most ill-conditioned (see Figure 3.1) matrices of the first 25. So, given the
fact that the condition number of the Voter matrix improves as the simulation proceeds, the
ARMS2 preconditioner will, overall, be more effective in accelerating the convergence of
GMRES than Xyce’s default preconditioner.

3.4. ILU++ Performance. ILU++ provides a framework for generating multilevel ILU
preconditioners. Compared to ARMS, ILU++ offers many more options for the ILU factor-
ization, level termination strategy, preprocessing, and drop tolerances. Performing a study
with all of the possible combinations offered by this software package is beyond the scope
of this paper. Instead, we chose three recommended default configurations that result in pre-
conditioners that are somewhat comparable to ARMS2, ARMS-C, and Xyce’s default pre-
conditioner. The first configuration (A) computes an I-Matrix reordering (see section 2.1.2)
before factorizing the matrix using full pivoting (row and column). The second configuration
(B) normalizes both rows and columns, then applies PQ preprocessing (see section 2.1.4) be-
fore factorizing the matrix using full pivoting. The third configuration (C) is the same as the
first, but it performs an additional symmetric reordering to produce an initial diagonally dom-
inant submatrix. All three configurations use a drop tolerance of 10−3 and relative residual
tolerance for GMRES of 10−9.

The three multilevel preconditioners tested from ILU++ were very effective in solving
a majority of the linear systems. The least effective of the three preconditioners, as shown

68 A Study of Multilevel ILU Techniques For Circuit Simulation

in Figure 3.5, is the second configuration (B) that uses the PQ preprocessing. This precondi-
tioner fails to solve 3 of the first 25 linear systems and, in all of those failures, the GMRES
solver returned NaNs. This is a noteworthy result since the ARMS-C preconditioner we were
having trouble configuring uses PQ reordering. We would expect to see similar behavior
from the ARMS-C preconditioner on these linear systems, given a more robust implementa-
tion. When GMRES does converge using this second configuration, it usually required less
than 50 iterations.

Fig. 3.5. ILU++ preconditioned GMRES behavior for the first 25 Voter matrices

The most effective of all the preconditioners tested on these linear systems from either
the ARMS or ILU++ software packages use I-Matrix reordering. The preconditioner gen-
erated using the first configuration fails only once, on the second linear system. The third
configuration, that combines I-Matrix reordering with an additional reordering for diagonal
dominance, does not fail to solve any of the first 25 linear systems. In fact, even the most
ill-conditioned matrices required less than 150 iterations and all the others required much less
than 50.

4. Conclusion. Multilevel incomplete LU preconditioners have shown promise for ac-
celerating the convergence of GMRES on linear systems generated through circuit simula-
tion. This paper presents a small subset of the available multilevel ILU preconditioners and
compared them on a sequence of linear systems generated by Xyce for a circuit it has not
yet been able to simulate using iterative methods. The results obtained give unequivocal ev-
idence that Xyce would benefit from the integration of multilevel ILU preconditioners. In
particular, future directions of this work should include the study of I-Matrix reordering,
which uses maximum weighted matching. It should be noted that both ARMS and ILU++

are serial software packages and Xyce will require a parallel implementation of a multilevel
ILU preconditioner. While only a few of the multitude of options were presented here, our
experience from this study makes it clear that finding the best parameters for preconditioning
circuit simulation matrices will be difficult and will require time and experience.

E.C. Durant and H.K. Thornquist 69

REFERENCES

[1] Xyce parallel circuit simulator. http://xyce.sandia.gov.
[2] J. Barby and R. Guindi, CircuitSim93: A circuit simulator benchmarking methodology case study, Proc. IEEE

Int., ASIC Conf., (1993), pp. 531–535.
[3] A. Basermann, U. Jaekel, and K. Hachiy, Preconditioning parallel sparse iterative solvers for circuit simu-

lation, in Proceedings of the 8th SIAM Proceedings on Applied Linear Algebra, Williamsburg VA, July
15-19 2003.

[4] A. Basermann, U. Jaekel, and M. Nordhausen, Parallel iterative solvers for sparse linear systems in circuit
simulation, Future Generation Computer Systems, 21 (2005), pp. 1275–1284.

[5] W. Liu andA. Sherman, Comparative Analysis of the Cuthill-McKee and the Reverse Cuthill-McKee Ordering
Algorithms for Sparse Matrices, SIAM J. Numerical Analysis, 13 (1976), pp. 198–213.

[6] J. Mayer, ILU++. http://iamlasun8.mathematik.uni-karlsruhe.de/˜ae04/iluplusplus.html.
[7] , A numerical evaluation of preprocessing and ILU-type preconditioners for the solution of unsym-

metric sparse linear systems using iterative methods, ACM Transactions on Mathematical Software, 36
(2009), pp. 1:1–1:26.

[8] Y. Saad, ILUT a Dual Threshold Incomplete LU Factorization, Numerical Linear Algebra with Applications,
1 (1994), pp. 387–402.

[9] , ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM J. Scientific Com-
puting, 17 (1996), pp. 830–847.

[10] , Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, second ed., 2003.
[11] , Multilevel ILU with reorderings for diagonal dominance, SIAM J. Scientific Computing, 27 (2006),

pp. 1032–1057.
[12] Y. Saad and B. Suchomel, ARMS: An Algebraic Recursive Multilevel Solver for general sparse linear systems,

Tech. Rep. UMSI 99/107, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis,
MN, 1999.

[13] H. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsym-
metric linear systems, SIAM J. Scientific and Statistical Computing, 13 (1992), pp. 634–644.

CSRI Summer Proceedings 2009 70

COMPARISONS BETWEEN FINITE ELEMENT AND FC-AD METHODS WITH
APPLICATIONS TO DRUG DELIVERY

CATHERINE E. BENI∗, OSCAR P. BRUNO ∗, PAVEL B. BOCHEV†, DENIS RIDZAL†, AND KARA J.
PETERSON†

Abstract. In this paper we compare two different methods of solving the basic equations that arise from the
problem of magnetic drug delivery: Finite Element methods and a new method, the so-called Fourier Continuation-
Alternating Directions (FC-AD) algorithm. Although there was not enough time to obtain numerical results, we
discuss the analytical properties of the two methods.

1. Introduction. The goal of magnetic drug delivery is to direct and confine magnetically-
responsive particles coated by or containing therapeutic agents to specific regions in the body
by applying external magnetic fields. This is useful for treatment of diseases, including can-
cer, strokes, and infections, because it concentrates treatments to disease sites, thereby reduc-
ing their impact on the rest of the body and in turn allowing for a higher dose of treatment to
be applied.

To rationally design a method of confining the magnetically-responsive particles (also
referred to as ferrofluid) to a particular region of the body, a mathematical model of how
the external magnetic forces will transport the fluid through the bloodstream is required. One
such model has been developed by Grief and Anderson [7] and was implemented numerically
(in COMSOL) at the University of Maryland [9]. The model characterized by the following
hyperbolic convection-diffusion partial differential equation (PDE):

∂

∂t
C(~r, t) =

−∇·
[
C(~r, t) ~Vblood(~r, t) − D(~r) ∇C(~r, t) + k(~r) C(~r, t)∇

(
| ~H(~r, t)|2

)]
,

(1.1)

where C(~r, t) is the concentration of magnetic particles in the blood, ~Vblood(~r, t) is the
blood convection, D(~r) is the diffusion coefficient of particles within the blood stream, k(~r)
is the magnetic drift coefficient, and ~H(~r, t) is the externally applied magnetic field intensity.
The term ∇

(
| ~H(~r, t)|2

)
is referred to as the control.

For the preliminary tests of simulating the fluid flow and diffusion rates, an extremely
simplified model of the vasculature is used. This allows us to better understand how the flow
is affected by the relationships between the magnitude of the magnetic force, the diffusion
coefficient of the surrounding tissue and the blood velocity without added complexities. The
idealized geometry we use in this paper consists of a lateral cross section of a blood vessel, in-
cluding the endothelial layer (vessel wall) and some of the surrounding tissue, with a magnet
situated below, see figure 1. Each layer has a different diffusion coefficient, with the vessel
having the largest value and the endothelial layer having the smallest. The magnetic drift
coefficient in each layer is the ratio between the layer’s diffusion coefficient and the diffusion
coefficient in the vessel. We simplify the model further by setting the control to be constant.

Because of the discontinuity in the diffusion coefficients, when the magnetic forces act-
ing on the particles are strong enough to overcome the blood velocity, a sharp build-up of
concentration, also known as a boundary layer, appears at the interface between the vessel
and the endothelial layer. This provides a challenge for numerical algorithms: for the val-
ues of diffusion coefficients used in realistic models of capillaries, the number of grid points

∗California Institute of Technology, beni@caltech.edu, bruno@acm.caltech.edu
†Sandia National Laboratories, pbboche@sandia.gov

C.E. Beni, O.P. Bruno, P.B. Bochev, D. Ridzal, and K.J. Peterson 71

Fig. 1.1. Vessel geometry used in numerical simulations consisting of the lateral cross section of a blood vessel
and some surrounding tissues, including the endothelial layer (vessel wall). The magnet situated below the vessel
demonstrates how the external magnetic field affects the fluid flow by generating a downward “velocity”.

needed to accurately resolve the boundary layer is large enough that the computational times
required by standard methods make them unfeasible for use when multiple scenarios are be-
ing simulated.

In this paper, we solve equation (1.1) with piecewise constant coefficients by using two
different numerical algorithms, Fourier Continuation-Alternating Direction (FC-AD) and Fi-
nite Element (FEM) methods. The goal of this paper is to compare the performance of the
two methods when resolving a boundary layer, with a focus on convergence and accuracy.

2. Finite Element Method. For the purposes of better modeling the basic relationships
between the multiple parameters present in equation (1.1), in this paper we consider the sim-
plified equation

Ct = D∇2C − vxCx + vyCy, (x, y, t) ∈ Ω × (0,T],
C = 1, x = xl, y ≥ yv, t ∈ (0,T],
Cx = 0, x = xl, xr, y < yv, t ∈ (0,T],
Cy = 0, y = yl, yr, t ∈ (0,T],

C(x, y, 0) =

{
1 ; y ≥ yv

0 ; y < yv

(2.1)

defined on the domain Ω = [xl, xr] × [yl, yr], where yv is the location of the interface between
the vessel and the endothelial layer. This is derived from (1.1) by noticing that, for the
geometry currently being considered, vblood, D(~r) and k(~r) are constant in the x-direction and
piecewise constant in the y-direction. It is important to note that while D(~r) and k(~r) are truly
piecewise constant everywhere, in the vessel, vblood takes on the form of a blunted, parabolic
velocity profile. However, any complications arising from a variable blood velocity term are
overcome by a simple discretization of vblood, effectively making it piecewise constant. As
stated previously, the control is set to be constant. For notational convenience, we re-label
vblood = vx and k(~r)∇

(
| ~H(~r, t)|2

)
= −vy.

The Finite Element Method (FEM) [8] is a general technique introduced in the late 50’s
and early 60’s for the numerical solution of differential and integral equations in science

72 Finite elements and FC-AD

and engineering. The basic idea of any numerical method used for computing the solution
of a differential equation is to discretize the given continuous problem (with infinitely many
degrees of freedom), thus forming a finite system of equations. In Galerkin methods, the finite
element method considered in this paper, a discretization is generated after a reformulation
of the given differential equation into its variational form is performed. Because a time
derivative is present in our PDE, before computing the variational form, we must discretize
in time. For this, we use Backward Euler’s method:

Cn+1 −Cn

4t
= D∇2Cn+1 − vxCn+1

x + vyCn+1
y .

Grouping together like terms, we obtain the implicit scheme

Cn+1 − 4t
(
D∇2Cn+1 + b · ∇Cn+1

)
= Cn, (2.2)

where b = (−vx, vy). Because we chose an implicit method, the FEM described below will be
unconditionally stable in time.

Consider the Hilbert space H1
0(Ω) of test functions

H1
0(Ω) = {w ∈ L2(Ω) : w = 0 on Γ,

∂w
∂x
,
∂w
∂y
∈ L2(Ω)},

where Γ is the boundary of Ω. The variational formulation of (2.1) is given as

Find C ∈ H1
0(Ω) such that a(C,w) = f (w) ∀w ∈ H1

0(Ω), (2.3)

where

a(C,w) =

∫
Ω

∇C · ∇w dx +

∫
Ω

b · ∇w dx

f (w) =

∫
Ω

Ctw dx.

Next, a finite-dimensional subspace Vh of H1
0(Ω) is constructed through the triangulation of

Ω: the division of Ω into a set Th = K1, ...,Km of non-overlapping cells Ki,

Ω =
⋃
K∈Th

K = K1 ∪ K2... ∪ Km,

such that no vertex of one cell lies on the edge of another cell. Cells are typically chosen to be
triangular although other two-dimensional shapes, such as squares, are also commonly used.
For the numerical results presented in this paper, the cells Ki are chosen to be quadratic. Note
that, although it is true for our case of a rectangular domain, in general Ω does not necessarily
exactly equal its triangulation. Next, we define Vh as

Vh = {w ∈ H1
0 : w|K is linear for K ∈ Th}

where w|K denotes the restriction of w to K. By considering the nodes Ni, i = 1, ...,M of Th,
we can easily generate a basis {φ j} for Vh through the following definition:

φ j(Ni) = δi j ≡

{
1 if i = j
0 if i , j , i, j = 1, ...,M.

C.E. Beni, O.P. Bruno, P.B. Bochev, D. Ridzal, and K.J. Peterson 73

Because the support of φ j is given by the cells with the common node N j, a function w ∈ Vh

can be represented by the linear combination

w(x) =

M∑
j=1

η jφ j(x), η j = w(N j), for x ∈ Ω ∪ Γ.

The Galerkin method for the boundary value problem (2.1) is then formulated as

Find Ch ∈ Vh such that a(Ch,w) = f (w) ∀w ∈ Vh(Ω), (2.4)

and can be viewed as the projection of the variational form (2.3) to the finite dimensional
space Ch. In particular, we have

a(Ch, φ j) = f (φ j).

By noting that Ch has the representation

Ch =

M∑
i=1

ξiφi(x), ξi = Ch(xi),

we can re-write (2.4) as

M∑
i=1

ξia(φi, φ j) = f (φ j), (2.5)

or, more simply, as the linear system of equations:

Aξ = b, with ai j = a(φi, φ j), b j = f (φ j). (2.6)

The above system can then be solved for using a variety of numerical methods. It is important
to note that due to the small support of each of the basis functions φ j, the matrix A is very
sparse and can therefore be inverted efficiently.

In this paper, the Galerkin method described above was implemented in C++ through the
use Intrepid, a high-end Finite Element package developed by P.B. Bochev, et al. at Sandia
National Laboratories. For the inversion of the linear system shown in (2.6), the direct sparse
solver package Amesos was used. The details of the numerical implementation are listed in
section 4.

3. FC-AD. The Fourier-Continuation Alternating-Direction (FC-AD) algorithm [3] is a
new methodology created by O.P. Bruno and M. Lyon for the numerical solution of PDEs in
general spatial domains based on using the well-known Alternating Direction Implicit (ADI)
approach in conjuction with the Fourier Continuation (FC) method. Alternating directions
algorithms, introduced in [4, 6, 5] have the attractive feature of being capable of yielding un-
conditional stability at roughly the same computational cost as explicit (conditionally stable)
Finite Difference approximations. However, the application of alternating directions meth-
ods has been hindered by the fact that they cannot be directly applied to PDEs on general
domains without reducing the accuracy near the boundary to first order. FC-AD methods can
produce high-order accuracies with unconditionally stable solutions for general geometries
in essentially linear time. These features make the FC-AD method well-suited for not only
the simple geometry currently being considered, but also for future, more complex models of
the vasculature.

In section 3.1 we introduce the alternating direction scheme used in our numerical simu-
lations of (2.1). The FC-based algorithm for the solution of the resulting ordinary differential
equations (ODEs), called FC-ODE is presented in section 3.2.

74 Finite elements and FC-AD

3.1. Alternating Directions Implicit Approach. As in section 2, we again consider the
PDE described by equation (2.1). Let tn and Cn be equal to n4t and C(x, y, tn) respectively.
By discretizing the time derivative through a centered finite difference scheme around t =

(n + 1
2)4t, we obtain

Cn+1 −Cn

4t
=

D
2
∇2(Cn+1 + Cn) −

vx

2
∂

∂x
(Cn+1 + Cn) +

vy

2
∂

∂y
(Cn+1 + Cn)

+ E1(x, y,4t),

where E1(x, y,4t) ∼ O(4t2) is the remainder. Grouping together the terms for Cn and Cn+1 in
the above equation yields(

1 −
4t
2

(
D∇2 − vx

∂

∂x
+ vy

∂

∂y

))
Cn+1 =(

1 +
4t
2

(
D∇2 − vx

∂

∂x
+ vy

∂

∂y

))
Cn + 4tE1(x, y,4t).

(3.1)

Equation (3.1), can then be expressed in the following factored form:(
1 −

D4t
2

∂2

∂x2 +
vx4t

2
∂

∂x

) (
1 −

D4t
2

∂2

∂y2 −
vy4t

2
∂

∂y

)
Cn+1 =(

1 +
D4t

2
∂2

∂x2 −
vx4t

2
∂

∂x

) (
1 +

D4t
2

∂2

∂y2 +
vy4t

2
∂

∂y

)
Cn

+ O(4t3) + 4tE1(x, y,4t).

(3.2)

In order to solve for Cn+1 in equation (3.2), it is necessary to invert the differential opera-
tors

(
1 − D4t

2
∂2

∂x2 + vx4t
2

∂
∂x

)
and

(
1 − D4t

2
∂2

∂y2 −
vy4t

2
∂
∂y

)
. The application of the inverse operators

on a function f is equivalent to computing the solutions of the one-dimensional boundary
value problem

−αu′′ − βu′ + u = f , u′(xl) = 0, u′(xr) = 0, (3.3)

where α = D4t
2 and β is either − vx4t

2 or vy4t
2 .

By noticing that the differential operators are commutable, we can obtain the following
scheme for computing C̃n, an approxmation of the exact function Cn:(

1 −
D4t

2
∂2

∂x2 +
vx4t

2
∂

∂x

)
C̃n+ 1

2 =

(
1 +

D4t
2

∂2

∂y2 +
vy4t

2
∂

∂y

)
C̃n

(
1 −

D4t
2

∂2

∂y2 −
vy4t

2
∂

∂y

)
C̃n+1 =

(
1 +

D4t
2

∂2

∂x2 −
vx4t

2
∂

∂x

)
C̃n+ 1

2 .

(3.4)

3.2. Fourier Continuation and the FC-ODE algorithm. The last element needed to
implement the FC-AD solver is a suitable discrete operator that approximates the inverse of
the simple differential operator shown in equation (3.3):

S α,β,x =

(
1 − α

∂2

∂x2 − β
∂

∂x

)−1

. (3.5)

Consider a smooth function f ∈ Ck[xl, xr] for some positive integer k or k = ∞. We
assume that approximate values of the function f are given over a discrete grid x j, j = 1, ..., n

C.E. Beni, O.P. Bruno, P.B. Bochev, D. Ridzal, and K.J. Peterson 75

contained in [xl, xr]. For the purposes of explanation, and without loss of generality, we
replace the interval [x1, xn] with the interval [0, 1] and use the discrete grid

x j = (j − 1)h, j = 1, ..., n, h = 1/(n − 1); (3.6)

The FC-ODE method described in this section applies, after a change of variables, to the gen-
eral intervals [x1, xn] and [xl, xr]. Because (3.3) is a linear ODE with constant coefficients,
we can compute the application of the inverse operator S α,β,x to f by approximating f with
a Fourier series and performing some simple algebraic operations on its Fourier coefficients.
However, in the case that f is not periodic over the interval [0, 1], approximating f with a
Fourier series of period 1 gives rise to the Gibbs phenomenon, a well-known ringing effect.
The Fourier continuation method is a new method introduced in [1, 2] for the resolution of
the Gibbs phenomenon. It relies upon constructing a periodic function in a domain signifi-
cantly larger than the interval [x1, xn] = [0, 1] while still containing the discretization points
x1, ..., xn.

Following the method described in [2, 3], we define a function f c(x) periodic over a
given period b, with b > 1, through the series

f c(x) =
∑

k∈t(M)

ake
2πi
b kx, (3.7)

where t(M) = { j ∈ N : −M/2 + 1 ≤ j ≤ M/2} for M even and t(M) = { j ∈ N : −(M − 1)/2 ≤
j ≤ (M − 1)/2} for M odd. The coefficients ak are then obtained from the solution of the
least-squares system of equations

min
{ak : k∈t(M)}

n−1∑
j=0

∣∣∣∣∣∣∣∣
∑

k∈t(M)

ake
2πi
b kx j − f (x j)

∣∣∣∣∣∣∣∣
2

. (3.8)

Numerical results [2] have shown that it is advantageous to solve the least-squares system
by using Singular Value Decompositions (SVD). In this paper, we refer to the SVD-based
method of Fourier continuation as FC(SVD). A typical result produced by our implementation
of the FC(SVD) method is shown in figure 3.2.

However, while the O(n3) computational cost of FC(SVD) is adequate for applications
such as the high-order surface representations in [2], it is significantly higher than desirable
for use in a PDE solver. A new method, called FC(Gram), based on function matching and
Gram polynomials was presented in [3] and is described below.

Consider a pair of functions: the given function f (x) and its translation f (x − d − 1),
defined over the intervals [0, 1] and [1 + d, 2 + d] respectively, see figure 3.2. As shown in
the figure, we consider small portions taken from the right end of the graph of f (x) and the
left end of the graph of f (x − d − 1). The intervals these portions are defined on are [1 − δ, 1]
and [1 + d, 1 + d + δ] accordingly. The FC(SVD) algorithm can be applied to these two
segments to generate a periodic function fmatch, with periodicity interval [1 − δ, 1 + 2d + δ],
that simultaneously matches f (x) on the interval [1 − δ, 1] and f (x − d − 1) on the interval
[1 + d, 1 + d + δ]. From [2], we know this approximation is spectrally accurate. The function
fmatch, shown raised for visibility in figure 3.2, can then be used to provide a smooth transition
from the right end of f (x) to the left end of f (x − d − 1) as follows:

f de(x) =


f (x), for x ∈ [0, 1]
fmatch(x), for x ∈ (1, 1 + d]
f de(x + 1 + d) = f de(x), for all x in R

. (3.9)

76 Finite elements and FC-AD

Fig. 3.1. Smooth periodic function resulting from applying the FC(SVD) method with 32 modes to f (x) = x
over the interval [0, 1].

Fig. 3.2. Calculation of a periodic extension of f (x) = esin(5.4πx−2.7πx)−cos(2πx) using the FC matching algorithm
described in (3.9) with Nδ = 10 and d = .35. The solid lines represent the function f (x) and its translation f (x−d−1)
while the dark lines represent the segments used in the matching process. The dashed lines represent f match, raised
for clarity

Due to the approximation errors arising in FC(SVD), the (1 + d)-periodic function f de

defined in (3.9) is piecewise discontinuous (the lable “de” stands for “discontinuous exten-
sion”). However, a spectrally accurate Fourier continuation for f can now be obtained as a
discrete Fourier transform of the grid values of the function f de. To do this, we require that
1 + d and δ be integer multiples of h. For appropriate positive integers Nδ and Nd, defining

δ = (Nδ − 1)h and d = (Nd − 1)h,

sampling the function f de at the n + Nd − 2 evenly spaced points

x j = (j − 1)h, j = 1, ..., n + Nd − 2,

C.E. Beni, O.P. Bruno, P.B. Bochev, D. Ridzal, and K.J. Peterson 77

and then computing the discrete Fourier transform of the resulting discrete values of f de

produces, with FFT speed, a high-order accurate Fourier continuation of the function f .
However, a further variation on the FC(SVD) method is required: even for “reasonable”

values of the number of one-dimensional samples, the number of discretization points con-
tained in the boundary intervals, chosen small enough to maintain FFT-type computational
speeds, is not large enough to yield optimally accurate SVD-based continuations. To over-
come this, [3] proposes preceeding the FC(SVD) calculation with projecting the right hand
and left hand segments of f (x) and f (x − d − 1) respectively into their correpsonding Gram
polynomial bases. One advantage of this procedure is that each of the polynomials in the
orthogonal bases can be easily computed at a large number of points in its relevant interval.
From this, highly accurate FC(SVD) continuations of the basis functions can be constructed
and combined to form the continuation of the original function. In addition, the evaluation of
the FC(SVD) of the various basis polynomials can be precomputed and stored, at insignifi-
cant memory cost, for each possible (reasonable) choice of Nδ, Nd, and the parameters of the
FC(SVD) continuation.

The FC(Gram) algorithm, described in detail in [3], is based on the following: first a
“discontinuous-projection” function, shown below, is constructed

f dp(x) =


f p
right(x − 1 − d), for x ∈ [0, δ]

f (x), for x ∈ (δ, 1 − δ)
f p
left(x), for x ∈ [1 − δ, 1]

fmatch(x), for x ∈ (1, 1 + d)
f dp(x + 1 + d) = f dp(x), for all x in R

, (3.10)

where f p
left and f p

right are the orthogonal projections of fleft(x) = f (x), x ∈ [1 − δ, 1] and
fright = f (x − d − 1), x ∈ [1 + d, 1 + d + δ] respectively. Finally, the Fourier continuation
f c of f is constructed through the application of an FFT to f dp. Note that f c is the unique
n + Nd − 2 term Fourier series that interpolates f dp at the points x j for j = 1, ..., n + Nd − 2
and is obtained at a total cost of O(n log n) operations. This concludes our description of the
FC(Gram) continuation procedure.

Next, we use the above method of computing an FC(Gram) continuation series of a
given function in conjunction with a transformation back to the interval [xl, xr] to obtain the
discrete operator S α,β,x. First, approximate the right-hand side discrete data f with its Fourier
continuation

f c(x) =
∑

k∈t(n+Nd−2)

ake2πi xk
(xr−xl)(1+d) .

The solution of

−αv′′(x) − βv′(x) + v(x) = f c(x), v′(xl) = 0, v′(xr) = 0, (3.11)

is then obtained from a few simple calculations. After including the appropriate solutions of
the associated homogenous problems, a step that is necessary to meet the boundary condi-
tions, the solution v of (3.11) is given by

v(x) =
∑

k∈t(n+Nd−2)

γke2πi xk
(xr−xl)(1+d) + c1h1(x) + c2h2(x), (3.12)

where

γk =
ak

1 +
2βπik

(xr−xl)(1+d) + 4α2π2k2

(xr−xl)2(1+d)2

,

78 Finite elements and FC-AD

c1 and c2 are constants chosen to fit the boundary conditions and where h1 and h2 are the
homogeneous solutions

h1(x) = eω
+ x and h1(x) = eω

−x,

with ω± =
β±
√
β2+4

2α .
Recalling the ADI algorithm described in section 3.1, we note that α = D4t/2 and

β = V4t/2, where V is either −vx or vy depending on the step in the algorithm. In particular,
α, β → 0 as 4t → 0. However, due to the nature of the Fourier continuation approximation
of f used in computing (3.12), the error between the approximate solution v(x) and the exact
solution u(x) does not converge to 0 as α, β→ 0. Instead, we obtain

u(x j) − v(x j)→ f j − f c(x j) , 0 as α, β→ 0 (3.13)

for x j near the boundary points xl and xr. To overcome this, a correction is required. One
such correction, η = (η j) can be generated from low-order Finite Difference techniques as
follows:

−α
η j+1 − 2η j + η j−1

h2 − β
η j+1 − η j−1

2h
+ η j = f j − f c(x j), for j ∈ S

η j = 0 otherwise,
(3.14)

where S = {1, ...,Nδ} ∪ {n − Nδ + 1, ..., n}, and with boundary conditions η0 = 0, ηNδ+1 = 0,
ηn−Nδ

= 0, and ηn+1 = 0. It is easy to verify that the solution v(x j) + η j satisfies

u(x j) − (v(x j) + η j)→ 0 as α, β→ 0.

However, the lack of convergence to zero shown in equation (3.13) followed by the intro-
duction of Finite Difference-based corrections introduces certain types of conditional con-
vergence of the overall FC-AD method. Although this typically has no impact for practical
applications, a number of additional components are required to ensure the unconditional
stability of the full FC-AD method. These components are not listed in this paper, but may
be found in section 4 of [3]. For the purposes of this paper, we use the following discrete
operator to compute the solution of (3.3):

(S α,β,x f) j = η j + v j. (3.15)

All the elements are now in place for the numerical implementation of the FC-AD
methodology. We present our results of the application of the FC-AD method to equa-
tion (2.1) in section 4.

4. Numerical Results. All the numerical results shown were solved over a system of
length 24 and width 1.85. To follow the geometry shown in figure 1, it was necessary to
divide the system into appropriate layers: we chose the tissue to have width .5, the membrane
to have width .35, and the vessel to have width 1. Figure 4 displays the concentration of the
ferrofluid at steady state obtained from iterating the ADI method described in section 3.1 until
the time derivative was less than 10−7.

5. Future Work. Due to time constraints, we were unable to obtain numerical results
from the Finite Element method described. However, we plan on further exploring the differ-
ences between FC-AD methods and Finite Element methods in the future.

C.E. Beni, O.P. Bruno, P.B. Bochev, D. Ridzal, and K.J. Peterson 79

Fig. 4.1. Concentration at steady state obtained from solving equation (2.1) using the ADI method described
in section 3.1

REFERENCES

[1] J. Boyd, A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds, J.
Comput. Phys., 178 (2002), pp. 118–160.

[2] O. Bruno, Y. Han, andM. Pohlman, Accurate, high-order representation of complex three-dimensional surfaces
via Fourier-continuation analysis, J. Comput. Phys., 227 (2007), pp. 1094–1125.

[3] O. Bruno andM. Lyon, High-order unconditionally-stable FC-AD solvers for general smooth domains I. Basic
elements. http://www.acm.caltech.edu/˜bruno/FCADHApr17f.pdf, 2009.

[4] J. Douglas, Jr., Alternating direction methods for three space variables, Numer. Math, 4 (1962), pp. 41–63.
[5] J. Douglas, Jr. and J. Gunn, A general formulation of alternating direction methods. Part I. Parabolic and

hyperbolic problems., Numer. Math, 6 (1964), pp. 428–453.
[6] J. Douglas, Jr. and C. Pearcy, On convergence of alternating direction procedures in the presense of singular

opeartors, Numer. Math, 5 (1963), pp. 175–184.
[7] A. Grief and G. Richardson, Mathematical modelling of magnetically targeted drug delivery, J. Magn. Magn.

Mater., 293 (2005), pp. 455–463.
[8] C. Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge Uni-

versity Press, 1992.
[9] B. Shapiro, Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the

body, J. Magn. Magn. Mater., 321 (2009), pp. 1594–1599.

CSRI Summer Proceedings 2009 80

ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

CHRISTOPHER W. MILLER∗, RAYMOND S. TUMINARO†, ERIC T. PHIPPS‡, AND HOWARD C. ELMAN§

Abstract. Several algorithms have been proposed for the solution of partial differential equations with random
input data including well-known Monte-Carlo based schemes. Recently, the stochastic Galerkin method [2], [3],
[7] and the sparse grid collocation method [1], [10], [15] have received significant attention due to their potential to
achieve high accuracy at reduced computational costs.

Our study employs Sandia’s Trilinos software to implement both of the above methods. We assess the cost
and performance of these two methods. The implementations in Trilinos are known to be efficient which allows
for a realistic assessment of the computational complexity of the methods. We consider cases where the material
uncertainties are modeled by a linear expansion and by a non-linear expansion. We also develop a cost model for
both methods that allows us to examine asymptotic behavior. The results of this paper will be expanded in [9].

1. Problem Statement. We investigate the linear elliptic diffusion equation with zero
Dirichlet boundary conditions, where diffusivity is given by a random field. If D is a open
subset of Rn and (Ω,Σ, P) is a complete probability space then this can be written as

−∇ · (a(x, ω)∇u(x, ω)) = f (x, ω) (x, ω) ∈ D ×Ω (1.1)
u(x, ω) = 0 (x, ω) ∈ ∂D ×Ω.

The random input field is often given as a truncated Karhunen-Loève (KL) expansion [8] or
by a polynomial chaos (PC) expansion [14]. The truncated KL-expansion of the random field
is given by

a(x, ω) ≈ a(x, ξ(ω)) = a0(x) +

M∑
k=1

λkξk(ω)ak(x), (1.2)

where (λi, ai) are solutions to the integral equation∫
D

C(x1, x2)ai(x2)dx2 = λiai(x1), (1.3)

where C is the covariance kernel of the random field. The random variables are uncorrelated,
mean zero, and are given by the formula,

ξk(ω) =
1
λk

∫
D

a(x, ω) fk(x) dx. (1.4)

For the remainder we make the further modeling assumption that the ξk’s are independent
and admit a joint probability density of the form ρ(ξ) =

∏M
k=1 ρk(ξk). The covariance kernel

is positive semi-definite and assume the eigenvalues are ordered to satisfy λ1 ≥ λ2 ≥ ... ≥ 0.
Define Γ = ×M

k=1Γk = ×M
k=1Im(ξk).

Given a vector of random variables ξ = [ξ1, ...ξM]t with a joint probability distribution
ρ(ξ) =

∏M
k=1 ρk(ξk) (not necessarily the same ones appearing in (1.2)), the PC-expansion of a

∗University of Maryland at College Park: Department of Applied Mathematics and Scientific Computation,
cmiller@math.umd.edu
†Sandia National Laboratories, rstumin@sandia.gov
‡Sandia National Laboratories, etphipp@sandia.gov
§University of Maryland at College Park: Department of Applied Mathematics and Scientific Computation, el-

man@cs.umd.edu

C.W. Miller, R.S Tuminaro, E.T. Phipps and H.C. Elman 81

process projects the random field into the space S p of multivariate polynomials in ξ of total
degree p with dimension Nξ =

(M+p)!
M!p! . We can define an inner product on this space by,

〈ΨΦ〉 =

∫
Γ

Ψ(ξ)Φ(ξ)ρ(ξ) dξ =

∫
Ω

Ψ(ξ(ω))Φ(ξ(ω)) dP. (1.5)

Given a basis {Ψi(ξ) : i = 0 : Nξ − 1} for S p which is orthogonal with respect to the above
inner product, the PC-expansion of a(x, ω) is given by

a(x, ω) ≈
Nξ−1∑
k=0

ak(x)Ψk(ξ) (1.6)

ak(x) = 〈a(x, ω)Ψk〉.

When the random variables are independent then the multivariate orthogonal polynomials are
tensor products of the univaritate polynomials orthogonal with respect to ρk. The generation
of these polynomials is discussed later.

The expansions (1.2) and (1.6) are two ways of representing a(·, ·). The latter has the
advantage of being more flexible and is capable of representing quantities that are nonlinear
in the random component. Note that from an implementation perspective, a KL-expansion
is equivalent to a degree one PC-expansion. Throughout this paper we use the notation of a
PC-expansion without loss of generality.

Let V = {v(x, ξ) : ||v||V < ∞}, where ||v||2V =
∫

Γ
a|∇v(·, ξ)|2ρ(ξ) dξ. || · ||V is a norm if and

only if there exist constants amin, amax such that

0 < amin ≤ a(x, ξ) ≤ amax < ∞, (1.7)

almost everywhere, P-almost surely. Under this assumption, it is a straightforward application
of the Lax-Milgram lemma to show that there exists a u ∈ V satisfying,

−

∫
Γ

∇ · (a∇u)vρ(ξ) dξ =

∫
Γ

f vρ(ξ) dξ, (1.8)

for all v ∈ V provided that f ∈ L2(D ⊗ Γ). This is the variational form of (1.1). One could
now attain a full Galerkin formulation by integrating over D by parts. We choose not to do
this because we intend to use finite differences for the spatial discretization.

2. Stochastic Galerkin Method. Let {Ψk}
Nξ−1
k=0 be a orthogonal basis for S p with respect

to the inner product (1.5). Substituting expansions for u(x, ξ), and f (x, ξ), restricting (1.8) to
S p gives

−

∫
Γ

∇ · (a(x, ξ)(
Nξ−1∑
i=0

∇up(x)Ψi))Ψ j dξ =

∫
Γ

Nξ−1∑
k=0

fkΨkΨ j dξ ∀ j = 0 : Nξ − 1, (2.1)

where either (1.2) or (1.6) is used to expand a(x, ξ). This leads to a set of coupled second order
differential equations for the unknown function which can then be discretized in a standard
way (e.g. finite elements or finite differences) giving rise to a global linear system of the
form,

A~u = ~f (2.2)

A =

Nξ∑
k=0

Gk ⊗ Ak, ~f =

Nξ∑
k=0

~gk ⊗ ~fk,

82 Assessment of Collocation and Galerkin Approaches to Stochastic PDEs

where the Gk matrices depend only on the stochastic basis as,

Gk(i, j) =< ΨkΨiΨ j >; gk(i) =< ΨkΨi > i, j, k = 0 : Nξ − 1. (2.3)

We note that (2.2) applies to the case when a(x, ξ) is expanded using (1.6). For the KL-
expansion case the index k runs from 0 to M. For the remainder of this paper we use the
polynomial chaos notation.

In our experiments we elect to use finite differences so the Ak matrices correspond to a
standard five point operator discretizing the problem −∇ · (ak∇u) = fk. The matrix A is of
order NxNξ where Nx is the number of degrees of freedom used in the spatial discretization. It
is relatively sparse in the block sense due to the orthogonality of the stochastic basis functions.
Specifically G0 is diagonal and Gk has at most two entries per row for k > 0 in the case where
diffusion is modeled by (1.2) and ρk(ξk) is symmetric with respect to the origin.

One significant obstacle to the Galerkin method is that it requires the solution to the large
linear system in (2.2). While that may appear prohibitively expensive this system does not
need to be stored and often the number of iterations required by an iterative method is only
slightly larger than that required for a single deterministic system. If the expansion of a(x, ω)
satisfies (1.7) then the system matrix is symmetric and positive definite. Thus, the conjugate
gradient method becomes the preferred solver. Since the CG method only requires matrix
vector products the large global stiffness matrix is never fully assembled. Instead the matrix
vector product is preformed implicitly following the procedure described in [6]. The Ak’s are
assembled and the product is expressed as (Au) j =

∑Nξ

k=0 < ΨkΨiΨ j > (Akui). The terms
Akui are precomputed and then scaled as needed. This can save time and memory since most
< ΨkΨiΨ j > are zero. It is most advantageous in the case where a(x, ξ) is modeled by (1.2).
It also saves a significant amount of memory since it only requires the assembly of Nξ (or M
in the case of a KL-expansion) order Nx stiffness matrices.

A preconditioner is also needed to solve the system. If the variance of the input process
is not large then a natural and effective choice of preconditioner is the matrix A−1

0 ⊗G−1
0 where

A0 is the mean stiffness matrix [11]. The action of the inverse of A0 is approximated using a
single iteration of algebraic multigrid which must be applied Nξ times.

3. Sparse Grid Collocation. The collocation method is an alternative to the Galerkin
scheme. It samples the input operator at a predetermined set of points Θ = {ξ(1), ..., ξ(n)}

and constructs a polynomial interpolant u ≈
∑|Θ|

k=0 uk(x)Lk(ξ) where Lk is some Lagrange
interpolating polynomial and uk is found by solving the deterministic PDE

−∇ · (a(x, ξ(k))∇u(x, ξ(k)) = f (x, ξ(k)). (3.1)

Since multidimensional interpolation is not necessarily well defined for a given set of
points care must be taken to ensure that an interpolant exists. The natural choice of points
consists of tensor products of one-dimensional point sets and the Lk’s are tensor products of
one dimensional Lagrange polynomials. Unfortunately the number of points is exponential
in the number of random variables involved. A less costly alternative to this is the Smolyak
sparse grid interpolation algorithm which produces an approximation of a similar accuracy
to full tensor grids while using many fewer points [13]. An M dimensional level p grid is
defined so that quadrature based on the Smolyak interpolation formula is exact for all M-
variate polynomials of total degree p (Fig. (3.1)). It is shown in [2] and [1] that such a grid
will produce a solution to (1.1) of similar accuracy to an order p Galerkin scheme. The sparse
grid will have on the order of 2p more points than there are stochastic degrees of freedom in
the Galerkin scheme, |Θ| ≈ 2pNξ for M � 1 [15]. Our routines for the construction of sparse
grids can be found in the Dakota package [4].

C.W. Miller, R.S Tuminaro, E.T. Phipps and H.C. Elman 83

For a fully non-intrusive collocation method the diffusion coefficients would be sampled
and discretized in space at the sample point. This repeated assembly can be very expensive.
We elect in our implementations to take advantage of the fact that the stiffness matrix at a
given value of the random variable is a linear combination of the stiffness matrices appearing
in (2.2). We assemble these matrices first and then compute the sum at each sample point.
This is somewhat intrusive but it greatly reduces the amount of time required to perform
assembly.

In the case of collocation, the repeated cost of constructing an algebraic multigrid pre-
conditioner (which can often be as costly as the conjugate gradient iterative solution phase)
can be eliminated if one simply builds an algebraic preconditioner for the mean problem and
uses this for all the deterministic systems. If the variance of the operator is small then the
mean based AMG preconditioner is nearly as effective as doing AMG on each sub-problem
and saves time in setup costs.

Fig. 3.1. Two dimensional level 3 tensor and sparse grids.

4. Modeling Computational Costs. From an implementation perspective, collocation
is quite advantageous in that it requires only a modest interaction between an existing de-
terministic PDE application and a stochastic capability. Collocation samples the stochastic
domain at a discrete set of points by solving a set of independent deterministic problems. This
is often accomplished by repeatedly invoking a deterministic application with different input
parameters determined by the collocation point-sampling method. A Galerkin method, on the
other hand, is much more intrusive as it requires the solution of a system of equations with a
large coefficient matrix which has been discretized in both spatial and stochastic dimensions.
This can be implemented by repeatedly invoking a deterministic application to build and store
the Ak’s in (2.2).

From a computational cost perspective, there are trade-offs with both methods. The
Galerkin method requires the computation of the double and triple products associated with
the orthogonal polynomials, the assembly of the right hand side and the Ak matrices, and fi-
nally the solution to a very large NξNx coupled matrix. Collocation requires the assembly of a
sparse grid and the derivation of an associated sparse grid quadrature rule, and the assembly/-
solution of a series of deterministic sub-problems. Further, as was stated above, the number
of sample points needed for collocation is much larger than the dimension of the Galerkin
system required to achieve comparable accuracy.

To better understand the relationship between these two methods, we develop a cost
model. If we use a mean based preconditioner for the collocation method we can roughly

84 Assessment of Collocation and Galerkin Approaches to Stochastic PDEs

Table 4.1
Degrees of Freedom for Various Methods

M = 2 Level k Sparse Grid Galerkin Non-Zero Blocks Tensor Grid
per row in SFEM

|Θ| Nξ γ

k = 1 5 3 2.33 4
k = 2 14 6 3.00 9
k = 3 30 10 3.40 16
k = 4 55 15 3.67 25
M = 10
k = 1 21 11 2.82 1024
k = 2 231 66 4.33 59049
k= 3 1771 286 5.62 1048576
k = 4 10626 1001 6.71 9765625
M = 20
k = 1 41 21 2.90 1.04 × 106

k = 2 861 231 4.64 3.49 × 109

k= 3 12341 1771 6.22 1.0995 × 1012.

model its costs by

collocation cost = ZC2pNξ(α + 1) (4.1)

where p is the Smolyak grid level, Nξ is the number of degrees of freedom needed by an order
p Galerkin system, ZC is the number of PCG iterations needed to solve a single deterministic
system, and α is the cost of a single preconditioning invocation relative to a matrix-vector
product. In our application, we fix the multigrid parameters as follows. One V-cycle is
performed at each iteration and within each V-cycle one symmetric Gauss-Seidel iteration is
invoked for presmoothing and for postsmoothing. The coarsest grid is coarse enough so that
a direct solver can be used without affecting the cost per iteration. These parameters were
chosen to optimize the run time of a single deterministic solve. The cost to apply a single
multigrid iteration is roughly equivalent to 5-6 matrix products (2 matrix-vector products for
fine level presmoothing, another 2 for fine level postsmoothing, and 1 matrix-vector product
for a fine level residual calculation). Thus α can be assumed to be 5 or 6.

The total cost of the Galerkin method can be modeled by

Galerkin cost = ZS G(Nξα + Nξγ) (4.2)

where ZS G is the number of PCG iterations required to solve the Galerkin system. Nξα is the
mean based preconditioning cost for a single iteration of the stochastic Galerkin method. Nξh
is the cost of a single matrix vector product for (2.2). When an explicit matrix vector product
is used γ is roughly the number of non-zero blocks per row in (2.2). When an implicit method
is used with (1.6) the cost is identical to the explicit case. For the case of a KL-expansion
with an implicit matrix-vector product γ is roughly M + 1. The cost of the two methods is
identical when (4.1) and (4.2) are equated. After canceling terms and ignoring the matrix
vector cost in (4.1), this gives

2pα ≈ (ZS G/ZC)(α + γ) (4.3)

when the cost of two methods are roughly comparable. If, for example, the growth in itera-
tions (ZS G/ZC) is order 1 and the preconditioning costs dominate the matrix vector costs (i.e.,

C.W. Miller, R.S Tuminaro, E.T. Phipps and H.C. Elman 85

α � γ). Then, we can expect that Galerkin significantly outperforms collocation due to the
2p factor. However, when γ is large compared to the preconditioning cost, collocation is more
attractive. Table 4.1 gives values of Nξ, |Θ|, and γ for various values of M and p. One can
observe that the estimate 2pNξ ≈ |Θ| is a slight overestimate but improves as M grows larger.
For reference the number of points used by a full tensor product grid is shown.

The remainder of this paper seeks to understand the model and assess the validity of
assumptions. In particular, we compare the accuracy of a level p Smolyak grid with a pth

degree polynomial approximation of the Galerkin approach. We also investigate the cost of
matrix-vector products, and the convergence behavior of mean based preconditioning.

5. CG Convergence. In this section we explore the ratios in (4.3). When algebraic
multigrid is used for an elliptic PDE, we expect that the number of iterations is bounded
independent of the mesh spacing in the spatial dimension. For well-posed Poisson prob-
lems multigrid converges rapidly. Since collocation solves repeated deterministic systems
we expect multigrid to behave well. For Galerkin systems the performance of mean based
preconditioning is more complicated. To understand this we investigate the problem

−∇ · (a(x, ξ)u(x, ξ)) = f (5.1)

in the domain [−.5, .5]2 with zero Dirichlet boundary conditions. The diffusion coefficient
given in a one term KL expansion is

a(x, ξ) := 1 + σ
1
π2 ξcos[

π

2
(x2 + y2)]. (5.2)

We choose the function

u := exp(−|ξ|2)16(x2 − .25)(y2 − .25) (5.3)

as the exact solution and the forcing term f is defined by applying (5.1) to u.
The diffusion coefficient must remain positive for the problem to remain well-posed. The

problem remains well-posed when

|σ
1
π2 ξcos(

π

2
r2)| < 1⇒ |ξ| <

π2

σ
. (5.4)

Unfortunately (5.4) cannot be guaranteed for unbounded random variables. There are various
ways this can be addressed. In this paper we choose to model random variables by a truncated
Gaussian distribution

ρ(ξ) =
1∫ c

−c exp(− ξ
2

2) dξ
exp(−

ξ2

2
)χ[−c,c] (5.5)

This is a modeling assumption made for the purpose of investigation. For a certain range
of values of c the problem is guaranteed to remain well-posed. Polynomials orthogonal to
a truncated Gaussian measure are referred to as Rys polynomials. As the parameter c is
increased, the measure approaches the standard Gaussian measure and the Rys polynomials
are observed to approach the behavior of the Hermite polynomials. For our implementation
of collocation, the sparse grids are based on the zeros of the orthogonal polynomials. This
leads to an efficient multidimensional quadrature rule.

86 Assessment of Collocation and Galerkin Approaches to Stochastic PDEs

All orthogonal polynomials can be written using a three term recurrence relation

ψi+1(ξ) = (ξ − αi)ψi(ξ) − βiψi−1(ξ), (5.6)

where αi =

∫
Γ
ξψi(ξ)2ρ(ξ) dξ∫

Γ
ψi(ξ)2ρ(ξ) dξ

,

βi =

∫
Γ
ψi(ξ)2ρ(ξ) dξ∫

Γ
ψi−1(ξ)2ρ(ξ) dξ

,

and ψ0 = 1 ψ−1 = 0.

In the case of Hermite polynomials there exist closed forms for the recurrence coefficients.
Such a closed form is not known to exist for the Rys polynomials so a numerical method must
be employed. The generation of orthogonal polynomials by numerical methods is discussed
extensively in [5]. We compute the α and β recurrence coefficients via the discretized Steltjies
procedure [12] where integrals are approximated by quadrature. This has been observed to
be effective for the distributions which we study in this paper.

Testing for both the sparse grid collocation method and the stochastic Galerkin method
was performed using the truncated Gaussian PDF with several values of c using the Rys poly-
nomials and with the full Gaussian measure using Hermite polynomials. The linear solver for
both methods stop when ||r||2

||r(0) ||2
< 10−12. Table 5.1 shows the average number of iterations

required by each deterministic sub-problem as a function of grid level and the Gaussian trun-
cation point for fixed σ = 3. The last column uses full Gaussian measure. The PDE becomes
ill-posed when c > π2

σ
≈ 3.29. Problems to the right of the double line are ill-posed and are

guaranteed to fail for a high enough grid level as some of the collocation points will be placed
in the region of ill-posedness. If any of the individual sub-problems failed to converge the
method is reported as having failed. We also report the error in the norm 〈||uexact − û||2l∞〉.

Table 5.1
Average iterations for the deterministic sub-problems in the stochastic collocation method as a function of the

Rys cutoff For σ = 3

c=1 2 3 4 ∞

level = 1 Error = 0.0382 0.1083 0.1024 0.0838 0.0764
Iterations = 10 10.50 10.50 10.50 11.33

level = 2 5.6381e-04 0.0154 .0342 0.0411 0.0466
10.33 10.67 11.00 11.33 16.40

level = 3 5.7703e-4 .0171 .0460 0.0639 Did Not Converge
10.25 10.75 11.75 12.25

level = 4 3.8297e-6 .0013 .0078 0.0134 DNC
10.20 11.00 12.2 14.60

level = 5 3.9185e-6 .0014 .0117 DNC DNC
10.17 11.00 12.67

level = 6 1.49417e-8 6.6308e-5 0.0013 DNC DNC
10.30 11 13.29

Table 5.2 shows iteration counts for the Galerkin method. For problems in one random
variable, the stochastic collocation method produces the exact same result as the Galerkin
method. Since this is the case we do not report errors for the Galerkin method. Again,
problems to the right of the double line are ill-posed and the linear systems involved are
guaranteed to become indefinite as p increases [11].

C.W. Miller, R.S Tuminaro, E.T. Phipps and H.C. Elman 87

Fig. 5.1. PCG iterations vs grad level and vs polynomial degree for first model problem

Table 5.2
Iterations for the stochastic Galerkin method as a function of the Rys cutoff For σ = 3

c=1 2 3 4 ∞

p = 1 Iterations = 14 17 17 17 17
p = 2 16 21 24 25 28
p = 3 17 24 31 35 47
p = 4 17 26 38 51 95
p = 5 18 27 44 94 DNC
p = 6 18 28 49 DNC DNC

Tables 5.1 and 5.2 show that the iteration counts are fairly well behaved when mean-
based preconditioning is used. Fig. 5.1 illustrates iterations as a function of sigma for both
methods for fixed c = 2. In general, iterations grow as the degree of polynomial approx-
imation increases. However, the rate of this growth is also a function of the variance and
the truncation point for the random variable. In our specific example, the key aspect affect-
ing iterations is coercivity. In particular, coercivity is lost with Gaussian random variables
(i.e. Hermite polynomials) due to their unbounded nature. In the table, iteration counts
are acceptable for low order polynomial approximations where the global matrix remains
positive-definite. However, as the degree of polynomial approximation increases, the matrix
becomes indefinite and convergence suffers. The tables illustrate how iterations are generally
well-behaved when the Gaussian is truncated far from the point where coercivity is lost (and
behaves similar to the Gaussian case if not sufficiently truncated to guarantee coercivity). In
general, the number of iterations required for a single deterministic sub-problem is compara-
ble to one half the number of iterations required for the Galerkin method though this becomes
less true as the problem loses coercivity.

6. Model Validation and Comparison. In this section we compare the performance of
the two methods using both the model developed above and the implementations in Trilinos.
For our numerical examples, we consider

−∇ · [(µ + σ

M∑
k=1

λkξk fk(x))∇u] = 1 (6.1)

where

µ = .2, σ = .1, M = 3 : 5, (6.2)

88 Assessment of Collocation and Galerkin Approaches to Stochastic PDEs

{λk, fk} are the eigenpairs associated with the covariance kernel

C(x1, x2) = exp(−|x1 − x2| − |y1 − y2|). (6.3)

The KL-expansion of this kernel is investigated extensively in [7]. The ξk are chosen to be
identically independently distributed uniform random variables on [−1, 1]. Since no analytic
expression is known to exist, to measure the error for the Galerkin method the ’true’ solution
is assumed to correspond with the solution produced by a high order (p = 10) Galerkin
scheme. To measure the error for the collocation method we use the solution from a level 10
sparse grid approximation as the true solution. The error is measured by computing the mean
and variance of the approximate solutions and comparing it to the mean and variance of the
order 10 approximations. The linear solves for both methods stop when ||r||2

||r(0) ||2
< 10−12. In

measuring the time, setup costs are ignored. The times reported are non-dimensionalized by
the time required to perform a single deterministic matrix vector product and compared with
the model developed above.

Fig. 6.1 shows that the stochastic Galerkin method gives higher accuracy per stochastic
degree of freedom. This can be seen in the close vertical alignment of the data points in Fig.
6.1. The Galerkin scheme requires substantially fewer degrees of freedom. Since the degrees
of freedom in the Galerkin scheme are coupled, the cost per degree of freedom will be higher.
Fig. 6.2 shows that Galerkin still performs significantly better than the collocation method,
producing a more accurate solution in less time, and that the gap widens as the dimension
of the random variable increases. Furthermore Fig. 6.2 shows that the cost model developed
above is relatively accurate for the Galerkin method. The problem with the collocation model
is that for these low dimensional problems the assumption that 2pNξ ≈ |Θ| is not valid. We
expect the collocation data to agree with the model for high dimensional problems.

Fig. 6.1. Errors vs Stochastic DOF for M = 4

7. Conclusion. We have shown that when mean based preconditioning is used that the
stochastic Galerkin method outperforms the sparse grid collocation method for solving the
linear elliptic diffusion when the random diffusion coefficient is modeled by a KL-expansion.
We have also developed a cost model for both methods which closely mirrors the complexity
of the algorithms. We suspect that when a PC-expansion is used to model diffusion that
the matrix vector product involved in solving the Galerkin system becomes prohibitively
expensive. Currently, running numerical experiments using the PC-expansion for diffusion is
beyond our computational abilities for large values of the stochastic discretization parameters.
We plan to apply our model to these regimes in a future study.

C.W. Miller, R.S Tuminaro, E.T. Phipps and H.C. Elman 89

Fig. 6.2. Solution Time Vs. Error for M = 3 : 5.

REFERENCES

[1] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equa-
tions with random input data, SIAM Journal of Numerical Analysis, 45 (2007), pp. 1005–1034.

[2] I. Babuška, R. Tempone, and G. Zouraris, Galerkin finite element approximations of stochastic elliptic partial
differential equations, SIAM Journal of Numerical Analysis, 42 (2004), pp. 800–825.

[3] M. Deb, I. Babuška, and J. Oden, Solution of stochastic partial differential equations using galerkin finite
element techniques, Comput. Methods Appl. Mech. Engrg, 190 (2001), pp. 6359–6372.

[4] M. Eldred et al., Dakota, a multilevel parallel object-oriented framework for design optimization, parameter
estimation, uncertainty quantification, and sensitivity analysis: Version 4.0 users manual, Tech. Rep.
SAND2006-6337, Sandia National Laboratories, October 2006.

[5] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press, Oxford,
2004.

[6] R. Ghanem and M. Pellissetti, Iterative solution of systems of linear equations arising in the context of
stochastic finite elements, Advances in Engineering Software, 31 (2000), pp. 607–616.

[7] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York,
1991.

[8] M. Loève, Probability Theory, Springer-Verlag, 1978.
[9] C. Miller, H. Elman, R. Tuminaro, and E. Phipps, A comparison of the stochastic galerkin method and sparse

grid collocation method for stochastic linear partial differential equations. In Preparation.
[10] F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochastic collocation method for partial differential

equations with random input data, SIAM Journal of Numerical Analysis, 46 (2008), pp. 2309–2345.
[11] C. Powell and H. Elman, Block-diagonal preconditioning for spectral stochastic finite element systems, IMA

Journal of Numerical Analysis, 29 (2009), pp. 350–375.
[12] R. Sagar and V. Smith, On the calculation of rys polynomials and quadratures, International Journal of

Quantum Chemestry, 43 (1992), pp. 827–836.
[13] S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl.

Akad. Nauk SSSR, 148 (1963), pp. 1042–1043.
[14] N. Weiner, The homogeneous chaos, American Journal of Mathematics, 60 (1938), pp. 897–936.
[15] D. Xiu and J. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM

Journal of Scientific Computing, 27 (2005), pp. 1118–1139.

CSRI Summer Proceedings 2009 90

VISUALIZING LARGE-SCALE MULTIVARIATE DATA USING PARALLEL
COORDINATES PLOTS IN VTK AND PARAVIEW

DAVID FENG∗ AND ANDREW WILSON†

Abstract. As information visualization becomes more commonly used in conjunction with scientific visual-
ization to display complex data sets, it is important that standard visualization libraries and tools such as the Visu-
alization Toolkit (VTK) and ParaView begin to incorporate standard information visualization techniques. Parallel
coordinates plots are a standard tool for visualizing trends and clusters in multivariate data sets. This report describes
the design and implementation of VTK classes that generate parallel coordinates plots and their integration into two
ParaView plugins that separately handle large and small-scale data sets.

1. Introduction. Parallel coordinates plots are a standard information visualization tech-
nique used to highlight trends and clusters in multivariate data sets. They are often the most
powerful when linked to scientific/spatial visualizations of the same data, as samples that ex-
hibit interesting patterns in the parallel coordinates plot can then be seen in spatial context. As
interest in information visualization grows, it is important that standard visualization libraries
and applications grow to incorporate such techniques. Parallel coordinates plots were first
proposed by d’Ocagne[1] and independently re-discovered a century later by Inselberg[4].
Since then, much work has gone into improving the plot in terms of visual perception, ren-
dering efficiency, and interaction.

The standard parallel coordinates plot takes a multivariate data set and represents each
variable as an axis and each sample as a polyline that intersects each axis. For the sake of
clarity, consider an example toy data set:

height age score
Anne 60” 19 96
Betsy 51” 17 80
Frank 54” 16 78

Joe 61” 18 95
Sam 48” 15 81

Edward 45” 19 97
Vivian 55” 17 85

Each row of this table represents a sample, in this case a teenager. Each column describes
a different property, or variable, of a single teenager. In this case, each teenager has three
properties: their height, age, and score on a generic examination. Upon closer scrutiny,
it appears that taller teenagers appear to score higher on this examination. Also, younger
teenagers tend to be shorter as well. Viewed in the parallel coordinates plot shown in Figure
1.1, all of these trends pop out immediately. In this plot, each teenager is a line, and the
intersection of that line with the different variable axes indicates their height, age, and exam
score. Even more noticeable than the simple trends described above is the outlier: one of the
line refers to a teenager that is relatively short while being older than his peers. Referring
back to the table, it is clear that Edward is this outlier.

This report describes the design and implementation of parallel coordinates plot classes
in the Visualization Toolkit (VTK), one of the most widely used visualization software li-
braries, and the integration of these classes into ParaView, a large-scale data visualization tool

∗University of North Carolina at Chapel Hill, dfeng@cs.unc.edu
†Sandia National Laboratories,atwilso@sandia.gov

D. Feng and A. Wilson 91

Fig. 1.1. The parallel coordinates plot corresponding to the data shown in the example table of teenagers
above. Shorter teenagers tend to be younger and score lower. One line that bucks this trend is the shortest teenager
who also happens to be the oldest and has the highest score.

based on VTK. The ParaView integration process presented interesting design challenges due
to ParaView’s focus on large, distributed data sets.

The VTK implementation of parallel coordinates plots uses the existing view and repre-
sentation framework that drove the development of other information visualization techniques
including graph and tree visualizations. The basic premise is that a representation is responsi-
ble for taking a data set and converting it into a renderable form (points, lines, polygons, etc.)
and the view displays the representation in a render window and handles user interaction.

To integrate these classes into ParaView, special attention was paid to how to handle
extremely large data sets. A parallel coordinates plot represents each sample in a multivariate
data set as a line, which means that data sets with billions of samples require billions of lines
to be plotted. With so many primitives, interactivity is difficult if not impossible to achieve. In
addition to implementing the standard parallel coordinates plot as described above, both the
VTK classes and ParaView plugin contain a render mode that uses histogram precomputation
to draw a summary of the plots rather than every individual sample. Additionally, when
operating in a distributed environment, the ParaView plugin performs all precomputations in
parallel using VTK’s existing MPI communication classes.

2. Relationship to Scatter Plots. It is important to point out that parallel coordinates
plots are closely related to another information visualization technique: the scatter plot. Scat-
ter plots represent two variable values of a sample as Cartesian (x, y) coordinates. Therefore,
a single point in a scatter plot encodes the same amount of information as a line segment
connecting two variable axes in a parallel coordinates plot. This more compact (and ubiqui-
tous) representation does not easily translate to more than two or three variables. However,
it is often easier to think about selection other interactions with a parallel coordinates plot
in terms of its effect on the corresponding scatter plot. This will become particularly true in
Section 3.1, which discusses the mechanisms for line selection.

3. VTK Parallel Coordinates View and Representation. The majority of the par-
allel coordinates plot functionality has been implemented in two classes: vtkParallel-
CoordinatesView, based on vtkRenderView, and vtkParallelCoordinates-

92 Parallel Coordinates in VTK and ParaView

Representation, inheriting from vtkRenderedRepresentation. A custom interactor
style, vtkParallelCoordinatesInteractorStyle, catches user interactions and trans-
lates them into parallel coordinates-specific actions that are sent to the vtkParallel-
CoordinatesView for processing. As described in the introduction, the view compiles all
selection information (selection mode, selected points, etc) and sends it to the representation
class. The representation handles translating the input into renderable representations, more
specifically vtkProps. The view class displays those props in its vtkRenderWindow.
vtkParallelCoordinatesRepresentation accepts as input any vtkDataObject and

treats each contained array as a separate variable. This implies that all input arrays must have
the same length. If an array has multiple components, only the first component is used, as
treating array components as different arrays added a considerable, and potentially unneces-
sary, amount of code complexity. Support for vtkArrayData objects is functional, albeit not
ideal. Currently the representation uses the vtkArrayToTable filter to copy the first array
from the vtkArrayData object into a new table. Because vtkArrays have a completely
separate iteration mechanism from vtkAbstractArrays, this unfortunate copy greatly sim-
plifies code internally.

The representation supports curved lines instead of straight lines. To replace the line
segments connecting axes with curves, simply toggle the boolean UseCurves flag on the
representation. Internally, these curves are cubic splines with zero-derivative constraints at
the axes, as described by Moustafa and Wegman[5]. This representation preserves line in-
tersections between plot axes, although those intersections occur in locations different from
the straight line representation. Graham and Kennedy advocate more traditional cubic splines
with constant derivative constraints to make axis intersections more distinct[2], but intersec-
tions between axes and line densities are not preserved in this representation.

The representation class also takes as optional input a vtkTable whose first column
contains a vtkStringArray of axis title names. If this input is empty, axis titles are gener-
ated from the array titles of the input data. If there are still no title, an automatic set of title
are generated. Axis title can also be set manually by calling SetAxisTitles(...) on the
representation class.

To use the vtkParallelCoordinatesRepresentation, first instantiate a
vtkParallelCoordinatesView and then use the AddRepresentation(...) method.
An example of this simple functionality can be seen in the vtkSNL code repository under
vtkSNL/Examples/Cxx/ParallelCoordinates. This small applet demonstrates all of the
features of the parallel coordinates classes. To load an example data set, select File→ Load
Default Data.

The user has control over several useful properties of the parallel coordinates plot. Line
opacity and plot colors are controlled by the vtkViewTheme applied to the view and repre-
sentation. The map from view theme property to plot property is as follows:

Theme Plot

cell color line color
axis label color

cell opacity line opacity
background color background color
edge label color axis color

3.1. User Interaction. There are two interaction styles: axis manipulation and line se-
lection. In both modes, hovering the mouse near an axis results in a highlight box that displays
the axis value at the nearest point on the axis. In axis manipulation mode, the user has control

D. Feng and A. Wilson 93

Fig. 3.1. Top: a segment between two axes in a parallel coordinates plot represents the same information as a
point in a Cartesian scatter plot. Bottom: all line segments that intersect at a point between two parallel coordinates
plot axes represent a line in a Cartesian scatter plot.

over axis position, axis order, and the value range of each axis. The user can click on an axis
and drag it to a new position; when two axes get close to each other, they swap positions.
Clicking and dragging on the ends of the axes allows the user to increase or decrease the
minimum or maximum value on the axis. Line selection mode presents to the user three three
selection techniques: lasso selection, angle selection, and linear function selection.

3.1.1. Lasso Selection. To use the lasso selection mode, the user simply clicks and
drags over the plot and lines that pass near the dragged path are selected. While performing
hardware picking is efficient, it only works when all lines are being drawn. The histogram
representation mode described in Section 3.2 specifically seeks to avoid drawing all lines,
so an alternative way to think about lasso selection as a filter on the raw input data would
therefore be useful.

The connection between parallel coordinates and scatter plots can be used to produce
such a filter. First consider a single line segment drawn between two parallel coordinates
plot axes. This line segment represents a single (x,y) value pair, which in a Cartesian scatter
plot is represented as a point. Next consider a point drawn between two axes in a parallel
coordinates plot. The entire set of line segments that pass through that point make up a line
in scatter plot space. This point-line duality between parallel coordinates and scatter plots is
shown in Figure 3.1.

If the user wished to select all lines that pass near a point in the parallel coordinates plot,
any (x,y) value from the input data that exists near its corresponding Cartesian line will be
selected. Going a step further, if the user wished to select all lines that pass through a line
segment drawn in parallel coordinates, we can break that segment down into an infinite set
of points interpolating between the two endpoints. Those two endpoints have their corre-
sponding lines in scatter plot space. Interpolating between those two Cartesian lines defines

94 Parallel Coordinates in VTK and ParaView

Fig. 3.2. Top and middle: A line segment drawn in a parallel coordinates plot can be thought of as the region
defined by the interpolation between the two Cartesian lines corresponding to the line segment’s endpoints. Bottom:
multiple line segments produce a more complex region. All points that fall within the union of these Cartesian regions
are parallel coordinates lines that pass through the drawn line segments.

a bounded region, and all (x,y) pairs that fall within that region will be selected, as shown
in the top of Figure 3.2. To filter the input, one need only to check that a given (x,y) pair is
below one of the boundary lines and above the other.

We can now extend this to a more natural brushing technique that allows the user to
simply drag their mouse over the screen, selecting any values that fall under the mouse. When
the user drags their mouse over the screen, they in effect draw a series of line segments. This
set of segments produces a corresponding set of bounding regions; a value in the data is

D. Feng and A. Wilson 95

(a) Opaque Lines (b) Transparent Lines

Fig. 3.3. Left: a high density of opaque lines in a parallel coordinates plot can result in overplotting, when
the lines blend into a large nondescript block. Right: By reducing the opacity of each line in an overplotted parallel
coordinates plot, the viewer can more easily recognize regions of high density. This ability comes at the cost of
identifying outliers.

selected if it falls in the union of these regions, as shown in the bottom of Figure 3.2. The
filter test is nearly the same: if a given (x,y) point in the input is above one of the boundary
lines and below another, it gets selected. If the user’s drawn line extends over an axis, it is
necessary to create a different set of filters. Checking to see if a point is above a line is a
trivial operation, so it turns out that this selection technique is fairly efficient.

This filter has been implemented in the vtkBivariateLinearTableThreshold class.
To use this class, one specifies an input table, a pair of columns to filter in that table, and one
or more line equations. When the filter function is set to BETWEEN, it checks to see if any
points fall within the space bounded by all of the supplied linear functions.

3.1.2. Angle Selection. Angle selection is a useful interaction style proposed by Hauser
et al. [3] that allows the user to select all lines that have a similar slope between two axes in
the parallel coordinates plot. If the two axes have the same value range, this techniques
selects all points for which a sample’s value for one variable a constant value above (or
below) its value for the other variable. In Cartesian space, this corresponds to a horizontal
line (y = x + constant). If the two axes have different value ranges, the set of all parallel
coordinates lines corresponds to a sloped line in Cartesian space(y = slope ∗ x + constant).
The slope of the line is related to the ratio of the range of one axis to the other. All (x,y)
pairs that fall near this line are therefore selected. Again, this is a fairly simple test that is
implemented in the vtkBivariateLinearTableThreshold. To select table rows that fall
near one or more linear functions, simply set the filter function to NEAR.

3.1.3. Function Selection. More complex trend analysis can be done in function selec-
tion mode. When a linear trend exists between two variables, the parallel coordinates lines
all tend to intersect near a single point, which does not have to be between the two axes. This
is because a point in parallel coordinates space corresponds to a line in Cartesian space. To
select all lines that follow this trend, the user needs to draw two characteristic lines on the
parallel coordinates plot. Examples of such characteristic lines can be seen in the bottom of
Figure 3.1. Those two lines correspond correspond to two points in Cartesian space, which
then can be used to extrapolate the linear trend of interest. All (x,y) pairs that fall near this
line in Cartesian space are selected. Because of this, function selection is actually a gener-
alization of angle selection, and therefore uses the vtkBivariateLinearTableThreshold
class in exactly the same manner.

3.2. Histogram Representation. A major limitation of parallel coordinates plots is
their ability to scale to large numbers of samples. First, plots with millions or more lines

96 Parallel Coordinates in VTK and ParaView

Fig. 3.4. Four different ways of representing the same information. Left: a parallel coordinates plots. Left-
middle: a scatter plot. Right-middle: a 2D histogram with all four data points in the same bin. Right: A parallel
coordinates-based representation of the histogram.

visible tend to become overplotted as lines overlap with each other, as shown in Figure 3.3(a).
While decreasing the opacity of the lines (shown in Figure 3.3(b)) adequately addresses this
issue, it does not address the more difficult problem of render performance. Rendering each
line separately does not scale to large data sets.

Novotný and Hauser developed a conceptually simple, but powerful, approach to achiev-
ing parallel coordinates render scalability[6]. The simple insight is that decreasing line opac-
ity in overplotted parallel coordinates visualizations emphasizes regions of high line density
and de-emphasizes outliers. Rather than plotting every line repeatedly to produce this density
map, one can easily precompute a density map at a more manageable resolution.

A common statistical tool for computing such densities is the histogram. Novotný and
Hauser propose computing a 2D histogram between each adjacent pair of axes. Each bin in
the histogram represents a unique range of values for both variables. This essentially clusters
all lines within similar intersections on both axes into the same histogram bin. Each histogram
bin then gets rendered into the parallel coordinates plot as a bar with width determined by the
range of values represented by the histogram bin and opacity weighted by the bin count. The
equivalence between all of these representations is shown in Figure 3.4. An example of such
as plot is shown in Figure 3.5.

As stated previously, methods for dealing with overplotting such as decreasing line opac-
ity and computing histograms directly display regions of high line density. However, an im-
portant use of parallel coordinates is to discover outliers, as demonstrated by the toy example
in the Introduction. Novotný and Hauser show that it is possible to automatically identify
outliers using one of a number of outlier detection algorithms. The algorithm chosen for this
work uses a median filter to identify spikes in the histogram. Bins identified as spikes are
accepted as outliers if they are below an internally set threshold. This threshold is automat-
ically computed based upon the user’s preferred number of outliers. Figure 3.5 contains a
histogram-based parallel coordinates plot with outliers.

The vtkParallelCoordinatesHistogramRepresentation class computes all his-
tograms and outliers, which inherits from vtkParallelCoordinatesRepresentation.
The only significant changes are the addition of an internal histogram computation filter
(vtkPairwiseExractHistogram2D), methods for mapping the histograms to quads, and
an outlier computation filter (vtkComputeHistogram2DOutliers). The histogram compu-
tation filter takes as input a single vtkTable and computes a 2D histogram between each
adjacent column. Internally it allocates a single instance of the vtkExtractHistogram2D
filter for each column pair. The outlier computation filter takes as input a vtkTable and the
extracted histograms come in the form of a vtkMultiBlockDataSet that contains multiple
vtkImageData histogram objects. The histogram extraction filters have customizable output
dimensions (accessible through the NumberOfBins variable) and histogram extent. To cus-
tomize the extent of the histogram in either dimension, first enable UseCustomHistogram-

D. Feng and A. Wilson 97

Fig. 3.5. Drawing a large number of lines can lead to poor plot interactivity. Using a set of precomputed 2D
histograms, approximations to density plots such as those seen in Figure 3.3(b) can be generated. The transparent
line and histogram plots emphasize regions of high line density and demphasize regions of low line density. By
identifying outlier bins in the precomputed histograms, outlier lines can be drawn explicitly.

Extents and then set the CustomHistogramExtents array.
As stated previously, the user controls the output of the outlier computation filter by spec-

ifying how many outliers they wish to see (via the PreferredNumberOfOutliers internal
variable). vtkComputeHistogram2DOutliers inherits from vtkSelectionAlgorithm
and produces a vtkSelection with a single vtkSelectionNode containing an array of
outlier table row indices. Additionally, it also produces a second output that consists of a
vtkTable containing only the outliers rows from the input table.

4. ParaView Plugins. Integrating the previously described VTK classes into ParaView
exposes the technique directly to a wide base of visualization users. A client-side ParaView
plugin that passes all data to the client is the easiest way of integrating these classes. How-
ever, histogram computation is a process that lends itself well to distributed computation.
Designing this server side plugin revealed that the two plugins would require slightly differ-
ent implementation pipelines.

4.1. Client Plugin. The client-side parallel coordinates plugin is based on the Client-
GraphView plugin found in Sandia’s Titan toolkit. It makes no modifications to the underly-
ing VTK classes. In brief, a class called ClientParallelCoordinatesView is a Qt class
inheriting from pqSingleInputView that is a lightweight wrapper around vtkParallel-
CoordinatesView. As with Titan’s other client-side plugins, instantiation of this view with
a data object in ParaView prompts the view to create its own default representation of that
data. vtkParallelCoordinatesView by default creates a vtkParallelCoordinates-
HistogramRepresentation. Additionally, ClientParallelCoordinatesDisplay.ui
describes a custom Qt display panel that contains controls for the parallel coordinates view.
Following the example of other plugins, the ClientParallelCoordinatesDisplay class
connects all of the widgets in this panel to the ClientParallelCoordinatesView.

4.2. Server Plugin. The histogram-based parallel coordinates plot described in Section
3.2 lends itself well to distributed computation. However, the vtkParallelCoordinates-
HistogramRepresentation class required some modifications to do so. The original VTK
class handles histogram and outlier computation internally, thus simplifying usage for the
casual user. To migrate this class to the ParaView client/server architecture, all components
that touch the original data must be extracted and placed on data server. Once computation is

98 Parallel Coordinates in VTK and ParaView

Fig. 4.1. The pipeline for the client/server parallel coordinates histogram view plugin. Histograms and outliers
are identifies on the server, then passed to the representation and view stored on the client.

complete, the results of those operations can then be sent to the client. Figure 4.1 depicts the
basic client-server pipeline used for the distributed representation.

The first step in this process is to parallelize all of the filters used in the client-side repre-
sentation. The vtkPExtractHistogram2D filter wraps the serial vtkExtractHistogram2D
by having all nodes compute local histograms and then performing a reduction to compute the
total histogram. vtkPPairwiseExtractHistogram2D uses vtkPExtractHistogram2D
filters internally rather that vtkExtractHistogram2D filters. Outlier computation requires
the complete histogram, so the parallel histogram extraction class distributes the reduced his-
togram to all of the nodes.

Every node then identifies outlier bins individually (all reaching the same results) and
extracts the input subset that falls within outlier bins. vtkPComputeHistogram2DOutliers
combines all of the outlier data into a single array that resides on the root node. This data
collection process also is required by the class responsible for filtering the input data dur-
ing selection. vtkPBivariateLinearTableThreshold is responsible for accumulating all
selected rows on the root node.

The parallel classes are contained in vtkSMParallelCoordinatesHistogram-
RepresentationProxy. This class places each filter on the server and connects them to
vtkClientServerMoveData proxies responsible for delivering their output from the root
node to the client. The delivered results are piped from the root node into the client-side
vtkPVParallelCoordinatesHistogramRepresentation. The “PV” version of the class
differs from vtkParallelCoordinatesHistogramRepresentation in that it does not
contain histogram or outlier filters and does not touch the source data.

5. Future Work. The histogram-based outlier detection filter currently does not always
produce expected results. For example, changing the number of histogram bins by small
increments causes some outliers to disappear and reappear seemingly at random. A more
robust outlier filter would be useful. The median filter-based algorithm is based on one of the
options proposed by Novotný and Hauser, however they also advocate the use of histogram
clustering as a means of detecting both value clusters and outliers. Such complex techniques
will likely lead to more robust outliers at the cost of user-interactivity.

D. Feng and A. Wilson 99

It is often useful to link scatter plots to parallel coordinates plots during visual analysis.
Scatter plot classes were recently added to the ParaView development trunk, so work into
linking these two visualization techniques within ParaView would be useful. Additionally,
scatter plots are currently only available within ParaView; writing VTK versions of these
classes would be extremely beneficial to the visualization developer community.

The parallel coordinates plots discussed so far all assume certain data values. Uncertainty
visualization has recently become an active research area, and some research has already
begun into incorporating uncertainty into both parallel coordinates and scatter plots. The now
existing implementations of such plots will serve as useful starting points for the development
of new, uncertainty-aware visualization techniques.

6. Acknowledgments. I would like to thank all of the members of organization 1424
in Sandia and the staff at Kitware, Inc. for their support during the development of this
software. Timothy Shead and Kenneth Moreland in particular provided invaluable guidance
into the Titan and ParaView architectures. Finally, thanks go to Andrew Wilson, my mentor
and officemate for the summer, and David Rogers for giving me the opportunity to work in
such a positive, productive environment.

REFERENCES

[1] M. d’Ocagne, Coordonnées Parallèles et Axiales: Méthode de transformation géométrique et procédé nouveau
de calcul graphique déduits de la considration des coordonnées parallèles, Paris: Gauthier-Villars, 1885.

[2] M. Graham and J. B. Kennedy, Using curves to enhance parallel coordinate visualisations, in IV, 2003, pp. 10–
16.

[3] H. Hauser, F. Ledermann, and H. Doleisch, Angular brushing of extended parallel coordinates, in in: Proceed-
ings of IEEE Symposium on Information Visualization, IEEE Computer Society Press, 2002, pp. 127–130.

[4] A. Inselberg, The plane with parallel coordinates, The Visual Computer, V1 (1985), pp. 69–91.
[5] R. Moustafa and E. Wegman, Springer New York, ch. Multivariate Continuous Data: Parallel Coordinates.
[6] M. Novotny and H. Hauser, Outlier-preserving focus+context visualization in parallel coordinates, IEEE

Transactions on Visualization and Computer Graphics, 12 (2006), pp. 893–900.

CSRI Summer Proceedings 2009 100

GLOBAL SENSITIVITY ANALYSIS FOR STOCHASTIC COLLOCATION
EXPANSION

GARY TANG∗, M.S. ELDRED†, AND LAURA P. SWILER‡

Abstract. Non-intrusive stochastic expansion methods for uncertainty quantication (UQ) has received a great
deal of attention the past decade because of their rigorous mathematical foundations and their ability to efficiently
accurately characterize the probablilistic metrics of complex engineering systems. Furthermore, their formulations
are especially amenable to variance-based global sensitivity analysis, and in this paper, we describe a novel method
to obtain variance-based sensitivity information as a post-processing procedure to the construction of these stochastic
expansion models.

1. Introduction. Modern analysis and design of engineering systems are typically per-
formed with the use of large-scale computer simulations. As a part of understanding model
behavior, the ability to characterize relationships between the inputs (whose values are often
uncertain) and the output is important. Because of model complexity and implementation
nuance this relationship, commonly known as output sensitivity or simply sensitivity, is often
obscured. The goal of sensitivity analysis is precisely to identify the most significant factors
or variables affecting the model predictions or results. This is not to be confused with uncer-
tainty analysis, which is to quantify the uncertainty in model results due to the uncertainty in
the inputs; for sensitivitiy analysis, inputs need not be uncertain. The greatest barrier to con-
ducting either of these analyses is the computational cost to run the simulations. In fact, the
popularity of stochastic expansion methods can be attributed almost entirely to their ability to
accurately quantify system uncertainty with much fewer function evaluations than traditional
sampling methods. Following variance-based approaches to global sensitivity analysis, we
present an effective strategy for computing input sensitivities that does not require additional
function evaluations beyond those needed to construct the stochastic expansion. In this paper,
we focus on the stochastic collocation (SC) class of expansion models.

The remaining sections of this paper outline the basics of variance-based sensitivity anal-
ysis and stochastic collocation followed by the specific formulation of sensitivity indices for
a stochastic collocation representation. In particular, Section 2 presents the notation and for-
mulation used for variance-based decomposition and definitions for the sensitivity metrics.
Section 3 discusses the fundamentals of SC for uncertainty quantification (UQ) and includes
a detailed derivation for the sensitivity metrics within the machinery of SC. Finally, Section
4 provides results for a variety of response functions which compare this paper’s formula-
tion with analogous work in polynomial chaos expansion [1] and Latin Hypercube sampling.
Section 5 concludes with some suggestions for future work that can further couple the rela-
tionship between SA and UQ.

2. Variance-Based Sensitivity Analysis. Traditional sensitivity analysis examines the
local influence of a parameter x j to a response Y(x) by its partial derivative at a single point
in the parameter space. Alternatively, global sensitivity analysis (GSA) captures the effect of
a parameter by measuring some aggregate contribution over the entire space. Using variance
as an indicator for importance is not new and can be shown to underlie the regression based
methods[2, 3, 7] for sensitivity analysis. This section begins with some general concepts
to variance-based GSA and concludes with the definitions for sensitivity as defined in the
method of Sobol’. For details on other variance based methods, the authors refer readers to

∗Aeronautics and Astronautics, Stanford University, garytang@stanford.edu
†Principal Member of Technical Staff, Sandia National Laboratories, mseldre@sandia.gov
‡Principal Member of Technical Staff, Sandia National Laboratories, lpswile@sandia.gov

Gary Tang, Laura Swiler, and M.S. Eldred 101

the literature.[8]

2.1. Notation. Here, we introduce some notation that will be used in the rest of the
paper. Let u be a multi-index such that u ⊆ U, where U = {1, 2, . . . , d}. Let us also define
xu = {xi | ∀i ∈ u} as the set of variables whose indices lies in u, and f̂u to be a basis function
that depends only on xu. Furthermore, let u′ be the complement of u and defined such that
{u

⋃
u′} = U and {u

⋂
u′} = ∅. Finally, define the collection of all u to be the power set

F = P(U).

2.2. ANOVA Decomposition. Consider a square-integrable function f (x) : Ω 7→ R,
where x = (x1, x2, . . . xd) may include both non-probabilistic variables and probabilistic vari-
ables, is decomposed in the form:

f (x) =
∑
F

f̂u(xu) (2.1)

The decomposition is of analysis-of-variance (ANOVA) type if it satisfies the following prop-
erties: ∗

∫
f̂u(xu)dµ(xu) = 0 for u , ∅ (2.2)∫

f̂u(xu) f̂v(xv)dµ(x) = 0 for u , v (2.3)

Var[f] =
∑

u∈F,∅

Var[f̂u] (2.4)

It is simple to show that these properties are satisfied when the basis function f̂u is defined as

f̂u =


∫

f (x)dµ(xu′) −
∑
w⊂u

f̂w(xw) for u , ∅∫
f (x)dµ(x) for u = ∅

(2.5)

2.3. Global Sensitivity Analysis via Method of Sobol’. In GSA, the general approach
to measuring the importance of a parameter xi is to compare its variance of the conditional
expectation, VarXi [E(Y | xi)], against the total variance, Var[Y]. Sobol’ [12] generalized this
idea to the ANOVA decomposition, which allows one to measure the importance of xu via the
variance of f̂u; namely, its contribution to the total variance of f . These sensitivity measures,
collectively known as Sobol’ indices, are called main effect indices S u and total effect indices
S Tu respectively defined to be:

S u =
Du

D
(2.6)

S Tu =
∑

{v∈F | u⊆v}

Dv

D
(2.7)

∗let dµ(x) be a normalized Lebesgue measure for non-probabilistic variables

102 GSA for Stochastic Collocation Expansion

where

D = Var[f] (2.8)

Du,∅ = Var[f̂u]

=

∫
f̂ 2
u dµ(xu) −

(∫
f̂udµ(xu)

)2

=

∫
f̂ 2
u dµ(xu) (2.9)

Using the orthogonality property of the ANOVA decomposition in Equation 2.3 we can show
that the partial variance Du simplifies to

Du =

∫ (∫
f (x)dµ(xu′)

)2

dµ(xu) −
∑
w⊂u

∫ (
f̂w(xw)

)2
dµ(xu) (2.10)

where the details can be found in Appendix 7.1.

These indices have very intuitive interpretations. S u measures the main effect of xu by eval-
uating the variance contribution of the basis function f̂u that depends strictly on the set of
variables in xu. Similarly, S Tu measures the total effect of xu by evaluating the variance
contribution of all basis functions f̂v whose dependencies include xu. In practice, we are typ-
ically concerned only with the total effect of sets u which have a cardinality of one, and thus,
henceforth we will denote the total effect to be S T j for j = 1, 2, . . . , d.

3. Stochastic Collocation Expansion. The stochastic collocation (SC) method is an at-
tractive technique for uncertainty quantification (UQ) due to its strong mathematical basis and
ability to produce functional representations of stochastic variability. Moreover, because the
probability space is merely an extension of the existing parameter space, SC has the flexibil-
ity to expand over non-probabilistic variables as well.[15] SC forms interpolation functions
by evaluating the model at prescribed collocation point sets derived from tensor product or
sparse grids. More specifically, the SC expansion is formed as a weighted tensor product of
one-dimensional Lagrange polynomials lij. Because lij has the feature of being equal to 1 at its
particular collocation point j and 0 at all other points, the coefficients, or weights, of the ex-
pansion are just the corresponding response values f (xi

j). For d variables and mik collocation
points in dimension ik the multi-dimensional expansion can be written as:

f (x) ≈
mi1∑
j1=1

· · ·

mid∑
jd=1

f (xi1
j1
, . . . , xid

jd
)(li1j1 ⊗ · · · ⊗ lidjd) (3.1)

The key to maximizing performance with this approach is to use the appropriate abscissas
defined by Gauss quadrature rules. Greater theoretical detail on this topic can be found in
the literature [9, 10] so we only present the most salient result relevant to this paper: the
weighted integral of a polynomial of up to order 2n − 1 can be computed exactly using an n
term summation when the abscissas are appropriately chosen. More accurately, the abscissas
are chosen to the n zeros {ξi}

n
i=1 of the nth order polynomial ψp

n belonging to the family of
polynomials {ψp

i }
∞
i=0 that are optimal for a given weight function p(x).∫

g(x)p(x)dx =

n∑
i=1

wig(ξi), g ∈ Pm, m ≤ 2n − 1 (3.2)

ψ
p
n (ξi) = 0, i = 1, 2, . . . n (3.3)

Gary Tang, Laura Swiler, and M.S. Eldred 103

Following these rules, it can be shown [11] that the stochastic expansion converges exponen-
tially in L2. Once the optimal polynomial basis is determined, the set of (mik − 1)th order,
one-dimensional Lagrange polynomials can be constructed by the expression

likjk (xik) =

mik−1∏
s=1, jk

xik − ξik
s

ξik
jk
− ξik

s
, j = 1, 2, . . . ,mik (3.4)

where ξik represents the mik zeros of the ψ
pik
mik

. Finally, Equation 3.1 is obtained by taking the
tensor product over each dimension ik = 1, 2, . . . , d. Note that the analytic moments (e.g.
mean and variance) and the sensitivity indices can be computed without actually constructing
these interpolants.

3.1. Computing the Sobol’ Indices. We assume that a set of abscissa and related func-
tion evaluations have been performed. The most critical part of computing the Sobol’ indices
is evaluating the nested integral in Equation 2.10. Let’s first evaluate the inner integral with
our interpolatory representation of f .

∫
f (x)dµ(xu′) =

∫ mi1∑
j1=1

· · ·

mid∑
jd=1

f (xi1
j1
, . . . , xid

jd
)(li1j1 ⊗ · · · ⊗ lidjd)dµ(xu′) (3.5)

For notational consistency, let’s separate those interpolants that are dependent on xu from
those that are dependent on xu′ and integrate over xu′ using Gauss quadrature rules. Consider
some u ∈ F with cardinality k∫

f (x)dµ(xu′) =

mi1∑
j1=1

· · ·

mid∑
jd=1

f (xi1
j1
, . . . , xid

jd
)
∫

(lu
′

⊗ lu)dµ(xu′)

=

mi1∑
j1=1

· · ·

mid∑
jd=1

f (xi1
j1
, . . . , xid

jd
)(wu′ ⊗ lu) (3.6)

where

u = {u1, . . . , uk} (3.7)

wu = w
iu1
ju1
⊗ · · · ⊗ w

iuk
juk

(3.8)

lu = l
iu1
ju1
⊗ · · · ⊗ l

iuk
juk

(3.9)

We can simplify the form of Equation 3.6 by combining the tensor product of weights wu′

with the coefficients f (xi1
j1
, . . . , xid

jd
) to form new weighted coefficients h(x

iu1
ju1
, . . . , x

iuk
juk

).

mi1∑
j1=1

· · ·

mid∑
jd=1

f (xi1
j1
, . . . , xid

jd
)(wu′ ⊗ lu) =

miu1∑
ju1 =1

· · ·

miuk∑
juk =1


miu′1∑
ju′1

=1

· · ·

miu′d−k∑
ju′d−k

=1

f (xi1
j1
, . . . , xid

jd
)wu′

 (lu)

=

miu1∑
ju1 =1

· · ·

miuk∑
juk =1

h(x
iu1
ju1
, . . . , x

iuk
juk

)(lu) (3.10)

Now, let us evaluate the outer integral. Following the aforementioned result from Gauss
quadrature that states an mik term summation can exactly integrate any univariate polyno-
mial of degree less than 2mik , we can exactly integrate the square of Equation 3.10 since

104 GSA for Stochastic Collocation Expansion

its highest order univariate polynomial is of degree 2(mik − 1). Furthermore, if we note the
one-dimensional Lagrangian interpolants, lij, to have the property

lqr (xq
p) · lqs(xq

p) =

{
1 p = s = r
0 otherwise (3.11)

the outer integral can be simplified to

∫ 
miu1∑
ju1 =1

· · ·

miuk∑
juk =1

h(x
iu1
ju1
, . . . , x

iuk
juk

)(lu)


2

dµ(xu) =

miu1∑
ju1 =1

· · ·

miuk∑
juk =1

h2(x
iu1
ju1
, . . . , x

iuk
juk

) ⊗ wu (3.12)

and when substituted back into Equation 2.10 we obtain the final result

Du =

miu1∑
ju1 =1

· · ·

miuk∑
juk =1

h2(x
iu1
ju1
, . . . , x

iuk
juk

) ⊗ wu −
∑
w⊂u

Dw (3.13)

Clearly, the evaluation of Du is simply a recursive computation of Equation 3.12. To mini-
mize computational effort, it is recommended to solve for the partial variances of u in order
of increasing cardinality. The total effect indices S T j can be trivially computed by summing
over the corresponding main effect indices S u.

This result shows that Du, and by virtue S u, can be evaluated without any additional function
evaluations or the need to solve for additional weights/abscissas. Moreover, this methodol-
ogy extends to sparse grids, which are merely linear combinations of tensor product grids,
provided that the abscissas of the tensor product grids follow Gauss quadrature rules.

4. Implementation and Results. The analytic expressions for sensitivity presented in
this paper were implemented and verified in Sandia National Labs’ software framework
DAKOTA (Design and Analysis Toolkit for Terascale Applications)[13], and the source code
can be obtained from the version of the day release.

A series of tests were conducted to compare the method in this paper with existing ap-
proaches for GSA. For the first four tests, the test functions were chosen to be simple poly-
nomials whose sensitivities could be obtained analytically. The remaining three functions are
common for testing sensitivity methods.[7] For each test, we compare the performance of our
approach to traditional Latin Hypercube sampling (LHS) and to an analogous implementation
for generalized polynomial chaos expansion[1] (PCE) on a variety of tensor (tr[order]) and
sparse (sp[level]) grids.

The results show that GSA via stochastic expansion methods dramatically outperforms
LHS and highlights the excellent convergence rates when the functions are of sufficient regu-
larity. While this trend is unlikely to extend to higher dimensional problems where expansion
methods suffer from the curse of dimensionality, this problem may be mitigated with the use
of anisotropic grids.[15] For nearly all the cases, we see identical results for PCE and SC
when the abscissas are chosen from tensor grids, which is consistent with their behavior in
computing analytic moments.[14] The exception can be found in Table 7 but this is likely a
consequence of computational roundoff as opposed to solution disagreement. A related con-
sequence is the possibility of negative sensitivity indices; the specific formulation to the PCE
approach does not require subtraction and eliminates the possibility of castastrophic cancella-
tion. As mentioned in Section 3.1, the evaluation of the Sobol’ Indices are exact with respect
to the SC representation presented in this paper; therefore, the accuracy and convergence
behavior of the stochastic expansion models are transferred, without loss, to the sensitivity

Gary Tang, Laura Swiler, and M.S. Eldred 105

Table 4.1
Sobol’ Indices for Rosenbrock function f = 100(x2 − x2

1)2 + (1 − x1)2

Approach Func Eval Grid Type S 1 S 2 S T1 S T2
LHS 400 - 4.06127e-01 3.72295e-01 5.83464e-01 8.63159e-01
LHS 2000 - 2.84753e-01 3.72392e-01 6.24346e-01 7.86900e-01
LHS 4000 - 1.37274e-01 3.12069e-01 7.15033e-01 8.58973e-01
LHS 20000 - 1.73756e-01 2.82603e-01 7.09529e-01 8.58973e-01
LHS 40000 - 1.53909e-01 3.03002e-01 7.02275e-01 8.34521e-01
LHS 200000 - 1.47978e-01 2.79160e-01 7.21528e-01 8.46659e-01
PCE 4 tr2 2.09627e-01 1.97593e-01 8.02407e-01 7.90373e-01
PCE 9 tr3 1.20599e-01 2.93134e-01 7.06866e-01 8.79401e-01
PCE 25 tr5 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01
PCE 36 tr6 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01
PCE 13 sp2 2.84129e-01 7.15871e-01 2.84129e-01 7.15871e-01
PCE 65 sp4 1.52832e-01 2.82389e-01 7.17611e-01 8.47168e-01
PCE 321 sp6 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01
PCE 1537 sp8 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01
SC 4 tr2 2.09627e-01 1.97593e-01 8.02407e-01 7.90373e-01
SC 9 tr3 1.20599e-01 2.93134e-01 7.06866e-01 8.79401e-01
SC 25 tr5 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01
SC 36 tr6 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01
SC 13 sp2 1.54653e-01 2.90070e-01 7.09930e-01 8.45347e-01
SC 65 sp4 1.53198e-01 2.82267e-01 7.17733e-01 8.47802e-01
SC 321 sp6 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01
SC 1537 sp8 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01

TRUE - - 1.53198e-01 2.82267e-01 7.17733e-01 8.46802e-01

Table 4.2
Sobol’ Indices for f = (x1 − 1)4 + (x2 − 1)4

Approach Func Eval Grid Type S 1 S 2 S T1 S T2
LHS 400 - 4.64092e-01 5.41070e-01 5.41070e-01 4.95429e-01
LHS 2000 - 4.76199e-01 5.24702e-01 5.24412e-01 5.04126e-01
LHS 4000 - 4.87648e-01 5.12858e-01 4.91029e-01 5.12199e-01
LHS 20000 - 5.02428e-01 4.97679e-01 5.09053e-01 5.02952e-01
LHS 40000 - 4.89737e-01 5.10320e-01 4.93644e-01 4.91893e-01
LHS 200000 - 4.95960e-01 5.04051e-01 4.99884e-01 4.97408e-01
PCE 4 tr2 5.00000e-01 5.00000e-01 5.00000e-01 5.00000e-01
PCE 9 tr4 5.00000e-01 5.00000e-01 5.00000e-01 5.00000e-01
PCE 25 tr6 5.00000e-01 5.00000e-01 5.00000e-01 5.00000e-01
PCE 36 tr8 5.00000e-01 5.00000e-01 5.00000e-01 5.00000e-01
PCE 17 sp2 4.95299e-01 4.95299e-01 5.04701e-01 5.04701e-01
PCE 97 sp4 4.99964e-01 4.99964e-01 5.00036e-01 5.00036e-01
PCE 305 sp6 4.99964e-01 2.82267e-01 5.00036e-01 5.00036e-01
PCE 705 sp8 4.99985e-01 4.99985e-01 5.00015e-01 5.00015e-01
SC 4 tr2 5.00000e-01 5.00000e-01 5.00000e-01 5.00000e-01
SC 9 tr4 5.00000e-01 5.00000e-01 5.00000e-01 5.00000e-01
SC 25 tr6 5.00000e-01 5.00000e-01 5.00000e-01 5.00000e-01
SC 36 tr8 5.00000e-01 5.00000e-01 5.00000e-01 5.00000e-01
SC 17 sp2 5.28463e-01 5.28463e-01 4.81537e-01 4.81537e-01
SC 97 sp4 4.98911e-01 4.98911e-01 5.01089e-01 5.01089e-01
SC 305 sp6 5.00132e-01 5.00132e-01 4.99868e-01 4.99868e-01
SC 705 sp8 4.99987e-01 4.99987e-01 5.00013e-01 5.00013e-01

TRUE - - 5.00000e-01 5.00000e-01 5.00000e-01 5.0000e-01

analysis. It follows that performing GSA, like solving for mean or variance, will converge at
a reduced rate for non-smooth functions in L2. An example of reduced performance can be
seen in Table 4.7 for the non-smooth Sobol’ g-Function.

5. Conclusions. This paper presented a computationally effective approach to global
sensitivity analysis on stochastic collocation models. Retaining the high levels of accuracy
and exponential rates of convergence that have made stochastic expansion methods preferred
over their counterparts, this approach allows sensitivity indices to be computed as a simple
post-processing procedure to the construction of the expansion. Furthermore, inexpensive

106 GSA for Stochastic Collocation Expansion

Table 4.3
Sobol’ Indices for f = x2

1 −
x2
2

Approach Func Eval Grid Type S 1 S 2 S T1 S T2
LHS 400 - 8.11961e-01 1.88291e-01 8.21556e-01 1.73615e-01
LHS 2000 - 8.21845e-01 1.78386e-01 8.24890e-01 1.84108e-01
LHS 4000 - 8.05006e-01 1.95046e-01 7.98831e-01 1.99964e-01
LHS 20000 - 8.16281e-01 1.83728e-01 8.01936e-01 1.90491e-01
LHS 40000 - 8.09067e-01 1.90941e-01 8.11791e-01 1.86326e-01
LHS 200000 - 8.10709e-01 1.89293e-01 8.09960e-01 1.87076e-01
LHS 400000 - 8.09877e-01 1.90123e-01 8.09727e-01 1.91407e-01
PCE 4 tr2 8.00000e-01 2.00000e-01 8.00000e-01 2.00000e-01
PCE 16 tr4 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
PCE 36 tr6 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
PCE 64 tr8 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
PCE 13 sp2 8.00000e-01 2.00000e-01 8.00000e-01 2.00000e-01
PCE 65 sp4 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
PCE 321 sp6 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
PCE 1537 sp8 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
SC 4 tr2 8.00000e-01 2.00000e-01 8.00000e-01 2.00000e-01
SC 16 tr4 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
SC 36 tr6 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
SC 64 tr8 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
SC 13 sp2 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
SC 65 sp4 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
SC 321 sp6 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01
SC 1537 sp8 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01

TRUE - - 8.10127e-01 1.89873e-01 8.10127e-01 1.89873e-01

Table 4.4
Sobol’ Indices for f = x2

2 −
x1
2

Approach Func Eval Grid Type S 1 S 2 S T1 S T2
LHS 400 - 1.67513e-01 8.33176e-01 1.61058e-01 8.13480e-01
LHS 2000 - 1.79156e-01 8.21072e-01 1.91097e-01 8.34315e-01
LHS 4000 - 1.77226e-01 8.22785e-01 1.82247e-01 8.31742e-01
LHS 20000 - 1.98623e-01 8.01388e-01 1.89664e-01 8.11840e-01
LHS 40000 - 1.82394e-01 8.17612e-01 1.82364e-01 8.14272e-01
LHS 200000 - 1.88671e-01 8.11330e-01 1.87260e-01 8.08251e-01
LHS 400000 - 1.91731e-01 8.08270e-01 1.91781e-01 8.11015e-01
PCE 4 tr2 2.00000e-01 8.00000e-01 2.00000e-01 8.00000e-01
PCE 16 tr4 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
PCE 36 tr6 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
PCE 64 tr8 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
PCE 13 sp2 2.00000e-01 8.00000e-01 2.00000e-01 8.00000e-01
PCE 65 sp4 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
PCE 321 sp6 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
PCE 1537 sp8 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
SC 4 tr2 2.00000e-01 8.00000e-01 2.00000e-01 8.00000e-01
SC 16 tr4 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
SC 36 tr6 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
SC 64 tr8 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
SC 13 sp2 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
SC 65 sp4 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
SC 321 sp6 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01
SC 1537 sp8 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01

TRUE - - 1.89873e-01 8.10127e-01 1.89873e-01 8.10127e-01

availability of this information presents an attrative route to adaptive grid refinement, helping
to ameliorate the curse of dimensionality and subequently improving the efficacy of stochastic
expansions methods.

6. Acknowledgments. We would like to thank Sandia National Laboratories for their
generous financial support.

7. Appendix.

Gary Tang, Laura Swiler, and M.S. Eldred 107

Table 4.5
Sobol’ Indices for f =

(x2+0.5)4

(x1+0.5)2

Approach Func Eval Grid Type S 1 S 2 S T1 S T2
LHS 400 - 6.22785e-01 6.56084e-01 2.07789e-01 9.07812e-01
LHS 2000 - 3.29550e-01 5.28888e-01 4.88533e-01 7.41134e-01
LHS 4000 - 2.45757e-01 5.12369e-01 5.00761e-01 8.04966e-01
LHS 20000 - 2.65514e-01 4.98655e-01 5.14580e-01 7.86911e-01
LHS 40000 - 2.78471e-01 5.25235e-01 4.61501e-01 7.41430e-01
LHS 200000 - 2.64119e-01 5.19057e-01 4.87495e-01 7.40763e-01
PCE 4 tr2 2.43001e-00 5.89552e-01 4.10448e-01 7.56999e-01
PCE 9 tr3 2.52312e-01 5.30029e-01 4.69971e-01 7.47688e-01
PCE 25 tr5 2.61703e-01 5.11375e-01 4.88625e-01 7.38296e-01
PCE 36 tr6 2.61888e-01 5.11029e-01 4.88971e-01 7.38111e-01
PCE 13 sp2 3.29508e-01 6.70492e-01 3.29508e-01 6.70492e-01
PCE 65 sp4 2.63513e-01 5.15699e-01 4.84301e-01 7.36487e-01
PCE 321 sp6 2.61916e-01 5.10990e-01 4.89010e-01 7.38084e-01
PCE 1537 sp8 2.61914e-01 5.10983e-01 4.89017e-01 7.38086e-01
SC 4 tr2 2.43001e-00 5.89552e-16 4.10448e-01 7.56999e-01
SC 9 tr3 2.52312e-01 5.30029e-01 4.69971e-01 7.47688e-01
SC 25 tr5 2.61703e-01 5.11375e-01 4.88625e-01 7.38296e-01
SC 36 tr6 2.61888e-01 5.11029e-01 4.88971e-01 7.38111e-01
SC 13 sp2 2.48662e-01 4.28701e-01 5.71299e-01 7.51338e-01
SC 65 sp4 2.61310e-01 5.10192e-01 4.89808e-01 7.38690e-01
SC 321 sp6 2.61914e-01 5.10983e-01 4.89017e-01 7.38086e-01
SC 1537 sp8 2.61914e-01 5.10983e-01 4.89017e-01 7.38086e-01

Table 4.6
Sobol’ Indices for the Ishigami Function f = sin(2πx1 − π) + 7 sin2(2πx2 − π) + 0.1(2πx3 − π)4 sin(2πx1 − π)

Approach Func Eval Grid Type S 1 S 2 S 3 S T1 S T2 S T3
LHS 5000 - 2.88446e-01 4.42871e-01 5.52915e-03 5.93029e-01 4.00977e-01 2.32240e-01
LHS 25000 - 3.05843e-01 4.37050e-01 -1.87194e-02 5.66739e-01 4.30240e-01 2.48935e-01
LHS 50000 - 3.28016e-01 4.34040e-01 -8.27517e-03 5.61866e-01 4.45603e-01 2.41798e-01
LHS 250000 - 3.15380e-01 4.42334e-01 5.15642e-03 5.55366e-01 4.43332e-01 2.46431e-01
LHS 500000 - 3.14020e-01 4.42135e-01 -9.13024e-04 5.60501e-01 4.33634e-01 2.36443e-01
PCE 8 tr2 1.00000e-00 3.62082e-32 3.62082e-32 1.00000e-00 7.01534e-32 2.12723e-31
PCE 27 tr3 4.15063e-01 4.39941e-01 2.69333e-32 5.60059e-01 4.39941e-01 1.44995e-01
PCE 64 tr4 3.99679e-01 3.15380e-01 2.17138e-32 6.84620e-01 3.15380e-01 2.84941e-01
PCE 216 tr6 4.05169e-01 2.80300e-01 1.56108e-30 7.19700e-01 2.80300e-01 3.14531e-01
PCE 25 sp2 1.00000e-00 1.36887e-31 0.00000e-00 1.00000e-00 1.36887e-31 0.00000e-00
PCE 177 sp4 6.71159e-01 4.44492e-02 1.83743e-07 9.55551e-01 9.59348e-02 2.32906e-01
PCE 1073 sp6 3.69705e-01 3.54341e-01 3.14446e-19 6.45659e-01 3.54790e-01 2.75516e-01
PCE 6017 sp8 3.16646e-01 4.37727e-01 1.91006e-31 5.62273e-01 4.37727e-01 2.45627e-01
PCE 32001 sp10 3.13906e-01 4.42411e-01 2.04501e-30 5.57589e-01 4.42411e-01 2.43684e-01
SC 8 tr2 1.00000e-00 0.00000e-00 -1.73938e-15 1.00000e-00 0.00000e-00 1.73938e-15
SC 27 tr3 4.15063e-01 4.39941e-01 9.02345e-17 5.60059e-01 4.39941e-01 1.44995e-01
SC 64 tr4 3.99679e-01 3.15380e-01 -4.35361e-16 6.84620e-01 3.15380e-01 2.84941e-01
SC 216 tr6 4.05169e-01 2.80300e-01 1.65375e-16 7.19700e-01 2.80300e-01 3.14531e-01
SC 25 sp2 6.46098e-02 9.35390e-01 0.00000e-00 6.46098e-02 9.35390e-01 0.00000e-00
SC 177 sp4 3.38208e-01 3.53492e-01 -5.12588e-16 6.46508e-01 3.53492e-01 3.08299e-01
SC 1073 sp6 3.13909e-01 4.42416e-01 1.53970e-15 5.57584e-01 4.42416e-01 2.43675e-01
SC 6017 sp8 3.13905e-01 4.42411e-01 -1.41137e-15 5.57589e-01 4.42411e-01 2.43684e-01
SC 32001 sp10 3.13905e-01 4.42411e-01 1.59101e-14 5.57589e-01 4.42411e-01 2.43684e-01

7.1. Derivation for Result in Equation 2.10. Firstly, expand the square of the integrand

f̂ 2
u =

∫ f (x)dµ(xu′) −
∑
w⊂u

f̂w(xw)

2

=

∫ ∑
f̂udµ(x′u) −

∑
w⊂u

f̂w(xw)

2

=

(∫ ∑
f̂udµ(x′u)

)2

− 2
∫ ∑

f̂udµ(x′u)
∑
w⊂u

f̂w(xw) +

∑
w⊂u

f̂w(xw)

2

108 GSA for Stochastic Collocation Expansion

Table 4.7

Sobol’ Indices for the Sobol’ g-Function f = 2
5∏

j=1

|4x j − 2| + a j

1 + a j
; a = [0, 1, 2, 4, 8]

Approach Func Eval Grid Type S 1 S 2 S 3 S 4 S 5
LHS 7000 - 5.91333e-01 1.47510e-01 6.75943e-02 3.35949e-02 -3.03280e-03
LHS 35000 - 6.12067e-01 1.59304e-01 6.93052e-02 3.49980e-02 5.59985e-03
LHS 70000 - 6.41981e-01 1.47865e-01 8.06888e-02 2.24580e-02 1.00360e-02
LHS 350000 - 6.35479e-01 1.60470e-01 6.89460e-02 2.34116e-02 7.40881e-03
LHS 700000 - 6.33740e-01 1.61268e-01 7.06319e-02 2.69095e-02 7.70250e-03
PCE 32 tr2 0.00000e-00 0.00000e-00 6.45161e-02 5.80645e-01 6.45161e-02
PCE 243 tr3 5.99272e-01 1.28220e-01 5.42446e-02 1.87888e-02 5.65402e-03
PCE 1024 tr4 6.46390e-01 1.68398e-01 7.58935e-02 2.76298e-02 8.59202e-03
PCE 3125 tr5 6.21874e-01 1.46776e-01 6.40180e-02 2.27051e-02 6.93877e-03
PCE 7776 tr6 6.40868e-01 1.63388e-01 7.30962e-02 2.64539e-02 8.19362e-03
PCE 16807 tr7 6.28497e-01 1.52461e-01 6.70901e-02 2.39619e-02 7.35684e-03
PCE 32678 tr8 6.38803e-01 1.61536e-01 7.20691e-02 2.60245e-02 8.04870e-03
PCE 61 sp2 1.00000e-00 0.00000e-00 0.00000e-00 0.00000e-00 0.00000e-00
PCE 801 sp4 8.09099e-01 1.47072e-01 3.03062e-02 3.10093e-06 1.35196e-02
PCE 6993 sp6 5.90683e-01 1.42680e-01 6.88667e-02 4.81179e-02 5.71842e-02
PCE 51713 sp8 6.33501e-01 1.56378e-01 6.71917e-02 2.25731e-02 7.56251e-03
PCE 135073 sp9 6.38484e-01 1.58953e-01 6.96320e-02 2.40071e-02 6.87157e-03
PCE 345665 sp10 6.35135e-01 1.58349e-01 6.99588e-02 2.49043e-02 7.84157e-03
SC 32 tr2 7.33333e-01 7.33333e-01 7.33333e-01 7.33333e-01 7.33333e-01
SC 243 tr3 5.99272e-01 1.28220e-01 5.42446e-02 1.87888e-02 5.65402e-03
SC 1024 tr4 6.46390e-01 1.68398e-01 7.58935e-02 2.76298e-02 8.59202e-03
SC 3125 tr5 6.21874e-01 1.46776e-01 6.40180e-02 2.27051e-02 6.93877e-03
SC 7776 tr6 6.40868e-01 1.63388e-01 7.30962e-02 2.64539e-02 8.19362e-03
SC 16807 tr7 6.28497e-01 1.52461e-01 6.70901e-02 2.39619e-02 7.35684e-03
SC 32768 tr8 6.38803e-01 1.61536e-01 7.20691e-02 2.60245e-02 8.04870e-03
SC 61 sp2 6.12891e-01 -9.96566e-02 -1.72524e-01 -1.90741e-01 -1.95295e-01
SC 801 sp4 4.90716e-01 -1.11982e-01 -2.18710e-01 -2.67265e-01 -2.83116e-01
SC 6993 sp6 5.67804e-01 1.24812e-02 -9.42399e-02 -1.50300e-01 -1.71939e-01
SC 51713 sp8 6.18682e-01 1.14612e-01 1.90377e-02 -3.11604e-02 -5.12477e-02
SC 135073 sp9 6.28501e-01 1.38023e-01 4.59513e-02 -1.93184e-03 -2.09570e-02
SC 345665 sp10 6.32966e-01 1.49798e-01 5.97042e-02 1.31964e-02 -5.12018e-03

Approach Func Eval Grid Type S T1 S T2 S T3 S T4 S T5
LHS 7000 - 6.72206e-01 1.86171e-01 1.17109e-01 5.77715e-03 -9.02123e-03
LHS 35000 - 7.38654e-01 2.29849e-01 1.22343e-01 4.64609e-02 3.02973e-02
LHS 70000 - 7.40672e-01 2.40038e-01 1.11206e-01 5.98694e-02 2.47003e-02
LHS 350000 - 7.22398e-01 2.07503e-01 8.47251e-02 2.15933e-02 -4.94203e-03
LHS 700000 - 7.26557e-01 2.22900e-01 1.04010e-01 3.48873e-02 9.51685e-03
PCE 32 tr2 0.00000e-00 0.00000e-00 3.06452e-01 8.22581e-01 3.06452e-01
PCE 243 tr3 7.77373e-01 2.55631e-01 1.18106e-01 4.27975e-02 1.31030e-02
PCE 1024 tr4 7.11752e-01 2.14784e-01 9.98585e-02 3.69641e-02 1.15712e-02
PCE 3125 tr5 7.46823e-01 2.35794e-01 1.09272e-01 4.00032e-02 1.23773e-02
PCE 7776 tr6 7.19827e-01 2.19470e-01 1.01963e-01 3.76491e-02 1.17544e-02
PCE 16807 tr7 7.37548e-01 2.30066e-01 1.06711e-01 3.91829e-02 1.21614e-02
PCE 32768 tr8 7.22820e-01 2.21229e-01 1.02752e-01 3.79052e-02 1.18227e-02
PCE 61 sp2 1.00000e-00 0.00000e-00 0.00000e-00 0.00000e-00 0.00000e-00
PCE 801 sp4 8.09099e-01 1.47072e-01 3.03062e-02 3.10093e-06 1.35196e-02
PCE 6993 sp6 6.70159e-01 1.93377e-01 9.84211e-02 6.48668e-02 6.56442e-02
PCE 51713 sp8 7.30498e-01 2.21190e-01 1.02726e-01 4.15261e-02 1.91126e-02
PCE 135073 sp9 7.29110e-01 2.22165e-01 1.02688e-01 3.80657e-02 1.26439e-02
PCE 345665 sp10 7.25354e-01 2.22384e-01 1.03870e-01 4.02503e-02 1.53053e-02
SC 32 tr2 4.00000e-01 4.00000e-01 4.00000e-01 4.00000e-01 4.00000e-01
SC 243 tr3 7.77373e-01 2.55631e-01 1.18106e-01 4.27975e-02 1.31030e-02
SC 1024 tr4 7.11752e-01 2.14784e-01 9.98585e-02 3.69641e-02 1.15712e-02
SC 3125 tr5 7.46823e-01 2.35794e-01 1.09272e-01 4.00032e-02 1.23773e-02
SC 7776 tr6 7.19827e-01 2.19470e-01 1.01963e-01 3.76491e-02 1.17544e-02
SC 16807 tr7 7.37548e-01 2.30066e-01 1.06711e-01 3.91829e-02 1.21614e-02
SC 32768 tr8 7.22820e-01 2.21229e-01 1.02752e-01 3.79052e-02 1.18227e-02
SC 61 sp2 1.06778e-00 2.91470e-01 7.28675e-02 1.82169e-02 4.55422e-03
SC 801 sp4 9.89681e-01 3.25014e-01 1.54804e-01 5.61298e-02 1.61487e-02
SC 6993 sp6 8.44473e-01 2.60080e-01 1.23259e-01 4.68687e-02 1.49192e-02
SC 51713 sp8 7.58487e-01 2.31469e-01 1.08062e-01 4.02856e-02 1.27392e-02
SC 135073 sp9 7.41164e-01 2.26819e-01 1.05551e-01 3.90980e-02 1.22739e-02
SC 345665 sp10 7.32933e-01 2.24861e-01 1.04492e-01 3.85827e-02 1.20597e-02

Gary Tang, Laura Swiler, and M.S. Eldred 109

∫
f̂ 2
u dµ(xu) =

∫ (∫ ∑
f̂udµ(x′u)

)2

dµ(xu) − 2
∫ ∫ ∑

f̂udµ(x′u)
∑
w⊂u

f̂w(xw)

 dµ(xu)

+

∫ ∑
w⊂u

f̂w(xw)

2

dµ(xu)

Now applying the orthogonality property on the second term on the right hand side

2
∫ ∫ ∑

F

f̂udµ(x′u)
∑
w⊂u

f̂w(xw)

 dµ(xu) = 2
∫ ∫ ∑

F

f̂u(xu)
∑
w⊂u

f̂w(xw)dµ(x′u)dµ(xu)

= 2
∫ ∫ ∑

F

∑
w⊂u

f̂u(xu) f̂w(xw)dµ(x)

= 2
∫ ∑

w⊂u

(
f̂u(xu)

)2

and similarly for the third term

∫ ∑
w⊂u

f̂w(xw)

2

dµ(xu) =
∑
w⊂u

∫ (
f̂w(xw)

)2
dµ(xu)

Finally, substituting back into Equation 2.9

∫
f̂ 2
u dµ(xu) =

∫ (∫ ∑
f̂udµ(x′u)

)2

dµ(xu) −
∫ ∑

w⊂u

(
f̂w(xw)

)2
dµ(xu)

=

∫ (∫
f (x)dµ(x′u)

)2

dµ(xu) −
∑
w⊂u

∫ (
f̂w(xw)

)2
dµ(xu)

REFERENCES

[1] Sudret, Bruno, “Global Sensitivity analysis using polynomial chaos expansion,” Reliability Engr. & Safety Sys-
tem, 93, 2008, pp.964-979.

[2] Saltelli, A et al., Sensitivity Analysis, Wiley, New York, 2001, pp123-120.
[3] Helton, J.C. et al., “Survey of sampling-based methods for uncertainty and sensitivity analysis,” Reliability

Engineering and System Safety, 91, 2006, pp.1175-1209.
[4] Iman, R.L. and J.C. Helton, “An investigation of uncertainty and sensitivity analysis techniques for computer

models,” Risk Analysis, 8, 1998, pp.71-90.
[5] Storlie, C.B. and J.C. Helton. “Multiple predictor smoothing methods for sensitivity analysis: Description of

techniques,” Reliability Engineering and System Safety, 93, 2008, pp.28-54.
[6] McKay, M.D. et al., “A comparison of three methods for selecting values of input variables in the analysis of

output from a computer code,” Technometrics, 21, 1979, pp.239-245.
[7] Storlie, C.B. et al., “Implementation and evaluation of nonparametric regression procedures for sensitivity analy-

sis of computationally demanding models,” Reliability Engineering & System Safety, 94, 11, 2009, pp1735-
1763.

[8] Saltelli, Andrea et al., Global Sensitivity Analysis, Wiley, New York, 2008, pp.155-183.
[9] Golub, G.H. and J. H. Welch, ”Calculation of Gauss Quadrature Rules,” Mathematics of Computation, 23, 106,

1969, pp.221-230.
[10] W. Gautschi, Algorithm 726: ORTHOPOL-A package of routines for generating orthogonal polynomials and

Gauss-type quadrature rules, ACM Trans. Math. Software20, (1994) 2162.
[11] D. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos for stochastic di?erential equations,”

SIAM J. Sci. Comput., 24, 2002, pp.619644.
[12] Sobol’, I.M., “Sensitivity estimates for nonlinear mathematical models,” Math. Modeling and Computational

Experiments, 1, 1993, pp.407-414.

110 GSA for Stochastic Collocation Expansion

[13] DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation,
Uncertainty Quantification, and Sensitivity Analysis, Software Framework, Version 4.2+ VOTD July 13th
2009, Sandia National Labs, Albuquerque, NM, 2009.

[14] Constantine, P. and G. Iaccarino, ”Comparing spectral Galerkin and spectral collcoation methods for parame-
terized matrix equations,” Technical Report UQ-08-02, Stanford University, Stanford, CA 2008.

[15] Eldred, M. S., ”Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for
Uncertainty Analysis and Design,” 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Converence, Palm Springs, CA, 2009, AIAA-2009-2274.

Z. Wen and S.S. Collis 111

Discrete Mathematics and Informatics

Discrete mathematics is the study of fundamentally discrete mathematical structures with
application to problems arising in the computing sciences. Likewise, the field of informatics
includes processing and reasoning about collected information or data — often to identify
associations and to extract knowledge, with the objective to enable an informed decision–
making process. Articles in this section encompass both of these disciplines with application
to numerical linear algebra, data classification, and combinatorial optimization.

Z. Wen
S.S. Collis

January 11, 2010

112 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2009 113

SOLVING K-DETECTABILITY SENSOR PLACEMENT PROBLEM WITH MIXED
INTEGER PROGRAMMING FORMULATIONS

T.K. FENG∗, J.P. WATSON†, R. CARR‡, AND J.C. BECK§

Abstract. We present three Mixed Integer Programming (MIP) formulations for the k-detectability sensor place-
ment optimization in public water distribution network. All three formulations found optimal solutions for small
problem sizes. But, they do not scale well for large problem size. Further, we propose a class of problems called k-
generalized p-median problem, which is a generalization of the well known p-median facility location problem. We
show that the k-detectability sensor placement problem is mathematically equivalent to the k-generalized p-median
problem.

1. Introduction. An Early Warning System (EWS) is an online and real-time strategy
which has been implemented in Europe and U.S. to identify accidental and intentional con-
taminations in public water systems [1, 2]. The objective of an EWS is to identify and locate
high risk contamination events in a timely fashion. This allows the appropriate response to
be executed and protects the public from water contamination disasters.

A critical decision in all EWSs is the strategic placement of contamination-detecting
sensors in the water distribution network. Poor placement of sensors results in a waste of the
government’s tax dollar and puts the public at risk. Therefore, it is crucial to find a robust
placement of sensors.

There are a variety of technical approaches to solve the sensor placement problem in the
context of EWS. The approaches can be categorized into two major classes: time-dependent
formulations and time-independent formulations.
A Time-Dependent Formulation models the problem in a realistic, time-related manner.

It often includes explicit physical constraints such as pipe network topology, flow
direction, fluid dynamics, and travel time. For example, the “level of disaster” is
time-dependent: as time passes after a contamination takes place, the “level of dis-
aster” increases proportionally to time.

A Time-Independent Formulation abstracts time away from the model. Instead, it explores
the structural protection from the placement or a combination of placements of sen-
sors. For example, an area that has two sensors within a certain radius is considered
to be safe.

Please refer to [5] for a full review of different sensor placement formulations.
We attempt to solve this problem using a Mixed Integer Programming (MIP) approach

that belongs to the time-independent class. It is a direct extension of [1]. In that article, the
disasters caused by all contaminants at each node are calculated using a water quality simu-
lation software, EPANET, [7]. The disaster matrix is then fed to a MIP solver as the input of
the problem. Although the simulation of the disaster matrix is both time and resource con-
suming, it is a preprocess that can performed beforehand. In [1], the objective is to minimize
the overall disaster caused by all contaminants by placing a pre-specified number of sensors
in the water distribution network. When a contaminant traverses a node that has a sensor, the
EWS detects the contaminant and responds accordingly. The damage or disaster inflicted by
this contaminant contributes to the objective.

In our formulation, we take one step further. We consider the detectability of the contam-
inants. A common feature of a sensor placement formulation is the idealization of the ability

∗University of Toronto, tkfeng@mie.utoronto.ca
†Sandia National Laboratories, jwatson@sandia.gov
‡Sandia National Laboratories, rdcarr@sandia.gov
§University of Toronto, jcb@mie.utoronto.ca

114 k-Detectability Sensor Placement

of a sensor detecting a contaminant. In reality, no sensor detects contaminants correctly 100%
of the time. We introduce the concept of k-detectability. A contaminant is k-detectable when
the contaminant traverses at least k nodes that contain sensors before EWS detects the con-
taminant. When k is 1 for all contaminants, it is essentially the original sensor placement
problem studied in [1].

2. Problem Definition. The k-Detectability Sensor Placement Problem requires the
placement of p sensors in a closed system with the goal of detecting all the contaminants
and hence reducing the level of subsequent disasters. The closed system is composed of a
set of connected nodes, V . Each contaminant in the set of all contaminants, a ∈ A, initiates
its attack at a node j ∈ V and diffuses across the closed system. The disaster caused by con-
taminant a when node j is compromised by a is da j. When the system detects contaminant
a, we assume that the appropriate actions are taken and the contaminant is removed from the
system. The objective is to place p sensors in the closed system so the sum of the damages or
the level of disasters caused by all contaminants is minimized.

We define the meaning of contaminant detection here. In a problem that was previously
studied by Berry et al. [1], a contaminant is detected after the first sensor detects the con-
taminant. The MIP formulation of the problem is termed as DSP in [1]. In our paper, we
expand the definition of contaminant detection. The system detects contaminant a after it has
been detected by at least ka different sensors. This is the k-Detectability Sensor Placement
Problem (k-DSP). Interestingly, the problem studied in [1] is exactly 1-DSP.

3. Formulation. We present three formulations to model k-DSP. Each formulation has
its distinct features. Nonetheless, they have some decisions in common. We describe the
common decision variables here. s j is a binary decision variable which equals 1 when a
sensor is placed in node j ∈ V and 0 otherwise. Da is a continuous decision variable that
represents the overall damage caused by contaminant a.

3.1. X Formulation. The X formulation models k-DSP by answering the following
questions: where does each individual contamination detection take place and what con-
tamination does it detect? The X formulation is based on binary decision variable, xa j, a ∈ A
and j ∈ V . xa j equals 1 when a sensor placed at node j detects contaminant a and 0 other-
wise. Note that when a sensor detects a contaminant, it does not necessarily mean that the
contaminant has been detected by the system. In order for the system to detect contaminant
a, at least k sensor detections are required. The X formulation, k-DSP.X, is stated as follows:

min
x

∑
a∈A

Da (OX)∑
j∈V

s j = p (X1)

xa j ≤ s j ∀a ∈ A, j ∈ V (X2)∑
j∈V

xa j = ka ∀a ∈ A (X3)

Da ≥ da jxa j ∀a ∈ A, j ∈ V (X4)

Objective (OX) minimizes the sum of overall damage per contaminant. Constraint (X1)
ensures the system to have exactly p sensors. In order for a sensor to detect a contaminant at
location j, there must be a sensor placed at node j. This condition is enforced by constraint
(X2). Furthermore, each contaminant, a, requires exactly ka sensor detections–this is enforced
by constraint (X3). Finally, constraint (X4) relates the damage incurred at each node to the
overall damage.

T.K. Feng, J.P. Watson, R. Carr and J.C. Beck 115

3.2. Y Formulation. The Y formulation answers a different question: where does the
detection of sensor ka take place? The binary decision variable, ya j, is 1 when the kath sensor
detects contaminant a at node j (or, when the system detects contaminant a). The following
is the Y formulation, k-DSP.Y,

min
y

∑
a∈A

Da (OY)∑
j∈V

s j = p (Y1)

ya j ≤ s j ∀a ∈ A, j ∈ V (Y2)∑
j∈V

ya j = 1 ∀a ∈ A (Y3)

Da =
∑
j∈V

da jya j ∀a ∈ A (Y4)

kaya j ≤

 ∑
i∈V,dai<da j

si

 + s j ∀a ∈ A, j ∈ V (Y5)

Objective (OY) is the same as (OX) with one exception. It minimizes over y. Similarly,
constraints (Y1), (Y2), and (Y3) are equivalent to (X1), (X2), and (X3); the y decision vari-
ables replace the x variables. Constraint (Y3) sums y to 1 because the system detects a given
contaminant, a, once, whereas the sensor detects contaminant a ka times. Constraint (Y4)
relates the overall damage to the damage incurred at each node. When the system detects
contaminant a at node j (i.e., ya j = 1), there must exist at least ka sensors in places where
contaminant a travelled. The set of nodes where contaminant a travelled when it is detected
at node j is defined by {i ∈ V, dai < da j}. This is captured in constraint (Y5).

3.3. XY Formulation. The XY formulation utilizes concepts from both k-DSP.X and
k-DSP.Y. Binary decision variable xa j indicates whether a sensor placed at node j detects
contaminant a or not; while ya j indicates whether the system detects contaminant a at node j
or not. Here is the XY model, k-DSP.XY,

min
x,y

∑
a∈A

Da (OXY)∑
j∈V

s j = p (XY1)

ya j ≤ xa j ≤ s j ∀a ∈ A, j ∈ V (XY2)∑
j∈V

xa j = ka ∀a ∈ A (X3)∑
j∈V

ya j = 1 ∀a ∈ A (Y3)

Da ≥ da jxa j ∀a ∈ A, j ∈ V (X4)

Da =
∑
j∈V

da jya j ∀a ∈ A (Y4)

kaya j ≤

 ∑
i∈V,dai<da j

xai

 + xa j ∀a ∈ A, j ∈ V (XY5)

116 k-Detectability Sensor Placement

Objective (OXY) minimizes over decision variables x and y. Constraints (XY1), (X3),
(Y3), (X4), and (Y4) are taken from either k-DSP.X or k-DSP.Y. Constraint (XY2) expands
on (X2) and (Y2) by relating x and y. Constraint (XY5) is a variation of constraint (Y5). It
replaces s j by xa j. (XY5) is a stronger constraint. In order for the system to detect contaminant
a at node j (ya j = 1), not only does it need at least ka sensors (

∑
s), it requires ka sensor

detections (
∑

x). Furthermore, constraint (XY5) implies constraint (Y5) in k-DSP.Y.

3.4. Auxiliary Constraints. An auxiliary constraint is a constraint that is not required
by the definition of a model. Frequently, auxiliary constraint adds more insight to a model.
As a result, the added constraints may significantly reduce the solution space and increase the
speed of a MIP solver. The following are two auxiliary constraints:

Da ≥

∑
j∈V da jxa j

ka
∀a ∈ A (A1)

ka

 ∑
i∈V,dai<da j

yai

 + kaya j ≤

 ∑
i∈V,dai<da j

xai

 + xa j ∀a ∈ A, j ∈ V (A2)

(A1) is an extension of the (X4) constraint. (X4) is a maximum constraint. Da is a maximum
of all the da jxa j terms. The right hand side of (A1) is an average of the da jxa j terms. Auxiliary
constraint (A1) states that the maximum is greater or equal to the average. Similarly, auxiliary
constraint (A2) is an extension of constraint (XY5). (A1) is added to the X formulation and
the XY formulation. (A2) is added to the XY formulation.

4. Methodology and Test Problems. In this section, we describe the basic method-
ology used to create test problem instances for k-DSP. In [1], the authors used the EPANET
toolkit to simulate the effect of water contamination spread on a real system. The results from
the simulation are recorded as da j, the disaster coefficients. They are the inputs of DSP. The
ideal data for k-DSP is to use the same data generated by EPANET. However, due to security
issues, the data is not publicly available.

The test problem instances in this paper are generated randomly, following the Euclidean
distance rule. We pick random points on a two-dimensional space. The Euclidean distance
between point a and another point, j, is recorded as da j. In our problem instances, we set
the number of nodes to be equal to the number of contamination events. We create four
problem instances, which we denote as N25, N30, N35, and N40. These networks contain
exactly 25, 30, 35, and 40 nodes, respectively. In all problem instances, there are exactly 10
sensors available, p = 10. ka, number of detections required for contaminant a, is taken from
a uniform distribution between 2 and 4.

In another set of test problem instances, we set all ka’s equal to 1. This is exactly 1-DSP,
which is studied extensively in [1]. We compare how our models behave when k-DSP is
simplified to 1-DSP. The test problem instances are summarized in Table 4.1.

Our problem instances are considerably smaller in size compared to SNL-1, SNL-2, and
SNL-3 in [1]. This is because we are solving a more difficult problem, where k > 1. We
choose 25, 30, 35, and 40 as the number of nodes, because it is comparable in size with the
“Anytown U.S.A.” network in [8], which has 16 nodes.

5. Results. We solved all test problem instances using ILOG’s AMPL/CPLEX 9.1 MIP
solver, which is a state-of-the-art MIP solver. The run time and the number of nodes traversed
by the MIP solver are recorded in Table 5.1 and 5.2 respectively. Each test instance is given
a maximum of 1440 CPU minutes. If a instance finishes before the time limit, the run time
and the number of nodes are recorded in Table 5.1 and 5.2, respectively. If a instance does
not finish, it is recorded as Timed Out and the optimality gap is recorded in Table 5.1.

T.K. Feng, J.P. Watson, R. Carr and J.C. Beck 117

Table 4.1
Test problem instances definition. The first four instances are k-DSP. The last four are 1-DSP.

Instance Name Number of Nodes, |V | Number of Sensors, p k-Detectability
N25 25 10 U[2, 4]
N30 30 10 U[2, 4]
N35 35 10 U[2, 4]
N40 40 10 U[2, 4]

N25-1 25 10 1
N30-1 30 10 1
N35-1 35 10 1
N40-1 40 10 1

Table 5.1
Run times for X, Y, and XY formulations. Run time is recorded in number of CPU minutes. ‘∗’ means there

is no optimal solution found after 1440 CPU minutes, an optimality gap is recorded instead. ‘–’ indicates that the
experiment has yet to finish.

Instance Name X Formulation Y Formulation XY Formulation
N25 19 1 1
N30 *3.94% 16 8
N35 – 412 130
N40 – *10.43% *3.24%

N25-1 0 0 0
N30-1 0 0 0
N35-1 0 0 0
N40-1 0 0 0

The run time and the number of nodes are two key measures of the performance of a MIP
formulation. They are used to compare the performances of different formulations. Both Y
and XY solved N25 and N30 within 20 CPU minutes. X had difficulty solving N30. It was
not able to find an optimal solution after 1440 CPU minutes. All three formulations could
not solve N40 to optimality within the time limit. However, Y has a larger optimality gap
compared to XY. In general, there exists a trend amongst X, Y, and XY formulations. In
terms of run time, XY has better performance than Y; Y has better performance than X.

We compare the relationship between run-time (number of nodes) versus problem size.
As size of the problem increases, the run time is increased, while the number of nodes is also
increased. When the number of nodes reaches 40, the MIP solver was not able to find an
optimal solution within 1440 CPU minutes. As observed from these results, we conclude that
the MIP formulations do not scale well to problem instances of large size.

We look at a special case of the k-detectability sensor placement problem: when k =

1 (N25-1, N30-1, N35-1 and N40-1), i.e. the 1-DSP. The run-time (Table 5.1) of all 1-
detectability instances are less than 1 CPU minute, significantly less when compared to their
counter parts, k > 1. In Table 5.2, we observe that the 1-detectability problem requires zero
branch-and-bound nodes. In essence, the root node is the solution. [1] reported the same
observations. The difference between 1-DSP and k-DSP is in the number of branch-and-
bound nodes. 1-DSP requires no branch-and-bound nodes, but k-DSP needs a significant
number of branch-and-bound nodes to find the optimal solution.

118 k-Detectability Sensor Placement

Table 5.2
Number of nodes traversed in a MIP search tree from running X, Y, and XY formulations on the problem

instances. ‘∗’ is recorded where no optimal solutions are found after 1440 CPU minutes, the number of nodes
traversed up to the time limit is recorded. ‘–’ indicates that the experiment has yet to finish.

Instance Name X Formulation Y Formulation XY Formulation
N25 495300 400 700
N30 *29450000 26200 1900
N35 – 339600 41300
N40 – *367000 *10900

N25-1 0 0 0
N30-1 0 0 0
N35-1 0 0 0
N40-1 0 0 0

6. Discussion. The DSP formulation found in [1] is equivalent to a p-median problem,
a facility location problem described in [4]. The difference is only in the terminology. The
contaminant is the customer and the sensor is the facility. The demand of the customer is
satisfied by visiting the closest existing facility. The objective of the p-median problem is
to minimize the total distance travelled by all customers. The structure and the solution
methods of the p-median problem have been studied extensively [6]. Unfortunately, k-DSP
does not have a direct equivalent in the theory of facility location. The p-center problem and
the capacitated p-median problem have similar features to k-DSP, yet they are different. To
the best of our knowledge, problems of the same types as k-DSP have not yet been studied
in the literature. Therefore, this is a first attempt to solve a difficult problem, which is a
generalization of the p-median problem.

We define the generalization of the p-median problem formally. There are exactly p
facilities to be located to serve |A| customers, each customer, a ∈ A, is satisfied when they
visit at least ka facilities. The objective is to minimize the total distance travelled by all
customers while keeping all customers satisfied. We call this generalization the k-generalized
p-median problem. When k = 1, it is the p-median problem.

The structures of k-DSP.X and k-DSP.Y are similar to the structure of the p-median prob-
lem. In k-DSP.Y, constraint (Y5) is the additional constraint that differs from the p-median
problem. However, this additional constraint causes a significant increase in computational
time. The same happens to k-DSP.X when constraint (X4) is added. The observation that
the additional constraint resulted in higher run times leads us to the implementation of La-
grangian relaxation methods. In [3], a Lagrangian based local search heuristic is applied to
the capacitated p-median problem because of the additional capacity constraint. We devel-
oped a similar approach based on a Lagrangian relaxation method for k-DSP.X. The result
was disappointing. The largest lower bound found using the Lagrangian relaxation was the
same as the Linear relaxation lower bound.

The combination of X and Y formulations gave an unexpected result. By combining the
decision variables, x and y, the solution space essentially doubled. Intuitively, XY should
perform worse than both X and Y individually because of the difference in the size of the
solution space. In fact, XY spends more time on search at each branch-and-bound node
(Readers can verify that by simple division). However, the interplay between the x and the
y variables in the XY model reduces the overall run time in some problem instances. This
is because the number of nodes traversed by XY is usually the lowest amongst all three
formulations. This is more evident when the problem size is large.

T.K. Feng, J.P. Watson, R. Carr and J.C. Beck 119

The contribution of this paper is two-fold. First, the proposed MIP formulations are
a first attempt to solve the k-detectability sensor placement problem. Second, the relation-
ship between DSP and p-median creates a new class of problems of k-generalized p-median
problem. DSP corresponds to thep-median problem; k-DSP corresponds to the k-generalized
p-median problem.

For future experiments, we would like to test the proposed formulations on real-world
data, such as SNL-1, SNL-2, and SNL-3. Currently, the tests are only performed on random
data. Although, the size of the real-world data is much larger, we want to observe if the
structure of the real-world data can be exploited to our advantage.

7. Conclusions. We proposed three Mixed Integer Programming formulations, X, Y,
and XY formulations. They model the k-detectability sensor placement problem. X and Y
were formulated naturally based on the problem definition. XY combined both X and Y. The
combined formulation showed marked improvements in performance in terms of run time.
However, none of the formulations fared well when the problem size was large. Furthermore,
our approaches to k-DSP was a first attempt to solve the class of problems we called the
k-generalized p-median problem.

REFERENCES

[1] J. Berry, W. E. Hart, C. A. Phillips, J. G. Uber, and J.-P. Watson, Sensor placement in municipal water net-
works with temporal integer programming models, Journal of Water Resources Planning and Management,
132 (2006), pp. 218–224.

[2] B. Drage, J. Upton, andM. Purvis, On-line monitoring of micropollutants in the river trent (uk) with respect of
drinking water abstraction, Water Science and Technology, 38 (1998), pp. 123–130.

[3] L. A. Lorena and E. L. Senne, Local search heuristics for capacitated p-median problems, Networks and Spatial
Economics, 3 (2003), pp. 407–419.

[4] P. Mirchandani and R. Francis, Discrete Location Theory, John Wiley and Sons, 1990.
[5] A. Ostfeld and A. Kessler, Protecting urban water distribution systems against accidental hazards intrusions,

in IWA Second Conference, 2001.
[6] M. Resende and R. Werneck, A hybrid heuristic for the p-median problem, Journal of Heuristics, 10 (2004),

pp. 59–88.
[7] L. Rossman, The epanet programmer’s toolkit for analysis of water distribution systems, in Annual Water

Resources Planning and Management Conference, 1999.
[8] T. Walski, J. E. Downey Brill, J. Gessler, I. C. Goulter, R. M. Jeppson, K. Lansey, H.-L. Lee, J. C. Liebman,

L. Mays, D. R. Morgan, and L. Ornsbee, Battle of the network models: Epilogue, Journal of Water
Resources Planning and Management, 113 (1987), pp. 191–203.

CSRI Summer Proceedings 2009 120

SEMISUPERVISED NAMED ENTITY RECOGNITION

TAYLOR P. TURPEN∗ AND DANIEL M. DUNLAVY†

1. Introduction. With the ever increasing number of documents readily available to the
casual reader, careful observer or scientific analyst it is becoming more important to quickly
recognize names of people places, locations, etc., within those documents. Although it may
be a relatively easy task to extract named entities through manual inspection, parsing the
million of blogs created daily1 is untractable with such an approach.

In this paper we focus on statistical methods for solving the Named Entity Recognition
(NER) problem [4], i.e., the identification of words and phrases that are associated with a
given set of entity categories. Specifically, we will focus on sequence-based machine learn-
ing methods, with an emphasis on semisupervised learning [1, 8], an iterative approach to
predictive modeling that uses both labeled and unlabeled data in generating models.

The definition of the NER problem used in the paper is as follows. Given a sequence
of words, x̃ = {x̃1, . . . , x̃n}, and associated named entity labels ỹ = {ỹ1, . . . , ỹn}, the goal is to
generate a model for predicting the labels of new word sequences. Spefically, we seek to find
a model, f , such that

ŷ = f (x̃) , (1.1)

“best agrees” with ỹ. Throughout the remainder of this paper, we will refer to x̃ as the labeled
data, ỹ as the true labels, and ŷ as the predicted labels.

A set of features associated with a word is used in determining the most probable label
for that word. Examples of features explored in this paper include the position of the sequence
(e.g., sentence beginning, end, or other) and capitalization; the statistics on the use of such
features as they relate to the labeled data and true labels are used to set parameters in the NER
model, f .

Within the class of sequence-based NER are also rule-based methods, i.e., sets of pri-
oritized logical conjunctions that are tested for each sequence being labeled. One benefit of
statistical methods, over rule-based approaches, is that all that is required is a sequence of
labeled data and the associated true labels; there is no need to know grammatical constructs
specific to the particular subject domain or genre in which the text is written in order to gener-
ate models. However, there is evidence that incorporation of such information into statistical
models may be useful and we plan to explore which method may work best for a particular
data set or type of data in future work.

A major challenge in solving the NER problem is handling word sense ambiguity, the
fact that words often have more than one meaning and thus entity type. For example, the
word “Washington” may be of type person (Geroge Washington), place (Washington, D.C.
or the state of Washington), or organization (Washington University). One benefit in using
statistical-based methods is that most models compute likelihoods or probabilities of all entity
types specified for each word. For example, consider the following sentence.
John attends George Washington University with George Washington.

Typical computation performed by a statistical model may be as follows for this example
(assuming only four possible entity types).

∗San Diego University, tturpen-10@sandiego.edu
†Sandia National Laboratories, dmdunla@sandia.gov

1http://technorati.com/blogging/state-of-the-blogosphere/

T.P. Turpen and D.M. Dunlavy 121

Table 1.1
Different ways of combining these probabilities lead to different algorithms.

Probability
Word Person Place Organization Other
John 0.95 0.01 0.01 0.03
attend 0.01 0.01 0.01 0.97
George 0.07 0.04 0.85 0.04
Washington 0.07 0.04 0.85 0.04
University 0.01 0.10 0.75 0.05
with 0.01 0.01 0.01 0.97
George 0.75 0.21 0.01 0.03
Washington 0.79 0.19 0.01 0.01

Machine learning methods build predictive models using statistical inferences derived
from training data (e.g., the labeled data described above). There are three main machine
learning approaches: unsupervised, supervised and semisupervised. Unsupervised techniques
are given no structural or implicit information about the data they are processing. For the NER
problem, unsupervised methods (see, e.g., [3]) do not use any information about the entity
labels associated with the training data. Supervised learning uses both the labeled data and
the true labels to build predictive models.

A sequence-based semisupervised NER approach trains a model on an initial set of la-
beled data and true labels, makes predictions on a separate set of unlabeled data, and then iter-
atively attempts to create improved models using predictions of previously generated models
(plus the original labeled data and true labels). The main advantage of semisupervised ap-
proaches is that it is possible to create more accurate NER models from less training data.
Since annotating training data is a task which requires time and money resources, and the
data may be related to a niche technical area, proprietary, and/or classified, requiring sub-
ject matter experts or limited personnel, this benefit of semisupervised learning can become
crucial.

The Stanford Natural Language Processing Group has created software for solving the
NER problem [2], known as the Stanford Named Entity Recognizer (SNER). SNER uses a
supervised learning approach called conditional random fields [3, 6], where a model maxi-
mizing the conditional probabilities of the sequence of true labels, ỹ, given the labeled data,
x̃, is generated. Our work has focused on creating a semisupervised approach by wrapping an
outer loop of iteration around SNER, where at each iteration the training data used by SNER
changes. Our wrapper implementation is called the Semisupervised Utility for Named Entity
Recognition (SUNER) and is discussed in more detail in Section 3. SUNER accomplishes
two tasks: 1) performance of NER modeling for different types highly depends on the various
features used in creating the NER models and 2) performance using semisupervised learning
can be comparable to that of supervised learning using only a fraction of the size of training
data used by supervised learning.

2. Named Entity Recognition. Named Entity Recognition is a difficult task. Polysemy
and synonomy don’t make it any easier. Polysemy is defined as “the coexistence of many
possible meanings for a word or phrase.”[5]. Whereas, synonomy is “the state of being
synonomous. . . having the character of a synonym. . . one of two or more words or expressions
of the same language that have the same or nearly the same meaning in some or all senses.”[7]
And that’s just the beginning. How should NER deal with slang terms? Do words used in
professional applications have the same meaning as those used in casual emails or blogs?

122 Semisupervised NER

NER can also be used to identify proteins, acids, gene sequences etc.

2.1. Statistical Inference. As we discussed earlier, there are two main approaches to
sequence based methods: Rules and Statistics. We also mentioned something known as a
machine learning feature set, which describes words in numerical or boolean values. A NER
semisupervised algorithm trains itself by building a statistical model based on what it knows
to be significant. This is broken into two stages: initial training and iterative training. Initial
and iterative training constitue the entirety of semisupervised learning to be discussed in
section 3. Initial training, which we will touch on briefly here is how the program remembers
which words correspond to which names by recording which features were true for those
words. In essence it builds a percentage confidence associated with different features being
true. For example the sentence:
I saw Washington<person> walking down Central<street>

with Boogie<monster>.

Evaluate the word “Washington”. After reading the sentence, it can be assumed that a word
that does not begin the sentence nor end the sentence and has a capital letter is a person.
The same goes for street. However, as far as statistical modeling is concerned, any word that
has a capital letter and ends the sentence is a monster. When this concept is extrapolated to
thousands of documents it becomes more easy to generalize each feature set and the values
associated with each entity label.

2.2. Applications. While we have tested SUNER on the University of Pennsylvania
Biomedical Database and Newswire Documents there are many other applications and ways
to think about named entities such as:

• Variable cross-language labels can be useful because their evaluation is consistant
regardless of data subject matter.

– PERS, ORG, LOC, etc.
• Static part of speech tagging is useful for many translation applications as well as

being used in conjunction with the general cross-language labels.
– Noun, Verb, Predicate, Adjective, Adverb etc.

• Variable improvisational tags are flexible and imaginative where their use comes
from the importance of their application.

– Terrorist, first baseman, gene-protein, car salesman, radioactive isotope etc.

3. Semisupervised Learning. Sequence based semisupervised learning is a machine
learning technique that reads through an already annotated training document word by word.
It builds the statistical inferences from that training data, initial training, and then uses them
to make predictions on an unannotated document. The highest of those predictions are then
assumed to be part of the annotated corpus and are used to train a new statistical model, also
known as iterative training. Usually semisupervised learning will continue to iteratively train
statistical models until some stopping criteria is met. This is known as self-training because
in a way the model is training itself without absolute certainty as to which labels are true,
only an educated guess as to which labels are statistically likely.

3.1. Initial training. Initial training can be viewed as describe in equation 1.1. Where
ŷ is the sequence of predicted labels created after the training process f on the training data
x̃. Take this one step further and include what is known as a weighting scheme. Because it
may be more important that a word includes a capital letter than it is that the word is at the
beginning of the sentence, the function becomes:

ŷ = f (x̃,wd) , (3.1)

T.P. Turpen and D.M. Dunlavy 123

Where wd is the default weighting scheme. SNER uses a Quasi-Newtonian Minimizing
scheme in order to achieve the most ideal weight for each feature depending on x̃.

3.2. Iterative Training. Iterative training takes place on unannotated data. Basically,
semisupervision takes the ŷ achieved after initial training. If the prediction values, or percent-
age confidences of ŷ, are above a certain threshold, say 95%, then the program will train a
new model considering those names to be true names. That gives us:

ŷ0 = f (x̃,w0, x̂, td) , (3.2)

Where ŷ0 is the sequence of new predictions from x̃ original training data, w0 weighting
scheme as minimized for that data, and x̂ the set of words and names from ŷ0 with predictions
higher than that of, td the prediction threshold. Note that once x̂ is constructed via statistical
predictions it does not become part of x̃. A prediction that falls above the acceptable threshold
is only considered true for that iteration of iterative training. Predictions that persist through
training iterations are classified under indelibility and will not be discussed in this paper.

3.3. Parameters. In order to control the iterative training portion of semisupervised
learning there are several parameters that need to be evaluated.

3.3.1. Stopping Criteria.
• Performance threshold: Once the statistical model begins naming words with names

that are incorrect, the model will stop iterative training.
• Numeric threshold: The model will stop iterative training once it has repeated a

certain number of times. The performance metrics created as a result of numeric
threshold implementation can then be used to maximize or minimize the number of
iterations.

• Improvement threshold: Once the predicted names of words are the same predictions
as the last iteration, because of a lack of idelibility, and no new predictions are
being made, stop iterative training. This highlites a model’s inability to improve its
predictive power despite the lowering of td across iterations.

• Flexible Improvement threshold: This threshold is the same as the Improvement
Threshold except that no new predictions are being made within an acceptable mar-
gin

• Floor threshold: Once the td drops below a certain percentage when using step-
ping(sec 3.3.2), the model will stop iterative training.

• td: This is not actually a stopping criteria but instead the threshold below which no
predictions are accepted for potential word names

Often several of these stopping criteria will be used in conjunction with one another. When
one of the parameters is exceeded the iterative training will stop regardless of the status of the
others. Of course, some sort of marginal slush-factor can be used if the other parameters are
nowhere close to being exceeded.

3.3.2. Stepping. Often to improve the quantity of accepted predictions, with little sac-
rifice to their quality, a stepping threshold is used. It is structured so that each iteration of
iterative training results in a lower td. For example if the step size is 1% the first td may be
99%, then after the first iteration it will be 98% then 97% and so on.

Depending on the strength of the model being used the step size should be adjusted
in order to reflect the model’s ability to improve predictions. i.e. A very “strong” model
would reflect poorly upon a large stepping size (greater than 1%). This is because a strong
model will have little statistical variance (change in prediction values across x̂) in comparable
predictions. However, a weak model might perform well with one because the statistical

124 Semisupervised NER

variance in predictions is usually larger with weaker models. The variability itself is part
of the nature of f , and the size of x̃ when compared to x̂. Stepping is also best used in
conjunction with the improvement threshold. In that way, td will not be able to drop below
acceptable levels if no literal predictive improvement is being made.

3.3.3. Named Entity Balancing. The goal of balancing is to moderate the preference
of the statistical model. If the training data contains an unequal distribution of named entities
(annotated words) then balancing is any sort of numeric “leash” put on the maximum number
of accepted predicted named entities for any one set of names.

This helps to avoid what is known as “oversampling” or “undersampling” and prevents
model preference toward a certain name that may not be a true representation of the global
type of data being processed. Imagine wanting to create a model for scientific documents. If
the model was trained on 500 newswire documents in the field of bioengineering, that model
would more easily name words like “acid” or “rna” than it would “torque” or “pounds”, even
though the latter might be mentioned in the training set, they are not prevalent enough to
make a statistical impression.

In SUNER we implement a simple linear balancing algorithm. The results for which we
are still working on and will be added shortly.

4. Numerical Experiments. First, it will be shown that with all else held constant,
semisupervised named entity recognition depends largely upon which features are being used.
By providing evidence for the previous point it will also be shown that some features result
in higher performance results than others. In order to demonstrate this a simple SUNER
statistical model

using no balancing was implemented using k-fold cross validation. This data analysis
technique involves dividing up a data set into k sections. Each section will be swapped out
between being considered annotated(part of x̃), unannotated or “left-out” by the semisuper-
vised program. When a document partition is considered unannotated, the program trains
itself on the k − 2 remaining documents considered to be annotated. It is important to train
f on different annotated data partitions and then iteratively train it on other data partitions
in order to avoid any sort of bias present within the data itself. Each partition, in turn, will
also be left out of both training and iterative training in order to remove its bias on the model
entirely.

The self-training also includes a number of “key features” which alternate on and off

while all other features stay on. When a feature is “on” it will be read as true by the program
if it applies to the word in question. If the performance evaluation metrics vary when the
features are alternated, then the assumption that features affect the performance of semisu-
pervised named entity recognition is true.

Second, it will be shown that with all else held constant, semisupervised named entity
recognition can produce the same or better results than supervised named entity recognition
with only a fraction of the size of training data. This will be done using leave-one-out k-fold
cross validation and a balancing implemented self-training algorithm.

In order to minimize under or over sampling, a somewhat normal but randomized dis-
tribution algorithm was used to parse the data sets. Each trial includes the corresponding
name/fold distribution table.

4.1. Results From 10-fold Cross Validation Self-Training With Key Features: 0,5,9.
The first test consisted of a ten-fold cross validation on 261 Medline documents. When
parsed into the Stanford Named Entity Recognition format, the document folds had the
name distribution indicated by 4.1. The names, indixed by L0...L5 are as follows: Null-
label(no name, or “other”), gene-protein, malignancy-histology, gene-rna, malignancy-sites,

T.P. Turpen and D.M. Dunlavy 125

malignancy-clinical-stages.

Table 4.1
10-fold Cross Validation Name Distribution

Fold L0 L1 L2 L3 L4 L5

0 566 147 128 101 38 16
1 140 51 52 41 17 7
2 181 68 65 43 21 14
3 238 89 95 63 26 14
4 296 112 111 79 38 18
5 341 133 114 84 42 23
6 382 162 137 105 42 19
7 437 183 153 117 62 23
8 472 206 183 130 68 27
9 516 235 195 151 71 37

Table 4.2
10-fold Cross Validation, Fold 8, With Key Features: 0,5,9. Testing(and iterative training) File Length(lines):

4584 Training File Length:27794(lines), Number of Labels(6)

Fold F-Measure f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

8 0.60545 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1
8 0.60401 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1
8 0.59907 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
8 0.59981 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
8 0.60545 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
8 0.60401 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
8 0.59907 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 0.59981 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The F-Measures for one of the folds is in table (4.1,4.2). A 0 indicates that that partic-
ular feature was not used for that iteration. A 1 indicates the opposite. The F-measure is
the weighted harmonic mean of both precision and recall values. Where TP(true positives)
the presence of a named entity was correctly predicted, TN(true negatives) the absence of
a named entity was correctly predictued, FP(false positives) the presence of a named entity
was incorrectly predicted and FN(false negatives) the presence of a named entity was not
predicted when it should have been, are elements of performance evaluation in the following
equations:

precision =
T P

T P + FN
, (4.1)

recall =
T P

T P + FP
, (4.2)

F-Measure =
Precision · Recall

(1 − α)P + αRecall
, (4.3)

Where α is the weighting measure which usually equals 0.5 weighting recall twice as much
as precision.

126 Semisupervised NER

REFERENCES

[1] O. Chapelle, B. Sch”olkopf, and A. Zien, eds., Semi-Supervised Learning, MIT Press, Cambridge, MA, 2006.
[2] T. G. Jenny Rose Finkel and C. Manning, Incorporating non-local information into information extraction sys-

tems by gibbs sampling, in Proceedings of the 43nd Annual Meeting of the Association for Computational
Linguistics, 2005, pp. 363–370.

[3] J. Lafferty, A. McCallum, and F. Pereira, Conditional random fields: Probabilistic models for segment-
ing and labeling sequence data, in MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN
CONFERENCE-, 2001, pp. 282–289.

[4] D. Nadeau and S. Sekine, A survey of named entity recognition and classification. 2006.
[5] Oxford English Dictionary, Oxford University Press, 2009.
[6] H. Wallach, Conditional random fields: An introduction, Rapport technique MS-CIS-04-21, Department of

Computer and Information Science, University of Pennsylvania, 50 (2004).
[7] Webster’s Ninth New Collegiate Dictionary, Merriam-Webster, Spingfield, MA 1984.
[8] X. Zhu, Semi-supervised learning literature survey, Tech. Rep. 1530, Computer Sciences, University of

Wisconsin-Madison, 2005.

CSRI Summer Proceedings 2009 127

A STUDY OF DIVERSITY IN ENSEMBLE MODELS FOR CLASSIFICATION
PROBLEMS

SEAN A. GILPIN† AND DANIEL M. DUNLAVY‡

Abstract. The relationship between ensemble classifier performance and the diversity of the predictions made
by ensemble base classifiers, is of importance because it may help explain why some ensemble methods perform
better than others. We explored how using ensembles with pairs of base classifier models (i.e. decision trees paired
with SVM) can effect the diversity of the ensemble. We found that heterogeneous ensemble models are capable of
increasing the accuracy of predictions as well as increasing the diversity of the ensembles.

1. Introduction. The problem of data classification, or data labeling, arises in a wide
variety of applications. Examples include detecting spam e-mail messages based on the con-
tent of the messages (document classification), labeling cells and tumors as malignant or
benign based on the context of MRI scan data (image classification), and identification of in-
dividuals based on fingerprints, facial features, and iris patterns (biometric identification). In
all of these examples, the goal is to predict a discrete label (e.g., “spam” versus “not spam”)
for a particular data instance (e.g., a particular e-mail message) based on the attributes of that
instance.

More formally, classification is the task of learning a function, f , that maps a set of data
instance attributes, x = 〈a1(x), . . . , am(x)〉, to one of several predefined class labels from Y =

{c1, . . . , ck}. The function f is often called a classifier or classifier model, but in this paper we
will use the term classifier to designate classification functions and the term classifier model
will only be used to describe the structure of such functions. The set of data instances used to
learn, or train, a classifier is called the training set and is denotedDtr = {(x1, y1), . . . , (xn, yn)},
where n is the number of instances, xi ∈ R

m is a vector of attributes, or features, for data
instance i, and yi ∈ Y is the label for data instance i. In order to validate the models learned,
it is common practice to select some of the training data to be used in testing the resulting
classifier models. This testing, or validation data, is denoted Dte and is not used in training
the classifier model.

Recent results in solving classification problems indicate that the use of ensembles, or
sets of classifier models, often leads to improved performance over using single classifier
models [1, 2, 3, 12]. Much of the previous work on ensembles of classifier models (see e.g.,
[5]) has focused on homogeneous ensemble classifiers—i.e., collections of classifier models
of a single type. In this work, we focus on heterogeneous ensemble classifiers, where the
collection of classifiers are not of the same type. Note that such classifier models are also
referred to as hybrid ensemble classifiers. Our goal is to find when and how the use of
heterogeneous ensembles can be advantageous.

Our work with heterogeneous ensembles focuses on using diversity measurements as a
tool to help explain when and how heterogeneous ensembles can outperform homogeneous
ensembles. Specifically we looked to find the relationship between diversity and accuracy.
We wanted to find if heterogeneous performance boosts corresponded to increases in diversity
measurements. As part of our previous work, we created a software framework called Hem-
lock (Heterogeneous Ensemble Machine Learning Open Classification Kit) for creating and
evaluating heterogeneous ensemble classifiers. We extended Hemlock to allow evaluation of
diversity measurements, and used it to produce all of the findings for the ensemble models
we experimented with for our current work.

†Computer Science, University of California at Davis, sagilpin@ucdavis.edu
‡Computer Science and Informatics, Sandia National Laboratories, dmdunla@sandia.gov

128 A Study of Diversity in Ensemble Models for Classification Problems

2. Diversity. The success of ensemble classification models over non-ensemble models
is partially dependent on the diversity of the predictions made by its base classifiers. To see
this, consider the case when all of the base classifiers make the same predictions. In that case
the ensemble would perform no better than any of the base classifiers taken individually and
there would be no benefit to using an ensemble. In order to objectively study the relationship
between diversity and ensemble performance, we first need to define some objective measure-
ments capable of measuring the diversity of predictions made by a set of classifiers. Many
studies of this relationship already do exist and below we detail the diversity measurements
that have been used in most of those studies.

There are two types of diversity measurements that we have listed below: pairwise and
non-pairwise. Pairwise measurements are designed to compare the differences in predictions
of two classifiers. Their interpretation in that setting is clear, but once averaged over all pos-
sible pairs in a base classifier set, the interpretation may become less clear. In this paper
we only explore the mean of pairwise diversity measurements but it may be useful to study
other statistics such as the standard deviation as well, to get a better understanding of what
these measurements are trying to tell us. Non-pairwise diversity measurements are designed
to measure differences in predictions of sets of more than two classifiers. Although their
definitions are typically more complex than the pairwise diversity measurements, their in-
terpretations are not muddled by the details of working with ensembles of size greater than
two.

2.1. Pairwise Diversity Measurements. The following diversity measure are used for
comparing the predictions of two classifiers, f and g. In a set of base classifiers B of size
L, the ith base classifiers is referred to as fi. The oracle function is a binary function whose
domain consists of pairs of classifiers and instances. The value of the oracle function is one
when a classifier correctly predicts the true label of the instance it is paired with, and the
value is zero when the prediction is incorrect. In practice we can only evaluate this function
for instances whose true label we already know, such as those found in the training set. The
oracle function can be defined specific to classifier f such that its domain is the set of instances
in the training set. In that case the following is the definition of the oracle function.

O f (x j) =

{
1 : f (x j) = y j

0 : otherwise

Using this definition, we can then define the variables a,b,c,d which characterize the
proportions of correct or incorrect predictions made by two base classifiers f and g. These
definitions, found in Table 2.1 will be useful in defining many of the pairwise diversity mea-
surements.

Any pairwise diversity measurement pd, can be used as a measurement of total ensemble
diversity by calculating the average pdi, j, the diversity measurement comparing fi and f j, over
every pair of base classifiers:

2
(∑|B−1|

i=1
∑|B|

j=i+1 pdi, j

)
(n)(n − 1)

The following are definitions for the pairwise diversity measurement that we explored.
All of these definitions are listed in Kuncheva’s book[10], and original references are pro-
vided as well.

Correlation. [10] Correlation measures the linear dependence between the predictions
of two base classifiers. Specifically, it measures the dependence of the oracle values for a

S.A. Gilpin and D.M. Dunlavy 129

Table 2.1
Statistics corresponding to oracle values of a pair of classifiers. These are defined here to simplify the formu-

lations of many of the pairwise diversity measurements.

a = 1
n
∑n

i=1 O f (xi)Og(xi) Proportion of instances correctly predicted by
f and g

b = 1
n
∑n

i=1 O f (xi)(1 − Og(xi)) Proportion of instances predicted correctly by
f and incorrectly by g

c = 1
n
∑n

i=1(1 − O f (xi))Og(xi) Proportion of instances predicted incorrectly
by f and correctly by g

d = 1
n
∑n

i=1(1 − O f (xi))(1 − Og(xi)) Proportion of instances incorrectly predicted
by f and g

pair of base classifiers. The range of this measurement is between -1 and 1 where values
close to zero imply that there is no correlation between between the oracle outputs. For a two
class classification problem, a correlation value of −1 implies that the predictions made by
the classifiers are opposite of each other. For a multiclass classification problem with greater
than two classes, a correlation of −1 only implies that neither of the classifiers were both right
or both wrong for any of the test instances.

ρ =
ad − bc

√
(a + b)(c + d)(a + c)(b + d)

The Q Statistic. [14] Yule’s Q statistic has similar interpretation as correlation. The
range of this measurement is between -1 and 1.

Q =
ad − bc
ad + bc

Disagreement. [11] Disagreement between a pair of classifiers is the proportion of in-
stances for which they predict different class labels. The range of this measurement is between
0 (they never disagree), and 1 (they disagree on every instance in the test set).

D =
1
n

n∑
i=1

1{z| f (z)=g(z)}(xi)

Where 1{z| f (z)=g(z)}(xi) is the indicator function whose value is 1 for instances where the pre-
dicted target labels are the same for both classifiers.

Double Fault Measurement. [7] The double fault measurement between a pair of classi-
fiers is the proportion of instances for which they both predict the wrong class. This corre-
sponds to the value d found in Table 2.1. The value of this measurement is one when both of
the classifiers are always wrong and zero when the classifiers are never simultaneously wrong
about the same instance. A low double fault measurement is desired for an ensemble, because
otherwise many of the base classifiers will be making mispredictions for the same instances
which will increase the chance of that instance being misclassified by the ensemble.

DF = d

2.2. Non-Pairwise Diversity.

130 A Study of Diversity in Ensemble Models for Classification Problems

Entropy. [6] This formulation of entropy measures how close to a tie the base classifier
set comes to, when voting for the prediction of an instance. If the base classifiers come to an
exact tie for each instance, then the entropy will be one, and if the base classifiers unanimously
give the same class label predictions for each instance, then the entropy will be zero.

E =
1
N

2
|B| − 1

n∑
i=1

min


 |B|∑

j=1

O f j (xi)

 ,
|B| − |B|∑

j=1

O f j (xi)




Measure of Difficulty. [8] Define a random variable X as the proportion of base classifiers
that will correctly classify a randomly chosen instance. Then X is a discrete random variable
with possible values between (0/L, 1/L, ..., L/L). The measure of difficulty is defined as the
sample variance of X.

General Diversity. [9] Let pi denote the probability that exactly i of the L base classifiers
predict the wrong class label for a randomly chosen instance. Let p(i) be the probability that
i randomly chosen base classifiers will all incorrectly predict the class label for a randomly
chosen instance.

Then p(1) and p(2) can be defined in terms of pi as follows:

p(1) =

L∑
i=1

i
L

pi

p(2) =

L∑
i=1

i
L

(i − 1)
(L − 1)

pi

General diversity is defined below using p(1) and p(2). The value of this measure is one
when the probability that two randomly chosen classifiers both misclassify a random instance
is equal to the probability that one randomly chosen classifier misclassifies a random instance.
A low general diversity measurement is desirable because it implies that misclassifications by
base classifiers are more likely to be unique.

GD = 1 −
p(2)
p(1)

Coincident Failure Diversity. [9] Coincident failure diversity is a modification of general
diversity whose value is highest (one), when misclassifications are unique to one base clas-
sifier and lowest (zero) when base classifiers always make the same class label predictions.
The following definition uses the same value for pi as was defined for general diversity.

CFD =

{
0 : p0 = 1

1
1−p0

∑L
i=1

L−i
L−1 pi : p0 < 1

3. Numerical Results. In this section, we present numerical results illustrating the re-
lationship between diversity and accuracy in ensemble classifiers as well as comparisons of
the performance of heterogeneous versus homogeneous ensembles.

Each of the ensemble classifiers created consisted of 100 base classifiers which were
trained using bagging [4]. The use of bagging ensured that each base classifier was trained
with a subsample of the training set, and is a common method for increasing the diversity of

S.A. Gilpin and D.M. Dunlavy 131

ensemble classifiers. Homogeneous ensembles consisted of base classifiers of support vector
machines (SVMs), random trees [5], and naive Bayes classifiers as base classifier models.
The base classifiers are implemented in WEKA [13] using the default model parameters in
each case. The heterogeneous ensembles consisted of combinations of the three classifiers
types in pairs and in varying proportions. Each ensemble model was used in conjunction
with 5-fold stratified cross validation to create a total of 5 ensemble classifiers. Using 5-fold
cross validation allowed us to evaluate the diversity and accuracy measurements using a test
set not used in the training of the classifiers. We used 5-fold cross validation rather than
10-fold cross validation, because it lead to larger testing sets which we believe may be im-
portant when measuring diversity measurements. In order to make up for the smaller number
of training instances used in 5-fold cross validation, we repeated every experiment 10 times
using different random seeds for either the fold creation or bagging or both (see the specific
experiments later in this section for more details). Each heterogeneous ensemble was created
using a percentage of base classifiers from each of two homogeneous ensemble classifiers.
The proportion of base classifiers (in 1% increments) led to different heterogeneous ensem-
bles. This lead to a total of 297 different ensemble models for each experiment, 3 of which
were homogeneous and 294 of which were heterogeneous.

Eight data sets representing a wide range of classification problems were used in the
experiments. Table 3.1 presents the characteristics of these data sets; note the varying num-
bers of instances, classes, and features across the set. These data sets are a subset of the
data used in previous work on analyzing performance of ensemble classifier models [1]. The
performance measure computed for all experiments was accuracy (proportion of instances
with correctly predicted labels) as it easily generalizes to multi-class classification problems.
Majority voting was used as the fusion method for combining the base classifiers to create
the ensemble classifiers, as all of the diversity measures used in this work output class labels
only (versus class rankings or conditional class probability distributions). Although we com-
puted all diversity measures presented in this paper in each of the experiments, results are
presented for only three of the diversity measures: CFD, Disagreement, and Double Fault.
These measures are representatives from the three different groups of equivalent diversity
measures presented by Bian and Wang [3].

Table 3.1
Characteristics of the experimental data sets.

Continuous Nominal
Name Instances Classes Attributes Attributes
1 abalone 4177 29 7 1
2 bupa 345 2 6 0
3 dna 3186 3 0 180
4 glass 214 6 9 0
5 ion 351 2 34 0
6 promoters 106 2 0 57
7 sonar 208 2 60 0
8 yeast 1484 10 8 0

Table 3.2 shows the accuracy of ensemble models averaged over a total of 50 ensemble
classifiers (corresponding to the 10 independent runs of 5-fold cross validation). Accuracy
measures for the homogeneous ensembles of SVM, naive Bayes, and random tree base clas-
sifiers and the best heterogeneous ensemble are presented. Note that across all data sets, at
least one of the heterogeneous ensembles outperforms all homogeneous ensembles. Table
3.3 presents results of the average CFD measurements corresponding to the accuracy results

132 A Study of Diversity in Ensemble Models for Classification Problems

in Table 3.2. In 6 out of the 8 data sets, a heterogeneous model generated on average more
diversity (as measured with CFD) than any of the homogeneous models. Table 3.4 shows
the average disagreement measurements for the different ensemble models. The random tree
ensembles dominate the other homogeneous models but the heterogeneous models still do
better for 5 of the 8 data sets. Table 3.5 differs from the previous tables, because the dou-
ble fault measurement corresponds to more diverse ensembles when the value is low. So for
the heterogeneous models we found the model that had the minimum average double fault
measurement.

The results do not show a clear relationship between diversity and accuracy. They do
suggest that the most successful heterogeneous ensembles for a particular data set generally
involve a large proportion of random tree base classifiers. To explain the success of the ran-
dom trees, it is helpful to note that while the disagreement measures are usually high (adding
to the diversity) the double fault measurement is usually relatively low. So the diversity that
is created by random trees, is created in a way that doesn’t reduce total ensemble accuracy.

The plots in Figures 3.1- 3.3 were chosen to demonstrate some of the trends and interest-
ing results found in the plots of the experiment results. These plots are taken from three dif-
ferent data sets and each of them is a plot of a different heterogeneous ensemble pairing. Both
of the heterogeneous ensembles that involve random trees show that the best performance is
usually achieved through including a larger number of random tree base classifiers than SVM
or naive Bayes base classifiers. The plots also show that there tends to be a wide range in
the diversity values and the plots of the diversity measures are usually arching towards more
diversity. The plot in Figure 3.2 is representative of heterogeneous ensembles that include
naive Bayes and SVM base classifiers, in that they often show large improvement, in terms of
accuracy, over what SVM or naive Bayes homogeneous ensembles demonstrate. However the
pointed shape of the accuracy curve is unusual and demonstrates that the performance of the
heterogeneous ensemble can be very sensitive to the exact composition of its base classifiers.

In the case of accuracy, disagreement diversity, and CFD our results show that these mea-
surements exhibit an upward arcing trend while the double fault measurement often shows
a downward arcing trend. Each of the heterogeneous ensemble experiments showed how
two homogoneous ensembles of different types would perform when mixed together with
different levels of composition. The question we had when we saw the arcs in the hetero-
geneous ensemble plots was: do the arcs represent extra performance or extra diversity that
is caused by combining different types of base classifiers into one ensemble, or are the arcs
just a byproduct of combining base classifiers from ensembles with large differences in per-

Table 3.2
Average accuracy over ten experiments repeated with different random seeds using 5-fold cross validation and

bagging. At least one heterogeneous ensemble outperformed all of the homogeneous ensembles across the data sets.

Average Accuracy
Naive Bayes SVM Random Tree Best Heterogeneous

Dataset Ensemble Ensemble Ensemble Ensemble
abalone 0.2371 0.2532 0.2419 0.2555
bupa 0.5594 0.5809 0.7272 0.7333
dna 0.9396 0.9452 0.9501 0.9582
glass 0.5039 0.5820 0.7741 0.7791
ion 0.8253 0.8824 0.9367 0.9398
promoters 0.8874 0.9223 0.8994 0.9324
sonar 0.6899 0.8289 0.82886 0.82889
yeast 0.5792 0.5703 0.6080 0.6193

S.A. Gilpin and D.M. Dunlavy 133

Table 3.3
Average coincident failure over ten experiments repeated with different random seeds using five fold cross

validation and bagging. A heterogeneous ensemble on average outperformed all of the homogeneous ensembles.

Average Coincident Failure Diversity
Naive Bayes SVM Random Tree Best Heterogeneous

Dataset Ensemble Ensemble Ensemble Ensemble
abalone 0.1745 0.2238 0.1971 0.2475
bupa 0.5375 0.4897 0.6256 0.6253
dna 0.4748 0.8225 0.7337 0.9125
glass 0.4367 0.4849 0.6328 0.6324
ion 0.3880 0.6193 0.8546 0.8583
promoters 0.7709 0.8004 0.6433 0.8665
sonar 0.5125 0.6588 0.6921 0.7417
yeast 0.4015 0.3081 0.4917 0.5425

Table 3.4
Average disagreement diversity over ten experiments repeated with different random seeds using five fold cross

validation and bagging.

Average Disagreement Diversity
Naive Bayes SVM Random Tree Best Heterogeneous

Dataset Ensemble Ensemble Ensemble Ensemble
abalone 0.2346 0.2677 0.7589 0.7595
bupa 0.2647 0.1328 0.3873 0.4056
dna 0.0213 0.0828 0.3797 0.3777
glass 0.3134 0.3239 0.3930 0.4463
ion 0.0558 0.0661 0.1558 0.1656
promoters 0.1376 0.1230 0.4437 0.4423
sonar 0.1268 0.1818 0.3735 0.3724
yeast 0.1668 0.1229 0.5027 0.5019

Table 3.5
Average double fault diversity over ten experiments repeated with different random seeds using five fold cross

validation and bagging. Lower measurements correspond to more diverse models.

Average Double Fault Diversity
Naive Bayes SVM Random Tree Best Heterogeneous

Dataset Ensemble Ensemble Ensemble Ensemble
abalone 0.5787 0.5475 0.1809 0.1799
bupa 0.2438 0.3469 0.18702 0.18697
dna 0.0509 0.0396 0.0612 0.0359
glass 0.3240 0.2754 0.1228 0.1229
ion 0.1454 0.0947 0.0505 0.0506
promoters 0.0725 0.0543 0.1413 0.0544
sonar 0.2555 0.1528 0.1280 0.1248
yeast 0.3310 0.3626 0.1844 0.1843

formance and diversity? One might assume that if two homogeneous ensembles of the same
type with different levels of accuracy were were blended together, that the plots of those mea-
surements would result in a straight line between the end points (or more of a straight line
than exhibited by the plots of the heterogeneous ensemble mixtures). To test that, we used
five fold cross validation ten times to create ensembles of bagged random trees. We used

134 A Study of Diversity in Ensemble Models for Classification Problems

0 10 20 30 40 50 60 70 80 90 100
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.23

0.24

0.24

0.25

0.25

0.26

Ensembles with (100-k) RT and k NB Base Classifiers

CFD
Double Fault
Disagreement
Accuracy

Base classifier mixture percentage k

D
iv

e
rs

ity

A
cc

u
ra

cy

Fig. 3.1. Comparison of homogeneous and heterogeneous ensembles using the abalone data set.

0 10 20 30 40 50 60 70 80 90 100

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ensembles with (100-k) SVM and k NB Base Classifiers

CFD
Double Fault
Disagreement
Accuracy

Base classifier mixture percentage k

D
iv

e
rs

ity

A
cc

u
ra

cy

Fig. 3.2. Comparison of homogeneous and heterogeneous ensembles using the ion data set.

the same random seed for the cross validation each time, but used ten different seeds for the
bagging procedure. For each of the five folds we selected the ensembles that had the best
and worse performance based on one of the measurements: accuracy, disagreement, double
fault, CFD. We then gradually blended the base classifiers from the two ensembles together,
and plotted how the performance changed as the composition of base classifiers changed.
The plots showed that for most of the measurements, the composition of two homogeneous
ensembles of the same type lead to values closer the line than the values measured for the
heterogeneous ensembles.

For each of the data sets, we calculated the average distance above the line, amodel,measurement,
and the maximum distance above the line, mmodel,measurement, for the composition of two ran-
dom tree ensembles, and for the different heterogeneous ensembles. We then calculated
aheter,measurement − ahomo,measurement for each of the heterogeneous models and each of the mea-
surements. The average difference is important because it may not be practical to search for
the best composition in which case an arbitrary heterogeneous composition will be chosen.
In that case the differences in the average distances will represent the expected advantage of
using a heterogeneous ensemble. We used the Wilcoxon signed rank test to calculate p-values

S.A. Gilpin and D.M. Dunlavy 135

0 10 20 30 40 50 60 70 80 90 100

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.94

0.94

0.95

0.95

0.96

Ensembles with (100-k) RT and k SVM Base Classifiers

CFD
Double Fault
Disagreement
Accuracy

Base classifier mixture percentage k

D
iv

e
rs

ity

A
cc

u
ra

cy

Fig. 3.3. Comparison of homogeneous and heterogeneous ensembles using the dna data set.

for the hypothesis:

Ha : Median(aheter,measurement − ahomo,measurement) > 0
H0 : Median(aheter,measurement − ahomo,measurement) ≤ 0

Where the median refers to the median value of the difference over all data sets. For this
test to be relevant we must assume that the eight data sets used in this study are representative
of the greater population of data sets. If the tests ends up lending support to the alternative
hypothesis, then more times than not, a data set will be expected to have a larger measurement
value above the line for the heterogeneous model when the composition is randomly chosen,
as compared to a homogeneous ensemble that is a random mixture of the best and worst
ensemble.

We also ran the same tests using only the compositions that had the maximum values for
the measurements, rather than the average over all compositions. This was done to test the
potential for heterogeneous ensembles to create an advantage over homogeneous ensembles.
The following were the hypothesis used in our Wilcoxon signed rank tests:

Ha : Median(mheter,measurement − mhomo,measurement) > 0
H0 : Median(mheter,measurement − mhomo,measurement) ≤ 0

Test that lend support to the alternative hypothesis indicate that when a random data set
is chosen, more often than not, the best composition for the heterogeneous will be further
from the line than the best composition for the homogeneous mixture for a data set

These results lend support to the theory that the extra performance and diversity are
caused by the interactions in the heterogeneous ensemble, for the tests where the p-values
are small. These results only hold when the number of base classifiers for the ensembles is
arbitrarily fixed (in this case 100).

One thing that was very clear from the plots from the above experiments was that het-
erogeneous ensemble models can have a much larger range of diversity than homogeneous
ensemble models. The plots in Figures 3.4 and 3.5 can be compared to show the differences
between heterogeneous mixtures and homogeneous mixtures, respectively, of base classifier
sets. These plots are specifically taken from the experiments with the yeast data set but the
trends found in these two graphs are representative of what is found in other data sets. What
we see is that the range of accuracy in the heterogeneous and homogeneous mixtures are about

136 A Study of Diversity in Ensemble Models for Classification Problems

Table 3.6
P-values for significance tests using Wilcoxon signed rank tests. Tests with low p-values imply that the in-

teractions of base classifiers of different models, found in heterogeneous ensembles, lead to higher values of the
corresponding measurement than would be expected with homogeneous ensembles.

P-value
Measurement Model Average Max

NB RT 1.000 0.926
accuracy NB SVM 0.027 0.875

SVM RT 0.629 0.727

NB RT 0.004 0.004
disagreement NB SVM 0.004 0.004

SVM RT 0.004 0.004

NB RT 0.012 1.000
double fault NB SVM 0.004 1.000

SVM RT 0.055 1.000

NB RT 0.004 0.004
CFD NB SVM 0.004 0.004

SVM RT 0.004 0.004

the same. However the range in diversity measurements for the heterogeneous mixtures are
much larger than in the homogeneous mixtures. So even though the homogeneous ensem-
bles show a wide range of accuracy measurements, they show relatively little difference in
the amount diversity they display. This may explain why the heterogeneous models are often
able have better accuracy than homogeneous models. During training, homogeneous models
search through a smaller space in terms of diversity.

0 10 20 30 40 50 60 70 80 90 100
0.00

0.10

0.20

0.30

0.40

0.50

0.58

0.58

0.59

0.59

0.60

0.60

0.61

0.61

0.62

Mixing of Base Classifiers from Different RT Ensembles

CFD
Double Fault
Disagreement
Accuracy

Base classifier mixture percentage k

D
iv

e
rs

ity

A
cc

u
ra

cy

Fig. 3.4. Heterogeneous ensembles using the yeast data set. Ensembles are composed of SVM and random tree
base classifiers. The left most value on the x-axis represents homogeneous random tree ensembles, the right most
value represents homogeneous SVM ensembles, and everything in between is representative of compositions of both
SVM and random tree base classifiers, and are therefore heterogeneous ensembles.

4. Conclusions and Future Work. Our experiments showed that heterogeneous en-
semble models are capable of being more accurate and more diverse than homogeneous en-
sembles. The method we used performed a search over all possible heterogeneous model
compositions involving only two base classifier models. In practice this may not be possi-
ble, but also may not be necessary using other fusion functions that re-weight the predictions

S.A. Gilpin and D.M. Dunlavy 137

0 10 20 30 40 50 60 70 80 90 100

0.00

0.10

0.20

0.30

0.40

0.50

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

Ensembles with (100-k) RT and k SVM Base Classifiers

CFD
Double Fault
Disagreement
Accuracy

Base classifier mixture percentage k

D
iv

e
rs

ity

A
cc

u
ra

cy

Fig. 3.5. Homogeneous ensembles using the yeast data set. The ensembles are created using a mixture of of
the best and worst performing ensembles for the given measurement. The left most value on the x-axis represents the
worst ensemble for a measurement, the right most value represents the best ensemble, and everything in between is
some combination of the two.

made by base classifiers. So in the future we would like to run these same experiments use
different fusion functions and see how that changes our results.

Another question that arose during our experimentation was whether or not the diversity
measurements we used were adequate for for multiclass diversity problems, and whether or
not they were appropriate for use with fusion functions that use prediction outputs other than
just target class labels. If the fusion function is re-weighting the the outputs of the base
classifier predictions, it seems logical that the diversity measurements should re-weight the
amount that each base classifier affects the diversity measurement of the ensemble.

We would also like to run these test on more data sets to add significance to our theory
that heterogeneous ensembles can increase performance and diversity. We also need to extend
these results to the case where the number of base classifiers is not fixed. Ideally, out of
bag (OOB) error could be used as a stopping criteria for the set of base classifiers for each
ensemble. We would then still be interested if performance and diversity could increase in
heterogeneous ensembles, but also if heterogeneous ensembles of significantly smaller sizes
could achieve the same performance and diversity as the best homogeneous ensembles.

5. Acknowledgments. We would like to thank Philip Kegelmeyer for providing the
data sets for our testing and for helpful suggestions throughout the project. We also thank
the developers of the Weka and Jama libraries used in Hemlock. This project was made
possible from funding by the LDRD Program at Sandia National Laboratories. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy’s National Nuclear Security Administration under
Contract DE-AC04-94AL85000.

REFERENCES

[1] R. Banfield, L. Hall, K. Bowyer, and W. P. Kegelmeyer, A comparison of decision tree ensemble creation
techniques, IEEE Trans. Pat. Recog. Mach. Int., 29 (2007), pp. 173–180.

[2] J. Basilico, D. Dunlavy, S. Verzi, T. Bauer, andW. Shaneyfelt, Yucca mountain LSN archive assistant, Tech.
Rep. SAND2008-1622, Sandia National Laboratories, 2008.

[3] S. Bian and W. Wang, On diversity and accuracy of homogeneous and heterogeneous ensembles, Intl. J.
Hybrid Intel. Sys., 4 (2007), pp. 103–128.

[4] L. Breiman, Bagging predictors, Machine Learning, 24 (1996), pp. 123–140.

138 A Study of Diversity in Ensemble Models for Classification Problems

[5] L. Breiman, Random forests, Machine Learning, 45 (2001), pp. 5–32.
[6] P. Cunningham and J. Carney, Diversity versus quality in classification ensembles based on feature selection,

in ECML ’00: Proceedings of the 11th European Conference on Machine Learning, London, UK, 2000,
Springer-Verlag, pp. 109–116.

[7] G. Giancinto, F. Roli, and P. F. Roli, Design of effective neural network ensembles for image classification
purposes, Image Vision and Computing Journal, 19 (2001), pp. 699–707.

[8] L. Hansen and P. Salamon, Neural network ensembles, Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 12 (1990), pp. 993–1001.

[9] W. Krzanowski and D. Partridge, Software diversity: Practical statistics for its measurement and exploita-
tion, Information & Software Technology, 39 (1996), pp. 39–707.

[10] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley-Interscience, 2004.
[11] D. B. Skalak, The sources of increased accuracy for two proposed boosting algorithms, in Proc. American

Association for Artificial Intelligence (AAAI), Integrating Multiple Learned Models Workshop, 1996,
pp. 120–125.

[12] W. Wang, D. Partridge, and J. Etherington, Hybrid ensembles and coincident failure diversity, in Proc.
International Joint Conference on Neural Networks, 2001.

[13] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition
(Morgan Kaufmann Series in Data Management Systems), Morgan Kaufmann, June 2005.

[14] G. U. Yule, On the association of attributes in statistics, with examples from the material of the childhood
society, Proceedings of the Royal Society of London, 66 (1899), pp. 22–23.

CSRI Summer Proceedings 2009 139

PARALLEL MONTE CARLO SIMULATION OF 3D SINTERING

CRISTINA GARCIA∗, VEENA TIKARE†, AND STEVEN J. PLIMPTON‡

Abstract. A three-dimensional parallel implementation of a Monte Carlo model for the microstructure evolution
during sintering is presented. The model accounts for the main phenomena occurring during sintering, including
grain growth, pore migration and vacancy annihilation. The parallel implementation is based on the SPPARKS code
and enables the simulation of systems with large number of particles. Several examples are shown and results are
compared with a serial implementation as well as experimental data available.

1. Introduction. Sintering is a fabrication process where the fluid-like behavior of pow-
ders is exploited to build arbitrarily complex shapes. The consolidated piece is subjected to a
firing process leading to strengthening and densification but is also accompanied by volume
shrinkage. At the mesoscale level, sintering is the result of thermally activated adhesion pro-
cesses which produce the bonding between particles and their coalescence [4]. The driving
force for sintering is the reduction in surface free energy achieved by diffusional transport of
material from the centers of the particles to the particle-particle neck [1].

One effective way of gaining insight into the process is to simulate the physical phenom-
ena occurring during sintering. Different numerical simulation methods have been used, in-
cluding finite element methods [8], finite difference methods [6], discrete element methods [2]
and kinetic Monte Carlo models [3]. As the physico-chemical and mechanical properties of
the final piece are determined by the structure of the sintered body there is an interest in study-
ing the microstructural evolution of the material. Furthermore, the microstructural evolution
provides the driving force for the deformation observed at the macroscopic level [1]. In this
sense, the simplicity and versatility of kinetic Monte Carlo method makes it a sensible choice
to investigate the microstructural evolution during sintering [11].

The kinetic Monte Carlo simulation of sintering has been developed in recent years and
analysis for simple configurations in 2D [11] have been extended to estimation of macroscale
parameters [3] as well as simulations of 3D complex configurations [9, 10]. This stochastic
approach uses the Potts model to account for the local kinetics of the process, including grain
growth, pore migration and vacancy diffusion and annihilation at grain boundaries. To obtain
meaningful results a considerable number of particles must be considered. Nevertheless,
simulation of microstructural evolution during sintering on the mesoscale with imaging of
many particles sintering is challenging [10]. Therefore it is necessary to build techniques that
enable a greater simulation space with capacity to include more particles.

This paper describes a parallel implementation of the kinetic Monte Carlo model for
solid-state sintering of a three-dimensional powder compact. The implementation is built as
an extension module for SPPARKS. SPPARKS is a kinetic Monte Carlo code designed to run
efficiently on parallel computers using both rejection-free kinetic Monte Carlo and Metropolis
Monte Carlo algorithms [5]. To verify the performance of the new parallel implementation,
sintering for different initial configurations is simulated and results are compared with the
serial version as well as some experimental data available. Results are encouraging in terms
of the dynamics and the size of the problems that can be attempted.

The document is organized as follows. Section 2 describes the kinetic Monte Carlo model
of sintering and the implementation under SPPARKS, and contrasts the differences between
the serial and the parallel version. Next, Section 3 compares the results obtained with the

∗San Diego State University, cgarcia@sciences.sdsu.edu
†Sandia National Laboratories, vtikare@sandia.gov
‡Sandia National Laboratories, sjplimp@sandia.gov

140 Parallel Monte Carlo Simulation of 3D Sintering

serial and parallel versions for different initial configurations as well as different problem
sizes. Finally, Section 4 draws some conclusions and suggests directions of future work.

2. Simulation. A powder compact is a porous medium composed of powder particles
and a phase of voids (pores) that percolate between the particles. The substance is formed
by grains that are loosely in contact with each other. During sintering, the surface tension of
the powder compact forces a mass movement that redistributes the substance and eventually
leads to a reduction in the total porosity, i.e. densification with a corresponding reduction in
the dimensions of the porous body. Briefly, the main mechanisms operating during sintering
are [10]:

• Curvature driven grain growth in the presence of evolving porosity that inhibits grain
growth by pinning.

• Pore migration by surface diffusion leading to pore shape evolution and coarsening.
• Formation of vacancies, grain boundary diffusion of vacancies and vacancy annihi-

lation leading to densification.
To simulate sintering of a three-dimensional powder compact using a Metropolis Monte

Carlo model the controlling mechanisms of material flow under sintering must be emulated.
Essentially three aspects are defined: (1) a representation of the porous body, (2) a set of
events that can transform it in a path-dependent kinetic manner simulated by the Metropolis
algorithm and (3) an energy function to drive the Metropolis algorithm used for the dynamic
evolution of sintering which is the reduction in interfacial energy.

To represent the material, a 3D cubic lattice structure (a grid) is overlaid in the simulation
space and a neighborhood topology is prescribed. For each point in the grid a discrete state
is assigned. Grain sites populating the lattice assume one of Q possible distinct states, the
individual state is symbolized with q and the total number of states in the system is Q, thus:
qgrain ∈ {1, 2, . . . ,Q}. The pore sites can assume only one state qpore = 0. The neighborhood
topology used is the 26 first neighbors in the cubic grid. In this model a vacancy is defined as
a single, isolated pore site that does not have any other pore site in its neighborhood.

The events that transform the porous body correspond to the mechanisms operating dur-
ing sintering. Consequently, grain growth is simulated by converting a grain site into the state
of a neighboring grain chosen at random. Pore migration is simulated by exchanging a pore
site with a neighboring grain site; after the exchange, the grain site assumes a new state cor-
responding to the state of the neighboring grain that results in the minimum energy (for the
grain site, the joint energy for the new pore-grain configuration is not necessarily minimum).
Densification is simulated by producing vacancies in the grain boundaries and annihilating
them. An annihilation is simulated by moving a vacancy to the surface of the material; such
movement proceeds through a path that conserves mass globally and brings the centers of
mass of the grains adjacent to the site being annihilated closer together [1]. In addition, note
than since this densification algorithm requires the definition of the surface of the material,
periodic boundary conditions cannot be used.

The driving force for sintering is the reduction of the interfacial free energy [10]. To cast
this condition in terms of the lattice configuration described, the energy of the system is given
by the sum of all neighbor interaction energies of all sites:

E =
1
2

N∑
i=1

n∑
j=1

(
1 − δ(qi, q j)

)
(2.1)

where: N is the total number of sites, n is the number of neighbors (26 nearest neighbors
in a cubic grid), qi is the state of the current site, q j is the state of the j-th neighbor site
and δ is the Kronecker delta with: δ(qi = q j) = 1 and δ(qi , q j) = 0. According to this

Garcia, Tikare and Plimpton 141

energy definition, only unlike neighbors contribute to energy, i.e. only interfacial energy of
the system is defined.

The dynamic evolution of the kinetic Monte Carlo model is driven by a reduction in (2.1),
by means of a standard Metropolis algorithm. Therefore, every time an event is to be updated,
a random number R ∈ (0, 1) is generated and is compared with the probability P of accepting
that change, if R ≤ P the change is accepted. The probability P is calculated as:

P =

{
exp

(
−∆E
kBT

)
for ∆E > 0

1 for ∆E ≤ 0
(2.2)

where: ∆E corresponds to the energy change, kB is the Boltzmann constant and T is the
simulation temperature, a measure of the thermal fluctuation in the system [11].

The parameterization of the model enables the consideration of different grain-pore mo-
bility ratios, basically by varying the frequency in which the different events are attempted
or using different values for T in (2.2). Similarly, the frequency of annihilation events fa is
adjusted inversely proportional to the average area of grain boundaries:

fa ∝
A0

Agb
(2.3)

In this equation A0 stands for the average grain boundary area at the beginning of sintering
and Agb for the average grain boundary area at the current time. Time in the simulation is
measured in terms of kinetic Monte Carlo steps, where one step corresponds to N attempted
changes, being N the number of sites in the system. This simulation time is related linearly
with the real sintering time.

In summary, the model described incorporates most of the characteristic phenomena in
sintering: interfacial energy related to surface evolution, annihilation to introduce densifica-
tion, sintering rate proportional to the pore surface area, sintering force inversely proportional
to the grain size and change of dimension of the compact. Further details can be found in other
references [11, 1, 3].

2.1. SPPARKS. SPPARKS is an acronym for Stochastic Parallel PARticle Kinetic Sim-
ulator. SPPARKS is a kinetic Monte Carlo (KMC) code that has algorithms for both rejection-
free KMC and rejection KMC which is sometimes called Metropolis Monte Carlo [5].

SPPARKS is distributed as an open source code. It is highly versatile, supports a num-
ber of different applications, can be extended to add new functionalities and is able to run
in serial or in parallel. The parallel version uses the message passing interface (MPI) to per-
form concurrent computations over all processors while minimizing communication overhead
between processors. To accomplish this, the space of 3D particles (domain) is partitioned be-
tween the processors and Monte Carlo dynamics is calculated concurrently in each processor
(Figure 2.1(a)). Information about border sites whose neighborhood could partially belong
to other processors is kept locally in ghost sites (Figure 2.1(b)). Communications between
processors are used to update the state of the ghost sites. They are also required to collect
some of the statistical information that can be computed while simulating the evolution of the
system at hand.

SPPARKS provides enormous advantages for the parallel implementation of the three-
dimensional sintering simulation: it is a standardized framework for Monte Carlo simulation,
supporting a versatile interface already tested for serial as well as parallel execution, with
efficient diagnostic tools built-in and at the same time, is relatively easy to extend. All these
reasons motivate the selection of SPPARKS as the base infrastructure for the parallel imple-
mentation of the sintering model.

142 Parallel Monte Carlo Simulation of 3D Sintering

(a) 3D Domain Parti-
tion

(b) Ghost Sites

Fig. 2.1. Left: 3D Domain partition between processors. Right: Caricature of local site structure, central
(owned) sites in white are surrounded by a layer of ghost sites owned by neighboring processors in gray.

2.2. Serial vs. Parallel Implementation. During the Metropolis Monte Carlo used to
simulate sintering, sites are chosen randomly while performing a batch of site-event rejec-
tions. These site-events correspond to the mechanisms operating in the sintering process that
were described previously. Accordingly, once a local site is selected:

• If it corresponds to a grain site: a grain growth step is attempted. The state of the
grain site is converted into the state of a neighboring grain site chosen at random.

• If it corresponds to a pore site: a pore migration step or a vacancy annihilation step
is attempted. The pore migration step is simulated by exchanging a pore site with
a neighboring grain site. The vacancy annihilation step is computed by moving the
vacancy to the surface of the material, while displacing the centers of mass of the
grains adjacent to the site being annihilated closer together.

All these events are accepted or rejected according to (2.2), i.e. using a local criterion.
Consequently, almost all the events can proceed independently in every processor [7]. The
only exception is the annihilation step, because it requires the coordinated modification of
sites along a path that, in general, is distributed along several processors. Hence, the main
difference between the serial and the parallel implementation is the handling of the annihila-
tion step.

In the serial version, if the vacancy annihilation is to be performed the center of mass
of the adjacent grain is calculated, as well as the line along which all sites collapse toward
the annihilation site and the annihilation is performed immediately. The path of the annihi-
lation starts in the vacancy current position, goes through the center of mass of the adjacent
grain and continues in the same direction until arriving to the surface of the specimen (See
Figure 2.2). Thus, the vacancy new position corresponds to the position of the last grain site
in the annihilation path. At the same time, all the intermediate sites in the path are shifted
one position in the direction toward the vacancy current position. In this way, mass is glob-
ally conserved, the centers of mass of the adjacent grains are moved closer together and the
compact shrinks.

In the parallel version, since the lattice is distributed spatially over several processors,
long range communications are required to perform a vacancy annihilation step. Thus, instead
of computing the annihilation immediately it is registered in a list of pending annihilations
to be updated at the end of the current batch of site-event rejections. At the end of the batch,
the pending list of annihilations is processed normally: calculating the center of mass of the
adjacent grain, the vacancy new position and the path of the annihilation. The annihilations in
the list are performed one after the other. While performing the batch of site-event rejections,
a flag is used to signal if the vacancy is pending annihilation and no further operations are
allowed for the site. Nevertheless, it is possible that the actual processing of the annihilations

Garcia, Tikare and Plimpton 143

in the list cause the shifting in vacancies pending annihilation. In those cases, as the vacancy
is no longer there no annihilation is performed. The following description summarizes the
processing of the list of pending annihilations.

1. Each processor verifies that the local vacancies pending for annihilation are still
vacancies and determines the adjacent grain.

2. The list of states of the adjacent grains for all the annihilations pending is gathered
in all processors.

3. Each processor calculates the local center of mass of each one of the adjacent grains.
4. The center of mass of all the adjacent grains is reduced (calculated) in all processors.
5. Each processor determines the new position of the local vacancies pending.
6. If the vacancy current position and the new position are in the same processor, the

path of the annihilation is calculated and the sites traversed are updated. If current
and new position are in different processors, the initial position, the direction of the
annihilation path and the number of discrete steps to the final position are stored in
a local list.

7. A buffer is created and the annihilation paths that cross multiple processors are gath-
ered in all processors.

8. All the processors follow each annihilation path in the list, consequently every pro-
cessor knows which sites in all the domain are being modified. When a processor
owns part of the sites to be updated, it updates them. It also sends the state of the first
local element to the previous processor in the path and waits to receive the update
for the last local element from the next processor in the path.

Figures 2.3(a) and 2.3(b) demonstrate some of the conflicting cases occurring while up-
dating the list of annihilations in the parallel implementation. These schematics, drawn for
simplicity in 2D and without ghost cells, show a domain divided between four processors
and two annihilation paths to be updated: path

−−→
AB starting at the vacancy site marked A and

ending at the border site (surface) marked B and path
−−→
CD starting at the vacancy site marked

C and ending at border site marked D. Annihilation paths are contained in one processor in
Figure 2.3(a), while in Figure 2.3(b) they cross multiple processors. If these annihilations
are ordered in the pending list in such a way that annihilation

−−→
AB is first, then both can be

performed. On the contrary, if annihilation
−−→
CD is first in the list, then it is unlikely that an-

nihilation
−−→
AB takes place in the one-processor case and definitively it is not taking place in

the multi-processors case. In the one-processor case, if after updating annihilation
−−→
CD A is

still a pore site, then updating for
−−→
AB proceeds. However, if A is no longer a pore site then

there is no point in processing it as a vacancy being annihilated. In the multi-processors case,
even when all processors are following the path of annihilations (to know how and when to
exchange border information) only the bottom-right processor knows the new state of site A,
only it could verify if it is still a pore site. Thus, rather than incurring in the overhead of com-
municating the new state for site A, there is a local book-keeping that allows each processor
to detect that the site has been changed and avoid computing an annihilation for a vacancy
that could no longer be there.

3. Results. To verify the performance of the new parallel implementation, sintering sim-
ulations have been conducted for three different initial configurations. The first case studied
corresponds to a random initialization and a lattice of: 200 × 200 × 50. The second case is
a close packing of spheres in a lattice of: 200 × 200 × 200. The third case is based on a
microstructure obtained from microtomographic imaging of a real powder compact of copper
particles [10] and a lattice of: 403 × 403 × 95. This section is dedicated to present the results
computed with the serial as well as the parallel version. All images corresponding to 3D

144 Parallel Monte Carlo Simulation of 3D Sintering

views and 2D slices are generated with ParaView, an open-source visualization application
(http://www.paraview.org).

The parameters used to run the simulations are included in Table 3.1. There, RFreq
stands for the relative frequency for attempting the event, T ∗ for the temperature factor kBT
to be applied in (2.2) and MCS Start for the Monte Carlo step to start the annihilation of
vacancies. The parameters are kept almost equal, the only difference is in the first case where
the microstructure has to be evolved, i.e grains should be available, before performing anni-
hilation events. Thus, smaller factors of temperature for grain growth and pore migration are
used to decrease the thermal fluctuation in the system while evolving the grain structure.

Table 3.1
Simulation Parameters

Grain Growth Pore Migration Annihilation
Lattice Size RFreq T ∗ RFreq T ∗ RFreq T ∗ MCS Start

200 × 200 × 50 0.15 0.1 0.08 0.7 0.77 15.0 616
200 × 200 × 200 0.15 1.0 0.08 1.0 0.77 15.0 0
403 × 403 × 95 0.15 1.0 0.08 1.0 0.77 15.0 0

Figure 3.1(a) displays the initial configuration for the first case studied and Figure 3.1(b)
contains a 2D slice of the corresponding microstructure. For the initialization, each site in-
side the simulation space has been assigned with a positive number (grain site) or a zero (pore
site) at random, to obtain a starting density of ∼70%. All the grain sites start with a different
state, thus rather than a real grain structure the starting configuration is a collection of isolated
one-site grains. Consequently, just grain growth and pore migration events are performed for
a number of Monte Carlo steps until a rough grain structure is obtained. The microstructure
built with this procedure constitutes a valid state to start the sintering simulation. Figure 3.2
shows 2D slices of the resulting microstructure obtained for serial and parallel versions. Fig-
ure 3.3(a) compares the densification curves vs. Monte Carlo steps for both cases. Different
initializations with density of 70% are generated and averaged results are reported. It can be
noticed that the evolution is almost identical. Figure 3.3(b) plots the evolution of the grain
size (radius) vs. Monte Carlo steps for both cases and again, there is a complete agreement
between the two.

Figure 3.4 displays the initial configuration used for the close packing of spheres. Start-
ing from an initial density of 73.1%, both versions reach a density of 94% around 924 Monte
Carlo steps. The corresponding microstructures are included in Figure 3.5. Curves of evo-
lution of densification and grain size (radius) vs. Monte Carlo steps for both cases can be
encountered in Figure 3.6(a) and Figure 3.6(b), respectively. All the results obtained are
similar.

Next, simulation results are compared to experimental data. An input image obtained
from micrographic imaging of real powder compact of copper particles is pre-processed to
extrapolate a grain structure into the original 3D structure as explained in [10]. The out-
come, shown in Figure 3.7, is used as the starting microstructure for the simulation. Results
for the parallel implementation can be found in Figure 3.8. Results of a serial implementa-
tion of the model originally published in [10] are included in Figure 3.9 to facilitate com-
parisons. Additionally, Figure 3.10(a) and Figure 3.10(b) compare densification curves and
grain size (radius) distributions for serial and parallel versions as well as real data calculated
from the microtomographic images of Cu sintering (curves for serial and Cu sintering have
been adapted from [10]). The distribution for the parallel version is computed at 82.9 %
density, while distributions for serial and Cu sintering are calculated at 83.8% density. The

Garcia, Tikare and Plimpton 145

Table 3.2
Simulation Times in [sec]

Number of Processors
Lattice Size 1 2 4 8 16 32 64

200 × 200 × 50 1731 2211 1138 570 349 262 314
200 × 200 × 200 * * 15751 8260 4971 2519 1913
403 × 403 × 95 * * * 20660 10236 5674 3287

parallel version seems to have a rate of grain growth similar to the real data, although it has
a broader distribution with more fine grains and slightly higher component of coarser grains.
It could be that parameters chosen for the parallel version result in a slower sintering, how-
ever, investigating the causes of this difference remains a topic for future work. Overall the
microstructure evolution observed in the parallel version is comparable to that occurring in
the real system.

Finally, Table 3.2 displays average times for execution in a cluster of 32 dual Intel Xeon
processors, with 2.8 GHz and 4 GB RAM. The * indicates that the memory requirements
have exceeded the available resources in one or several nodes and that the computation could
not be done. While time savings are realized with additional processors, the scaling is not
ideal, ways to improve performance should be explored.

4. Conclusions. A parallel implementation of a Monte Carlo algorithm for 3D sintering
simulation has been described. To verify its performance, different initial configurations were
simulated and results were compared with the serial version, and when available, with exper-
imental data. There is an agreement, in the statistical sense, between the expected (serial)
and obtained (parallel) microstructure, as well as in the average grain size evolution and the
densification curves. Although the scaling in time is not ideal, due primarily to the non-local
character of the annihilation algorithm, an important advantage of the parallel version is its
ability to process a larger simulation space with capacity to include more particles and resolve
microstructures with greater local detail. Nevertheless, future efforts must be directed toward
the reduction of the overhead caused by the processing of the list of pending annihilations.

146 Parallel Monte Carlo Simulation of 3D Sintering

Fig. 2.2. 2D Schematic of vacancy annihilation. Black color denotes pores and grain boundaries; white denotes
grains. Image taken from [1].

(a) One-processor (b) Multi-processors

Fig. 2.3. Conflicting cases when updating the list of pending annihilations. Left: required updates contained
in one processor. Right: required updates crossing multiple processors.

(a) 3D View - Initial State (b) Slice - Initial State

Fig. 3.1. Initial configuration - Random Initialization. Density: 70.0%. Each grain in microstructure is
depicted with a different color. System size: 200 × 200 × 50.

Garcia, Tikare and Plimpton 147

(a) Serial - Slice - 616 MCS (b) Serial - Slice - 1231 MCS

(c) Parallel - Slice - 616 MCS (d) Parallel - Slice - 1231 MCS

Fig. 3.2. Random Initialization - Initial Density: 70%. Microstructures at 616 and 1231 Monte Carlo Steps.
Top: serial version, density: 71.3% and 85.3% respectively. Bottom: parallel version, density: 71.1% and 84.9%
respecively

(a) Relative Density (b) Grain Size (radius)

Fig. 3.3. Comparison of evolution of densification and grain size for random initialization modeled with serial
(squares) and parallel (x’s) implementations of the kMC sintering algorithm; lines are added as a guide.

148 Parallel Monte Carlo Simulation of 3D Sintering

(a) 3D View (b) Slice

Fig. 3.4. Initial configuration - Close Packing of Spheres. Density: 73.1%. System size: 200 × 200 × 200.

(a) Serial - Slice (b) Parallel - Slice

Fig. 3.5. Sintering - Close Packing of Spheres: 924 Monte Carlo steps. Left: serial version, Density: 94.8%.
Right: parallel version, density 94.7 %.

(a) Relative Density (b) Grain Size (radius)

Fig. 3.6. Comparison of evolution of densification and grain size for close packing of spheres modeled with
serial (squares) and parallel (x’s) implementations of the kMC sintering algorithm; lines are added as a guide.

Garcia, Tikare and Plimpton 149

(a) 3D View (b) Slice

Fig. 3.7. Microtomographic image with a grain structure extrapolated into the 3D structure. Density: 69.1%.
System size: 403 × 403 × 95.

(a) 3D View - 1200 MCS (b) Slice - 1200 MCS

(c) 3D View - 3600 MCS (d) Slice - 3600 MCS

Fig. 3.8. Sintering - Parallel Implementation - From Microtomographic Image. Top: 1200 Monte Carlo steps.
Density: 78.7%. Bottom: 3600 Monte Carlo steps. Density: 82.9%

150 Parallel Monte Carlo Simulation of 3D Sintering

Fig. 3.9. Sintering - From Microtomographic Image. Top: Slices through the 3D microtomographic images.
Bottom: Slices through the simulation - Serial Implementation. Image taken from [10].

(a) Relative Density (b) Grain Size Distribution (normalized radius)

Fig. 3.10. Comparison of evolution of densification and grain size for microstructure interpolated in microto-
mographic image modeled with serial (+’s) and parallel (x’s) implementations of the kMC sintering algorithm vs.
real data for Cu sintering (*); lines are added as a guide. In both figures, serial and Cu sintering information has
been adapted from [10].

Garcia, Tikare and Plimpton 151

REFERENCES

[1] M. Braginsky, V. Tikare, and E. Olevsky, Numerical simulation of solid state sintering, International Journal
of Solids and Structures, 42 (2005), pp. 621–636.

[2] A. Jagota and G. Scherer, Viscosities and sintering rates of a two-dimensional granular composite, J. Am.
Ceram. Soc., 12 (1993), pp. 3123–3135.

[3] E. Olevsky, V. Tikare, and T. Garino, Multi-scale study of sintering: A review, J. Am. Ceram. Soc., 89 (2006),
pp. 1914–1922.

[4] E. A. Olevsky, Theory of sintering: from discrete to continuum, Material Science and Engineering, R23
(1998), pp. 41–100.

[5] S. Plimpton, A. Thompson, and A. Slepoy, Spparks kinetic monte carlo simulator.
http://www.cs.sandia.gov/∼sjplimp/spparks.html.

[6] P. Raj, A. Odulena, andW. R. Cannon, Anisotropic shrinkage in particle-oriented systems – numerical simu-
lation and experimental studies, Acta Mater., 50 (2002), pp. 2559–2570.

[7] Y. Shim and J. G. Amar, Hybrid asynchronous algorithm for parallel kinetic monte carlo simulations of thin
film growth, Journal of Computational Physics, 212 (2006), pp. 305–317.

[8] K. Shinagawa, Finite element simulation of sintering process, JSME Int. J. Ser. A, 39 (1996), pp. 565–572.
[9] V. Tikare, 3d numerical simulation of solid state sintering, (2008). submitted.

[10] V. Tikare, M. Braginsky, D. Bouvard, and A. Vagnon, An experimental validation of a 3d kinetic, monte
carlo model for microstructural evolution during sintering, CIMTEC, (2009), pp. 1–8.

[11] V. Tikare, M. Braginsky, and E. Olevsky, Numerical simulation of solid-state sintering: I, sintering of three
particles, J. Am. Ceram. Soc., 86 (2003), pp. 49–53.

CSRI Summer Proceedings 2009 152

L1-MOR: AN AUTOMATED MODEL ORDER REDUCTION FRAMEWORK
BASED ON L1 NORM AND MOMENT MATCHING CONSTRAINTS

PRATEEK BHANSALI ∗ AND KEITH R. SANTARELLI †

Abstract. In this paper, we propose an automated model order reduction framework for Linear Time Invariant
(LTI) systems (including infinite dimensional systems like time delays) via nonlinear optimization techniques. This
model order reduction technique dubbed as L1-MOR is based on L1 norm minimization subject to moment matching
constraints. We use this model order reduction methodology to obtain compact models for the one dimensional heat
equation, an RLC filter with ideal transmission line and the Telegraph’s equation for RC transmission line. The finite
dimensional reduced order model generated by L1-MOR offers an excellent match for the full simulation results of
the original systems.

1. Introduction. Linear Time Invariant (LTI) systems are widely used for modeling
physical phenomena. For example, the heat flow in a one dimensional rod, or interconnects
in high speed VLSI circuits or power grid can be modeled as LTI dynamical systems. The
simulation time and storage requirement becomes unmanageable as size or order of these
systems increases. Hence, an emerging practice in the design community is to reduce the
order of these high dimensional system using Model Order Reduction (MOR) techniques.
MOR results in faster and simpler models suitable for efficient simulation. A reduced order
system is an abstract mathematical or look up table based description of the original system.
It replicates the behavior of the original system accurately while maintaining the same input
and output ports as the original system. In addition to accuracy and speed, the reduced order
model should fit well into current simulation flow. This is of particular importance when the
original system is∞-dimensional and can not fit in the current simulation flow directly.
There are several methodologies to generate reduced order models for LTI systems using
MOR. Many of these methods can be broadly classified into two major categories [1]

1. Singular Value Decomposition (SVD) based methods, and
2. Moment matching based methods (also known as Krylov subspace methods).

SVD methods computes the reduced order model based on singular values of controllabili-
ty/observability gramians of the LTI system. Examples of SVD based methods include the
Balanced Truncation first introduced in [4]. SVD methods provide a global error bound be-
tween the original and reduced order model. Additionally, SVD based methods also preserve
properties of the original model such as stability and passivity, [5]. On the other hand, mo-
ment matching based methods, like [3], obtain the reduced order model by matching moments
of original and reduced order model at specified set of frequencies. While moment matching
based reduced order model replicates the behavior of original system well at matching fre-
quencies, it provide no error bounds between the original and reduced order model at other
frequencies. Hence, an efficient method is desired which can combine the features of SVD
and moment matching based methods. It is in this context, a new framework for producing
reduced order model of LTI systems was proposed in [6]. This method produced reduced or-
der model by casting the model order reduction problem as linear programming programming
problem subject to moment matching constraints. The implementation in [6] involved a free
parameter, α (as discussed in Section 2). For a particular value of the free parameter, chosen
by the user, the problem of obtaining a reduced order model such that the peak error between
the output of reduced order model and the original system is minimized in L1 sense, can be
cast as a linear programming (LP) problem subject to moment matching constraints. Thus,
it attempts to combine the benefits of SVD and moment matching techniques. Moreover, it

∗Department of EECS, University of California at Berkeley, bhansali@eecs.berkeley.edu
†Electrical and Microsystems Modeling, Sandia National Laboratories, krsanta@sandia.gov

Prateek Bhansali and Keith R. Santarelli 153

is possible to obtain rational approximation of ∞-dimensional system using this method di-
rectly unlike the SVD based methods or moment based methods. However, this method is
inconvenient for software implementation as it requires the free parameter α ∈ C to be set
by the user. In this work, we cast the problem of L1 norm minimization based MOR subject
to moment matching constraints as a nonlinear optimization problem. This automates the
process of L1 norm minimization based MOR as the parameter α is assumed unknown and is
solved along with the minimization of L1 norm.

This paper is organized as follows: In Section 2, we review the linear programming
based framework and its shortcoming. Next, in Section 3, we reformulate the model order
reduction methodology as nonlinear optimization problem which enables automation of this
novel method of producing reduced order models. In Section 4, we generate the L1-MOR
based reduced order model for the one dimensional heat equation, an RLC filter with ideal
transmission line, and the Telegraph’s equation for the RC line. We then compare the results
with the results of the original system simulations.

2. Background. In this section, we briefly review the linear programming based frame-
work for model order reduction of the LTI systems developed in [6] based on the minimization
the L1 norm. The methodology deals with finding a real number M > 0 (preferably small)
such that

||y − yr ||∞ ≤ M||u||∞ (2.1)

for every bounded input u ∈ L∞(R+) for

L∞(R+) =

{
u : [0,∞)→ R : sup

t≥0
|u(t)| < ∞

}
(2.2)

where y(t) is the original system’s response and yr(t) is the response of a reduced order system.
The smallest value of real number M for which Eqn. (2.1) holds is given by L1 norm of the
error system ||h(t) − hr(t)||1.

||h − hr ||1 =

∫ ∞

0
|h(t) − hr(t)|dt (2.3)

where h(t) and hr(t) are the impulse response of the original and reduced order system, re-
spectively.

In [6], hr(t) was constrained to be a linear combination of a fixed set of basis functions.
Hence,

hr(t) =

N∑
k=1

akgk(t) (2.4)

where gk(t),k = 1, 2, . . . ,N, represents the elements of the Ritz basis and ak’s are scalars. The
gk(t) are given by

gk(t) = α
(αt)k−1

(k − 1)!
e−αt k = 1, 2, . . . (2.5)

with corresponding Laplace transform as

Gk(s) =

(
α

s + α

)k
k = 1, 2, . . . (2.6)

154 L1 Norm Minimization Based Automated MOR Framework

Also, in frequency domain h(t) and hr(t) are described as

H(s) = L(h(t))
Hr(s) = L(hr(t))

(2.7)

where, L is the Laplace transform operator. Hence, for this notation, the reduced order model
in the frequency domain is given as

Hr(s) =

N∑
k=1

akGk(s) (2.8)

With such an hr(t), the smallest value of M satisfying (2.1) was obtained by minimizing the
objective function

J =

∫ ∞

0
|h(t) −

N∑
k=1

akgk(t)|dt (2.9)

subject to moment matching constraints of the form

1
m!

H(m)(sl) =
1

m!

N∑
k=1

akG
(m)
k (sl) m = 0, 1, . . . (2.10)

at frequency sl. In Eqn. (2.10), left hand side represents mth moment of the original system
and right hand side represents the mth moment of the reduced order system at frequency sl. It
can be easily derived that

G(m)
k (s) =

(
α

s + α

)k
m = 0

=
(−1)mi(i + 1) . . . (i + m − 1)αk

m!

(
1

s + α

)k+m

m = 1, 2, . . .
(2.11)

Now, in [6] Eqn.(2.9) was minimized for several α’s. Note, for a constant α Eqn. (2.9)
is a linear programming problem with linear constraints given by Eqn. (2.10). This process
involved choosing a rangeA for α. This rangeAwas subsequently gridded and an LP problem
was solved for every grid point. This issue of gridding the range and solving LP’s makes the
implementation inefficient. Next, in the Section 3, we formulate the L1 norm minimization
problem of the error system h(t)−hr(t) as a nonlinear optimization problem which overcomes
this shortcoming.

3. Model Order Reduction as Nonlinear Optimization Problem. In this section, the
nonlinear formulation is sketched where model reduction problem is cast as a nonlinear opti-
mization problem subject to nonlinear moment matching constraints. Based on Section 2 the
model order reduction problem is to minimize the ||h − hr ||1, where h(t) is original model and
hr(t) is the reduced order model impulse response of the LTI system. That is,

min J =

∫ ∞

0
|h(t) − hr(t)|dt (3.1)

subject to moment matching constraints

1
m!

H(m)(sl) =
1

m!

N∑
k=1

akG
(m)
k (sl) m = 0, 1, . . . (3.2)

Prateek Bhansali and Keith R. Santarelli 155

at a frequency sl. However, Eqn.(3.1) represents a infinite time horizon optimization problem
with non-differentiable cost function over continuous time. To use the standard software
packages for optimization we modify the cost function J sequentially as follows. First to
resolve the issue of infinite horizon, we proceed as in [6].

3.1. Finite Time Horizon Approximation. Consider T > 0 such that we can rewrite
the objection function, J, as

min J =

∫ ∞

0
|h(t) − hr(t)|dt

min J =

∫ T

0
|h(t) − hr(t)|dt +

∫ ∞

T
|h(t) − hr(t)|dt

(3.3)

Now, applying the triangle inequality

|

n∑
i=1

ai| ≤

n∑
i=1

|ai| (3.4)

on the cost function we have

min J =

∫ T

0
|h(t) − hr(t)|dt +

∫ ∞

T
|h(t) − hr(t)|dt

≤

∫ T

0
|h(t) − hr(t)|dt +

∫ ∞

T
|h(t)|dt +

∫ ∞

T
|hr(t)|dt

=

∫ T

0
|h(t) − hr(t)|dt + h̄ +

N∑
k=1

|ak |

∫ ∞

T
|gk(t, α)|dt

=

∫ T

0
|h(t) − hr(t)|dt + h̄ +

N∑
k=1

|akβk(α)|

(3.5)

where,

h̄ =

∫ ∞

T
|h(t)|dt

βk(α) =

∫ ∞

T
|gk(t, α)|dt

(3.6)

In practice, T can be chosen based on h(t) such that h̄ is small. The minimum value of this
cost function provides an upper bound on the optimum value of the original cost function.

3.2. Smoothing of the Cost Function. The cost function in Eqn. (3.5) is not differen-
tiable because of absolute value function, | · |. Hence, standard gradient-based optimization
techniques which computes gradients and Hessian of the objective function can not be used
directly for minimization. Thus, we make cost function infinitely differentiable by smoothing
technique commonly used in semiconductor device models. In particular, we use tanh(·) func-
tion to smooth the non-differentiable function, | · |, which makes the L1 norm differentiable.
The tanh(·) smoothing for absolute value function is given as

|x| ≈ x tanh(Kx) (3.7)

156 L1 Norm Minimization Based Automated MOR Framework

where K is a large number. It is possible to obtain bounds on smoothed form as function
of K proving that the difference between the true absolute value function and the smoothed
function is small. Thus, the smoothed form of the cost function is given as

min J =

∫ T

0
|h(t) − hr(t)|dt + h̄ +

N∑
k=1

|akβk(α)|

≈

∫ T

0
(h(t) − hr(t)) tanh(K(h(t) − hr(t)))dt + h̄ +

N∑
k=1

akβk(α) tanh(Kakβk(α))

(3.8)

3.3. Discretization of the Cost function. Now, we discretize the continuous time axis
and turn the problem into an optimization problem solvable on a computer. There can be
many ways to discretize the real time axis, here we choose the most obvious one with uniform
step size over the interval [0,T]. If ∆ is taken as the time step size such that T = M∆ then the
cost function in (3.8) can be approximated via a Riemann sum as

min J = ∆

M∑
i=1

(h(i∆) − hr(i∆)) tanh(K(h(i∆) − hr(i∆))) + h̄ +

N∑
k=1

akβk(α) tanh(Kakβk(α))

(3.9)

where M = T
∆

. Thus, the optimization problem to be solved is

min J = ∆

M∑
i=1

(h(i∆) − hr(i∆)) tanh(K(h(i∆) − hr(i∆)))

+ h̄ +

N∑
k=1

akβk(α) tanh(Kakβk(α))

subject to
1

m!
H(m)(sl) =

1
m!

N∑
k=1

akG
(m)
k (sl)

(3.10)

where

hr(i∆) =

N∑
k=1

akgk(i∆, α) (3.11)

for i = 1, 2, . . . ,M and our decision variables are ak’s and α. It is worthwhile to mention that
these moment matching constraints are multiplied to Lagrange multipliers in the optimization
procedure.

3.4. Stability of the Reduced Order Model. For <(α) > 0, the reduced order model
produced by the L1-MOR is guaranteed to be stable. To ensure this while optimization prob-
lem is solved by the optimizer we add a linear constraint

α > 0 (3.12)

Now, we use this nonlinear optimization framework to produce guaranteed stable reduced
order models.

Prateek Bhansali and Keith R. Santarelli 157

4. Validation of Model Order Reduction Framework. In this section, we perform an
evaluation of the model order reduction framework using three examples. For each example,
a optimization problem is set up and its reduced model is generated. Details based on frame-
work developed in Section 3 are provided for the model generation and reduced order model
size. The results of the first two examples are compared with the results of LP based formu-
lation in [6]. All simulations were performed on an Intel(R) Xeon(R) 2.67GHz workstation
running Linux kernel 2.6.18 using a MATLAB simulation environment. For all the examples
to follow, the tanh(·) smoothing parameter K is chosen as 10000.

4.1. One Dimensional Heat Equation. The first example is of a semi-infinite rod de-
scribed by the half-line x ≥ 0. Let u(x, t) represent the temperature at the point x along the
rod at time t. The partial differential Eqn. (4.1)

ut(x, t) = uxx(x, t) (4.1)

is used to model one-dimensional temperature evolution along the rod. Now, a problem of
practical interest can be the temperature u(x = L, t) at position x = L, t ≥ 0 given temperature
at u(x = 0, t). For L = 1, with an initial temperature distribution u(x, 0) = 0, x ≥ 0 and
boundary constraint, u(∞, t) = 0, t ≥ 0, this corresponds to a transfer function

H(s) =
U(1, s)
U(0, s)

= e−
√

s (4.2)

where U(·, s) represents Laplace transform of the u(·, t). The corresponding impulse
response is given by

h(t) =
1
√

4πt3
e−

1
4t , t > 0 (4.3)

Note that the transfer function H(s) described by equation (4.2) is infinite dimensional and
can not be expressed as rational function of s. Because of this reason conventional LTI
MOR techniques can not be used to obtain a reduced order model of such systems directly.
However, with the L1-MOR we can obtain rational approximation of H(s) in an automated
fashion directly.

Using the procedure described in Section 3 we obtain a reduced order model of size 10 for
this system with additional property that the DC gain of the reduced order model and original
model match. With an initial guess α0 = 51, the final value of α minimizing the L1 norm was
found to be 0.48 by the L1-MOR. This value of α bounds the error system norm ||h − hr ||1
by 0.21. Hence for any bounded input x(t), we are guaranteed that |y(t) − yr(t)| ≤ 0.21||x||∞.
Fig. 4.1(a) shows the impulse response of the reduced order model and the original system.
Corresponding to this, Fig. 4.1(b) shows the step response of the reduced and the original
system. It can be easily verified that the maximum deviation is less than 0.21 between the
output of the reduced order system and the original system as guaranteed by L1-MOR and that
their steady state responses converges to one. The value of α was obtained to be 0.5 using the
gridding procedure and solving an LP for every grid point in [6] and min(|h(t) − hr(t)|1) was
found to be 0.206. Hence, we obtain approximately the same bounds on L1 norm using the
nonlinear formulation in an automated fashion.

In the nonlinear formulation, the objective function and constraints are non-convex in
nature. Hence, a global optimum is not guaranteed by the optimizers starting from any initial
guess of unknowns, ak’s and α. Therefore, we start with different initial guess for α (initial
guess for {ak}

10
k=1 was set to be zero) and see the robustness of the method. Fig. 4.2 shows the

results obtained starting with different initial guess for α. It can be seen that we obtain similar
results as obtained before for a wide range of initial guess.

158 L1 Norm Minimization Based Automated MOR Framework

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time, t (s)

A
m

pl
itu

de

One Dimensional Heat Equation

L1/Moment−matching Impulse Response

Exact Impulse Response

(a) Impulse Response

0 100 200 300 400 500 600 700 800 900

0.2

0.4

0.6

0.8

1

1.2

1.4

Time, t (s)

A
m

pl
itu

de

One Dimensional Heat Equation

Exact Step Response

L1/Moment−matching Step Response

(b) Step Response

Fig. 4.1. Comparison of the impulse responses of original and reduced order model for 1-D heat equation

4.2. RLC Filter with Time Delay. The second example is of a RLC bandpass filter
along with an ideal transmission line. The ideal transmission line provides a time delay,
tD = 1. For R = 1,C = 1/10001, L = 1, the transfer function of the circuit shown in Fig. 4.3
is given as

H(s) =
Vout(s)
Vin(s)

= e−s 2s
(s + 1)2 + 10, 000

(4.4)

with corresponding impulse response as

h(t) = e−(t−1)(2 cos 100(t − 1) − 0.02 sin 100(t − 1)) t ≥ 1
= 0 t < 1

(4.5)

We apply the L1-MOR to find a rational, reduced order model of this infinite dimensional
system subject to constraint that H(100 j) = Hr(100 j), i.e., the response of the reduced order

Prateek Bhansali and Keith R. Santarelli 159

0 10 20 30 40 50 60 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α
0

α f,
m

in
(|

|h
−

h r|| 1)

min(||h − h
r
||

1
)

α
f

Fig. 4.2. Optimized L1 norm with different initial guess, α0, for one dimensional heat equation

L

R

C

inV (t)
Vout

+
-

+

-
t

D

Fig. 4.3. RLC bandpass filter with an ideal transmission line

model and the original model matches at the resonant frequency. Note that the impulse re-
sponse of the original system is oscillatory in nature. Hence, we choose to approximate the
impulse response of the original system by the basis of the following form

Gk(s) =

(
α

s + α + jω

)k

k = 1, 2, . . . ,N (4.6)

This corresponds to the fact that we approximate the original impulse response by

hr(t) =

N∑
k=1

(a2k−1g2k−1(t) + a2kg2k(t)) (4.7)

where

g2k−1(t) = α
(αt)k−1

(k − 1)!
e−(αt) cos(ωt)

g2k(t) = α
(αt)k−1

(k − 1)!
e−(αt) sin(ωt)

(4.8)

for k = 1, 2, . . . ,N. Using a 12th order model and with an initial guess as α0 = 1 and ω0 = 50,
the L1-MOR gives us α = 4.108 and ω = 100.04. With these values L1 norm ||h − hr ||1 is

160 L1 Norm Minimization Based Automated MOR Framework

bounded by 0.229. Fig. 4.4(a) shows the impulse response of the reduced order model and
the original system. Corresponding to this, Fig. 4.4(b) and Fig. 4.4(c), shows the response of
the reduced and the original system driven by sinusoidal signal cos(2π100t). It can be seen
that there is an excellent match between the waveforms generated by the L1-MOR generated
reduced order model and by the original system simulation. Specifically, the reduced order
model waveforms matches exactly with the original system at matching frequency in the
steady state (Fig. 4.4(c)) which is expected because of the moment matching constraint.

In [6], the value of ω was fixed to be 100 and gridding procedure was applied on α and
subsequently solving an LP for every grid point. The value of α was obtained to be 3.25
and min(|h(t) − hr(t)|1) was found to be 0.297. Hence, we similar bounds on L1 norm using
the nonlinear formulation in an automated fashion. To see the robustness of the method, we
start with different initial guesses for α and ω (initial guess for {ak}

24
k=1 was set to be zero).

Fig. 4.5 shows the results obtained starting with different initial guess for α. In Fig. 4.5, the
blue dots corresponds to the failed results obtained from nonlinear formulation and the red
dots corresponds to the success of the nonlinear formulation based method. The failed results
are defined for which the minimum L1 norm is unacceptable. For example, in this case we
declare the non linear formulation as failure when min(|h(t) − hr(t)|1) > 0.27. Clearly, as it
can be seen in Fig. 4.5, the total success rate is high and is about 89% for various initial guess
for α and ω.

4.3. RC Transmission Line. Our last example is of an RC transmission line. Trans-
mission lines are used to model interconnects in VLSI circuits. Circuit simulators, such as
SPICE, models the transmission line as a lumped model. The lumped model consist of RC
ladder with hundreds of RC block. This lumped model approximation of transmission line is
useful for early design exploration however when more accuracy is desired distributed model
should be used[7]. We start directly from the distributed model to obtain Telegraph’s equa-
tion accurately describing the transmission line. But, the Telegraph’s equation gives rise to
an irrational transfer function and hence conventional MOR techniques can not be applied
directly. However, with L1-MOR we can directly obtain a reduced order model from Tele-
graph equation’s. For a transmission line driven by a voltage source with source resistance
Rs = 100Ω having resistance per unit length as r = 0.0075Ω/µm, capacitance per unit length
as c = 0.038 f F/µm, length l = 3000µm and load capacitance value CL = 0.01pF the transfer
function from input voltage source to voltage on load capacitance is given by H(s) in Eqn.
(4.9).

ZL(s) =
1

sCL
, Z(s) =

r
sc
, Zs(s) = Rs, Y(s) =

1
Z(s)

γ(s) =
√

src,

H(s) =
ZL(s)[

sinh(γ(s)l)(ZL(s)Zs(s)Y(s) + Z(s)) + cosh(γ(s)l)(Zs(s) + ZL(s))
]

(4.9)

This is an irrational transfer function and it is difficult to obtain the corresponding im-
pulse response of the transmission line analytically or based on inverse Laplace transform
tables. Therefore we use an IFFT based technique, outlined in [2], to obtain the impulse re-
sponse numerically. Using a 20th order model, the L1-MOR gives us L1 norm (||h−hr ||1) to be
bounded by 0.0528. Fig. 4.6(a) shows the impulse response of the reduced order model and
original system. Corresponding to this, Fig. 4.6(b) shows the step response of the reduced
and the original system. Clearly, the reduced order model provides an excellent match for the
waveforms obtained using the original system simulation.

Prateek Bhansali and Keith R. Santarelli 161

0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time, t (s)

A
m

pl
itu

de

RLC Filter with Time Delay

L

1
/Moment−matching Impulse Response

Exact Impulse Response

(a) Impulse Response

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time, t (s)

A
m

pl
itu

de

RLC Filter with Time Delay

Exact Response

L1/Moment−matching Response

(b) Sinusoidal Input Response

5.58 5.6 5.62 5.64 5.66 5.68 5.7 5.72 5.74 5.76
−1

−0.5

0

0.5

1

Time, t (s)

A
m

pl
itu

de

RLC Filter with Time Delay

Exact Response

L1/Moment−matching Response

(c) Sinusoidal Input Response Zoomed

Fig. 4.4. Comparison of the impulse responses of original and reduced order model for RLC filter

162 L1 Norm Minimization Based Automated MOR Framework

0
50

100

1
2

3
4

5

0.5

1

1.5

2

2.5

m
in

(||
h−

h
r|| 1)

ω
0

α
0

Success
Failure

Fig. 4.5. Optimized L1 norm with different initial guess, (α0, ω0), for the RLC filter

0 2 4 6 8 10

x 10
−11

0

1

2

3

4

5

6

7

x 10
10 Transmission Line

Time, t (s)

A
m

pl
itu

de

Exact Impulse Response
L1/Moment−matching Impulse Response

(a) Impulse Response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−10

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Transmission Line

Time, t (s)

A
m

pl
itu

de

Exact Step Response
L1/Moment−matching Step Response

(b) Step Response

Fig. 4.6. Comparison of the impulse responses of original and reduced order model for RC transmission line

5. Conclusions and Future Work. We proposed an automated model order reduction
framework called L1-MOR for linear time invariant (LTI) systems (including the infinite di-
mensional systems) via nonlinear optimization techniques. The reduced order model gener-
ated by L1-MOR of the one dimensional heat equation, an RLC filter and an RC transmission
line offer an excellent match for the exact simulation results of the original infinite dimen-
sional system.

Our future work would involve to use L1-MOR for lossy RLGC transmission line, cou-
pled transmission line networks, and including passivity constraints in the current model order
reduction framework.

6. Acknowledgements. The authors would like to thank the following: Eric Keiter,
Todd Coffey, Heidi Thornquist, Denis Ridzal and Pavel Bochev (Sandia National Laborato-
ries) for valuable discussions related to the work.

REFERENCES

[1] A. C. Antoulas, D. C. Sorensen, and S. Gugercin, A survey of model reduction methods for large-scale systems,
Contemporary Mathematics, 280 (2001), pp. 193–219.

Prateek Bhansali and Keith R. Santarelli 163

[2] P. Gomez and F. A. Uribe, The numerical laplace transform: An accurate technique for analyzing electromag-
netic transients on power system devices, International Journal of Electrical Power and Energy Systems,
31 (2009), pp. 116–123.

[3] E. J. Grimme, Krylov projection methods for model reduction, tech. rep., 1997.
[4] B. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction,

Automatic Control, IEEE Transactions on, 26 (1981), pp. 17–32.
[5] J. Phillips, L. Daniel, and L. Silveira, Guaranteed passive balancing transformations for model order re-

duction, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 22 (2003),
pp. 1027–1041.

[6] K. R. Santarelli, A framework for reduced order modeling with mixed moment matching and peak error ob-
jectives, SANDIA REPORT, (2009).

[7] B. Wong, A. Mittal, Y. Cao, and G. W. Starr, Nano-CMOS Circuit and Physical Design, John Wiley and
Sons, 2004.

164 CSRI Summer Proceedings 2007

Z. Wen and S.S. Collis 165

Architecture and Systems Software

Articles in this section discuss advances in high–performance computing architectures
and systems software that enhance performance of real–world scientific and engineering ap-
plications. Topics include new enhancements to the MPI message passing library that can
take advantage of multi-core processors; managing failures in every-increasingly complex
high performance computing systems; and developing effective tools to model and simula-
tion next generation computing systems.

Z. Wen
S.S. Collis

January 11, 2010

166 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2009 167

AN API FOR SMARTMAP AND ITS APPLICATIONS

RON BRIGHTWELL, ZHAOFANG WEN∗ AND JUNFENG WU, LIANG ZHAO†

Abstract. SMARTMAP is a special operating system capability that enables processes of an application running
on a multi-core processor to directly access each other’s data in the on-node shared memory. This paper presents
an API to expose the SMARTMAP capability to the application programmers, so that they can write algorithms to
directly control data exchange between processes running on the same node. Data exchange across nodes still uses
message-passing (e.g MPI) over the network. In comparison, MPI programmers on multi-core clusters treat all the
inter-process data exchanges the same way; it is up to MPI to separate and schedule the on-node traffic (serviced by
shared memory) and the network traffic (serviced by network communication). The SMARTMAP API is compatible
with MPI; when used together, they provide more opportunities than MPI alone for algorithms to exploit both the
parallelism at the cores and the parallelism between the nodes. Algorithms that express the inherent parallelism
in the application problem in two levels (two-level algorithms) would be well-suited; but algorithms expressing
parallelism in one level (one-level algorithm) can also benefit from programming in MPI plus SMARTMAP API.
For performance comparison of MPI alone vs. MPI plus SMARTMAP API, data from several micro applications
are presented.

1. Introduction. The main trend of computer processor development since 2005 has
turned from increasing working frequency to increasing the number of cores on a chip. And
the core count on processors used for high performance computing continues to increase,
which will double every two to three years based on the prediction of the 2007 International
Technology Roadmap for Semiconductors(ITRS)[1]. This hardware trend demands funda-
mental changes in parallel software, including programming environments to suit the new
architecture and ways to design efficient parallel algorithms and applications.

Cluster computing is the main form of parallel computing. To look into how multi-
core processors affect cluster computing, we investigate the communication of multi-core
computer. The target architecture is such a cluster that its nodes are equipped with multi-core
processors and each core of these many-core processors is as functional as a whole mono-
core processor in the past. Note that on each node, the multiple processor cores use the
same Network Interface Controller(NIC), causing large contentions that significantly slow
down the communication. So it is necessary that the software consciously instructs these
cores to alleviate these contentions. Furthermore, the fact is that the communication between
two cores of the same node has no need to flow through the NIC since the on-node shared
memory can serve the purpose much better, as long as the software consciously informs the
cores to exploit it. There is much previous work on how to utilize the multi-core cluster for
high performance computing, especially based on MPI. For example, a hybrid MPI/OpenMP
parallel programming model is one of proposed solutions to this issue [8]. It uses OpenMP for
parallelization inside the node and MPI for message passing between nodes. However, from
a programmer’s point of view, traditional MPI ignores the fact that cores inside a single node
work on shared memory. It can be employed right away on the multi-core cluster without
changes to existing code, which saves a lot of work while on the other hand, it certainly adds
to overhead since all communication between processes on the same node goes through the
MPI software layers. Thus a lot of work has been done using shared memory for intra-node
MPI communications.

A recently introduced operating system capability, Simple Mapping of Address Region
Tables for Multi-core Aware Programming, or SMARTMAP[4, 2], provides an efficient way
in which applications access on-node shared memory. This scheme offers us an opportu-
nity to alleviate the network contentions and exploit the on-node shared memory, granting

∗Sandia National Laboratories,{rbbrigh,zwen}@sandia.gov,
†Syracuse University, {juwu, lzhao04}@syr.edu

168 An API for SMARTMAP and Its Applications

the parallel programs the ability to consciously unleash the computing power of a multi-
core cluster. Kevin Pedretti and Ron Brightwell have modified an MPI implementation using
SMARTMAP and proved that the SMARTMAP capability is able to deliver significant per-
formance improvements for MPI point-to-point and collective operations.

This paper presents an API to expose the SMARTMAP capability to the application
programmers, so that they can write algorithms to directly control data exchange between
processes running on the same node. Data exchange across nodes still uses message-passing
(e.g MPI) over the network. In comparison, MPI programmers on multi-core clusters treat
all the inter-process data exchanges the same way; it is up to MPI to separate and schedule
the on-node traffic (serviced by shared memory) and the network traffic (serviced by network
communication). The SMARTMAP API is compatible with MPI; when used together, they
provide more opportunities than MPI alone for algorithms to exploit both the parallelism at
the cores and the parallelism between the nodes. Algorithms that express the inherent paral-
lelism in the application problem in two levels (two-level algorithms) would be well-suited;
but algorithms expressing parallelism in one level (one-level algorithm) can also benefit from
programming in MPI plus SMARTMAP API. For performance comparison of MPI alone vs.
MPI plus SMARTMAP API, data from several micro applications are presented.

Section 2 begins with a brief description of SMARTMAP. Section 3 describes the func-
tion and the design of this MPI extension. And Section 4 provides some implementations on
two-level algorithm using this MPI extension.

2. SMARTMAP. SMARTMAP [2, 4] is a virtual memory mapping technique in the
operating system that allows for direct access shared memory between the processes running
on a multi-core processor. It is implemented in the Catamount lightweight kernel for the Cray
XT [3]. The Catamount lightweight kernel is a third-generation compute node operating sys-
tem developed by Sandia National Laboratories and Cray, Inc., as part of the Sandia/Cray Red
Storm projects. Catamount has several unique features that are designed to optimize perfor-
mance and scalability specifically for a distributed memory message passing-based parallel
computing platform.

SMARTMAP takes advantages of the fact that Catamount only uses a single entry in
the top-level page table mapping structure (PML4) on each X86-64 (AMD Opteron or Intel
EM64T) core. Each PML4 slot covers 39 bits of address space, or 512 GB of memory.
Normally, Catamount only uses the first entry covering physical addresses in the range 0x0
to 0x007FFFFFFFFF. The X86-64 architecture supports a 48-bit address space, so there are
512 entries in the PML4.

Each core writes the pointer to its PML4 table into an array at core 0 startup. Each time
the kernel enters the routine to start a new context, the kernel copies all of the PML4 entries
from every core into every other core. This allows every process on a node to see every other
process’s view of the virtual memory across the node, at a fixed and easily computed offset
into its own virtual address space.

SMARTMAP also takes advantages of Catamount’s physically contiguous address space
mapping and the fact that the address mappings are static. This means that the virtual address
of local variables within a SPMD (Single Program Multiple Data) program is the same every-
where. The following runtime can be used for converting a local virtual address into a remote
virtual address for a process on a different core:

s t a t i c i n l i n e vo id ∗ r e m o t e a d d r e s s (u n s i g n e d core , vo id ∗ vaddr)
{

u i n t p t r t add r = (u i n t p t r t) add r ;
add r |= ((u i n t p t r t) (c o r e + 1)) << 3 9 ;
r e t u r n (vo id ∗) add r ;

}

Ron Brightwell, Zhaofang Wen, Junfeng Wu and Liang Zhao 169

In other words, a SMARTMAP address is an integer with 64 bits, in which the lower 39
bits hold the private address of the region in the process allocating it, while the higher bits are
set to the core IDs of the region-allocating process plus 1, to distinguish the SMARTMAP
addresses from private address. For example, for an on-node shared memory region allocated
by core 3 and having private address 0x80465a8b on that core, the SMARTMAP address is
0x80465a8b + 239(3 + 1) = 0x020080465a8b.

3. A SMARTMAP API and Extensions. This SMARTMAP API is developed for two
purposes: (1) we provide this SMARTMAP API to explore ways for applications to use the
SMARTMAP capability directly, through library interfaces that allow processes to do direct
remote loads and stores. (2) SMARTMAP only works for static variables and we will extend
it to dynamic variables.

3.1. Design and Specification of The SMARTMAP API. This SMARTMAP API in-
cludes three basic operations for an on-node shared memory region: (i) remote get of data in
a region, (ii) remote put of data in a region, and (iii) fetching remote array address. Extended
from the basic SMARTMAP capability, these API functions are applied to both static and
dynamic variables in different ways. For a static variable, these functions are just the direct
application of SMARTMAP. Two other operations, allocate() and free(), are available for dy-
namic variables. In order to support these operations on a dynamic variable, a special static
data structure, called SMARTMAP REGION TABLE, is used in the library to implement
this function. (Note: One such special table is maintained on each core.) The SMARTMAP
REGION TABLE records the location of dynamically allocated space, by region ID, which is
also used by the library to find the dynamic space when the API functions are called. Specif-
ically, the basic API functions are listed below.

vo id S M A P i n i t i a l i z e (i n t ∗ argc , c h a r ∗∗ a rgv) ;
I n i t i a l i z e t h e SMAPMAP e n v i r o n m e n t . Must c a l l t h i s
f u n c t i o n b e f o r e t h e SMAPMAP e x t e n s i o n f u n c t i o n s a r e
a p p l i e d . I t i s on ly c a l l e d once f o r
each program .

vo id SMAP f ina l i ze () ;
Wrap up t h e SMAPMAP a p p l i c a t i o n s . C a l l t h i s f u n c t i o n
a t t h e end of SMAPMAP e x t e n s i o n f u n c t i o n s . I t i s c a l l e d
on ly once f o r each program .

vo id ∗ SMAP al loca te (i n t r e g i o n i d , s i z e t s i z e) ;
By c a l l i n g t h i s f u n c t i o n , a p r o c e s s (c o r e) a l l o c a t e s
a p i e c e o f dynamic s p a c e o f ’ s i z e ’ ; and t h i s s p a c e i s
r e g i s t e r e d wi th t h e ’ r e g i o n i d ’ .

vo id SMAP free (i n t r e g i o n i d) ;
De− a l l o c a t e t h e dynamic s p a c e by ’ SMAP al loca te () ’ a s
r e f e r r e d by ’ r e g i o n i d ’ .

vo id SMAP put to (boo l i s d y n a m i c , i n t c o r e i d , i n t r e g i o n i d ,
u i n t p t r t o f f s e t , vo id ∗ da ta , s i z e t s i z e) ;

Copy (t h i s core ’ s) ’ da t a ’ t o remote ’ c o r e i d ’ a t s p a c e
’ r e g i o n i d ’ . The c o p i e d d a t a i s p u t t o t h e p o s i t i o n
’ o f f s e t ’ and i s has ’ s i z e ’ .

vo id SMAP get from (boo l i s d y n a m i c , i n t c o r e i d ,
i n t r e g i o n i d , u i n t p t r t o f f s e t , vo id ∗ da ta , s i z e t s i z e) ;

Copy remote d a t a from ’ c o r e i d ’ a t s p a c e ’ r e g i o n i d ’
i n t o l o c a l v a r i a b l e ’ da t a ’ . The d a t a c o p i e d s t a r t s
from ’ o f f s e t ’ and i s w i th l e n g t h ’ s i z e ’ .

170 An API for SMARTMAP and Its Applications

vo id ∗ SMAP ar ray addres s (boo l i s d y n a m i c , i n t c o r e i d ,
i n t r e g i o n i d) ;

Get t h e a d d r e s s o f t h e remote d a t a on c o r e i d
r e g i s t e r e d wi th r e g i o n i d . The a d d r e s s r e t u r n e d can
be used l o c a l l y j u s t l i k e a l o c a l a r r a y a d d r e s s .

In addition to the basic API functions for the SMARTMAP, there are some useful utility
functions, listed below.
i n t SYS proc coun t () ;

Th i s f u n c t i o n r e t u r n s t h e t o t a l number o f p r o c e s s e s
i n t h e program , which i s a l s o t h e t o t a l number o f
c o r e s i n t h e SPMD program .

i n t SYS node count () ;
Th i s f u n c t i o n r e t u r n s t h e t o t a l number o f nodes used
by t h e program .

i n t S Y S c o r e c o u n t () ;
Th i s f u n c t i o n r e t u r n s t h e t o t a l number o f c o r e s on t h i s node .

i n t SYS my proc id () ;
Th i s f u n c t i o n r e t u r n s an i n t e g e r , be tween 0 and
SYS proc coun t − 1 , a s s i g n e d t o each p r o c e s s .
And i t e q u a l s t o (SYS node id ∗ S Y S c o r e c o u n t + S Y S c o r e i d) .

i n t SYS my node id () ;
Th i s f u n c t i o n r e t u r n s an i n t e g e r between 0
and SYS node count − 1 , a s s i g n e d t o each node
used i n t h e program .

i n t SYS my core id () ;
Th i s f u n c t i o n r e t u r n s an i n t e g e r between 0
and S Y S c o r e c o u n t − 1 , a s s i g n e d t o each
c o r e on each node .

MPI Comm SYS proc comm () ;
Th i s f u n c t i o n r e t u r n s an communica tor f o r a l l o f t h e
p r o c e s s e s i n t h e program . Th i s i s j u s t a wrapper o f
t h e MPI communica tor .

MPI Comm SYS node comm () ;
Th i s f u n c t i o n r e t u r n s an communica tor f o r a l l o f
t h e c o r e s on t h e same node .

vo id S Y S b a r r i e r n o d e () ;
Th i s f u n c t i o n r e t u r n s a b a r r i e r f o r a l l o f t h e
c o r e s on t h e same node .

3.2. One Example of Extension to This SMARTMAP API. We want to mention that
the APIs listed above are just the basic functions that we need for the communication of two
cores. But it also provides us some opportunities to create other more complex functions
based on those API’s. To end this section, we would like to present an example using these
basic SMARTMAP API functions to create the on-node barrier, the barrier for all of the
cores on the same node. For the well structured two-level algorithm, it is necessary to use
an on-node barrier synchronization to control processes. This SMARTMAP API provides
a mechanism for users to synchronize the processing on the same node without using NIC.
Here is an example to show how to create such a barrier. We can create an array, in which
each array element corresponds to a core on the node, with the array elements all initialized
to 0, serving as a flag to the status of the corresponding cores. According to these flags, we

Ron Brightwell, Zhaofang Wen, Junfeng Wu and Liang Zhao 171

can lock and unlock each of these cores. And this idea can also be applied to create a barrier
synchronization for any subgroup of the cores on the same node. The algorithm to implement
this barrier is given below.

Input: The list of the IDs of the cores to participate in the barrier synchronization (this
can be an array containing the IDs of the cores).

Output: None.
Extensions to the Basic API: Function SMAP initialize() dynamically creates a special

vector (”barrier vector”) and another variable (”message”) using two special ”region IDs”
that are constants visible to the API users. The element count of the special vector is equal to
the number of cores on the node; and every element is initialized to 0. Variable ”message” is
initialized to false.

Algorithm
• For the first core,

– Scan its own ”barrier vector”. It will not scan the next element until the current
element is modified to 1.

– Set its own ”message” to be true.
• For the other cores, do the followings in parallel,

– use SMAP−put−to− to modify the corresponding element of the the ”barrier
vector” on the first core to 1.

– use SMAP−get−from− to get the value of variable ”message” from the first core
repeatedly until the result is ”true”.

4. Applications. This SMARTMAP API enables direct data access between cores on
the same node. Combining MPI and SMARTMAP API supports algorithms with one-level
parallelism or two levels of parallelism. For experiment and performance comparison with
pure MPI, we implemented three parallel micro applications. The first one application, Ja-
cobi Solver, is based on an algorithm with one-level parallelism. The second application
is Conjugate Gradient solver(CG). For the MPI implementation, the CG algorithm used has
one-level of parallelism; every core is treated by MPI as if the core is a standalone node. The
(MPI + SMARTMAP API) implementation of CG is based on a two-level parallel algorithm,
data exchange between cores on the same node is done using the SMARTMAP API; while
communication between nodes is done using MPI, with one core per node for handling the
communication traffic for the node. The third application is Matrix-Vector multiply for dense
matrix; the MPI implementation is based on an algorithm with one-level of parallelism; and
the (MPI + SMARTMAP API) implementation is based on an two-level parallel algorithm.

4.1. Machine Platform. The Red Storm qualification system is a single-cabinet Cray
XT3/4 system with 80 compute nodes. Approximately half of the nodes have AMD Opteron
2.2 GHz quad-core processors with 4GB of DDR2 667 MHz memory per node. The other
compute nodes have 2.4 GHz dual-core processors. The system runs UNICOS 2.0.62 and the
compute nodes run the Catamount N-Way light weight kernel operating system.

4.2. Application 1: Jacobi Solver. The Jocobi method is an iteration method to solve
discrete Poisson equation. The domain of the Poisson equation solved here is a [0, 1] ∗ [0, 1]
square in 2-D space. For the simple algorithm introduced in [6], the [0, 1] ∗ [0, 1] square
is divided into a N ∗ N mesh. And each process is responsible to compute one part of the
points in this mesh. Each process has to exchange data, those so called ghost points, with
its neighborhoods at each iteration step. We realized that this algorithm involves a lot of
point-to-point communications. And most of these point-to-point communications are ac-
tually between two cores on the same node, which gives us an opportunity to improve the
performance using this SMARTMAP API. Here, the two implementations using MPI and us-

172 An API for SMARTMAP and Its Applications

ing (MPI + SMARTMAP API) are based on the same algorithm with one level of parallelism.
The difference is that in the (MPI + SMARTMAP API) implementation, data exchange with
the ghost-points on the same processing node is done using the SMARTMAP API; while data
exchange with ghost-points on different processing nodes is done using MPI. We expected a
better performance using this SMARTMAP API based on the advantages of SMARTMAP.

Fig. 4.1. Execution time and the scaling of the Jacobi method

However, seen from figure 4.1, there is basically no difference between the performance
using MPI only and the application using (MPI + SMARTMAP API). We think the reason
is that we apply the MPI algorithm directly to the application of this SMARTMAP API.
And the MPI probably has been optimized for the point-to-point communication on the same
node. The other reason is that the communication pattern in this algorithm is very regular and
not too much data is involved in the communication. Thus there is not too much contention
in NIC. So this test tells us that to fully utilize this SMARTMAP API and take advantage
of the on-node shared memory, we need to design the more delicate and efficient two-level
algorithms.

4.3. Application 2: Conjugate-Gradient Solver. Designing an efficient two-level al-
gorithm is not easy. The first two-level algorithm we provide here is the Conjugate Gradi-
ent(CG) solver for sparse matrix. The conjugate gradient method is an iterative method, so it
can be applied to sparse systems that are too large to be handled by direct methods such as
the Cholesky decomposition [5]. And the parallel algorithm for CG is also widely studied,
such as in [7]. The linear system solved in this program is from the diffusion problem on
3D chimney domain by a 27 point implicit finite difference scheme with unstructured data
formats and communication patterns. There are three basic algebra operations in CG, sparse
matrix-vector multiplication, vector inner product and saxpy. Saxpy is embarrassingly par-
alleled while there is no communication among different processes in this step. Vector inner
product is also very well formulated in MPI, which can be done by a single function call
MPI−Reduce and the communication is also very regular. Thus, in our two-level CG algo-
rithm, we do not change anything in these two operations compared to MPI. We focus on the

Ron Brightwell, Zhaofang Wen, Junfeng Wu and Liang Zhao 173

most time-consuming step in this method, sparse matrix-vector multiplication. In the MPI
implementation, each process bundles up the communication messages before sending them
over the network. And each process will probably communicate with any other process due
to the irregularity of the sparse matrix. In our two level algorithm, we choose only one core
on each node to communicate with other nodes to release the burden of NIC and reduce the
communication cost. Thus the data on one node is actually stored on one core, which is re-
sponsible for communication. And other cores on each node will do their own computation
and use the SMARTMAP API to move the data between cores on the same node. Specifically,
the two-level sparse matrix-vector multiplication algorithm is described as the following:

• The data of one node is stored on only one core of the node. Each core uses a
SMAP−dynamic− address to refer to the data it operates to and does some work to
bundle the communication information.

• Only the core storing data on each node does the communication.
• Each core uses SMAP−dynamic− address again to refer to the data assigned to it and

does the computation.
Thus, this algorithm is still work balanced considering each process will do the same

work including bundling communication messages and doing computations, though it is not
storage balanced. This strategy reduces the total number of communication and we do expect
some performance improvement from this two-level algorithm. We apply both of two-level
algorithm and the MPI algorithm to different sizes of matrix with the same structure.

Fig. 4.2. Execution time of CG solver for different sizes of sparse matrix

However, from figures 4.2 and 4.3, we can see that the implementation using (MPI +

SMARTMAP API) is actually slower than the MPI implementation, especially for the smaller
size of matrix. To explore the reasons for this, let us look at the major differences of these two
algorithms. In the (MPI + SMARTMAP API) implementation, one core (the communicating
core) on each node is responsible for calling MPI to do remote data transfer, but before that,
there is one step: all the cores on the node are responsible for preparing the data bundles; the
prepared bundles are then moved to a memory region for the communicating core to invoke
MPI to do the remote data transfer. This preparation step requires one barrier synchronization.

174 An API for SMARTMAP and Its Applications

Fig. 4.3. Scaling of CG solver for different sizes of sparse matrix

Our explanation for the reason why (MPI + SMARTMAP API) implementation is slower is
because the saving in avoid the contention in the NIC by cores (as in the MPI implementation)
is probably outweighed by the cost of this extra core-level synchronization.

4.4. Application 3: Matrix Vector Multiplication. The third application is a Matrix-
Vector multiplication. Its algorithm can take full advantage of the two level parallelism,
which is readily supported by the (MPI + SMARTMAP API). For this parallel operation, each
process will store one part of the vector and we need to carry out an all-to-all communication
before computation. Thus every process needs to send and receive information from every
other core. This is a very complicated collective communication. Though it can be done by
one MPI call MPI−Alltoall in the one level algorithm, there is much improvement that can
be done to take more benefits from the multi-core cluster. We adopt the fancier two-level
algorithm appeared in [9] in our implementation of (MPI + SMARTMAP API). Specifically,
for an all-to-all collective communication performed on n cores of a cluster, which has P
cores on every node, it can be broken down to the following three steps.
Step 1 let the cores on each node aggregate their outgoing messages into n-1 aggregated

messages according to the receiver nodes, and label these outgoing aggregated mes-
sages with indices 0,1, ... , n-2. This is an inter-node communication, which can be
done using this SMARTMAP API.

Step 2 in the inter-node communication, let core l(l = 0, 1, ...P− 1) send the outgoing aggre-
gated messages of indices

i : [(n − 1)l/P] < i < [(n − 1)(l + 1)/P]

and receive the incoming aggregated messages from the receiver nodes of these out-
going aggregated messages. This can be done using the common MPI receive and
send calls.

Step 3 let the cores on each node to distribute the incoming messages and the intranode

Ron Brightwell, Zhaofang Wen, Junfeng Wu and Liang Zhao 175

messages according to the receiver cores. Again, all of the communications involved
in this step are intra-node communications, which SMARTMAP API can realize
very well.

Fig. 4.4. Execution time of different sizes of matrix vector multiply

Fig. 4.5. Scaling of different sizes of matrix vector multiply

The comparison of the one level algorithm using MPI and the two-level algorithm using
(MPI + SMARTMAP API) is shown in figures 4.4 and 4.5. We can see that the two level
algorithm using (MPI + SMARTMAP API) receives a much better result compared to MPI

176 An API for SMARTMAP and Its Applications

algorithm. And the advantage increases dramatically as the number of cores increases. The
reason is that we regularize the all-to-all communication into three steps as shown above.
And the NIC is not involved in the first and last step, which is realized by the SMARTMAP
API. Considering that this all-to-all communication pattern is complicated and the number of
messages communicated is large, our two-level algorithm significantly releases the burden of
NIC and thus has a better result.

5. Concluding Remarks. We have presented an API for SMARTMAP and serveral ap-
plications, which are implemented using (MPI + SMARTMAP API), based one-level and
two-level parallel algorithms. These implementations are compared for performance against
the MPI implementations (based on one-level algorithms). For the dense matrix-vector multi-
ply problem, which has a two-level algorithm, the implementation using (MPI + SMARTMAP
API) is several times faster than the MPI version. However, in the CG Solver for a very sparse
matrix, which also has a two-level algorithm, the implementation using (MPI + SMARTMAP
API) does not have clear performance advantage, probably because there is not enough inter-
core data traffic for the benefit of SMARTMAP to outweight the overhead of an extra syn-
chronization needed in the parallel phase in which cores on the same node work together in
computation and intra-node data exchange. For the Jacobi Solver based on a one-level algo-
rithm, the implementation using (MPI + SMARTMAP API) only shows slight performance
gain over the MPI implementation.

Overall, it seems that very significant application performance gain can be obtained if the
application is implemented using a two-well algorithm to map to two levels (core-level and
node-level) of parallelism of the architecture, and there is enough data exchange. Otherwise,
the performance benefit is not significant. Since the experiments are done on a machine
with a cluster of quad-core processors, it remains to be seen whether consistent significant
performance gains can be achieved on a cluster of processors with many cores, say 16 and
beyond. Another interesting area of research is to find general ways to design two-level
parallel algorithms.

6. Acknowledgments. We would like to express our appreciation to Kevin Pedretti,
who provided the Kitten operating system for us to test SMARTMAP functions. We are also
grateful to Kurt Ferreira for their help on Catamount. Suzanne Kelly gave a lot of care to
this research in many different ways. She also helped review this paper and caught an error
in the Example in Section 3.2; and her constructive comments have greatly improved the
presentation of this paper. Any errors that remain are solely the responsibility of the authors.

REFERENCES

[1] ITRS, international technology roadmap for semiconducors (2007 edition),
(URL:)http://www.itrs.net/Links/2007ITRS/ExecSum2007.pdf.

[2] R. Brightwell, A prototyple implementation of MPI for SMARTMAP, Lecture Notes in Computer Science,
5205 (2008), pp. 102–110.

[3] R. Brightwell, M. Heroux, A. Geist, and G. Fann, Catamount n-way performance on xt5, Workshop Paper,
Cray Users Group Conference, (2009).

[4] R. Brightwell, K. Pedretti, and T. Hudson, SMARTMAP: Operating system support for efficient data sharing
among processes on a multi-core processor, Conference on High Performance Networking and Comput-
ing, (2008).

[5] J. Demmel, Applied numerical linear algebra [illustrated], SIAM, (1997).
[6] W. Gropp, The 2-d poisson problem, Sourcebook of parallel computing, (2003), pp. 469–480.
[7] M. Heroux, Z. Wen, J. Wu, and Y. Xu, Initial experiences with the BEC parallel programming environment,

Parallel and Distributed Computing, 2008. ISPDC ’08. International Symposium on, (2008), pp. 205–212.
[8] R. Rabenseifner, G. hager, and G. Jost, Hybrid mpi/openmp parallel programming on clusters of multi-core

smp nodes, 2009 parallel, Distributed and network-based processing, (2009), pp. 427–436.
[9] J. Wu, Y. Xu, and L. Zhao, Reformulating data exchange for scientific many-core cluster computing, Printed.

CSRI Summer Proceedings 2009 177

ROOT CAUSE ANALYSIS OF ERRORS FOR HIGH PERFORMANCE
COMPUTING

JOEL M. VAUGHAN∗, JON R. STEARLEY†, SCOTT A. MITCHELL‡, AND GEORGE MICHAILIDIS§

Abstract. A supercomputer is a complex network of CPUs, switches, routers, and cables. When an error occurs,
such as a job halting, a message being dropped, or a corrupted message arriving, the root cause of the error may be
difficult to assess. When multiple errors occur over different jobs, users, executables, and subsets of the network, it
may be possible to combine the data to gain insight into likely root causes. Currently, the process of locating the root
cause of these faults is carried out by system administrators, who use their expertise with a particular system to comb
through the logs and determine the most likely causes. However, as supercomputers grow in size and complexity,
this process will become more costly, both in terms of resources spent to isolate the source of the faults, and the
compute time lost as the failure is corrected. We present a statistical method to assist in determining the root cause
of failures. The method is discussed, and real failures on a current production system are analyzed.

1. Introduction. Faults in supercomputers are expensive, both in terms of the efforts to
locate and fix the problem, and the cost incurred to users not having the computer available for
their efforts. Unfortunately, faults are common because of the large number of components,
and due to dynamic complexity, it is not trivial to isolate the root cause of the fault. Possible
causes include a variety of hardware components, including compute nodes (composed of
CPUs, memory, and network interfaces), login nodes, I/O nodes, network components such
as links and routers, and storage devices, including hard disks and their network interface.
Hardware components are not the only possible causes, however. Applications, users, and
interactions among hardware components (such as subtle timing interactions) and/or between
hardware and users or applications are also possible causes of faults. Throughout this work,
we will use the term components to refer to all possible root causes considered, whether
they be hardware, user, or software version, etc. Furthermore, as supercomputers become
more powerful, the number of hardware components increases, as does the complexity of the
interactions among various components, making the problem even more difficult, and this
research more timely.

In addition to the challenges introduced by the sheer number of components to con-
sider, the available information is subject to significant uncertainty. Only some types of hard-
ware components, such as compute nodes, report errors when they malfunction. (Although it
should be noted that these components do not always report faults. For example, if a fault is
severe enough, a compute node would not be functioning sufficiently to report the error.) Oth-
ers relevant components, such as the cables connecting network routers, never report errors.
Additionally, there does not exist a direct mechanism for reporting errors associated with
non–hardware components (such as users) or with interaction of components. Furthermore,
errors caused by interactions between components (and some other errors) are intermittent.
Finally, it should be mentioned that the errors are reported in the format of unstructured text
in various machine loges, making the collection of this information a non–trivial task.

The varying amount of information available results in varying degrees of difficulty of the
problem of finding the cause of the faults. Table 1.1 describes varying levels of difficulty. In
the table, it is clear that the easiest problem to solve (although still not trivial) is the case where
the component responsible for the fault always reports the problem. The problem becomes
more complex as the frequency of the error reporting decreases and as the location of the error
reporting moves away from the responsible components. It should be noted that some types

∗University of Michigan(while working at Sandia National Laboratories), rsnation@umich.edu
†Sandia National Laboratories, jrstear@sandia.gov
‡Sandia National Laboratories, samitch@sandia.gov
§University of Michigan, gmichail@umich.edu

178 Root Cause Analysis

of components, such as compute nodes, have the possibility of fitting into difficulty 1, since
there are types of errors that they will (almost?) always report. However, other component
types are necessarily more difficult, such as the network cables, for which there is no direct
reporting mechanism, or “user” who typically do not report themselves as the source or cause
of the errors in question.

Difficulty Given a problem, evidence is exhibited on:
(1=lowest) P(d|p) causing component: affiliated component: P(i|p)

1 1 always never 0
2 0 never always 1
3 < 1 sometimes never 0
4 0 never sometimes < 1
5 < 1 sometimes sometimes < 1

beyond scope 0 never never 0
Table 1.1

Taxonomy of Problem Difficulty. d indicates direct evidence, exhibited on the causing component, i indicates
indirect evidence, exhibited on an affiliated component, and p represents a problem.

It is the goal of this work to investigate statistical methods to determine significant asso-
ciations between error observations and components, for all five levels of difficulty described
in Table 1.1. The problem is approached statistically from a multiple hypothesis framework,
using the FDR correction of Benjamini and Hochberg [2]. The specific levels of difficulty
from the table dictate the data structure and hypotheses which are tested.

The task of finding the root cause of faults on supercomputers is an important endeavor
in itself. However, it should be noted that supercomputers are essentially complex networks,
and that the algorithms being explored have direct application to other event–cause analysis
problems on complex networks. For example, origin determination of security events on large
networks of personal computers is another possible application.

The rest of this discussion is organized as follows. Section 2 discusses the approach
used to solve the problem. Section 3 discusses some preliminary results. Section 4 discusses
challenges in investigating this problem, including some that have been overcome and some
that still remain. Finally, section 5 discusses the future directions and applications of this
work.

2. Approach. Initially, three approaches were considered in solving this problem: a
General Linear Model (GLM) approach (see e.g. [1]), an empirical Bayes method proposed
by DuMouchel [4] , and a multiple hypothesis testing framework via a False Discovery Rate
(FDR) correction attributed to Benjamini and Hochberg [2]. While in in the process of ob-
taining the data from the supercomputer analyzed in this document, simulations were used
to explore the merits of these three approaches. Each approach had weaknesses. The GLM
approach suffered due to many contingency table entries of 0. The numerical optimization
required by DuMouchel’s method were unstable with this type of data. The FDR approach
does not directly address the issue of interactions between components. The FDR approach
was selected because of advantages in statistical rigor, success in initial simulations, and the
ability to be easily generalized to increasingly complicated situations. Below, we briefly de-
scribe the FDR procedure in general and describe how it is implemented in the context of this
problem.

2.1. Multiple Hypothesis Testing for Fault Problem. First we briefly review some
terminology from statistical hypothesis testing, then describe a multiple hypothesis testing
framework for the fault–detection problem. In statistical hypothesis testing, one typically

J. Vaughan, J. Stearly, S. Mitchell, G. Michailidis 179

has two models for the data: a null model (H0) and an alternative model (H1). The goal of
hypothesis testing is to establish whether the data contains convincing evidence in favor of
the alternative model. This is typically done by calculating the probability of obtaining the
data observed (or data more in favor of the alternative model) while assuming the null model
to be true. If this probability is sufficiently small, one rejects the null model in favor of the
alternative, and indicates that there is sufficient evidence in favor of the alternative model.
Since the truth of the situation is not known, it is possible to make errors. A Type I error, of
false positive, occurs when the null model is actually true, but it is rejected in favor of the
alternative. A Type II error occurs when the null model is not rejected, but the alternative is
true. Statistical power is thought of as the ability to reject the null model when the alternative
model is true. (Technically, Power = P(Reject H0|H1)) A typical strategy in designing a test
is to attempt to maximize statistical power while controlling the probability of a Type I error
at or below some pre–defined level.

The fault problem naturally fits into the hypothesis testing framework. However, because
we have many components, we wish to conduct multiple tests simultaneously. For example,
consider a set of I components, Ci, i ∈ 1, . . . , I. Over the period of time in question, each
component Ci experiences a vector of error measurements ~Xi = (Xi,1, . . . , Xi,Ni)

′, where Ni,
the length of each vector, may differ for different components. (The precise definitions of
these observations will be made in Section 2.3.) Defining

X̄i :=
1
Ni

Ni∑
j=1

Xi, j,

the usual sample mean, it would be natural to use this sample mean to test hypotheses of the
form

H0 : µi ≤ a vs H1 : µi > a, ∀i (2.1)

where a is some pre–determined threshold, and µi represents the population mean number of
errors for component i ∈ 1, . . . , I. Intuitively, we are testing to see whether each component
generated significantly more errors than could be attributed to it by random chance. However,
in applying this framework to the fault–cause problem it is important to consider both the
issue of lack of power due to the large number of tests involved and the fact that components
are dependent on one another. The next paragraphs discuss these issues in greater detail, and
the next section discusses their resolution via an FDR correcting approach.

The multiple testing problem is well studied in the statistical literature. Traditionally,
the overall procedure is designed to control the overall chance of a Type I error, also known
as a false positive. That is, the rules to reject the null hypotheses are designed such that
the overall probability of incorrectly rejecting even a single null hypothesis is less than or
equal to some pre–defined level. This is also referred to as controlling the family–wise error
rate (FWE). It is well known in the statistical literature that in order to maintain such an
overall level, the statistical power of the test decreases with the number of tests. If there
is a sufficiently large number of tests being considered, one needs overwhelming evidence
to find a significant result. In practice, the tests become so hard to reject that no progress
can be made in identifying significant results. It should be noted that in the context of the
fault–cause problem, it would be better to determine a larger set of possible root causes for
experts to investigate, with a small subset being incorrect, than an empty list that provides no
direction at all.

Another relevant feature of the multiple hypotheses considered in the case of the fault–
cause problem is that various hypotheses are dependent. User 1 and User 2 might have used

180 Root Cause Analysis

the same host in the time period being considered, and hence are both dependent on this host.
Thus, the individual hypotheses tests are not independent, and any method used should incor-
porate this feature. Indeed, both of these issues are addressed by using the FDR correction
rather than the tradition family–wise error rate approach, as described in the next section.

2.2. Multiple Hypothesis Testing with FDR Correction. The fundamental ideas of
the FDR was first discussed by Benjamini and Hochberg in their 1995 paper: [2]. Since then,
it has gained wide use in situations where large numbers of hypotheses are tested, such as
experiments involving gene micros. The basic ideas of the procedure are described below:

Rather than controlling the FWE like more traditional methods, the new method controls
the false-discover rate (FDR), which is the expected proportion of erroneous rejections among
all rejections. In addition, the authors show that if all hypotheses are true, controlling the FDR
is equivalent to controlling the FWE, but is more powerful. This is because when many null
hypotheses are false, controlling the FDR to reject more null hypotheses, although it is more
likely that some of these hypotheses are actually true. It remains for the user to investigate the
rejected hypotheses. Using the FDR rather than the FWE is more useful in situations where
one would want to control the proportion of false rejections rather than the overall chance of
making at least one mistake. (This is our operating assumption for the fault–cause problem.)

The FDR procedure is now described briefly. To fix notation, assume that there are
m hypotheses, and that m0 of them are true null hypotheses (the number and identity are
unknown). Furthermore, let q be the user–determined false discovery rate. The procedure has
the following steps:

1. Conduct each hypothesis test independently, and record the observed p–values, de-
noted pi, i ∈ 1, . . . ,m.

2. Rank the observed p–values: p(1) ≤ p(2) ≤ · · · ≤ p(m)
3. Define

k = max
{
i : p(i) ≤

i
m

q
}
, (2.2)

4. Reject H0
(1), · · · ,H

0
(k). If no such i exists, reject no hypotheses.

This process was shown to control the FDR at level q m0
m ≤ q by Benjamini and Hochberg in

the case of independent test statistics [2].
In an important follow–up paper, Benjamini and Yekutieli [3] illustrate that the above

procedure still controls the FDR in situations where the individual hypotheses are positively
correlated. Specifically, the procedure controls the FDR in families of positively correlated
test statistics. Examples of such families include multivariate normal test statistics with
Σi j ≥ 0 on the set of true null hypotheses, latent variable models with positive dependency
structures, absolute values of multivariate normal and t statistics, and studentized multivari-
ate normal distributions. Also, Benjamini and Yekutieli show that a modified version of the
procedure controls the FDR regardless of the type of dependency, but at a loss of statistical
power.

Thus, the FDR procedure adequately accounts for the previously mentioned features of
multiple–hypothesis testing in the fault–cause problem.

2.3. Application of FDR procedure to Supercomputer Fault Problem. The FDR
framework can be applied to the fault cause problem in different ways to examine differ-
ent types of components under consideration. In particular, we make a distinction between
situations where the components being examined either self–report, or do not self–report.
The difference in the way the technique is applied primarily resides in the manner that the
observations are defined. Currently, we are can test each type of component from a given

J. Vaughan, J. Stearly, S. Mitchell, G. Michailidis 181

set of data, but we control the FDR for each component independently, rather than the over-
all FDR. Also, some normalization strategies are discussed below. Determining other useful
normalization strategies is an important part of our ongoing research.

If components self–report: In this case, the situation is relatively straight forward. As
observations, we use error counts per job as the observations. That is, each component’s test
vector has a length of Ni, where Ni is the number of jobs that involved component i. Indepen-
dent tests are then carried out on these vectors, and are corrected via the FDR procedure.

Alternatively, rather than each observation being the count of errors in that job, one could
do the error count divided by the duration of the job. The tests are then carried out on these
vectors. This approach takes into account the intuition that if components are used more
frequently, one would expect a greater number of random errors.

If components do not self–report: The situation in this case is generally more difficult.
This corresponds to difficulties 2,4, and 5 from Table 1.1. First, we define some notation. Let
H denote the set of components in question and J denote the set of jobs in the window of
time studied. Further, let µh represent the overall average error messages per node hour of
jobs associated with component h.

The algorithm used is as follows:
1. For each job j ∈ J , define the statistic

z j :=
Total Error Messages in Job j

Number of Hosts in Job j × Time (in Hours) of Job j

This is essentially observed errors per node hour for each job, or observed error rate
per job.

2. For each component h ∈ H , collect the z j for those jobs which utilized component
h into a vector denoted ~z (h).

3. For each component h, conduct an independent test of the form H0 : µh ≤ a vs H1 :
µh > a for a threshold a. We use as data the vector ~z (h), the collection of z j such
that component h is used in job j. (Note: One threshold explored in practice is
a = z̄ = 1

n j

∑
J z j, where n j is the number of jobs. This represents the overall

average observed error messages per node hour.)
4. Continue the FDR procedure from section 2.2 on the resulting p-values.

This method can be used for types of components that do not report error messages
directly, whether they are hardware components, software components, or users.

3. Results. The initial analysis involved analyzing the logs of Glory, an unclassified
capacity system. Glory consists of 272 compute nodes. Each compute node is made up of
four sockets, and each socket contains a quad–core processor, for a total of 4,352 processor
cores. These compute nodes are networked together in a redundant tree topology. (Note:
The results of Gibson et al [5] indicate that supercomputer failures generally increase as the
number of sockets increase. The more than 1,0000 sockets in Glory are a sufficient first study,
but a system with more sockets will be necessary to study. See section 5 for more details.)
We examined two types of components: users and compute nodes (referred to as “hosts”
in the following). For each component, we considered several types of errors. The errors
considered for this preliminarily investigation were primarily located in either the syslog or
the SLURMctld logs. Table 3.1 shows the error strings considered, the log that the error was
found in, and the number of such errors over the time period investigated.

3.1. Example 1: Possible Indication of User–Caused Fault. In this section, we ex-
amine 43 “/ram/tmp” messages from the SLURMctld logs. The analysis (shown in Table
3.2) suggests that this particular error is significantly associated with particular users, rather

182 Root Cause Analysis

Error String: Source: Count:
ECC syslog 16643
MCE syslog 8833
MCE NOT (log statistics) syslog 1876
oom syslog 205
/ram/tmp SLURMctld 43
reason ECC SLURMctld 3
reason stuck SLURMctld 0
reason not responding SLURMctld 0
reason EDAC SLURMctld 0
reason needs new power supply SLURMctld 0
reason replace power supply SLURMctld 0
reason found not ACTIVE HCA SLURMctld 0
reason needs reboot SLURMctld 0
reason failed to allocate SLURMctld 0
reason Out of memory SLURMctld 0

Table 3.1
Error strings considered in the initial investigation.

than particular hosts. Thus, even though the error is of a memory type, it is more closely
related with a particular user rather than a set of nodes. This would suggest that the system
administrators should work with these users or examine their user logs to try to resolve these
problems, rather than replace hardware.

3.2. Example 2: Possible Independent User and Host Cause. In this example, we ex-
amine 16,643 ECC messages from syslog. This is an interesting situation where the analysis
flags both a user and a host as significant. The results shown in Table 3.3 indicate that Host
237 produces a significantly high number of this type of error. On the other hand, we also
see that User 0 tends to be in jobs which experience significantly high numbers of these very
same errors. However, ECC errors are primarily hardware type errors. The possibility existed
that User 0 simply used Host 237 when the host was experiencing errors. To further investi-
gate this possibility, we examined the jobs shared by this user and host over the time period
in question. These results are shown in Figure 3.1. Although User 0 and Host 237 did have
4 jobs in common and did experience errors on each of these jobs, these jobs are certainly
not the largest sources of errors for either of these components. To further the examine the
interactions, we removed these four jobs from the analysis, and both Host 237 and User 0
remained significant.

4. Challenges. In pursuing a full solution to this problem, several challenges have been
encountered. Below, we detail challenges which we have overcome and challenges that will
need to be addressed as we continue working on this important problem.

Obtaining and Processing Data: The records that we need to consider are found pri-
marily in various types of logs generated on the systems. These logs contain copious amounts
of largely unstructured text, while our methods required that error messages be aggregated
by job, with the relevant information for each job recorded. (See [6] for a discussion of some
of the difficulties in working with system logs.) After exploring several options, we ended
up using a product called Splunk [7] to perform this function. Splunk is a software tool de-
signed to index and search various types of logs encountered by information technologies
professionals including system logs, network logs, configuration files, and database tables. It

J. Vaughan, J. Stearly, S. Mitchell, G. Michailidis 183

Counts: Normalized Counts:
Host ID Count Jobs p-val

143 2 146 0.079
36 2 50 0.08

218 1 258 0.16
277 1 231 0.16
267 1 227 0.16
286 1 194 0.16
278 1 162 0.16
287 1 152 0.16
201 1 142 0.16
284 1 135 0.16

Host ID Sum Jobs p-val
143 11 146 0.12

36 5.5 50 0.14
218 41 258 0.16
277 13 231 0.16
267 6.8 227 0.16
286 2 194 0.16
278 40 162 0.16
287 7 152 0.16
201 9.1 142 0.16
284 41 135 0.16

User ID Count Jobs p-val
15 24 157 0.00022
24 12 109 0.00055
19 3 40 0.042
88 2 261 0.079
22 1 224 0.16
79 1 15 0.17
0 0 36 0.5
1 0 72 0.5
2 0 352 0.5
3 0 121 0.5

User ID Count Jobs p-val
15 195 157 0.00024
24 377 109 0.033
88 3240 261 0.08
19 2.2 40 0.099
22 0.083 224 0.16
79 3 15 0.17
0 0 36 0.5
1 0 72 0.5
2 0 352 0.5
3 0 121 0.5

Table 3.2
Example of User Error: Results of 43 /ram/tmp messages from SLURMctld logs. Yellow highlighting indicates

that the component in question was determined to be significant by the given test.

has the capability to monitor and index logs, and then search the logs based on automatically
generated key words. Although primarily designed to be used through a web interface, it is
also possible to interface with the program via its REST API. Using this interface, we were
able to conduct repeated searches, first to identify a record of each job, and then to search for
specific types of errors within a job based on that job’s host list, start, and end times.

It should be noted that although Splunk is able to aggregate information from various
(largely unstructured) sources, the process does take time. This time will undoubtedly in-
crease with larger systems. Furthermore, it is not practical to be used in on–line detection
schemes, so another solution would be needed for an active monitoring implementation of
the techniques discussed here.

Eliciting Sufficient Knowledge from Experts: Even after obtaining the system logs
and the technology to search the logs, it was still necessary to determine the appropriate errors
to investigate. For this, we need the knowledge of experts, in this case the system administra-
tors of the systems in question. Initially, we needed to elicit from them which error messages
are both common and relevant to the problem. Later in the project, it was necessary to com-
municate the results, and ask for their help in evaluating the results. These communications
are often difficult for a variety of reasons. Because we do not possess intimate knowledge of
the system operations, it is difficult to form questions that lead to the information we need to
know to evaluate our methods. Additionally, the system administrators are (rightly) focused
on the day–to–day operation of the system, and do not have the time to respond to all our
queries and analyses when they come up. Additionally, even when such knowledge is ob-

184 Root Cause Analysis

Counts: Normalized Counts:
Host ID Count Jobs p-val

237 83 94 0.00019
259 190 99 0.0016
209 118 121 0.0099
228 658 76 0.034
183 3 53 0.042

45 295 16 0.049
34 9 48 0.053

246 2 60 0.08
207 8 52 0.086

82 91 76 0.087

Host ID Sum Jobs p-val
259 49 99 0.0024
46 149872 16 0.063

273 317 100 0.066
82 3.6 76 0.076

228 655 76 0.078
45 11034 16 0.084

216 48 149 0.092
209 913 121 0.11
207 19137 52 0.15
34 23 48 0.16

User ID Count Jobs p-val
0 66 36 0.00077

80 27 27 0.011
72 49 174 0.033
14 5 324 0.048
78 21 261 0.05
73 22 94 0.065
7 403 60 0.069

23 12 187 0.07
1 66 351 0.075

31 2 344 0.079

User ID Count Jobs p-val
0 4.2 36 0.0013

80 1.5 27 0.02
72 9.9 174 0.034
78 27220 261 0.065
14 131 324 0.067
35 4.1 6 0.072
30 0.46 19 0.087

1 1.2 351 0.087
31 32 344 0.098
73 217 94 0.11

Table 3.3
Example of Hardware and User Error: Results of 16,643 ECC messages from syslog. Yellow highlighting

indicates that the component in question was determined to be significant by the given test.

tained, the challenge of quantifying this knowledge for later use remains an open challenge.
Determining Appropriate Threshold: One of the difficulties of the method is that the

methods described in section 2 require a threshold value to test against. Determining an ap-
propriate value is important, but not trivial. Changing the test value can greatly impact the
results in some of the data sets observed, and it is important to tune the procedure while
incorporating feedback from those who understand the system best (i.e., the system adminis-
trators).

Presenting Results: It is important to present the results of these methods in an informa-
tive way. Deciding the appropriate amount of information to present and the best format has
been a challenge throughout the project. Currently, the analyses are carried out by an R script
which produces a pdf of ranked tables, similar to those in Tables 3.2 and 3.3. However, it is
desirable to display more information, perhaps on the actually computer graph. This leads to
the issue of visualization scalability of these graphs, as it is difficult to visually inspect graphs
with thousands of nodes.

5. Future Work. There is still much work to do on this problem. First, we have only
considered two types of components. It is important to include other types of components,
particularly:

• Application
• Network Components, including routers and cables
• I/0 Hardware
• Software version

J. Vaughan, J. Stearly, S. Mitchell, G. Michailidis 185

1247000000 1248000000

0
2

4
6

8
10

12

ECC error counts, user 0

One circle per job, Green indicates job run on node 238
Time

E
rr

or
 C

ou
nt

s

●

●

●●● ●●●●

●

● ●●

●

●

●

●

●● ●

●

● ●●●●

●

●

●

●●

●

●

●

●

●

(a) User View

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●

●

●● ●

● ●

●● ●●●●● ●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

1247000000 1248000000

0
5

10
15

ECC error counts, host 237

One circle per job, Green indicates job run by user 0
Time

E
rr

or
 C

ou
nt

s

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●

●

●● ●

● ●

●● ●●●●● ●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

(b) Host View

Fig. 3.1. Time view of the ECC errors experienced by user 0 and those experienced by host 237.

In addition to these system components, meetings with system administrators have re-
vealed other factors to consider. For example, are the frequencies of certain types of failures
correlated with whether the sun is out or not (as one might suspect due to differences in the
frequency of cosmic rays). As another example, are the errors produced by a compute node
related to its position in the rack (due to heat flow issues)? We also hope to investigate the re-
lationship of errors with the structure and dependencies imposed on components throughout
the network topology and routing, as well as the effects of hardware swapping as a solution
to faults. We are interested in pursuing these questions, and others that might be suggested
by the system administrators in the future.

We have been working with error counts, and treating all errors equally. However, certain
errors may be more informative than others. As the work continues, we hope to explore using
this information in the analysis.

Finally, we thus far only examined a single system. In order to further investigate the
usefulness of our methods, we hope to analyze the logs from other systems. In particular, we
plan to investigate errors on a system that has a 3D grid topology, rather than the tree topology
found in Glory. Methods such as ours are even more necessary for a 3D grid topology, since
the systems are more complex and the components are more interdependent. Additionally,
based on the work of Gibson et al [5] and the desire to test the relevance of this work for
future computer systems, a system with a greater number of processors should be studied.

As we continue this effort, it is important to remember that we are hoping to develop
a methodology that is practical to implement, and will substantially aid in the resolution of
the cause of faults in these systems. Furthermore, we hope to extend the methodologies
developed to more general event–cause detection problems on other types of networks.

6. Acknowledgments. The authors would like to thank the Glory system administra-
tors for their help in obtaining and interpreting the data. Thanks to Randall Laviollette, Vitus
Leung, and Sue Kelly for their helpful discussions. Sandia is a multiprogram laboratory oper-
ated by Sandia Corporation, a Lockheed Martin Company, for the United States Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

REFERENCES

186 Root Cause Analysis

[1] A. Agresti, Categorical Data Analysis, John Wiley and Sons, 2002.
[2] Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to

multiple testing, Journal of the Royal Statistical Society, Series B., 57 (1995), pp. 289–300.
[3] Y. Benjamini and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency,

The Annals of Statistics, 29 (2001), pp. 1165–1188.
[4] W. DuMouchel, Bayesian data mining in large frequency tables, with an application to the fda spontaneous

reporting system, The American Statistician, 53 (1999), pp. 177–190.
[5] G. Gibson, B. Schroeder, and J. Digney, Failure tolerance in petascale computers, CTWatch Quarterly, 3

(2007).
[6] A. J. Oliner, A. Aiken, and J. Stearley, Alert detection in system logs, in ICDM ’08: Proceedings of the 2008

Eighth IEEE International Conference on Data Mining, Washington, DC, USA, 2008, IEEE Computer
Society, pp. 959–964.

[7] Splunk, http://www.splunk.com/product. World Wide Web, 2009. Retrieved August 2009.

CSRI Summer Proceedings 2009 187

USING BLOCK RAM TO ACCELERATE MATRIX-VECTOR PRODUCT
CALCULATIONS IN FPGAS

DEREK WOODMAN∗, DWIGHT DAY†, AND DOUGLAS DOERFLER‡

Abstract. A major bottleneck in scientific computing today involves actually getting the data to the processor.
Memory is clocked at a slower speed than the processor, and the processor usually has to do address calculations
before it can ask for data. All of this together leads to the processor spending more time waiting on the data than
actually working on meaningful calculations. In this paper, we focus mainly on calculations done on sparse matrices
since they are very memory intensive. First, we explain how typical DDR2 SDRAM works. Then, we explain why
this doesnt work well for sparse matrix calculations. Finally, we present a solution to the problem, which involves
using an FPGA and the on board BRAM.

1. Introduction. As described by Moores Law, the number of transistors on a chip dou-
bles about every two years. Processing power has consistently risen each year because of the
increased number of transistors on each chip [2]. However, memory chips have not increased
with the same leaps and bounds as the microprocessor. Because of this, the performance im-
pact of memory accesses has consistently increased. Techniques like prefetching work great
when the software execution is predictable, but this isnt always the case. For example, in
sparse matrix operations, mainstream memory controllers are not designed for the non-unit
stride memory operations. The data needed from operation to operation is generally spaced
far apart in memory and takes longer to access than if the requested data was continuous. The
following section explains how SDRAM works.

2. Previous Work. Previous work at Sandia has influenced this research. The preced-
ing research was done on accelerating the pHPCCG benchmark in hardware on an FPGA
[1]. The first step involved designing a 32 by 32 double-precision floating-point dot product
in hardware. Performance of the dot product was increased from 6 MFlops using a FPU to
20 MFlops using the FPGA accelerator. To truly test the performance, the pHPCCG bench-
mark was implemented. This involved memory that was not packed. Since the accelerator
relied on SDRAM, a situation arose that involved waiting on memory for often than actually
computing. In turn, this research was created to solve that problem.

3. SDRAM. Most types of RAM store data in a row/column manner, and SDRAM is
no exception. While the process for reading and writing is well defined, you cannot just write
an address and expect data to be immediately available. There are certain latencies that must
be met. Most RAM is row orientated, meaning consecutive data is on the same row. To
read/write data, one must activate the wanted row, wait a certain amount of latency cycles,
select the wanted column, wait a certain amount of latency cycles, and then the data can
finally be read or written. Anytime a new row is needed, the current row must be precharged
to deactivate it, which also has a few clock cycles of latency associated, and the whole process
must be repeated. Figure 3.1 on the next page, graphically shows this (without precharging).

3.1. Sparse Matrices. Sparse Matrices are used extensively in scientific computing.
For example, when modeling the motion of a material, one can look at the influence of each
particle on its surrounding particles. In a material of any size greater than the particle itself,
there are going to be a large number of particles it doesnt influence. In addition, the material
is generally 3D, while matrices are 2D. So while the particles are next to one another in 3D,
they wont necessarily all be together in the 2D matrix. This means for each row of the sparse

∗Arizona State University, Derek.Woodman@asu.edu,
†Kansas State University, day@ksu.edu,
‡Sandia National Laboratory, dwdoerf@sandia.gov

188 Using Block RAM To Accelerate Matrix-Vector Product Calculations in FPGAs

Fig. 3.1. The process of reading and writing SDRAM. The Active block selects the row while the
Read and Write blocks select the column. As shown, this takes several clock cycles. Adapted from
http://www.samsung.com/global/business/semiconductor/products/dram/Products SDRAM.html

matrix, there are a few nonzero values spread throughout a large number of zeros. Because
of all the zeros in the sparse matrix, it is not stored in its true form. Instead it is broken
into two matrices–one to hold all the non-zero numbers, and another to store the original
position of each non-zero number. This takes up far less space in memory and stores the data
continuously. Figure 3.2 below, shows how the conversion is accomplished.

Fig. 3.2. A portion of a row of a sparse matrix and how it is stored in memory with two other matrices. In a
real sparse matrix with 27 non-zero entries and over 15,000 x 15,000 total entries, a lot of memory will be saved.

This way of condensing the sparse matrix saves a considerable amount of space, but stor-
ing it is only half the battle. It must be used, and therein lies the problem. Since the Non-Zero
Entries Matrix (NZEM) and Position of Entries Matrix (POEM) will be accessed continu-
ously, getting the data from RAM doesnt have a large associated latency issue. However, dot
products are often performed on sparse matrices. This involves using the data in the POEM
to access another vector to get the desired data for multiplications. The problem here is the
position of the data in the sparse matrix jumps around. For example, in a particular row it may
go from location 200 to 10215. And these large jumps happen several times during each dot
product. Since the data isnt close by in memory, the row being accessed is going to change
for every data access.

This means RAM must be precharged every time, adding a lot of latency. For each dot
product, this happens around 27 times (average number of nonzero values in a row), but a
dot product will have to occur for the tens of thousands of rows in the sparse matrix, so the
latency associated with memory access becomes a limiting factor. The portion of code on the
following page shows the double memory access to the multiplying vector (MV):

for (i=0; i<nonZeroLength; i++){

sum += NZEM[i] * MV[POEM[i]];

}

3.2. Solution. To solve this problem, we developed custom hardware using the Xilinx
Virtex-5 FPGA on the ML510 development board [4]. It has a PowerPC embedded into the
fabric of the FPGA. This platform was handy because it allowed us to run standard C code on
the PowerPC, and offload data to our hardware design in the FPGA to try to achieve accelera-

D. Woodman, D. Day, and D. Doerfler 189

tion. As it turns out, the problem is real, and a dramatic speed up can be realized. The solution
to the increased latency due to the large address space jump in accessing the multiplying vec-
tor was to store the data on the FPGA itself. The Block RAM (BRAM) on the FPGA is able
to read and write any address in one clock cycle, no matter what address it had accessed pre-
viously. This is much better than the latency associated with SDRAM. The amount of BRAM
is also immense. It was easily able to store 15,625 double-precision floating-point numbers
(64-bits each). This number was chosen purely to test the sparse matrix test bench. Figure 3.3
below, uses Chipscope to show that the data is available immediately after giving the BRAM
a new address [3].

Fig. 3.3. A Chipscope output during a request to read BRAM. Chipscope samples during the middle of each
clock cycle and is triggered when LoadVaild goes high. The LoadValid signal being asserted signals the BRAM to
read data from the address provided on the incoming bus. The A data was already provided on the incoming bus as
the data from the sparse matrix. The DataValid signal indicates that the data for X has been read from BRAM. As
shown, this process only takes one clock cycle.

With this design, data can be accessed in 10 ns, with the constraint being the clock
controlling the BRAM. The fabric of our design was only running at 100 MHz but could be
increased, which would in turn decrease BRAM access time. Although there are a wide array
of SDRAM chips on the market, the following statistics are for the chip on our board. It was a
DDR2 chip running at 667 MHz with a 5-5-5 latency (activate row- select column-precharge).
SDRAM is also usually pipelined, so a couple extra clock cycles are required for the data to
actual appear on the bus. Therefore, our chip took about 51 ns to access data on different
rows. Achieving 1/5 the latency is a substantial speed up in an operation that would read data
as often as a sparse matrix dot product.

Although no data analysis was done on an actual sparse matrix, the design was checked
to make sure it could perform a sparse matrix-like dot product. Sixty-four-bit floating-point
values were chosen so their products equal values from one to twenty- seven. The dot product
then requires the summation of these values. As shown in Figure 3.4 below, the summation
of 1-27 equals 378 (0x4077a00000000000).

Fig. 3.4. Output received through HyperTerminal from the FPGA. Answer is the result of the dot product
performed.

4. Conclusion. In sparse matrix multiplication, a high amount of latency is involved
in retrieving data from the multiplying vector. This is because the data is spread out, and
SDRAM must precharge, active the row, and select the column every time. All this latency
can truly become a huge bottleneck when this operation is performed millions of times. Our
proposed solution of storing data in BRAM in the fabric of the FPGA for immediate access
cut the latency associated with this operation by one fifth. It also completely eliminates any

190 Using Block RAM To Accelerate Matrix-Vector Product Calculations in FPGAs

latency associated in our design in the eyes of the PowerPC. It can move along and do other
calculations until the FPGA returns the dot product result. We suggest further research in this
area. Eliminating other forms of latency due to memory could further speed up the sparse
matrix operation. Currently the PowerPC has to send data to our hardware on the FPGA.
One possible performance increase could involve having the memory interface integrated
directly with the hardware. This way the data from memory wouldnt have to route through
the PowerPC. Our improvement alone could save valuable time, but many other optimizations
are also possible.

REFERENCES

[1] D. Day, Developing an advanced architecture research capability using FPGAs, Sandia National Laboratory
CSRI Workshop Presentation. June 17, 2009.

[2] Intel, Moores law: Made real by intel innovation, http://www.intel.com/technology/mooreslaw/.
[3] Xilinx, ChipScope Pro 10, http://www.xilinx.com/support/documentation/dt chipscopepro chipscope10-1.htm.
[4] , Xilinx: Products: Development boards: Xilinx ml510 reference designs,

http://www.xilinx.com/products/boards/ml510/reference designs.htm.

CSRI Summer Proceedings 2009 191

PSST: A MODULAR PROCESSOR SIMULATOR FOR THE STRUCTURAL
SIMULATION TOOLKIT

CHAD D. KERSEY∗ AND ARUN RODRIGUES†

Abstract. The current landscape of computer architecture simulators is crowded with a multitude of simulators,
each written for a niche purpose. The Structural Simulation Toolkit provides a unified framework for cycle accurate
component level simulations of computer architectures. The motivation for PSST, a Processor for SST, is to provide
a universal CPU microarchitecture simulator based on an interchangeable instruction set level VM and a collection
of low-level modules each simulating its own orthogonal aspect of the processor’s physical behavior. By separating
different aspects of simulation into modules, PSST provides for the selection of only those aspects that are pertinent
to the simulation being performed. The separation between instruction set architecture and physical models enables
evaluation of new processor implementations with existing software.

1. Introduction. The Structural Simulation Toolkit, SST [4], is a modular framework
for the distributed simulation of high performance computer architectures. Within SST, com-
ponents of a computer system are mapped to components of the SST sense, linked together
through links, which may represent, for example, network links between processors and
routers. SST uses Sandia’s own Zoltan [2] library to partition the simulated components
for scalable distributed execution.

Currently, within SST, there is a PowerPC-based processor frontend, which runs applica-
tions in user mode. Timing is provided by a backend, which simulates a simple out-of-order
processor pipeline. Because it is tied heavily to the PowerPC architecture, does not provide
realistic simulation of the operating system, and does not allow fine-grained selection of a
point along the simulation speed/accuracy axis, this component’s utility is limited.

PSST was created to address these faults. By separating the VM from models of physi-
cal characteristics of hardware, PSST avoids relying on any one instruction set. The first and
currently only VM module to be supported, based on a modified QEMU [1], provides support
for x86-64. QEMU itself supports many more architectures, including i386, PowerPC, ARM,
and MIPS, and VMs supporting these may become available as modules for PSST as well.
Time in the VM advances in a piecewise linear fashion, based on an execution rate in instruc-
tions per cycle provided by the timing model; a method borrowed from Hewlett Packard’s
COTSon [3].

2. Modular Architecture. Processor simulators are often characterized as being either
“functionally accurate” emulators or “cycle accurate” simulators. This nomenclature is am-
biguous, especially when components are designed to operate in parallel, because timing and
function are inseparably intertwined in parallel computing systems. If the user of a sim-
ulator wishes to obtain insight into the behavior of a timing-dependent computer system,
the terms “ISA-level” and “physical” or simply “high-level” and “low-level” circumvent this
ambiguity. PSST divides the processor into a high-level simulator, or VM, and low-level sim-
ulation components, or models. The VM provides variable-speed execution of an instruction
stream, about which it emits information of three distinct types. Instruction events contain
information about each instruction committed. Memory operation events describe loads and
stores, other than instruction fetches. Magic instruction events can be used to provide services
through PSST that would not otherwise be available, such as faking hardware accesses or in-
venting new instructions. Magic instructions, in x86, are simply cpuid instructions launched
with invalid values of %eax. These are treated as nops on real hardware.

∗Georgia Institute of Technology, cdkersey@gatech.edu
†Sandia National Laboratories, afrodri@sandia.gov

192 PSST: A Modular CPU Simulator

Using these types of events, models can determine a rate of execution and current simu-
lation time, and then provide that back to the VM. The following interface is provided to the
models to allow these types of transactions. It is separate from the interface provided to the
VM module itself, and is managed by PSST:

void callbackRequest(CallbackHandler* m, uint64_t cycles);

void setIpc(double ipc);

uint64_t getCycle(int vm_idx);

uint8_t memRead(int vm_idx, uint64_t addr);

void memWrite(int vm_idx, uint64_t addr, uint8_t data);

uint64_t memSize(int vm_idx);

It should be noted that the vm idx parameter is included to enable future support of
multiple VMs per PSST instance, and is currently assumed to be 0. setIpc() is the primary
interface for timing adjustment. It is used to set the execution rate of the next instruction block
based on the computed performance of the previous block. This creates a lag between events
that affect performance and the actual result in simulation time, that can only be mitigated by
adjusting the IPC more often when the simulation calls for it.

model.so

sample_model.socache_model.so fault_model.so

psst.so

qemu−system−x86_64.so

qemu−system−x86_64.so

qemu−system−x86_64.so

. . .

Fig. 2.1. Dynamically loaded object hierarchy in PSST. Arrows can be read as “loaded by.” QEMU objects
are copied to new files in /tmp before loading.

The functionality of PSST is spread across several dynamically loaded modules, shown
in Figure 2.1. Using the dlopen() interface provided by the OS, these modules are loaded
by PSST, and PSST itself is loaded by SST. The dynamically loaded module format was a
natural choice for the models, providing a convenient way for models, open or closed-source,
to be developed and distributed. Since the VM module is based on an existing application,
the choice to use a dynamic module format for it was motivated by a desire to run the VM
without importing all of its global variables into PSST’s namespace. Because the dynamic
loader will not reload the same library more than once, the VM objects are physically copied
to temporary files prior to loading, so that each instance of the VM in a simulation can have
its own global namespace.
model.so contains the interface between the VMs and models entirely, so that the PSST

component itself is primarily responsible for instantiating a context within model.so, loading
the VM, loading models, and telling model.so when the VM should advance. The interface
between model.so and the PSST component is narrow but expressive, consisting of a set
of functions to load VMs, load models, advance VMs to the current clock cycle, and tell
model.so which PSST instance is currently running.

3. The VM Module.

C.D. Kersery and A.F. Rodrigues 193

3.1. Virtual Machine API. The VM module must implement the following procedures
and variable:

int main(int argc, char** argv);

int run_vm(int instructions, double ipc, uint64_t start_cycle);

uint8_t memRead(uint64_t addr);

void memWrite(uint64_t addr, uint8_t data);

uint64_t memSize();

long clock_freq;

main() must provide initialization based on command line arguments, but unlike the
main() procedure of a typical application, the VM’s main() must exit. The VM is only
advanced through use of the run vm() procedure, through which the current cycle, the num-
ber of dynamic instructions for the VM to run, and the current execution rate in instructions
per cycle. Translation of instruction count to wall clock time is done using the clock freq
variable. The ability for models to modify memory locations was initially added to support
fault modeling for memory errors. Other potential applications of these functions include the
use of models to emulate memory mapped hardware.

Although SST, and all PSST models, are implemented in C++, care was taken to make
the VM interface compatible with C. This is because there are many VMs, including QEMU,
implemented entirely in C and incompatible with C++ to the point that even getting the
application to compile with a C++ compiler would require a major refactoring effort. For
this reason, the VM module can be implemented entirely in C, and the interface to the VM
requires no C++ features.

3.2. The QEMU VM Module. QEMU [1] is a full system emulator designed with
portability in mind, originally written by Fabrice Bellard. It was chosen as the basis for
the initial VM module because of its wide portability and support for multiple processors,
including PowerPC, ARM, and x86. Central to QEMU is a dynamic recompiler with a two-
step translation process, first translating all guest instructions to an intermediate form and
then to host instructions. Because of this retargetable design, QEMU only requires O(n + m)
code modules to be written to support n guests on m hosts, instead of the O(nm) required by
traditional recompilers, a novel approach at the time [1] was written.

Since QEMU was a standalone program, a substantial bit of modification was required
to adapt it to use as a VM module. Instrumentation functions, and calls to them, were
added to the translation infrastructure, so memory accesses and instruction commits could
be tracked. Then, the control flow of QEMU had to be changed so that main() would re-
turn and run vm() would replace it as the entry point to the main loop. Linking QEMU as
a shared object also necessitated subtle changes to the translation architecture. On x86-64
machines, global variables within shared objects can be placed anywhere within the virtual
address space. The translator, generating 32-bit relative jumps, emitted code that would then
fail since all of the jumps were to addresses beyond ±231 from their origin. QEMU’s internal
representation of time is designed to mirror time on the host machine. While this is fine for
simple emulation, many OS facilities are triggered by the system timer, so the system timer
was modified to mirror simulation time as closely as possible. With these modifications, and
a change to the build process to make it build as a shared object, QEMU is ready to serve
PSST as a VM module.

4. Preliminary Physical Models. There are currently two physical models of interest
with very different goals. faultmodel.so is a very simple transient memory error injector

194 PSST: A Modular CPU Simulator

and cachemodel.so is a simple cache-only timing model. With cachemodel.so, the first
results of real simulations could finally be obtained.

4.1. A Resiliency Model- faultmodel.so. The effect of transient errors in caches and
processor pipelines is a very important problem. An initial exploration into using PSST to
analyze the effects of these faults is faultmodel.so. faultmodel.so simply flips a single
bit somewhere in physical memory, waits a random number of cycles, then, if it hasn’t been
overwritten, flips it back, waits a random number of cycles, and repeats. Since only one fault
is active at any time, faultmodel.so also compares every memory access to the address of
the fault and alerts the user via the console when one of these addresses is read. Visible results
of booting a system and running applications with faultmodel.so activated have included
system crashes, wrong results from applications, and file corruption.

4.2. A Timing Model- cachemodel.so. cachemodel.so is a model of an arbitrarily-
deep uniprocessor cache hierarchy. With fill times, depth, and per-level cache dimensions
given in the configuration file, cachemodel.so simulates all of these levels with a random
replacement policy. In cachemodel.so, a processor is assumed to run at one instruction per
cycle assuming that every memory operation hits in the L1 cache. When a miss occurs in any
level, the time required for a fill in that level is added to the total cycle count for a given time
quantum. When that time quantum is finished,

 2000

 1800

 1600

 1400

 1200

 1000
128K64K32K16K

R
u

n
 T

im
e

(m
s)

Cache Size (KB)

Cache Simulation of "time cat /usr/bin/* | md5sum"

Direct
2 way
4 way
8 way

Fig. 4.1. Cache simulation results of simple command under Linux, average of 2 trials, 16B cache lines, varying
L2, fixed L1 and icache.

Figure 4.1, though fraught with noise due to the low number of trials and unpredictable
behavior of the Linux scheduler, is the first example of simulation results created by running
actual applications, albeit very simple ones, on PSST. As expected, bigger cache means the
program runs faster. However, some of the properties of this graph remain unexplained, such
as the apparent minimum at 32K, and more trials will have to be done before these can be
explained adequately.

5. Future Work. For the immediate future, there is a clear path from parallel emulation
of multiple uniprocessors to simulation of parallel computing architectures. What is needed is

C.D. Kersery and A.F. Rodrigues 195

an interface for and software implementation of a NIC that can communicate through SST’s
protocol. Once these are available for PSST, its utility as a processor simulator component
for a parallel architecture simulation framework will be realized.

Translation
Cache

Backend API

Backend Simulator(s)

ResultsI/O

ISA State

Frontend Simulator

Backend
Interface

Translation
Cache

I/O

 A Stateµ

Unified Simulator

Results

The COTSon Architecture (used by PSST):

A Possible Successor:

Fig. 5.1. A possible future direction; combination of models with VM in a unified dynamically recompiled
architecture.

Further out, the author is reconsidering the fundamental software architecture of simula-
tors like COTSon or PSST. Figure 5.1 illustrates both the current architecture and a possible
future direction that combines the model A microarchitecture model is shown but other mod-
els could also be combined with the dynamic recompiler based emulator to create a dynami-
cally generated simulator.

6. Conclusions. Though it is still very much under development, the preliminary results
from PSST show it to be a promising direction in simulation research. The fact that the PSST
simulation runs fast enough to be used interactively, even with a basic timing model running
holds promise for debugging and software development. A possible development strategy
using PSST in SST is to build a program, transfer it to the simulated machine, run it once
on the simulated machine interactively with a lightweight timing model and a debugger, and
if the results are promising, then run it again with a more robust timing model. PSST, as
implemented is a retargetable microarchitecture simulator extensible by modules, which can
be rapidly designed to target specific aspects of processor architecture.

REFERENCES

[1] F. Bellard, QEMU, a fast and portable dynamic translator, in Annual Technical Conference, USENIX, 2005.
[2] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Riesen, Hypergraph-based dynamic load

balancing for adaptive scientific computations, in Proc. of 21st International Parallel and Distributed Pro-
cessing Symposium (IPDPS’07), IEEE, 2007.

[3] A. Falcón, P. Faraboschi, and D. Ortega, Combining simulation and virtualization through dynamic sampling,
in ISPASS, Apr 2007.

[4] A. Rodrigues, The structural simulation toolkit, Sep 2007. http://www.cs.sandia.gov/sst/.

196 CSRI Summer Proceedings 2007

Z. Wen and S.S. Collis 197

Applications

Necessity is the mother of invention and, ultimately, applications drive the advances in
computational science, mathematics, and algorithms. The papers in this section span several
disciplines and utilize advanced mathematical and computational tools to address important
problems and applications in their respective fields. Application areas covered are diverse
and include molecular dynamics, modeling cubits and tunneling diodes, plasma simulation,
and verification of complex interface tracking algorithms.

Z. Wen
S.S. Collis

January 11, 2010

198 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2009 199

MOLECULAR DYNAMICS SIMULATIONS OF ELECTRO-ACTIVE SILICA
NANOPARTICLE DECORATED WITH RIGID POLYMERS

SABINA MASKEY∗, FLINT PIERCE†, DVORA PERAHIA‡, STEVEN J. PLIMPTON§, AND GARY S.
GREST¶

Abstract. Molecular dynamics (MD) simulations have been utilized to study the conformation and structure of
silica nanoparticles grafted with dialkyl poly para phenyleneethynylene (PPE) electro-active polymers. The confor-
mation of PPEs determines the conjugation length and their assembly mode which in turn affects their electro-optical
properties. In solution the conformation of the PPE is determined by molecular parameters including the length of
the polymer and nature of the side chains coupled with molecular interactions. The present study investigates the
structure and conformation of ethylhexyl PPE attached to silica nanoparticles in both a good (toluene) and poor
solvent (vacuum) as a first step in understanding how these nanoparticles associate in solution.

1. Introduction. Nanoparticles (NP) exhibit unique properties that differ from those of
bulk materials and molecules. Much of the interest in NPs arises from their large surface
area and their small size which is comparable to that of many molecules together with their
unique electro-optical and magnetic properties. Their electro-optical characteristics differ
from that of bulk due to quantum confinement on the nanoscale. An immense effort is under
way to form defect free NP arrays of noble metals, harnessing their unique properties for
highly miniaturized device. New device applications arise from existing knowledge together
with immerging new phenomena, as a result of the interactions between the NPs. Among
these are plasmonic devices in which noble metal NPs support localized surface plasmon
resonances which exhibit a high degree of optical field confinement with a notable sensitivity
to their local environment. In an ordered NP array coherent interactions arise from multiple
scattering as light that is scattered or emitted undergoes multiple scattering by the regularly
spaced particles [1, 18].

Multiple studies have demonstrated the potential applications of metal NPs for highly
sensitive photonic devices controlling, manipulating, and amplifying light, where the sen-
sitivity to the environment offers a means for developing chemical and biological sensing
devices. These applications as well as potential nanoelectronics and memory storage, all re-
quire stabilization of the NPs and provide pathways for assembly without altering the unique
characteristics that result from the nanometer dimension. With a plethora of techniques avail-
able for patterning NPs on surfaces, obtaining defined large scale organized arrays remains a
challenge.

Controlling the interaction between nanoparticles is a key to their utilization. Modifying
the surface of NPs allows control of adhesion and electro-optical communication. Organic
chains are often used where the chemical nature depends on the specific application. The
collective behavior of these functionalized nanoparticles depends on the interactions between
the modifying groups and the nanoparticles as well as on interaction between the grafted
chains themselves.

Molecular dynamic simulations (MD) provide a powerful tool to investigate the molec-
ular conformation of the modifiers and elucidate the interaction in nanoparticle complexes.
Lane et al. for example have used molecular dynamics (MD) simulations to determine the
forces between silica nanoparticles functionalized with poly(ethylene oxide) (PEO) in wa-

∗Department of Chemistry, Clemson University,smaskey@clemson.edu,
†Department of Chemistry, Clemson University,fpierce@clemson.edu,
‡Department of Chemistry, Clemson University,dperahi@ces.clemson.edu,
§Sandia National Laboratories,sjplimp@sandia.gov,
¶Sandia National Laboratories,gsgrest@sandia.gov

200 Silica Nanoparticles Grafted with Rigid Polymers

Fig. 1.1. The chemical structure of poly para phenyleneethynylene(PPE). Here R represents ethylhexyl.

ter [9]. They characterized the correlation between the chemical nature of the coating and
the interactions between nanoparticles and the surrounding solvents. MD simulation have
also been carried out to understand the physical interaction between poly(dimethylsiloxane)
(PDMS) melts and bare silica nanoparticles with emphasis on the structure and dynamics
of PDMS near silica surfaces [16]. Simulations have been carried to determine the forces
between nanoparticle in both implicit and explicit solvents [3, 14, 13].

Using MD simulations, the current study investigates the conformation and structure
of dialkyl para phenyleneethynylene (PPEs) grafted on Si nanoparticle. PPEs are electro-
optically active polymers. Their applications from sensing to organic electronics rely on their
response [2, 6, 15, 17]. PPE coated nanoparticles form an electro-optical responsive system
where the PPEs would tune the interactions between the NPs. As a first step we have coated
a silica nano particle with short PPE chains and investigated the conformation of the PPEs at
the interface of the particle in vacuum and in contact with a solvent.

As shown in Figure 1.1, the backbone of PPE consists of alternate single and triple bond
in conjunction with aromatic rings. The single bonds along the backbone allow the aromatic
ring to freely rotate along the long axis of the molecule. When the aromatic rings are con-
fined in a plane, the overlap of π orbitals result in delocalization of electrons along extended
segment of the backbone and the backbone of the PPE becomes fully conjugated. As a result,
PPE are intrinsic semi-conductor and often emit light on excitation.

The experimental studies carried out by small angle neutron scattering (SANS) have
shown that di-alkyl PPE in toluene, which is a good solvent for backbone, forms complex
phase diagram depending on the concentration and temperature including molecular solu-
tions, micellar structures and fragile gels [11]. The conformation of the PPEs in these three
phases depends on the degree of constrain of the molecule.

Conformational studies of single chains of various di-substituted di-alkyl PPEs have been
carried out by the authors using MD simulations in explicit and implicit solvents and in vac-
uum. These studies have shown that these PPEs molecules assume rigid rod-like to worm-like
structures. These molecules do not form random coils or collapsed structures for degrees of
polymerization up to N=480. Figures 1.2a and 1.2b show the snapshots of octadecyl PPE
(N = 60) in toluene and in vacuum, respectively. As seen from these snapshots in vacuum, a
poor solvent, side chains lie along the backbone and are associated with each other and forms
energy driven configuration. In case of toluene, a good solvent, the side chains are dispersed
with little or no interaction with each other and with backbone giving rise to entropy driven
configuration.

Using MD simulation the current study is aimed to determine the conformation and struc-

Sabina Maskey, Flint Pierce, Dvora Perahia, Steven J. Plimpton and Gary S Grest 201

(a)

(b)

Fig. 1.2. Snapshot of middle section of an equilibrated state of octadecyl PPE (N = 60) in (a) vacuum and (b)
toluene. For clarity only 20 segments of the PPE chain is shown.

ture of ethylhexyl PPE attached to a silica nanoparticle in both good and poor solvents. By
coating silica nanoparticle with PPE, we have formed a new class of electro-active nanopar-
ticles. This study is a first step in an effort to understand the properties of electro-active
nanoparticle coated with rigid polymers to reach our goal of designing nanoparticles that
can effectively communicate with each other via electron or photon transfer for sensors and
photovoltaic devices.

2. Simulation Methodology and Results. The ethylhexyl PPE and toluene molecules
as well as silica nanoparticle core used in this work are modeled using the standard OPLS-AA
(Optimized Parameter for Liquid Simulator) framework of Jorgensenet al. [7, 8] which shall
be simply referred here as OPLS. OPLS has several potential terms,

UOPLS−AA = Unb + Ubond + Uang + Utor + Uimp (2.1)

Nonbonded interactions Unb are a sum of standard 12-6 Lennard-Jones (LJ) and electrostatic
potentials [7, 8],

Unb(ri j) = ULJ + Ucoul = 4εi j

(σi j

ri j

)12

−

(
σi j

ri j

)6
+ kcoul

qiq j

ri j
(2.2)

where εi j is the LJ energy andσi j is the LJ diameter for atoms i and j, qi and q j are their partial
charges. For atoms of different species, geometric mixing rules are used, εi j = (εiε j)

1
2 and

σi j = (σiσ j)
1
2 . Nonbonded interactions are calculated between all atomic pairs on different

molecules in addition to all pairs on the same molecule separated by three or more bonds,
though the interaction is reduced by a factor of 1/2 for atoms separated by three bonds. All LJ
interactions were cut off at 12Å. All coulomb interactions for atom pairs closer than 12Åare

202 Silica Nanoparticles Grafted with Rigid Polymers

calculated in real space, those outside this range calculated in reciprocal (Fourier) space by
use of a standard particle-particle particle-mesh (PPPM) algorithm [4] and a precision of
0.001. Bond and angle potentials are harmonic in form

Ubond,ang(ri j, θ jk) = kr,θ(ri j, θ jk − r0, θ0)2 (2.3)

with ri j the distance between atoms i and j, r0 their equilibrium separation, θi jk the angle
between the vectors rji and rjk, and θ0 the equilibrium value. The torsional (dihedral) com-
ponent of the OPLS-AA potential is given by

Utor =
∑

n

kn cosn φi jkl (2.4)

where φi jkl is the dihedral angle, and kn depends on the identities of atoms i, j, k, and l.
In the OPLS framework, the out of plane (improper) potential has the same form as that of
the torsional potential, but for the sake of simulation in the LAMMPS molecular dynamics
package, this potential has been recast in the following form

Uimp = Kimp

[
1 + d cos

(
nθimp

)]
(2.5)

For our initial study we attached ethylhexyl PPE chains of 6 repeat units to a 5nm di-
ameter nanoparticle with the resulting coverage of 0.56 chains per nm2. The construction of
the PPE as well as toluene samples was done by using Polymer Builder and Amorphous Cell
modules of Material Studio from Accelrys Inc c©. The as-built samples were originally given
conformations consistent with polymer consistent force field (pcff) as OPLS potential is not
implemented in Material Studio. An in-house conversion utility was used to modify Material
Studio data files into LAMMPS data files. All potential parameters were converted from pcff

to OPLS.
A 5nm diameter silica nanoparticle was cut from bulk amorphous silica which was gen-

erated from a melt-quenched process as described by Lorenz et al. [10] and then annealed to
produce a surface OH concentration consistent with the experimental values. The PPE chains
were attached to the nanoparticle by removing 50 hydrogen atoms from surface OH groups
with cut off distance of 0.8 nm between two H atoms. A hydrogen atom was subsequently
removed from one of the terminal carbons on the PPE chain and a new bond formed between
the carbon of PPE chain and the surface oxygen of the indicated. The resulting coverage was
0.56 chains per nm2. To maintain charge neutrality the partial charges on the oxygen atom
on the surface and the two hydrogen atoms and the carbon atom were slightly modified based
on the charges of ether in OPLS. The charge of H atoms were changed from −0.06 to 0.03,
charge of O atom was changed from −0.683 to −0.43 and charge of C atom was modified to
0.14 from −0.12.

The toluene sample was equilibrated for 1 ns at T = 300 K and zero pressure using an
NPT ensemble using Nose-Hoover temperature thermostat at 1 fs timestep[5]. The resulting
density was 0.867 g/cc. We used 43,200 toluene molecules (648,000 atoms) which was suf-
ficient to completely solvate the nanoparticle which contained 23,365 atoms (4965 atoms of
silica nanoparticle and 18,450 atoms for the 50 chains of PPE with each chain containing 369
atoms). A hole in the center of the toluene sample to accommodate the nanoparticles was cre-
ated by using the (indent) fix in LAMMPS. The radius of the hole was increased slowly from
an initial radius of zero to approximately the diameter of nanoparticle core plus the PPEs. The
system was further equilibrated for 0.5 ns before the nanoparticle and solvent were merged.
The combined system was equilibrated for 1 ns in the NPT ensemble, after which the system
was run for 6 ns in the NVE ensemble with a Langevin. The length of the final simulation

Sabina Maskey, Flint Pierce, Dvora Perahia, Steven J. Plimpton and Gary S Grest 203

(a) (b)

Fig. 2.1. Snapshot of silica nanoparticle with 50 PPE chains of in (a) vacuum and (b) toluene. For clarity
chains are colored in black.

cell L ≈ 20 nm was approximately 25% larger than diameter of silica nanoparticle deco-
rated with the PPE which was sufficient to prevent the interaction of PPE with itself through
the periodic boundaries. All simulations were carried out using the LAMMPS classical MD
code [12]. Numerical integration was performed using velocity-Verlet algorithm with 1 fs
time step. Most of the simulations were carried out in an NVE ensemble using a Langevin
thermostat with damping Γ = 0.01 f s−1 at 300K. The nanoparticle core was simulated as a
rigid atom. For comparison we also simulated the nanoparticles coated with PPE molecules
in vacuum using NVE ensemble with a Langevin thermostat for 6 ns at time-step of 1 fs.

Figures 2.1a and 2.1b show silica nanoparticles coated with 50 chains of PPE in vacuum
and toluene. For clarity, PPE chains have been colored black and toluene is not shown.
Visually, there are few differences between the orientation of chains of PPE in vacuum and
in toluene. In toluene PPE chains are more separated from each other than in vacuum where
PPE chains form clusters.

The focus of this initial study is to determine the conformation and dynamics of PPE
chains attached to a nanoparticle core in various solvent environments. It further investi-
gates the inter chain interactions. In solutions,in good solvents toluene, flexible polymers
assume random coil conformations while collapsed structures are formed in poor solvents.
For rigid polymers, single chains form extended conformations in both good and poor sol-
vents as shown in Figure 1.2. For multiple chains of rigid polymers attached isotropically to
a nanoparticle core, one might expect these chains to be ‘dissolved’ in a good solvent and ex-
hibit extended conformations with little or no association between neighboring chains, while
for a poor solvent, attached chains may form clusters as they avoid solvation in an attempt
to minimize energy. The morphologies of coated nanoparticles are reflected in such confor-
mational changes of the attached polymers. By analyzing the association or dissociation of
polymer chains, one can discern the effect of a solvent on the nanoparticle. In order to un-
derstand the association of polymer chains, one can utilize the orientation of the chain. The
location of the terminal carbon atom of each chain relative to the nanoparticle’s center of
mass was calculated as a function of time. From this position vector, the azimuthal (θ) and
polar (φ) angles, representing the chains orientation, were determined. The range of φ is 0 to
2π and that of θ from 0 to π. An area-conserving mapping was used to convert spherical an-
gular coordinates into rectangular dimensions, as seen in Figure 2. Depending on the relative

204 Silica Nanoparticles Grafted with Rigid Polymers

(a)

(b)

Fig. 2.2. Plot of φ sin(θ) versus θ for silica nanoparticle with 50 chains of PPE in (a) vacuum and (b) toluene.

orientation of the chains which are represented by the points in the plot, it is possible to tell
whether there is an isotropic or anisotropic distribution of the chains. A constant density of
points on the mapping corresponds to an isotropic and unassociated (‘dissolved’) distribution
of chains around the nanoparticle. An anisotropic distribution implies chains are clumped or
associated with each other in an undissolved state.

The plots shown in Figures 2.2a and 2.2b represent the relative position of chains at
two different times for two solvent conditions, vacuum and toluene. The first time is at the
beginning of the simulation, and the second is after 6 ns. At the beginning of the run, for

Sabina Maskey, Flint Pierce, Dvora Perahia, Steven J. Plimpton and Gary S Grest 205

both environments, we see dispersed distributed points which shows that there is an isotropic
distribution of chains around the nanoparticle core. After 6 ns, in both vacuum and toluene,
we see a change in orientation of the chains as none of the chains coincides with their start-
ing positions. In vacuum, there are a number of clusters of chains after 6 ns, indicating an
anisotropic distribution and association of the chains. Conversely, in toluene, an isotropic
distribution is maintained by the chains which indicates that there is no association between
the chains. These chains remain solvated by the toluene. Hence, chains are stretched out in a
good solvent (toluene) whereas in a poor solvent (vacuum) they form clusters.

Another method of determining the conformational changes is by calculating the nanopar-
ticle’s radius of gyration (Rg), which depends on the quality of the solvent. Despite the obvi-
ous differences in the conformations of the chains as discussed above in toluene and vacuum,
the calculated Rg (of both chains and nanoparticle core) varied by less than 1 %, principally
due to the large mass of the nanoparticle core and rigidity of the attached PPE molecules.

3. Conclusions. MD simulations were used to investigate the conformation and struc-
ture of silica nanoparticle coated with ethylhexyl PPE, a highly rigid and electro-active poly-
mer in both good and poor solvents. PPE-grafted nanoparticle was successfully made and
inserted into solvents. In contrast to grafted flexible hydrocarbon chains, the PPE molecules
remains stretched out away from the surface of the NP. Solvents affect the distribution of the
chains around the NP. In vacuum which is a poor solvent for the PPEs, the chains cluster and
the distribution around the NP diverges from isotropic. The study showed that in toluene, a
good solvent, PPE chains were stretched out and isotropically distributed. This study will be
further extended to quantify the solvent effects and ultimately define the parameters that con-
trol the interactions between PPE grafted nano particles. In future, we will carry out further
studies to determine the effects of varying the length of polymer chains, the nature of the side
chains, and the coverage. The forces between two nanoparticles as a function of distance will
also be determined.

4. Acknowledgement. The authors thank J. Matthew D. Lane for providing silica nanopar-
ticle data file. This work was made possible by advanced computational resources deployed
and maintained by Clemson Computing and Information Technology and also would like to
acknowledge the support of staff from the cyber infrastructure and Technology Integration
group, Clemson University.

REFERENCES

[1] B. Auguie andW. L. Barnes, Collective resonances in gold nanoparticle, PRL, 101 (2008), p. 3902.
[2] A. J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials, Angew.

Chem. Int. Ed., 113 (2001), pp. 2591–2611.
[3] B. J. Henz, T. Hawa, and M. R. . Zachariah, Mechano-chemical stability of gold nanoparticles coated with

alkanethiolate sams, Langmuir, 24 (2008), pp. 773–783.
[4] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Adam Hilger-IOP, Bristol, 1988.
[5] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31 (1985),

pp. 1695–1697.
[6] C. Hoven, R. Yang, A. Garcia, A. J. Heeger, T.-Q. Nguyen, and G. Bazan, Ion motion in conjugated poly-

electrolyte electron transporting layers, J. Am. Chem., 129 (2007), pp. 10976–10977.
[7] W. L. Jorgensen, J. D. Madura, and C. J. Swenson, Optimized intermolecular potential for liquid hydrocar-

bons, J. Am. Chem. Soc., 106 (1984), pp. 6638–6646.
[8] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, Development and testing of the opls all-atom force

field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 118 (1996),
pp. 11225–11236.

[9] J. M. D. Lane, A. E. Ismail, M. Chandross, C. D. Lorenz, and G. S. Grest, Forces between functionalized
silica nanoparticles in solution, Phys. Rev. E, 79 (2009), pp. 050501–050504.

206 Silica Nanoparticles Grafted with Rigid Polymers

[10] C. D. Lorenz, E. B. Webb III, M. J. Stevens, M. Chandross, and G. S. Grest, Frictional dynamics of perflu-
orinated self-assembled monolayers on amorphous sio2, Trib. Letter, 19 (2005), p. 93.

[11] D. Perahia, R. Traiphol, and U. H. F. Bunz, From molecules to supramolecular structure: Self assembling of
wirelike poly(p-phenyleneethynelenes)s, Macromolecules, 34 (2001), pp. 151–155.

[12] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys., 117 (1995), pp. 1–
19.

[13] Y. Qin and K. Fichthorn, Molecular dynamics simulation of the forces between colloidal nanoparticles in
lennard-jones liquid, J. Chem. Phys., 119 (2003), p. 9745.

[14] Y. Qin and K. A. Fichthorn, Molecular dynamics simulation of the forces between colloidal nanoparticles in
n-decane solvent, J. Chem. Phys., 127 (2007), p. 144911.

[15] B. J. Schwartz, Conjugated polymers as molecular materials:how chain conformation and film morphology
influence energy transfer and interchain interactions, Annual Rev. Phys. Chem., 54 (2003), pp. 141–172.

[16] J. S. Smith, O. Borodin, G. D. Smith, and E. M. Kober, A molecular dynamics simulation and quantum
chemistry study of poly(dimethylsiloxane)-silica nanoparticle interactions, J. Polym. Sci. B, 45 (2007),
pp. 1599–1615.

[17] S. W. Thomas III, G. D. Joly, and T. M. Swager, Chemical sensors based on amplifying conjugated polymers,
Chem. Rev., 107 (2007), pp. 1139–1386.

[18] J. Zhao, L. J. Sherry, G. C. Schaltz, and R. P. V. Duyne, Molecular plasmonics: Chromophores-plasmons
coupling and single-particle nanosensors, IEEE Journal of Selected Topics in Quantum Electronics, 14
(2008), pp. 1418–1429.

CSRI Summer Proceedings 2009 207

3D TCAD MODELING OF CANDIDATE STRUCTURES FOR THE SILICON
QUBIT

NICOLE L. ROWSEY∗, RICHARD P. MULLER†, AND RALPH W. YOUNG‡

Abstract. This paper describes the TCAD modeling of possible candidate structures for the realization of the
solid-state silicon qubit. The typical Poisson+Drift/Diffusion TCAD solver should at the very least implement Fermi-
Dirac statistics, incomplete ionization models, and temperature-dependent band structures to account for carrier
densities down to 50K. The resulting electrostatic potential can be used iteratively with an outside Schroedinger solve
in a small “quantum region” to calculate quantum dot energy levels more accurately. Ideally, a full Schroedinger-
Poisson solver should be implemented in one tool. Preliminary results of implementation of these models using the
FLOODS TCAD solver are presented and compared to industry tools, as well as experiment.

1. Introduction. Quantum computing is a highly-sought-after goal of many research
groups, as several important yet classically-intractable problems in fields from cryptogra-
phy to molecular dynamics become tractable in the quantum domain. To this end, physical
quantum bits, or physical qubits, have been demonstrated in several systems. For example,
nuclear spins have been probed with a nuclear magnetic resonance (NMR) spectrometer, and
spin-controllable regions of confined charge, or quantum dot structures, have been realized in
Gallium Arsenide (GaAs) semiconductor devices. However, quantum computation requires
not just the realization and control of a single qubit, but the controlled interaction of several
qubits, including error-correcting bits, to perform logic operations; in other words, quantum
computation requires a logical qubit, which in fact consists of multiple interacting physical
qubits. Systems such as NMR and GaAs possess inherent physical limitations that make it
difficult to extend these examples into logical qubits. NMR qubits are not suitable because
they occur relatively infrequently, and thus far apart, in their host material, and so it is difficult
to maintain coherence between more than a few qubits at once. GaAs systems are fabricated
using modern integrated circuit (IC) processing techniques, which gives a high degree of
control over placement of the qubits, as well as the ability to place the qubits close together.
However, GaAs nuclei have a large nuclear spin, which interferes with the qubit spin and
leads very quickly to decoherence.

Silicon, on the other hand, has no nuclear spin. Furthermore, Si is the backbone of the
modern IC industry, and is therefore the subject of a vast amount of research for the past 50
or 60 years. Silicon qubit designers thus have at their disposal a large body of knowledge
and understanding, including not only the fabrication and operation of such devices, but also
robust modeling tools that can be used to design and understand them.

Technology Computer Aided Design (TCAD), in particular, has a long successful history
of modeling charge transport and electrostatic potential in semiconductor devices, especially
Si. Robust finite-volume (FV) methods have been developed to solve Poisson’s equation,
coupled with the electron and hole continuity equations, in 1 to 3D semiconductor solids. The
main limitation on a TCAD tool is mesh size, or how many points are required to ensure that
the finite-volume discretization scheme is a stable and accurate approximation to a continuous
system. On the average computer, only a few semiconductor devices can be simulated at a
time. In more complicated device structures, sometimes only a small important region of a
device can be simulated. Therefore several other tools and modeling techniques are needed
in addition to TCAD for a full picture of a semiconductor system, and quite powerful ones
for a whole IC. For example, density-functional theory (DFT) or molecular dynamics (MD)

∗University of Florida, nrowsey@ufl.edu
†Sandia National Laboratories, rmuller@sandia.gov
‡Sandia National Laboratories, rwyoung@sandia.gov

208 Si Qubit TCAD Structures

calculations are needed to model electronic and material properties before simulating at the
device level. At the device level, TCAD tools are best at modeling the electronic structure
of semiconductor systems, handling larger structures and accounting for boundary conditions
more realistically. Finally, the results of TCAD simulations are used to create a simplified
picture of devices, which is used by compact-model circuit simulators to connect lumped-
element devices together in a large network.

In this work, we present preliminary simulation results of Si metal-oxide-semiconductor
(MOS) -based quantum dot structures using the Florida Object-Oriented Device Simulator
(FLOODS) TCAD package, currently in development. Our preliminary simulation results
compare well to Sentaurus Device, an industry TCAD solver, as well as experimental data
of fabricated structures. We plan to extend this work by building a Schroedinger-Poisson
capability into FLOODS that would be able to quantum-mechanically treat the quantum dot
regions of our devices.

2. Basic TCAD: A Poisson and Drift/Diffusion Solver. TCAD solvers solve 3 things
on a grid: Electrostatic potential, via Poisson’s equation, and electron and hole concentration,
via the electron and hole continuity equations. On a physical contact, electrostatic potential
translates to voltage (V), and net charge flux (holes - electrons) translates to electric current
(I). This results in a basic 3 equations, 3 unknowns problem.

Poisson’s equation is as follows:

ε∇2Ψ = −Q, (2.1)

where ε is the material-dependent permittivity, Ψ is electrostatic potential, and Q is charge
density. In the most common TCAD case, Q is accounted for by adding up the concentrations
of electrons (n), holes (p), and n- and p-type ionized impurities, such as arsenic or boron,
called donors and acceptors (N−d and N+

a). Finally, multiplying by q, the charge on an electron,
we have:

Q = q(n − p + N−d − N+
a). (2.2)

The continuity equations for electrons and holes are as follows:

dn
dt

=
1
q
∇ · (qµnnE + qDn

dn
dx

)

dp
dt

= −
1
q
∇ · (qµp pE − qDp

dp
dx

),
(2.3)

where µn,p are the electron and hole mobilities, E is electric field, and Dn,p are the electron and
hole diffusion coefficients. Equations (2.3) state that there are two main contributions to the
transport, d

dt , or motion over time of our two free charged carriers, electrons and holes. The
first term, called the “drift” term, arises from any electric field gradient (E) in the device. It is
the first term in the parenthetical sums in (2.3). Its experimentally-determined proportionality
constant, µ, is called mobility. Electric field gradients arise from the distribution of the mobile
charges in the device, as well as any bias voltage conditions on the contacts, and are calculated
from the electrostatic potential, Ψ, via

E = −∇Ψ. (2.4)

The second contribution to carrier transport is from any concentration gradient of n or
p, the dn

dx term in (2.3). This is a “diffusion” term, and its experimentally-determined propor-
tionality constant is D, diffusivity.

N.L. Rowsey and R.P. Muller and R. W. Young 209

Equations (2.1) and (2.3) present three coupled partial differential equations with three
variables, Ψ, n and p. The effects of drift and diffusion coupled with Poisson’s equation do
not by any means give an exhaustive account of all the physics involved in the operation of a
semiconductor device. For example, these equations neglect collision or scattering terms [6].
Furthermore, the continuity equations as expressed in (2.3) above are derived from Boltz-
mann statistics, and are an approximation to the more accurate way of expressing transport as
n∇EFn and p∇EF p, where EF is the Fermi level. Equation (2.3) assumes Maxwell-Boltzmann
(MB) statistics in that it uses the Einstein relation

kT
q

=
D
µ
. (2.5)

where k is Boltzmann’s constant, and T is temperature. This Maxwell-Boltzmann simplifica-
tion does not apply under all conditions. More advanced models that build on (2.3), as well
as a discussion of when these models are needed, are presented in later sections.

3. Contact Equations. In order to solve the 3 equations and 3 unknowns described
above in section 2, we need boundary conditions. All of the candidate structures we consider
here are based on the metal-oxide-semiconductor field-effect-transistor (MOS or MOSFET).
Figure 3.1(a) shows a cartoon of a typical MOSFET. There are two different types of boundary
conditions relevant to this kind of structure.

(a) Basic MOS Structure (b) MOS Energy Band Diagram

Fig. 3.1. (a) A basic MOS device. The Si section is the top few microns of a Si wafer. S iO2 is grown on the top
surface of the wafer through chemical reaction with oxygen in the air. Finally, a metal is deposited on top. (b) An
energy band diagram for a MOS device with p-type bulk and metal-gate work-function contact.

The first is a simple metal-contact work-function difference. Figure 3.1(b) shows an
energy band diagram for a MOS device with p-type bulk and a metal contact. The work
function, Φm, which we chose to measure in volts, is the minimum energy required to move
an electron from the metal (residing in the Fermi level of the metal, EFm) to the vacuum level
El. This is similar to the electron affinity, χS in Si, the minimum energy required to move an
electron from the conduction band, EC , to the vacuum. If we define electrostatic potential as
the band-bending in the vacuum level,

Ψ = −El, (3.1)

with both Ψ and El measured in volts; and if we define the zero reference point as the Fermi
level in the metal (EFm) at zero applied bias,

EFm = 0 at Vapplied = 0, (3.2)

210 Si Qubit TCAD Structures

then we can express our work-function-difference boundary condition as

−Ψ − Φm = EF , (3.3)

on all the nodes that touch both metal and oxide, where in general Ψ is constant within a
metal and EF is continuous between materials.

An ohmic contact is more complicated. Physically, it is a contact to the bottom of the Si
wafer that is required to keep both the actual and simulated system from floating, or having
undefined voltage values. We model this as a boundary condition “somewhere in the bulk,”
which in practice means “on the first Si nodes that are far enough away from the wafer surface
to be considered bulk.” The bulk is in equilibrium, which means that, first, the Fermi levels
are equal to each other, and equal to the voltage applied at the ohmic contact:

EFn = EF p = Vapplied; (3.4)

Also, local conservation of charge is maintained:

Q = q(n − p + N−d − N+
a) = 0. (3.5)

Equations (3.4) and (3.5) provide three boundary conditions for our three variables. Other
boundary conditions necessary for simulation include Dirichlet and Von Neumann boundary
conditions on non-contacted edges, and the condition that Ψ is continuous everywhere.

4. Fermi-Dirac Statistics. We have, in our initial discussion of the continuity equa-
tions, and again in defining ohmic-contact boundary conditions, used the concept of the Fermi
level, EF . The Fermi level is an important concept from statistical mechanics. It is the low-
est energy level in a solid that is populated with electrons. Its position in a metal is inside
the conduction band, (the band of energy levels in which conduction of electrons occurs).
This accounts for why metals are good electrical conductors. The Fermi level in an insulator
resides near the center of a large band gap, Eg, far away from the conduction- or valance-
band-edges, EC or EV , such that negligible conduction occurs. In a semiconductor, however,
the Fermi level resides somewhere within a moderate-sized band gap, and its location can
be controlled via the level of impurity doping. If EF is placed sufficiently near EC , as is
the case for n-type doping, we can apply enough of a voltage to push EF into EC , control-
ling the current transport in a semiconductor device via externally applied voltage. A similar
case is made for p-type doping, illustrated in figure 3.1(b), where EF is placed near EV for
conduction of holes.

If we take into account the fact from quantum mechanics that the electron is a Fermion,
a particle with half-integer spin, the Fermi level in semiconductor physics is defined by the
Fermi-Dirac (FD) statistics of the carriers,

n = NC F 1
2
(
(EFn − EC)

kT
)

p = NV F 1
2
(
(EV − EF p)

kT
),

(4.1)

where NC,V are the effective density of states in the conduction and valance bands, EC and EV

are the conduction and valance band edges, k is Boltzmann’s constant, T is temperature, and
F 1

2
is the Fermi-Dirac integral of order 1

2 :

F 1
2
(η) =

∫ ∞

0

x
1
2 dx

1 + exp(x − η)
. (4.2)

N.L. Rowsey and R.P. Muller and R. W. Young 211

This integral is intractable. However, several practical approximations are available to us if
we wish to carry out calculations on our system.

The most basic of these approximations is to interpret MB carrier statistics,

n = NC exp(
(EFn − EC)

kT
)

p = NV exp(
(EV − EF p)

kT
),

(4.3)

as a classical approximation to FD statistics. Maxwell-Boltzmann statistics do not take into
account the quantum mechanical idea of particle spin, treating all particles as bozons, or par-
ticles of integer spin. However, the approximation is valid under certain physical conditions.

Mathematically and physically the approximation is justified when EFn is sufficiently
(several kT) below the conduction band EC (or EF p is sufficiently above EV). If this is the
case, we can use a Taylor series expansion on the exponential term in (4.2), reducing FD
statistics to the more manageable equations in (4.3). The MB equations invert easily to give
a tractable expression for EF that can be used in the ohmic contact equations (3.4) above:

EFn = EC + kT ln(
n

NC
)

EF p = EV − kT ln(
p

NV
).

(4.4)

We can see from the discussion above that the Fermi level depends on many parameters,
including doping, temperature, carrier density, and electrostatic potential (since EC = −Ψ−χ,
and EV = −Ψ − χ −

Eg

2 , from figure 3.1(b)). Thus, in determining whether EF is close
enough to the band edge, many different aspects of our physical operating environment must
be considered.

First, the semiconductor must be non-degenerately doped; in other words, the semicon-
ductor must have low impurity density. Low impurity density is generally considered to be
in the range of Na,Nd < 1e18/cm3 or 1e19/cm3. Candidate structures for the Si qubit are
undoped, to avoid noise. In semiconductor parlance, “undoped” does not translate to carrier
concentrations of 0. In fact, it is impossible from a manufacturing standpoint to purify Si
to this degree. The best manufacturers can do is a p-type impurity concentration of approx-
imately 1e14/cm3. “Undoped” simply means that there was no intentional doping added.
(For reference, the highest possible doping attainable in a semiconductor is approximately
1e20/cm3 or even 1e21/cm3 in the case of polySi - the closest approximation doped Si can
come to a metal.)

Since 1e14 << 1e18, our undoped candidate structures satisfy the low doping require-
ment for MB statistics. However, we must also consider that our candidate structures will be
operated very low temperatures. Solid-state qubit systems are never operated at room tem-
perature due to the high random thermal noise of carriers compared to spin state energies. In
fact, these systems are operated at as close to 0K as possible, which for us is 100mK.

If we consider MB as a classical approximation to FD statistics, then we also must con-
sider that, to be able to treat a particle system as classical, the average inter-particle spacing,
R̄ of the system must be much greater than the statistical average de Broglie wavelength λ̄ of
our particles:

R̄ � λ̄ ≈
h

√
3mkT

∝
1
√

T
, (4.5)

where h is Plank’s constant, m is the effective mass of the electron, λ = h
p is de Broglie

wavelength, p = mvth is momentum, and vth =

√
3kT
m is thermal velocity.

212 Si Qubit TCAD Structures

From equation (4.5), we see that as temperature decreases, the classical approximation
becomes less and less valid, and indeed is invalid at 50K and 100mK. Therefore, we must
use FD statistics in simulating our candidate qubit structures, which will require a new trick
to deal with the intractability of (4.1).

A widely used and successful treatment of this problem is the Joyce-Dixon approxima-
tion [2], which uses a power-series expansion to make a polynomial expression for both F 1

2
and EF .

F 1
2

= g1 exp(η) − g2 exp(2η) + ... + (−1)m+1gm exp(mη)... (4.6)

where η is shorthand for

ηn =
EFn − EC

kT

ηp =
EV − EF p

kT
,

(4.7)

and the gm are the Laplace transform of x
1
2 :

gm =

∞∑
m=1

√
π

2
m

1
2 . (4.8)

The reverted series for η can be expanded out to make a tractable expression for E f , the first
few terms of which are included below:

EF = Ec + kT (ln(χS) + A1(χS) + A2(χS)2 + A3(χS)3 + A4(χS)4) (4.9)

A1 = 3.53553...e − 1
A2 = −4.95009...e − 3
A3 = 1.48386...e − 4
A4 = −4.42563...e − 6,

where χS denotes either n
NC

or p
NV

. In (4.9) above, EC + kT ln(n
NC

) is recognizable as the
Boltzmann approximation, and the sum over Am(χS)m can be interpreted as a FD correction
term. This power series is valid for χS < 8.0, otherwise we can use the Sommerfeld expansion
[7]:

EF = Ec + kT ((
3
√
π

4
χS)

4
3 −

π2

6
)

1
2 . (4.10)

Finally, equations (4.9) and (4.10) gives us a tractable and physically representative expres-
sion for the Fermi level that can be used in the boundary condition equation (3.4).

Implementing equation (4.9) on the ohmic boundary contacts is a required step. How-
ever, as the continuity equations (2.3) are also a simplification based on MB statistics, we
must also develop a treatment for the bulk. We follow a method outlined in Mark Pinto’s
1990 Stanford thesis [3]. From first principles, FD is accounted for by deriving a modified
Einstein relation similar to (2.5). However, then we may not use the Scharfetter-Gummel
finite-volume discretization scheme, which would sacrifice stability and demand impracti-
cally small grid spacing. Instead, Pinto treats the effect of FD statistics as a perturbation to
the MB approximation,

n = γnNC exp(ηn)
p = γpNV exp(ηp),

(4.11)

N.L. Rowsey and R.P. Muller and R. W. Young 213

where the perturbation γ is defined as

γn = F 1
2
(ηn) exp(−ηn)

γp = F 1
2
(ηp) exp(−ηp).

(4.12)

Then, effective fields En and Ep are introduced

En = −∇(Ψ + kT ln(γn))
Ep = −∇(Ψ − kT ln(γp)).

(4.13)

These effective fields are used in the continuity equations (2.3) instead of (2.4). In our
FLOODS implementation, the Joyce-Dixon approximation for F 1

2
was used to define γ in

the continuity equations. Pinto’s thesis suggests implementing a modified Einstein relation
such that

kT → kT
F 1

2
(η)

F− 1
2
(η)

, (4.14)

using this as a coefficient outside the continuity equations (2.3). This has not yet been imple-
mented in FLOODS.

5. Incomplete Ionization of Impurities. Usually, we assume that all impurities intro-
duced into the Si are ionized, that is, each impurity replaces a Si atom in the crystalline lattice
and is ionized to +1q or −1q charge because it fully contributes 1 electron or hole as a mobile
carrier to the semiconductor transport system. Mathematically, we express this as N+

d = Nd

in the case of electron donor impurities and N−a = Na in the case of electron acceptor (hole
donor) impurities. Note that electron donors, Nd, are ionized as positive because they give
away an electron, and vice versa for electron acceptors.

At low temperatures a phenomenon called carrier freezeout becomes significant. We
account for this effect with a model first published by Jaeger et al [1]. Donor and acceptor
energy levels of commonly used dopants, such as boron and arsenic, reside very close to the
conduction and valance band edges. These levels are labeled with the aid of 4Ed and 4Ea

in figure 5. At room temperature, sufficient thermal energy exists to excite carriers into or

(a) Donor Energy Levels (b) Acceptor Energy Levels

Fig. 5.1. Donor and acceptor energy levels in the MOS band diagram.

out of the close-by impurity bands. However, at lower temperatures, and especially at 50K or
100mK, there is not enough thermal energy to excite all donors and acceptors in the system.
Only a certain percent are excited, and this percent is characterized again by FD statistics:

N+
d =

Nd

1 + 2 exp((EFn − EC + 4Ed)/(kT))

N−a =
Na

1 + 4 exp((EV − EF p + 4Ea)/(kT))
,

(5.1)

214 Si Qubit TCAD Structures

where we recognize the general form from (4.1). Nd and Na are generally known quanti-
ties, as they are the doping concentration intentionally implanted in the Si by manufacturers,
whereas equations (5.1) are the number of active dopants that we must include in Poisson’s
equation, (2.1). The coefficients 2 and 4 on the exponential term in the denominator account
for degeneracies: a spin degeneracy of 2 in the case of electrons, and both a spin and valance
band degeneracy of 2 each for holes.

At room temperature, 4Ed and 4Ea are taken as constants from experiment. However,
they are in general dependent on both carrier concentration and temperature. Historically,
these dependencies have been accounted for by this model by Shaheed et al [5],

4Ed = Ed300 − (3.1e − 8)N
1
3

d + (200T−1.0 − 0.66)

4Ea = Ea300 − (3.037e − 8)N
1
3

a + (200T−0.95 − 0.88),
(5.2)

which is a power-law fit to experimental data. Ed,a300 is the experimental constant specific to
the impurity at 300K, the next term accounts for concentration dependence and the third for
temperature dependence.

Since [5] provides well-matched experimental data on sheet-resistance versus temper-
ature down to 60K, we attempted to implement equation (5.2) along with FD statistics and
incomplete ionization. However, upon even rudimentary examination we discovered that 4Ed

and 4Ea took on values that we believe are unphysical. In the example table 5.1 below, we
have printed the values of 4Ed and 4Ea resulting from (5.2) at various temperatures, for
Nd,a = 1e14/cm3, using boron as an example acceptor impurity. Room-temperature values
for Ed,a300 have been taken from Sze [8], as suggested by [5]. Equation (5.2) claims that the

Table 5.1
Purported Change in Impurity Level Due to Temperature

T = 300 T = 200 T = 100 T = 50
4Ed (eV) 0.0490 0.3890 1.3890 3.3890
4Ea (eV) 0.0450 0.4669 0.1681 4.0278

change in impurity energy level due to temperature is quite large, and at low temperatures
much larger, even, than the band gap of Si. The temperature dependence model gives sim-
ilarly unbelievable values for higher doping as well. Therefore we have not included this
temperature dependence of 4Ed,a in our simulations.

6. Temperature Dependence of the Band Structure. In addition to the explicit tem-
perature dependencies we have already seen in kT terms, the band structure of Si is also
temperature-dependent. The temperature dependencies of electron affinity, χ, band gap, Eg,
and electron and hole density of states, NC and NV , are modeled after Sze [8] as follows:

χ(T) = χ(0) −
αT 2

2(T + β)
= χ(300) + α(

3002

300 + β
−

T 2

2(T + β)
) (6.1)

Eg(T) = Eg(0) −
αT 2

T + β
= Eg(300) + α(

3002

300 + β
−

T 2

T + β
) (6.2)

NC(T) = NC(300)(
T

300
)

3
2

NV (T) = NV (300)(
T

300
)

3
2

(6.3)

N.L. Rowsey and R.P. Muller and R. W. Young 215

where χ(300), Eg(300), NC(300), NV (300), are experimental constants at 300K, taken as
default from the Medici TCAD tool manual as 4.17V , 1.08V , 2.8e19/cm3, and 1.04e19/cm3.
In the future we will take these defaults from the Sentaurus Manual for better matching.

7. Numerical Results. We implemented the models discussed above in FLOODS, a
3D TCAD solver, which uses tetrahedral meshes and a finite-volume discretization scheme.
Finite-volume discretization is necessitated by the continuity equations, which require the
Scharfetter-Gummel finite-volume method for stability.

The structures we will discuss are all MOSFET-based structures with p-type Si, a deple-
tion oxide and depletion gate, and an accumulation oxide and accumulation gate (see figure
7.1(a)). The depletion oxide is thin S iO2, to get a good interface with the Si, as defect-free as
possible. The accumulation oxide requires no interface with the Si, so Al2O3 is used, which
is easier to deposit. The gates are either aluminum, which has a work-function of 4.1V , or
n-type polySi, which we initially model as a metal with work-function difference of 4.16V .
We can also model polySi as heavily-doped Si, but initially we wanted to match the methods
used in the Sentaurus Device industry tool for verification of our implementation.

The purpose of the structure in 7.1(a) is to electrostatically (with gate-voltages only)
define and control a small dot of charge in the Si. The top accumulation gate attracts or
accumulates a 2D electron gas (2DEG) near the Si surface via application of a positive voltage
to that gate. Then, a negative voltage is applied to the depletion gates to push away most of
this charge, except in a very small region where we wish to confine a quantum dot and control
it as a qubit. Figures 7.1(a) and 7.1(b) give an illustration of this structure and indicate where
the qubit would reside.

(a) Top Down View of Qubit
Gates

(b) Cross-Section of Qubit Gates

Fig. 7.1. The MOS gate-topology proposed to electrostatically define a qubit. Charge is drawn to indicate how
the charge will be controlled. (a) Top-down view (b) Cross-section view.

7.1. Capacitor. The first test of our code was to simulate a simple capacitor-like struc-
ture simplified from figure 7.1(a) and compare a FLOODS calculation of the capacitance to
experimental measurement of the same structure.

Our capacitor structure is an undoped p-type capacitor (n-type MOSFET) 0.5µm long in
y, 5µm wide in z, and 6µm deep in x. The deep x dimension is necessary to approximate a
bulk-type equilibrium behavior at the ohmic contact at the back. The structure has two gate
oxides. The first is a 35nm depletion-gate oxide of S iO2 on the surface of the Si. The second
oxide is a 95nm accumulation gate oxide of Al2O3 on top of that. The accumulation gate on

216 Si Qubit TCAD Structures

top is Al, and has no simulated height, as fringe effects will not affect a block structure like
this. No depletion gates were included in this structure.

A 2D picture of our structure and grid is in figure 7.2(a) As our structure is undoped, we

(a) 2D Capacitor Grid (b) Inv.-Layer Charge vs. Vg

Fig. 7.2. (a) 2D grid and structure of MOSFET-like capacitor (b) Inversion-layer charge versus top-gate Volt-
age in Electrons/cm2 for simulated structure and measured data. Slope of these curves is capacitance. Capacitance
matches.

chose Na = 1e14/cm3 in the bulk, with very small (10nm ∗ 10nm ∗ 20nm) source/drain-like
regions on the left and right of the structure at z = 0 and Nd = 2e18/cm3. These source/drain-
like regions are necessary for convergence, as they account for boundary decoupling due to
depletion region charge.

Figure 7.2(b) is a plot of inversion-layer charge versus top-gate voltage for both a mea-
sured device and a 2D simulated device. The slope of these curves is the capacitance of the
structure, and both match. We believe the 1V offset is due to differences in definitions of
material parameters, such as band-gap and electron affinity. Because the capacitances match,
we assert that our models appropriately account for the relevant physics of this test structure.

8. Future Work. The capacitor study was important to see if our tools matched experi-
ment. In the future, we would like to use FLOODS to understand and predict how the size of,
spacing between, and bias configurations on the gates can be varied to electrostatically define
a quantum dot, if possible. We plan to increase the complexity of our simulated structure in 2
stages (figures 8.1(a) and 8.1(b)). These are small representative regions of the total proposed
structure, figure 7.1(a).

8.1. Single Poly Structure. A simplified structure of 7.1(a) is shown in figure 8.1(a).
This has been named a single-poly structure because both the accumulation and depletion
polySi gates are fabricated in one layer.

8.2. Double Poly Structure. Finally, we would like to simulate a double-poly structure,
with 2 layers of polySi gates, both accumulation and depletion. We must take care to simu-
late a structure that has the conformal deposition of the upper layers that will occur during
fabrication (figure 8.1(b)).

8.3. CTAP. A related structure is called CTAP, which stands for coherent tunneling
adiabatic passage. Illustrated in 8.1(c), this structure has been proposed for the control of
qubit transport. Tight-binding calculations on this structure have suggested the existence of
a CTAP pathway in such a structure [4]. FLOODS calculations could be used in conjunction
with tight-binding methods to provide more representative boundary conditions for electro-
static potential calculations.

N.L. Rowsey and R.P. Muller and R. W. Young 217

(a) Single Poly (b) Double Poly (c) CTAP Structure

Fig. 8.1. Future Work Structures (a) A simplification of 7.1(a) with polySi accumulation and depletion gates
on the same level. (b) A small representative region of 7.1(a) with polySi accumulation and depletion gates. (c) A
proposed MOS-based structure for CTAP transport (unrelated to 7.1(a)

8.4. Poisson-Schroedinger Solvers. Although TCAD solvers like FLOODS are very
good at simulating electrostatic potential, regions such as quantum-dot regions must be treated
quantum-mechanically, as the charge levels there are below what can be accounted for with
classical models. This can be achieved by solving Poisson’s equation coupled with Schroedinger’s
equation, iterating between two different solvers, such as FLOODS and another tool, or
performing a full Schroedinger-Poisson solve in FLOODS. The latter involves some chal-
lenges, especially because the continuity equations require the Scharfetter-Gummel finite-
volume discretization, whereas a Schroedinger-Poisson solve is best accomplished with a
finite-element discretization scheme. We will look into these options in the future.

9. Conclusions. In this paper we have outlined models necessary for the TCAD sim-
ulation of device behavior in Si MOS-based qubit candidate structures. We have imple-
mented Fermi-Dirac statistics, incomplete ionization, and temperature-dependent band struc-
ture models in the FLOODS TCAD package. Our preliminary simulation results on a MOS
capacitor structure show good agreement with both the Sentaurus Device industry TCAD
solver, as well as experimental measurements. Additional simulations can now be carried
out to study proposed structures for the demonstration of the Si qubit. In the future, a full
Schroedinger-Poisson solve should be implemented, either by iterating a FLOODS solve with
another tool, or by implementing a Schroedinger-Poisson solver in FLOODS.

REFERENCES

[1] R. C. Jaeger and F. H. Gaensslen, Simulation of impurity freezout through numerical solution of poisson’s
equation with application to mos device behavior, IEEE Trans. Electron Devices, 27,5 (1980), pp. 914–
920.

[2] W. B. Joyce and R. W. Dixon, Analytic approximations for the fermi energy of an ideal fermi gas, Applied
Physics Letters, 31,5 (1977), pp. 354–356.

[3] M. Pinto, Comprehensive semiconductor device simulation for silicon ulsi, (1990), pp. 237–242.
[4] R. Rahman, S. H. Park, J. H. Cole, A. D. Greentree, R. P. Muller, G. Klimeck, and L. C. L. Hollenburg,

Atomistic simulations of adiabatic coherent electron transport in triple donor systems, (2009).
[5] M. R. Shaheed and C. M. Maziar, A physically based model for carrier freeze-out in si- and si-ge base bipolar

transistors suitable for implementation in device simulators, Bipolar/BiCMOS Circuits and Technology
Meeting, (1994), pp. 191–194.

[6] R. K. Smith and J. W . M. Coughran, Computational challenges in simulations of ulsi semiconductor devices,
IEEE Int. Conference on System Sciences, 27 (1994), pp. 7–15.

[7] A. Sommerfeld, Z. Phys., 47,1 (1928).
[8] S. M. Sze and K. K. Ng, Physics of semiconductor devices, (2007).

CSRI Summer Proceedings 2009 218

PARTICLE MESH METHODS FOR PLASMA SIMULATION

MAXX C. KURECZKO∗ AND DAVID M. DAY†

Abstract. Plasmas are highly ionized gases that are ubiquitous in chemistry and physics. Our interests lie in
simulating plasmas with little to no magnetic fields. We implement and test several numerical schemes for stochastic,
or so-called “hot” plasma simulations. Based off of some previous work, we analyze methods that conserve energy or
momentum. During this process, it became clear that the nature of these discretizations and the general behavior of
plasmas make code implementation and verification difficult. Our results were rarely consistent with the established
theory. Several revisions and tests were performed to improve code correctness. Preliminary results of this process
and our simulation are presented here, while future drafts of this report will present more accurate data.

1. Introduction and summary. Plasmas are highly ionized gases that are ubiquitous
in chemistry and physics. Core applications here at Sandia National Laboratories involve
plasmas with negligible magnetic fields. In these areas, simulation capabilities are catching
up with experiments.

This paper begins with an exposition on plasmas and an outline the Particle-Mesh (PM)
numerical methods for modeling plasmas. A variety of Finite-Element methods (FEM)
are discussed for the potential equaiton. Numerical results are presented for some one-
dimensional model problems.

Particle-Mesh methods are sometimes called “Particle-in-Cell” (PIC) or “Direct Simu-
lation Monte Carlo” methods. These numerical methods involve, among other things, np

particles at locations {xi}
np

i=1 with velocities {vi}
np

i=1 and charges {qi}
np

i=1. In Section 2, the con-
servation properties of the plasma equations are derived. Numerical experiments in Section
4 confirm the theory. While [3] is an in-depth source on plasmas, this paper fills in some
numerical analysis issues not discussed there.

The ultimate goal of our work is to model hot plasmas. In these plasmas, the standard de-
viation of the velocities is proportional to the plasma temperature; particle velocities are ran-
dom variables. Such simulations begin with a set of charged particles uniformly distributed
in space having a random velocity assignment from a Maxwellian distribution. Particle dy-
namics is governed by Newton’s Law. In Particle Mesh methods, the electric field driving the
particles is computed from the electrostatic potential.

The original goal of this work concerned smoothing. A necessary condition for the sta-
bility of PM methods is that, in the discretization of the potential equation, element diameter
be less than the Debye length [3]. The Debye length,

λD =

√
εokBT

nq2 ,

depends on Boltzmann’s constant, kB, the absolute temperature, T , the electric constant, εo,
the particle density n, and the fundamental charge of an electron q [2, 4]. This constraint is
a severe limitation for the plasmas of interest. The precise form of the constraint depends on
the specific discretization. Essentially, smoothing techniques are discretizations that remain
stable with element diameters noticably larger than λD.

However, as our work proceeded, we realized that code verification would be challenging
for hot plasma simulations, due to their stochastic nature and difficulty in finding a method
that involved physically correct scaling of the discrete equations. In particular, a code may
inherit the conservation properties of the plasma yet still be unphysical. Standard validation

∗New Mexico Institute of Mining and Technology, mkureczk@nmt.edu
†Sandia National Laboratories, dmday@sandia.gov

M.C. Kureczko and D.M. Day 219

problems, such as plasma sheaths, are computationally intensive. Instead a“cold” plasma [2]
problem (“cold” plasmas are deterministic) was used for code-to-code verification. These
fluid equations were solved using a spectral method.

The rest of this paper will begin with an overview of conservation laws and what they
imply for plasma simulations in Section 2. The discussion will delve a little deeper in Sections
3 and 3.1, where discretization techniques for the conservations of energy and momentum will
be considered. Finally, in Section 4, we will verify and test our simulations and analyze the
results.

2. Plasma equations. Discrete methods for partial differential equations are fundamen-
tally variational. For this reason, the plasma equations are given here in their variational
form. These equations are derived from the formulation of plasma physics in terms of prob-
ability density functions called Vlasov’s equation [3]. However, due to space limitations, the
description of Vlasov’s equation is terse.

The variational equations of interest may be derived from the action integral

I [Φ, x] =

∫ t1

t0
Ldt (2.1)

for Vlasov’s equations (see Section 5.5 of [3] for background), where Φ is the potential at the
location x, and L is the Lagrangian.

In theory, charge density ρ and particle density n are given by

ρ(x) =

np∑
i=1

qiδ(x − xi), n(x) =

np∑
i=1

δ(x − xi). (2.2)

However, in simulations, a numerical particle represents a particle cloud containing an astro-
nomical number of physical particles whose densities are mollified or smoothed out. Also,
note for further reference that the electric field is given by

E = −∇Φ. (2.3)

The plasma equations arise by approximating the probability density function in Vlasov’s
equation to be a finite sum of delta functions, (one per particle), leading to the Lagrangian

L =
1
2

np∑
i=1

mi|vi|
2 − qiΦ(xi, t) +

1
2

∫
|∇Φ|2dx. (2.4)

The Lagrandian is the difference between the kinetic and potential energy plus field energy
[3]. Minimizing the functional I [Φ, x] gives the equations satisfied by the particles. Variation
of (2.1) with respect to position gives Coulomb’s Law,

mv̇ = qE. (2.5)

Equation (2.5) is sometimes called the Momentum Equation or the Lorentz Force equation
(in our case, B = 0). Furhtermore, variation with respect to potential yields

−εo∇
2Φ = ρ (2.6)

The Lagrangian, equation (2.4), gives insight into different discretizations of equations (2.5)
and (2.6).

220 Particle Mesh Methods for Plasma Simulation

The conservation of the energy of each individual particle,

d
dt

(
1
2

mi|vi|
2 + qiΦ(xi, t)

)
= 0

follows from equation (2.5). The Lorentz Force equation, equation (2.5), has the form
dpi/dt = qiE, where pi is the momentum of the ith particle. Equation (2.5) combined with the
charge density, equation (2.2), implies the conservation of momentum as described in Section
6.9 of [4]. The sum of the momenta, pV , of all the particles in a given volume V satisfies

dpV

dt
=

∫
V
ρEd3x. (2.7)

3. Galerkin discretizations. Continuous in time, discrete in space discretizations are
not studied in [1, 3]. In simulation, these methods do not conserve energy completely, as
their continuous-in-time integrations become discretized numerically.

Here we will generalize the idea of energy-conserving methods from [1, 3] to an arbitrary
Galerkin-type method. The result is that once a discretization for the Poisson operator is
chosen, one and only one discrete charge density conserves energy.

The potential is approximated by an element of a vector space with basis functions. If
the basis functions are {Wp(ξ)}1≤p≤r, one may define the vector-valued function w(xi) by

w(ξ) = [W1(ξ), . . . ,Wr(ξ)]

The discrete potential φ(x) at x is a linear combination of the {Wp(ξ)}1≤p≤r. That is, there
exists a vector u of expansion coefficients so that φ(x) = u′ ∗w(x). The Lagrange equation for
the potential is

εoKu =

np∑
i=1

qiw(xi), (3.1)

where K is known as the stiffness matrix.
Here, it is worth discussing Galerkin’s method in a general sense. We have obtained the

differential equation

−εo∇
2Φ = ρ.

Multiplying both sides by a test (trial) function W(x) and integrating over the domain gives

−εo

∫
Ω

∇2ΦW =

∫
Ω

ρW. (3.2)

Introducing some convenient notation, let

〈u, v〉 =

∫
u(ξ)v(ξ)dξ

be the inner product of u and v. Also, let

B(u, v) = εo

∫
Ω

∇u∇v.

Then (3.2) can be written as

−εo〈∇
2Φ,W〉 = 〈ρ,W〉. (3.3)

M.C. Kureczko and D.M. Day 221

Integration by parts of (3.3) yields

εo〈∇Φ,∇W〉 = 〈ρ,W〉 = f (W). (3.4)

Define H1([a, b]) =

{
f :

∫ b
a |∇ f |2 < ∞

}
. The objective now is to find Φ ∈ H1 such that

∀W ∈ H1, B(Φ,W) = f (W). By way of the basis functions Wi,

Φ(x) =

∞∑
i

αiWi(x)

for some coefficients αi. The problem has now turned into a linear system. For the FEM,
solving B

(
ΣiWiαi,W j

)
= f (W j) results in the stiffness matrix, and solving ΣiB(Wi,W j)αi =

f (W j) gives the right hand side.
The left-hand side in (3.1) is exactly the equation that arises from Galerkin’s method,

while the right-hand side is not necessarily the right-hand side used in Galerkin’s method.
One problem is to characterize the basis functions {Wp(ξ)}1≤p≤r such that the Galerkin right-
hand side is the energy conserving right-hand side. To do this, for energy conservation in the
simulations, the quantity

ρ j =

np∑
j=1

W j(x j)

is computed for all j, as is the density function

ρ(x) =

np∑
j=1

ρ jW j(x).

The k-th component of the right-hand side of our FEM is then computed by

rhsk =

∫
Wk(x)ρ(x)dx

where k = 1, 2, ..., L.

3.1. Momentum conservation. Momentum conservation is discussed extensively in [3]
and [4]. However, the discussion of momentum-conserving discretizations in Section 5.3.3
of [3] will make more sense if one first understands Section 6.9 of [4].

In general, the ideas of momentum conservation come from a few assumptions about the
problem. If, in a small volume V , the electric field E is constant and the approximate charge
density has exact moments ∫

V
ρ(x)dx =

∑
xi∈V

qi, (3.5)

then momentum is conserved within V .
Momentum conservation in [1] or [3] concerns certain geometries and boundary condi-

tions in which ppart is constant and refers to discretizations for which the computed ppart is
also constant.

For momentum conservation in our simulations, ρ(x) is approximated by either a piecewise-
constant or continuous piecewise-linear function. That is, ρ(x) is a function based on the
density (number of particles/element), interpolated in a piecewise-constant or continuous
piecewise-linear fashion.

222 Particle Mesh Methods for Plasma Simulation

1

xk−1 xk+1xk

J
J
J
J
J
J
J
J
J
J
J
JJ

Fig. 4.1. The k-th basis function, Wk(x)

4. Results. In our computations and MATLAB simulations, we chose our basis func-
tions Wk(x) to be the hat function, as depicted in 4

As a great deal of the experiments involved code verification and correctness, spending a
substantial amount of time working out bugs and errors, we have yet to implement valid code
and collect accurate data for the momentum conserving scheme. While this paper is under
review, we will collect this data and present it in its entirety for the final submission.

For a uniformly discretized domain, with domain length H, element width dx and L
elements, we have that H = Ldx. In implementation, there are two methods of running the
simulations. The first is holding the length of the entire domain H constant while changing
the width dx (and number, L) of the individual elements. These experiments are discussed
in Section 4.1. The second implementation involves keeping a constant number of elements
while letting H and dx vary. These trials are demonstrated in Section 4.2.

4.1. Constant domain size, varying element width. The first set of numerical ex-
periments ran the hot plasma simulation 1000 times, averaging the results over 200 time
steps. All experiments simulated 3168 particles initially distributed uniformly in space (H =

1.33×10−4) with random velocities. Plots of the total energy of the system against time can be
seen in Figure 4.2(a) for varying values of dx/λD using the energy conserving scheme. Figure
4.2(b) shows the total energy against time using a regular FEM for comparison. The percent
change in energy (E) and momentum (P) were computed from the initial to final times and
are shown in Table 4.1.

In these trials, the FEM conserved energy slightly better than the energy conserving
method. It is also interesting to note that as the resolution becomes more coarse, energy is
conserved more for both methods. The values for the percent change in momentum were
included to demonstrate its stochastic nature (dependence on the random velocity). As a
result, the percent change is not a good metric for momentum. Figures 4.3(a) and 4.3(b)
show the stochastic evolution of momentum over time for the energy-conserving scheme and
FEM, respectively (dx/λD = 0.5).

To see how the percent change in total energy behaves as a function of dx/λD while
holding H constant for both the energy conserving scheme and FEM, see Figure 4.1

To see just how well energy is conserved for fewer and wider elements with a constant
domain size, we tested values of dx/λD larger than one. Plots of the results can be seen in
Figures 4.4(a) and 4.4(b) and percent changes in energy are in Table 4.2.

M.C. Kureczko and D.M. Day 223

0 20 40 60 80 100 120 140 160 180 200
1.25

1.3

1.35

1.4

1.45

1.5

1.55
x 10

−15 Energy vs. Time

dx/λ
D
 = 0.100

dx/λ
D
 = 0.250

dx/λ
D
 = 0.500

dx/λ
D
 = 1.00

(a) Total energy against time using the energy conserv-
ing scheme.

0 20 40 60 80 100 120 140 160 180 200
1.25

1.3

1.35

1.4

1.45

1.5

1.55
x 10

−15 Energy vs. Time

dx/λ
D
 = 0.100

dx/λ
D
 = 0.250

dx/λ
D
 = 0.500

dx/λ
D
 = 1.00

(b) Total energy against time with the FEM.

Fig. 4.2. Plots of the total energy vs time for varying dx/λD values, holding the total length of the domain
constant letting the element size vary. H = 1.33 × 10−4

Table 4.1
Percent change in energy and momentum for constant values of H.

Energy Conserving FEM
dx/λD L % Change E % Change P % Change E % Change P
0.100 80 15.18 0.04 15.17 5.32
0.160 50 15.02 38.59 14.92 0.86
0.200 40 14.89 0.60 14.92 72.75
0.250 32 14.71 3.63 14.48 6.49
0.333 24 14.63 0.57 13.72 4.60
0.400 20 14.44 1.46 13.55 3.99
0.500 16 13.67 0.35 12.57 7.05
0.600 12 12.55 2.35 10.94 11.25
0.800 10 11.46 3.52 9.51 33.63
1.000 8 9.66 0.70 6.92 157.51

Again, the standard FEM conserves total energy slightly better than the energy conserv-
ing scheme, and as the element width increases, there is less change in total energy. This
decreasing change in total energy is a result of the continuous in time and discrete in space
integration. The fewer elements there are, the less errors accumulate over time, resulting in a
better energy profile.

4.2. Varying domain size, constant element width. To further test the energy conserv-
ing scheme, the next set of experiments held the number of discretizations constant (L = 10),
and the domain size H and element width (dx) were allowed to change with respect to the De-
bye length. Trails were run with 3168 particles for 200 times steps 1000 times and averaged
over time.

This setup differs from that in Section 4.1 in that there are spatial differences in how the
particles are distributed. A larger domain results in the same number of particles per element,
but spread out farther, initially. Computationally, the density in the element is the same, but
interactions between particles become smaller. Table 4.3 gives the percent change in energy
and momentum for this set of experiments.

We note that for smaller values of dx/λD, energy is well conserved; as the element size

224 Particle Mesh Methods for Plasma Simulation

0 20 40 60 80 100 120 140 160 180 200
1.955

1.96

1.965

1.97

1.975

1.98

1.985

1.99

1.995

2

2.005
x 10

−24 Momentum vs. Time, dx/λ
D

 = 0.667

(a) Momentum against time with the energy conserving
scheme.

0 20 40 60 80 100 120 140 160 180 200
−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

−4.8
x 10

−25 Momentum vs. Time, dx/λ
D

 = 0.667

(b) Momentum against time with the FEM.

Fig. 4.3. Plots of momentum vs time for dx/λD = 0.5, holding the total length of the domain constant letting
the element size vary. The stochastic nature of the momentum, at least initially, can be seen here.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

7

8

9

10

11

12

13

14

15

16

dx/λ
D

%
 C

ha
ng

e

Energy Cons
FEM

approaches the Debye length, there is a dramatic increase in energy. Comparisons of the total
energy in time can be seen in Figures 4.5(a) and 4.5(b). It is also worth pointing out that the
FEM again seems to conserve energy slightly better and that the percent change in momentum
is again an inaccurate metric of conservation. To see the percent change, see Figure 4.2.

It is important to point out, again, that the system’s momentum still behaves randomly,
especially early on in the simulation. Here, we include plots of the momentum for dx/λD =

0.5 to illustrate this idea. Figure 4.6(a) uses the energy conserving method, while Figure
4.6(b) uses the regular FEM.

5. Conclusions. We have written, implemented, and tested numerical schemes for plasma
simulations. Based off of previous work, we analyzed methods that, in theory, conserve en-
ergy and momentum. However, the nature of these discretizations and the behavior of plas-
mas made implementation difficult and often produced unrealistic results. The implemented

M.C. Kureczko and D.M. Day 225

Table 4.2
Percent change in total energy for constant values of H, with dx/λD larger than 1.

Energy Conserving FEM
dx/λD L % Change E % Change E
1.333 6 6.50 3.20
1.600 5 4.25 1.55
2.000 4 1.86 0.59
2.667 3 0.48 0.33

0 20 40 60 80 100 120 140 160 180 200
1.26

1.28

1.3

1.32

1.34

1.36

1.38
x 10

−15 Energy vs. Time

dx/λ
D
 = 1.333

dx/λ
D
 = 1.600

dx/λ
D
 = 2.000

dx/λ
D
 = 2.667

(a) Energy against time with the energy conserving
scheme.

0 20 40 60 80 100 120 140 160 180 200
1.26

1.27

1.28

1.29

1.3

1.31

1.32

1.33
x 10

−15 Energy vs. Time

dx/λ
D
 = 1.333

dx/λ
D
 = 1.600

dx/λ
D
 = 2.000

dx/λ
D
 = 2.667

(b) Energy against time with the FEM.

Fig. 4.4. Plots of total energy vs time for dx/λD > 1, holding the total length of the domain constant letting the
element size exceed the Debye Length.

energy-conserving method seemed to not work as well at conserving energy as the regular
FEM did. We also saw very different energy profiles for how we interpreted the relationship
among the domain, its elements, and the Debye length.

After several revisions and trials, we now have a more accurate and realistic code. While
this paper was being drafted, several bugs and errors returned results that did a poor job at
conserving energy and an even worse job at conserving momentum.

5.1. Future Work. We would like to stress that while this paper is under review, we will
collect better, more accurate data. The momentum conserving scheme now works. However,
due to time constraints, this data, and better energy conserving data, could not be included in
this draft. The final revision will include these numerics.

In terms of actual future work, being able to expand these ideas and simulation into two
or three dimensions would be beneficial. The simplifications and assumptions we made in
the one-dimensional model would have to be worked out, however.

226 Particle Mesh Methods for Plasma Simulation

Table 4.3
Percent change in energy and momentum for a constant value of L = 10, H allowed to vary.

Energy Conserving FEM
dx/λD % Change E % Change P % Change E % Change P
0.100 0.0037 0.0801 0.0040 0.1830
0.160 0.0065 0.5866 0.0058 1.3739
0.200 0.0077 2.4575 0.0096 0.5892
0.250 0.0125 0.0439 0.0148 1.878
0.333 0.0235 13.03 0.0307 0.1204
0.400 0.0432 1.752 0.0493 4.483
0.500 0.0983 0.691 0.1106 0.4843
0.667 0.9004 0.222 0.7374 0.1914
0.800 11.603 2.742 9.421 2.857
1.000 68.25 6.98 58.22 5.166

0 20 40 60 80 100 120 140 160 180 200
1.2675

1.268

1.2685

1.269

1.2695

1.27
x 10

−15 Energy vs. Time

dx/λ
D
 = 0.100

dx/λ
D
 = 0.250

dx/λ
D
 = 0.500

(a) Energy against time with the energy conserving
scheme.

0 20 40 60 80 100 120 140 160 180 200
1.269

1.2695

1.27

1.2705

1.271

1.2715
x 10

−15 Energy vs. Time

dx/λ
D
 = 0.100

dx/λ
D
 = 0.250

dx/λ
D
 = 0.500

(b) Energy against time with the FEM.

Fig. 4.5. Plots of total energy in time with the energy conserving scheme and FEM, both holding a constant
number of elements, letting the element width and domain size vary.

6. Acknowledgements. The authors would like to thank Tom Hughes of Sandia Na-
tional Laboratories for his help, insight, and recommendation of [5].

REFERENCES

[1] C. K. Birdsall and A. B. Langdon, Plamsa Physics Via Computer Simulation, McGraw-Hill, 1985.
[2] R. Fitzpatrick, Introduction to plasma physics. http://farside.ph.utexas.edu/teaching/plasma/

lectures/lectures.html.
[3] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Taylor & Francis Group, 1981.
[4] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., 1963.
[5] H. Okuda, Nonphysical instabilities in plasma simulation due to small λd/δx, Fourth Conference on the Nu-

merical Simulation of Plasma, (1970), pp. 511 – 525.

M.C. Kureczko and D.M. Day 227

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dx/λ
D

%

C
h
a
n
g
e

Energy Cons

FEM

0 20 40 60 80 100 120 140 160 180 200

1.13

1.135

1.14

1.145

1.15
x 10

−24 Momentum vs. Time, dx/λ
D

 = 0.500

(a) Momentum against time with the energy conserving
scheme.

0 20 40 60 80 100 120 140 160 180 200
2.115

2.12

2.125

2.13

2.135

2.14

2.145
x 10

−24 Momentum vs. Time, dx/λ
D

 = 0.500

(b) Momentum against time with the FEM.

Fig. 4.6. Plots of momentum vs. time for dx/λD = 0.5, holding the number of elements constant and letting the
domain and element size vary.

CSRI Summer Proceedings 2009 228

INTERFACE RECONSTRUCTION VERIFICATION IN ALEGRA

M.S. SWAN∗, W.J. RIDER†, AND O.E. STRACK‡

Abstract. Lagrangian codes automatically track interfaces between materials but cannot handle large deforma-
tions. Arbitrary Lagrangian-Eulerian (ALE) codes are better able to simulate large deformation of materials, but do
not automatically track interfaces[4]. During each timestep of an ALE simulation there is a Lagrangian step followed
by a remap step that, once the nodal and elemental values have been advected, places these data back onto the Eule-
rian grid. When more than one material is present, it is imperative to accurately model the boundary of each material
so as to properly simulate interactions between them. As can be expected, different methods perform with different
orders of accuracies and require different amounts of computational effort. Interface reconstruction verification is
used to establish what those orders of convergence are, to determine the acceptable behavior of each method, and to
ensure that the code developers are informed when any test deviates from the accepted normal behavior.

1. Introduction. In simulations, interface reconstruction algorithms are responsible for
tracking the boundaries between bodies as those bodies move through a mesh. As the simula-
tion framework does the computations on the mesh, there needs to be a method to determine
which nodes on that mesh contain which data and what those data are. The point of better
interface reconstruction methods is to more accurately represent the movement of material
through the mesh while maintaining the shape of the body[7].

The purpose of this research is to benchmark seven interface reconstruction algorithms:
Simple Line Interface Calculation (SLIC)[5], Sandia Modified Youngs’ Reconstruction Al-
gorithm (SMYRA), new SMYRA[1], and Pattern Interface Reconstruction (PIR)[3]. PIR has
four variants that are differentiated by the method of smoothing that the algorithm applies.
The options for smoothing are: off, linear, spherical, and on. The smoothing option on uses
a mixture of linear and spherical smoothing. For simplicity, this document only presents
data for the options off and on of the four smoothing options for PIR. In the benchmarks, all
options will be tested for convergence.

These algorithms are all included in the Sandia-developed solid dynamics code ALE-
GRA as options for interface reconstruction. The verification tests discussed here will be
added to the ALEGRA benchmark repository. This is to ensure that the simulation framework
behaves as expected and to detect changes that would affect the accuracy of the reconstruction
algorithms. When a change is detected in the nightly builds, the developers are informed so
the cause of the change can be determined. They can then decide whether to fix whatever
caused the change or to rebaseline the verification tests to accept the new behavior as the new
accepted standard.

Each of the above stated seven methods has a bias, a tendency to advect stronger along
the coordinate axes, in the way in which it tracks the interface. The lower the order of con-
vergence, the more bias the method will exhibit. These lower-order methods are diffusive
in nature and can be used to dampen numerical oscillations that might occur while using a
higher-order, local maxima- and minima-preserving method[6]. Even though the lower-order
methods are less accurate they still fill a needed role in the simulation.

2. Method. The method chosen to verify the interface reconstruction algorithms in-
volves making a simple test simulation that has an analytical or reference solution against
which the computed solution can be compared. Typical simulations for verifying interface
reconstruction methods usually include simple translations and solid body rotations of regu-
lar shapes[9]. The basis of verification tests is that upon mesh and timestep refinement the

∗University of Utah, scot.swan@gmail.com
†Sandia National Laboratories, wjrider@sandia.gov
‡Sandia National Laboratories, oestrac@sandia.gov

M.S. Swan, W.J. Rider, and O.E. Strack 229

solution will converge.
The primary variable used to determine the error is the volume fraction of each element.

The volume fraction is a representation of how full the element is of a particular material. If
an element is totally occupied by that material, the volume fraction would be unity, or if the
element does not contain any of that material the volume fraction would be zero[1]. For each
element in the simulation, the expected volume fraction for that element is subtracted from
the simulated volume fraction. The error of a simulation, using the L1 norm of the volume
fraction, is determined by the sum of the absolute values of those differences in volume
fractions with that sum being divided by the number of elements in the mesh. The following
equation is the mathematical representation of how to determine the error in a simulation[8]:

error =
Σn

i=1Σm
j=1

∣∣∣∣Ai j − A∗i j

∣∣∣∣
n · m

(2.1)

where Ai j is a n × m 2D array of volume fractions from the final timestep of the simulation
and A∗i j is a n × m 2D array of the reference solution. The above equation will only hold for
regular cartesian coordinate systems. Once error data is collected from several simulations
at varying mesh and timestep refinements, the error vs. mesh refinement data can be plotted
in logarithmic space as a linear function. The slope of the linear function is the order of
convergence for the method.

As the mesh is refined, a corresponding refinement in timestep is needed to ensure that
the material cannot have a displacement that exceeds the width of the elements. The Courant
number or Courant-Friedrichs-Lewy (CFL) condition defines the upper limit of the ratio of
timestep to mesh refinement[2]. The Courant number (denoted as C) can be modeled in 1D
by the following equation:

C >
|u| · ∆t

∆x
(2.2)

Where u is the velocity, ∆t is the timestep, and ∆x is the element size. Adherence to this
criteria ensures the mathematical stability of the simulation. The CFL condition is almost
always less than unity and is frequently around one half. As the Courant number approaches
zero the simulation becomes more taxing on the interface reconstruction algorithm due to the
number of cycles and the accumulation of error. In order to check for convergence, the CFL
condition must be the same for each simulation at every mesh resolution. For the simulations
in this battery of tests, a Courant number of one half is used.

The error of each simulation is in small part linked to mesh geometry. For the final
simulations that are to be added as regular benchmarks in ALEGRA the mesh correlates
perfectly with the initial position of the square. This ensures that the initial volume fraction
values of either unity or zero. For completeness, the simulations were run with irregular
mesh refinements such that the initial condition had volume fractions that were not unity or
zero to verify that each method has a general trend of convergence. As the mesh is gradually
refined for every simulation, the local error is minimized when the mesh precisely lines up
with the material being simulated. Thus, the error can be shown to have a periodic nature
corresponding to mesh refinement (see figure 2.1).

3. Tests. In the process of testing the interface reconstruction methods, five tests were
run to fully verify that the algorithms are well behaved. Two tests were developed for the
purpose of thoroughly testing the different algorithms in as few simulations as possible, while
the other three tests were used to verify that in the most simple cases the methods worked as
expected.

230 Interface Reconstruction Verification

Fig. 2.1. 95 simulations at varying mesh refinements using NEW SMYRA to demonstrate periodicity of error
associated with mesh refinement. The local minima occur when the mesh exactly lines up with the initial position
of the material being simulated. Note that the amplitude of the error oscillation is constant in log-log space. This
translates into exponential decay in the magnitude of error with mesh refinement.

The five tests referred to above are vertical displacement, horizontal displacement, 45
degree displacement, skew (≈ 26.5◦) displacement, and 90 degree rotation; However,he two
tests to be checked into the repository are the skew displacement and 90 degree rotation
simulations. Each of these five tests were carried out in the positive and negative directions to
verify that the reconstruction algorithms would all behave as expected in every direction on
the 2D plane. For example, the vertical displacement test was run with translation of a block
in the positive Y-direction and in the negative Y-direction, and compared against each other
to check for consistency.

Each of the two tests that will be added to the benchmark repository will be set up in
such a way that the block will be translated (or rotated) so that the first timestep and the last
timestep should be equal. This method was chosen so that the reference solution will be easily
attainable for any simulation layout that could be desired, so long as the translated block ends
where it started. This method, once the necessary files were made, was easily adapted to the
other reconstruction algorithms and the other translation simulations.

Skew Displacement. The simulation that involved skew displacement was included in
the verification suite because it reveals weaknesses that exist in rigid translation in the in-
terface reconstruction algorithms. The non-ideal (no particular plane of symmetry) angle
of displacement made this test an excellent choice to verify the greatest possible number
of translational situations with the least number of tests and with the lowest requirement of
computational effort.

This test, as depicted in figure 3.1, involves translation up and to the right along a tra-
jectory of ≈ 26.5 degrees with a prescribed velocity field with a magnitude that sinusoidally

M.S. Swan, W.J. Rider, and O.E. Strack 231

−→ −→

Fig. 3.1. Images of the volume fraction from a skew translation simulation using SMYRA as the method for
interface reconstruction. Notice that the error accumulates near the corners even under non-rotational displacement.

varies with time. The simulation is run for one full cycle so that the block is translated up
and to the right for the first half of the cycle and is returned along that same path during the
second half of the cycle. This is done for simplicity in error calculations (as discussed in
section 4).

90 Degree Rotation. Unlike the skew displacement test, the 90 degree rotation test has
a prescribed velocity field that varies with position rather than time. This means that every
node in the mesh will have a different velocity instead of the entire mesh having a constant
velocity field that would advect the block uniformly in a given direction. This simulation will
be more demanding on the interface reconstruction algorithm due to the varying flux values
across the mesh.

−→
90 degree CCW

rotation

Fig. 3.2. Images of the volume fraction from a rotational displacement simulation using SMYRA. Notice that
the primary concentrations of error are on the leading edges near the corners.

The rotation of the block is about the centroid with no lateral or vertical translation. The
exclusion of rigid body translation from this rotation problem is justified by the previous
skew displacement simulation that tests the convergence of the methods for strict rigid body
translation.

Although this test does not apply a 90 degree counter-clockwise rotation and then apply a
90 degree clockwise rotation to return the material to the initial position, the ending timestep
and the beginning timestep are comparable. This takes advantage of the planes of symmetry
of the square that is being rotated.

4. Analysis. The output files from the simulations are the basis of the analysis to deter-
mine the order of convergence. The analysis for the included error plots(figures 4.2 and 4.3)
were done using a python script that calculated the L1 norm according to equation 2.1 and a
linear regression python script that calculated the least-squares line fit for the calculated data.
While these scripts were efficient at plotting and analyzing the data, they were difficult to use
and time consuming to rebaseline as a benchmark test. For this reason, the benchmark tests
use the analysis tools ‘vcomp’ and ‘vdiff’ that come bundled with ALEGRA.

After the simulations have been run to completion, vcomp (verification comparison tool)
analyzes each computed solution against the associated reference solution for each simulation
and determines an order of convergence for the set for the L1, L2, and L∞ norms. The list of

232 Interface Reconstruction Verification

computed solutions and reference solutions are all contained in the vcomp input file along
with the timesteps at which to perform the analysis. The output of vcomp is contained in an
output file, which holds all of the results generated by vcomp. This output file is then passed
to vdiff.

The program vdiff (verification differencing tool) is used to compare two output files (or
two different timesteps within the same output file). The variables to be compared are defined,
along with the error tolerances for each variable, in a vdiff input file. For the reconstruction
verification suite, we are interested in comparing the vcomp output against the baseline output
to check for variations in convergence rates and error values.

One additional reason for using vcomp and vdiff is the ability to do a batch rebaseline
of the tests when using ALEGRA’s testing application testAlegra. The use of these programs
also brings the verification suite into uniformity with the other benchmarks and verification
tests that are already in use.

Skew translation
SLIC coarse SLIC fine PIR coarse PIR fine

90 degree rotation
SLIC coarse SLIC fine PIR coarse PIR fine

Fig. 4.1. Images of Final Timesteps for Select Simulations

A visual comparison of results for the diagonal displacement and 90 degree rotation
between SLIC and PIR can be found in figure 4.1. The comparison clearly portrays the
inability of SLIC to correctly track the boundaries of the box, particularly in the diagonal
displacement simulation at either of the mesh refinements. It is interesting to note that SLIC
had a higher convergence rate than the other six reconstruction methods when only lateral
or vertical translation of the box was involved. It can readily be determined that while very
effective at 1D interface tracking, SLIC’s ability to properly model an interface in 2D is
greatly lacking at any level of mesh refinement. Upon visual inspection it is apparent that
PIR translates and rotates the block well and the block retains its shape with comparatively
minimal rounding on corners. Currently, PIR is the highest order interface reconstruction
algorithm available in ALEGRA.

While the plots in figure 4.2 and the data in table 4.1 are very insightful and in a general
sense represent the expected trend, the higher order methods are converging at markedly
lower rates than expected. It can readily be seen that the concentrations of error for these
simulation are at the corners of the square for both the skew translation and the rotation tests.

M.S. Swan, W.J. Rider, and O.E. Strack 233

Fig. 4.2. log-log convergence plots for skew and rotational displacement.

In an attempt to attain the expected convergence rates the box will be replaced with a circle
for the skew displacement test. This test yields results that are more in line with the expected
convergence rates (see figure 4.3 and table 4.2).

The differences in the plots for the translation of the square and the circle demonstrates
the strengths and weaknesses of the different methods. For the square translation (either rota-
tion or skew translation) all by SLIC perform with convergence rates greater than one. This
is noticeably different for those same methods when advecting a circle. It can be concluded
that SMYRA, NEW SMYRA, and PIR without smoothing are better fit for tracking flat inter-
faces, while PIR with smoothing performs over an order of magnitude better in convergence
rate than the others.

5. Conclusion. The interface reconstruction algorithms used by ALEGRA are an inte-
gral part of the simulation framework as they define spatial extent and shape of simulated
materials. The position of the interface is also used in determining which contact algorithms
should be used when one material comes into contact with another or when a boundary con-

234 Interface Reconstruction Verification

Convergence Rates
SKEW ROTATION

SLIC 0.52 0.91
SMYRA 1.30 1.06

NEW SMYRA 1.15 1.06
PIR smoothing = off 1.30 1.06
PIR smoothing = on 1.35 1.08

Table 4.1
Convergence rates for 5 of the 7 interface reconstruction methods for skew and rotational displacement of a

square. Compare with table 4.2.

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8

ln
(e

rr
o
r)

ln(elementsize)

Skew Displacement of Circle
log-log plot of convergence rates

Slope=1.0

Slope=2.0

SLIC
SMYRA

NEWSMYRA
PIR smoothing = off
PIR smoothing = on

Reference slope = 1.0
Reference slope = 2.0

Fig. 4.3. Convergence test for a circle advected in the skew displacement manner. Due to the lack of corners,
this test yields a much greater spread in convergence rates for the different methods. While PIR with smoothing
has orders of magnitude less error at fine mesh resolutions, it is less robust. At ln(elementsize) ≈ −3.5, several
datapoints were not generated due to a lack of robustness in the smoothing algorithm (these issues are currently
being addressed). For convergence rates, see table 4.2.

dition prescribes a contact algorithm. As these methods are called for each timestep and for
each element, even a slight increase in accuracy in the reconstruction methods will notably
affect the accuracy of the simulation as a whole. This demonstrates the need to be sensitive to
changes of the convergence rates, the limitations, and the abilities of each of the reconstruc-
tion methods. For this reason, the suite of interface reconstruction verification tests has been
developed to ensure that this integral part of ALEGRA performs consistently and accurately
across platforms and in different situations.

REFERENCES

M.S. Swan, W.J. Rider, and O.E. Strack 235

Convergence Rates
SLIC 0.46

SMYRA 0.69
NEW SMYRA 0.68

PIR smoothing = off 0.69
PIR smoothing = on 1.92

Table 4.2
Convergence rates for 5 of the 7 interface reconstruction methods for skew displacement of a circle (see figure

4.3). Because the data from the coarser simulations was not in the asymptotic regime, the linear regression only
utilized the lower half of the data points (for more consistent data) in a least-squares linear fit. The grouping of
convergence rates around 0.70 was surprising as those methods generally perform with a convergence rate of at
least one (see figure 4.2).

[1] R. Bell and E. Hertel, An improved material interface reconstruction algorithm for Eulerian codes, SAND92-
1716C, (1992).

[2] R. Courant, K. Friedrichs, and H.Lewy, On the partial difference equations of mathematical physics, IBM
Journal, (1967), pp. 215–234.

[3] J. Dolbow, S. Mosso, J. Robbins, and T. Voth, Coupling volume-of-fluid based interface reconstructions with the
extended finite element method, Computer Methods in Applied Mechanics and Engineering, 197 (2008),
pp. 439–447.

[4] R. V. Garimella, V. Dyadechko, B. K. Swartz, and M. J. Shaskov, Interface reconstruction in multi-fluid flow
simulations, Mathematical Modeling and Analysis, (2005).

[5] W. Noh and P. Woodward, SLIC:(Simple Line Interface Calculation), Lecture Notes in Physics, 59 (1976),
pp. 330–340.

[6] A. Oliveira and A. B. Fortunato, Toward an oscillation-free, mass conservative, Eulerian-Lagrangian trans-
port model, J. Comput. Phys., 183 (2002), pp. 142–164.

[7] W. J. Rider and D. B. Kothe, Reconstructing volume tracking, Journal of Computational Physics, 141 (1997),
pp. 112–152.

[8] M. Rudman, Volume-tracking methods for interfacial flow calculations, International Journal for Numerical
Methods in Fluids, 2 (1997), pp. 671–691.

[9] R. Scardovelli and S. Zaleski, Interface reconstruction with least-square fit and split Eulerian-Lagrangian
advection, International Journal for Numerical Methods in Fluids, 41 (2003), pp. 251–274.

CSRI Summer Proceedings 2009 236

MODELING A RESONANT TUNNELING DIODE USING TRILINOS

ANNE S. COSTOLANSKI∗ AND ANDREW G. SALINGER†

Abstract. A method for modeling the performance of a resonant tunneling diode (RTD) using Sandia’s Trilinos
software is described. The equations to model the behavior of an RTD are given, along with their corresponding nu-
merical approximations. An object-oriented structure using C++ classes is defined, and the method for incorporating
Trilinos’ nonlinear solver and continuation packages is detailed.

1. Introduction. Resonant tunneling diodes (RTDs) are nanoscale semiconductor de-
vices which were first proposed by Tsu and Esaki in 1973[8]. They predicted a phenomenon
known as negative differential resistance, in which the current through a tunneling barrier
reaches a local maximum when the injected carriers achieve certain resonant energies. In
1974, Chang et al. fabricated the first RTD device that demonstrated evidence of negative
differential resistance[2]. A decade later, in 1983, Sollner et al. improved upon previously
achieved results[7], and research on RTDs increased.

Resonant tunneling diodes have two distinct features that make them stand out from other
semi-conductor devices: their high speed operation and their ability to produce negative dif-
ferential resistance. Since tunneling is a very fast phenomenon, the RTD is among the fastest
devices ever made. It can be shown by theoretical analysis that the time taken to switch from
its current peak to valley, or visa versa, can be less than 1 ps. RTDs have been demonstrated
to detect radiation up to 2.4 THz, can generate 700 GHz signals, and have a maximum op-
erational oscillation frequency projected to be over 1 THz [5]. Due to these features and the
potential to be used in high speed devices, RTDs have been studied extensively since the mid
1980s [9, 10].

In this paper, we will propose a new method for simulating the performance of an RTD
using C++ and Trilinos. The paper is organized as follows: Section 2 describes the basic
structure of an RTD, section 3 details the equations that model an RTD, and section 4 specifies
how these equations are discretized. Section 5 discusses how to implement the discretized
equations, with section 6 listing the details of the C++ classes and section 7 the specific
Trilinos implementation. Our conclusions are listed in section 8.

2. Resonant Tunneling Diodes. A typical resonant tunneling diode is composed of the
following sections (see figure 2.1):

• Two heavily doped, narrow energy band gap material regions on either end of the
device

• Several layers (barriers) of a larger energy band gap material on the interior of the
device, separated from the doped regions by thin undoped spacer regions

• Quantum well region(s) separating the barrier regions from each other

The doped regions on either end of the device are generally large in size in comparison to
the barrier, spacer, and well regions. In a typical RTD, the quantum well thickness is around
50Å, and the barrier layers can range from 15 to 50Å. The well, barrier layers, and the spacer
regions (between the heavily doped narrow energy gap material and the barrier layer) have
a significantly lower doping level than the heavily doped regions on each end of the device.
These spacer regions ensure that dopants do not diffuse to the barrier layers. Bias is then
applied across the device to induce current flow.

∗North Carolina State University, ascostol@ncsu.edu.
†Sandia National Laboratories, agsalin@sandia.gov

A.S. Costolanski and A.G. Salinger 237

Fig. 2.1. Structure of a typical resonant tunneling diode. The upper picture provides the physical layout of the
materials used in the device, and the bottom picture is the energy diagram of the device. [5]

3. The Wigner-Poisson Equations. Since an RTD is built on the nanoscale and is gov-
erned by quantum mechanics rather than classical physics, the standard drift-diffusion model
no longer applies in calculating the current in the device. One of the primary models used
for simulating the performance of a resonant tunneling diode is the Wigner-Poisson formu-
lation, which couples the Wigner equation with Poisson’s equation to predict the behavior of
nanoscale semiconductor devices. For the complete derivation of the Wigner-Poisson formu-
lation, see [1] for details.

The Wigner equation is defined as

∂ f (x, k, t)
∂t

= K(f) + P(f) + S (f) (3.1)

where f (x, k, t) is the Wigner distribution function that describes the distribution of electrons
within the device. It is a function of x, the position along the device, which runs from 0 to L
(the length of the device); k, the momentum variable, which runs from −∞ to +∞; and time
t. We will focus on the steady state solution, so the time dependence will be dropped.

The first term on the right side of the equation, K(f), is the kinetic energy term and
corresponds to the effects due to kinetic energy on the distribution function f . It is given by

K(f) = −
hk

2πm∗
∂ f
∂x
. (3.2)

238 Modeling a Resonant Tunneling Diode using Trilinos

Here h is Planck’s constant and m∗ is the effective mass of an electron.

The second term P(f) is the potential energy term, and is defined as

P(f) = −
4
h

∫ ∞

−∞

f (x, k′)T (x, k − k′)dk′ (3.3)

with

T (x, z) =

∫ ∞

0
[U(x + y) − U(x − y)] sin(2yz)dy (3.4)

where U(x) is the potential energy inside the device. U(x) can be written as

U(x) = ∆c(x) + up(x) (3.5)

where ∆c(x) represents the energy band function defined by the barriers and wells within the
device and up(x) represents the solution to Poisson’s equation,

d2up(x)
dx2 =

q2

ε
[Nd(x) − n(x)] . (3.6)

Here q is the charge on a electron, ε is the dielectric constant (which is material dependent),
Nd(x) is the doping profile of the device, and n(x) is the electron density function, which is
defined as

n(x) =
1

2π

∫ ∞

−∞

f (x, k)dk. (3.7)

The boundary conditions for Poisson’s equation are

up(0) = V0, up(L) = VL (3.8)

where V0 is the initial voltage at the left side of the device, and VL is the amount of bias
applied across the device. Traditionally V0 = 0 and VL = −V with V ≥ 0.

The third term in the Wigner equation, the scattering term S (f), accounts for collision
interactions between electrons in the device, and is defined as

S (f) =
1
τ

 f0(x, k)∫ ∞
−∞

f0(x, k)dk

∫ ∞

−∞

f (x, k)dk − f (x, k)

 (3.9)

where τ is the relaxation time of an electron in the device. f0(x, k) is the equilibrium Wigner
distribution function, which is the solution to equation (3.1) with S (f) = 0 and no change in
the bias voltage applied across the device; i.e., VL = V0.

Boundary conditions are imposed on the Wigner distribution function:

f (0, k) =
4πm∗kBT

h2 ln
{

1 + exp
[
−

1
kBT

(
h2k2

8π2m∗
− µ0

)]}
, k > 0 (3.10)

f (L, k) =
4πm∗kBT

h2 ln
{

1 + exp
[
−

1
kBT

(
h2k2

8π2m∗
− µL

)]}
, k < 0 (3.11)

where kB is Boltzmann’s constant, T is the temperature, and µ0 and µL are the Fermi energies
at the corresponding ends of the device.

Finally, the current density in the device, the main quantity of interest, can be calculated
by

j(x) =
h

2πm∗

∫ ∞

−∞

k f (x, k)dk. (3.12)

A.S. Costolanski and A.G. Salinger 239

4. Discretizing the Wigner-Poisson equations. Since the system of equations specified
in the Wigner-Poisson formulation is too difficult to solve analytically, numerical techniques
are used to approximate the solution. First, we divide the spatial domain into Nx equally
spaced grid points, with the length in between grid points defined as ∆x = L

Nx−1 . The grid
points are given by

xi = (i − 1)∆x for i = 1, 2, ..., Nx. (4.1)

To discretize the momentum domain, we must first truncate the domain from (−∞,∞)
to (−Kmax,Kmax) where Kmax is chosen such that when |k| > Kmax, f (x, k) ≈ 0. We will use
Kmax = 0.25 inverse Angstroms as a best approximation [4]. Then the momentum domain
can be divided into Nk equally spaced grid points, with the length between grid points given
by ∆k = 2Kmax

Nk
, and the grid points defined as

k j =
(2 j − Nk − 1)∆k

2
for j = 1, 2, ..., Nk. (4.2)

Defining the grid points this way allows us to avoid a grid point at k j = 0 where there would
be a singularity.

We will denote a solution of the Wigner distribution function f at a grid point (xi, k j) as
fi j.

To approximate the kinetic term K(f), we will use a second-order upwind difference
method since we have boundary conditions at one end of the device (which end of the device
depends on the sign of k). So the approximation is

K(fi j) ≈

 − hk j

2πm∗

(
−3 fi j + 4 fi−1, j − fi−2, j

2∆x

)
, k j > 0

−
hk j

2πm∗

(3 fi j − 4 fi+1, j + fi+2, j

2∆x

)
, k j < 0.

(4.3)

The potential P(f) term is discretized using the composite trapezoidal rule

P(fi j) ≈ −
4
h

Nk∑
j′=1

fi j′T (xi, k j − k j′)w j′ (4.4)

where the w j′ are the weights of the composite trapezoidal rule:

w j′ =

{
∆k for j′ = 2, 3, ..., Nk − 1,
∆k
2 for j′ = 1, Nk

(4.5)

For the T (xi, k j − k j′) term, we must make additional approximations to discretize this
integral. Since the upper limit of the integrand in equation (3.4) is infinity, we must truncate
the limit at a value Lc ≤ L called the correlation length. However, Lc may or may not
correspond to a grid point in the spatial domain, and thus we must modify the weights for the
discretization to take this into account.

Assume Lc falls between grid points Nc and Nc + 1. We can divide the integral into
two pieces, an integral from 0 to xNc and another from xNc to Lc, and then use the composite
trapezoidal rule to approximate the integral over [0, xNc] and the trapezoid rule for the integral
over [xNc , Lc]. For an arbitrary function g(x), this would be∫ xNc

0
g(x)dx +

∫ Lc

xNc

g(x)dx ≈
Nc∑

m=1

g(xm)wm +
(Lc − xNc)

2
[
g(xNc) + g(Lc)

]
(4.6)

240 Modeling a Resonant Tunneling Diode using Trilinos

where the composite trapezoidal weights wm are as defined for the P(f) term. Using Taylor
expansions and setting hNc = Lc − xNc and hNc+1 = xNc+1 − Lc , we have

g(xNc) = g(Lc) − hNc · g
′(Lc) + O(h2

Nc
) (4.7)

g(xNc+1) = g(Lc) + hNc+1 · g′(Lc) + O(h2
Nc+1). (4.8)

Since hNc , hNc+1 ≤ ∆x, we can use O(∆x2) in place of the error terms in each of the above
equations. Eliminating the g′(Lc) term yields an approximation for g(Lc) that can be used to
simplify the T (xi, k j − k j′) term:

g(Lc) =
hNc · g(xNc+1) + hNc+1 · g(xNc)

∆x
+ O(∆x2) (4.9)

Thus the T (xi, k j − k j′) term can be approximated as

T (xi, k j − k j′) ≈
Nc+1∑
i′=1

[U(xi + xi′) − U(xi − xi′)] sin(2xi′ (k j − k j′))wi′ (4.10)

where the wi′ are the modified trapezoidal weights

wi′ =


∆x
2 for i′ = 1

∆x for i′ = 2, 3, ..., Nc − 1
∆x+hNc

2 +
hNc hNc+1

2∆x for i′ = Nc
h2

Nc
2∆x for i′ = Nc + 1.

(4.11)

The scattering term S (f) can be discretized using the composite trapezoidal rule as

S (fi j) ≈
1
τ

 f0(xi, k j)∑Nk
j′=1 f0(xi, k j′)w j′

Nk∑
j′=1

fi j′w j′ − fi j

 (4.12)

where the w j′ are the standard weights listed in equation (4.5) for the P(f) term.

To discretize Poisson’s equation, we use a center difference formula

up(xi−1) − 2up(xi) + up(xi+1)
∆x2 =

q2

ε
[Nd(xi) − n(xi)] (4.13)

with up(x1) = V0 and up(xNx) = VL.

The electron density n(x) and the current density j(x) are also approximated using the
trapezoidal rule:

n(xi) ≈
1

2π

Nk∑
j=1

fi jw j (4.14)

j(xi) ≈
h

2πm∗

Nk∑
j=1

k j fi jw j (4.15)

where the weights are again the standard trapezoidal weights listed in equation (4.5) for P(f).

A.S. Costolanski and A.G. Salinger 241

5. Numerical Implementation. To solve a standard nonlinear equation W(x) = 0, New-
ton’s method can be used to find a root of the equation by solving the iterative equation
xi+1 = xi − W ′(xi)−1W(xi), where W ′(xi) is the Jacobian of W at xi. When ||xi+1 − xi|| ≤ ε
where ε is an error tolerance, then xi+1 is an approximate root.

However, for the discretized Wigner distribution function, equation (3.1), creating the
iteration step W ′(xi)−1W(xi) is not computationally efficient, particularly when the W ′(xi)
matrix is large (typical implementations have on the order of 125,000-1 million+ grid points,
so the matrix could be approximately 1 million × 1 million). Instead, we will use an inexact
Newton method to solve the system. (For more information on inexact Newton methods,
see [3] and the references contained therein.) With inexact Newton methods, the nonlinear
equation is approximated by

||W ′(xi)s + W(xi)|| ≤ ηi||W(xi)|| (5.1)

where ηi is a forcing term that controls the size of the relative residual. Newton’s method
is used to compute the xi, and the step s is approximated by a linear iterative method. For
Wigner-Poisson, we will use GMRES to solve for the steps, since GMRES is a Krylov sub-
space method for solving non symmetric systems that does not require the computation of an
iteration matrix[3].

This method can be efficiently implemented using Sandia’s Trilinos software, which has
a variety of built in inexact Newton method solvers, including Newton-GMRES. In addition,
Trilinos allows the option to use finite differences to approximate the Jacobian-vector product,
since computing and discretizing the Jacobian of the Wigner-Poisson formulation would be
extremely complicated.

6. C++ Class Descriptions. Since Trilinos is written in C++, we decided to write the
main program code in C++ to take advantage of the object oriented structure. Ten classes
were created, each representing a different piece of the Wigner-Poisson equations. Each class
has a Compute function to calculate either the appropriate action on the Wigner function f or
to compute terms that will be used later in calculating f . The two classes that involve finite
difference approximations for the kinetic term and the poisson term each have an Operator
function that sets up the sparse matrix associated with the derivative term in the equation.

Barrier The first class, the “Barrier” class, creates the barrier and doping profiles that are
used in the solution of the potential term P(f). The Compute function calculates the relative
energy band profile, ∆c(x), and doping profile Nd(x) at each grid point along the length of the
device, which are used in equations (4.10) and (4.13) respectively.

The next classes created were those to calculate the specific terms in the Wigner distri-
bution function:

• a “kineticMethod” class for the kinetic term K(f)
• a “scatterMethod” class for the scattering term S (f)
• a “potentialMethod” class for the potential term P(f)

kineticMethod The kineticMethod class has an Operator function to create the sparse
matrix associated with the upwind/downwind discretization of the derivative term in equation
(4.3), and a Compute function which applies the matrix to the Wigner distribution function f .

scatterMethod The scatterMethod’s Compute function calculates the result of equation
(4.12) for a given f .

242 Modeling a Resonant Tunneling Diode using Trilinos

The potentialMethod has a Compute function to calculate equation (4.4) for a given f .
However, the term T (x, k − k′) must be known for all values of k′, so several more classes
were created to break down the computation of T (x, k − k′) into more manageable pieces.
These pieces must be computed before the Compute function in the potentialMethod class is
executed. The classes are

• “SinMat” to calculate the sin(2xy) term
• “TcMethod” and “TpMethod” to calculate the T integral

SinMat The Compute function in the SinMat class calculates the values of sin(2xy) for
(x, y) ∈ [0, L] × (−2Kmax, 2Kmax) in equation (4.10).

TcMethod and TpMethod Since the potential energy inside the device, U(x), is the sum
of two functions per equation (3.5), with ∆c(x) fixed and up(x) the solution to the Poisson
equation, we can break the T integral into two separate integrals and assign a C++ class to
each. Rewriting the T integral as the sum of two terms, Tp and Tc, we have:

T (xi, k j − k j′) =

Nc+1∑
i′=1

[U(xi + xi′) − U(xi − xi′)] sin(2xi′ (k j − k j′)wi′ (6.1)

=

Nc+1∑
i′=1

[up(xi + xi′) − up(xi − xi′)] sin(2xi′ (k j − k j′)wi′ (6.2)

+

Nc+1∑
i′=1

[∆c(xi + xi′) − ∆c(xi − xi′)] sin(2xi′ (k j − k j′)wi′

= Tp(xi, k j − k j′) + Tc(xi, k j − k j′). (6.3)

Since both ∆c(x) and sin(2xy) are fixed for given values of (x, y), Tc can be precomputed
and used throughout the remaining calculations. This is accomplished through the Compute
function in the TcMethod class. A similar Compute function in the TpMethod calculates the
value of Tp(xi, k j − k j′); however, the value of Tp(x, k − k′) at a given x value depends on the
solution to Poisson’s equation, up(x), so another class called “poissonMethod” is defined to
compute up(x).

poissonMethod The poissonMethod class has an Operator function to create the sparse
matrix associated with the second order central difference approximation in equation (4.13).
The associated Compute function solves the linear system Ax = b where A is the sparse matrix
and b is the right hand side term that includes the doping profile Nd(x) and the electron density
n(x).

EleDensMethod and CurrentMethod The last two classes, EleDensMethod to compute
the electron density using equation (4.14) and CurrentMethod to compute the current density
using equation (4.15), both have a Compute function to calculate the respective function at
a particular value of xi. The CurrentMethod class is called only once the Wigner function f
has converged at a particular value of the bias voltage.

7. Solution Process using Trilinos. To solve the system in Trilinos, we start by creating
a ProblemInterface class that implements the LOCA::Epetra::Interface::Required interface.
The ProblemInterface constructor calls the other C++ class constructors to set up each class
and compute any data that will be fixed for the life of the run, such as the Barrier profiles, the
SinMat matrix, the Tc term, and both of the finite difference matrices for the kinetic term and
the Poisson equation.

A.S. Costolanski and A.G. Salinger 243

Next, the ComputeF function calls the Compute function for each remaining class do the
appropriate computation. The kinetic term, potential term, and scattering term are then added
together to form the Wigner function W(f). See figure 7.1 for a flowchart of the process.

����������
����������
����������

����������
����������
����������

Barrier SinMat TcMethod

Electron
Density

Poisson

TpMethod

Potential ScatteringKinetic

distribution
Wigner

 f(x,k)
 Initial Guess

W(f)

Fig. 7.1. Flowchart of the ComputeF function.

The system of equations will be solved as two homotopy problems. The first involves
continuation on the barrier profile, starting from 0 and increasing up to ∆c(x), in order to
calculate f0(x, k); and the second is done on the bias applied to the device, starting at V0 and
increasing to VL, to calculate the current density as a function of voltage.

To start the computation, an initial guess for f must be chosen. Then an initial distribu-
tion f is calculated using zero bias (that is, V0 = VL) and a barrier profile identically equal
to 0. To calculate f0(x, k), which is used in equation (4.12), we set S (f) ≡ 0 and solve equa-
tion (3.1) by increasing the barrier profile from 0 to ∆c(x) by multiplying ∆c(x) by a constant
and then increasing the constant incrementally from 0 to 1, solving for f at each incremental
step. This is done via Trilinos by calling LOCA, Trilinos’ continuation package. Once f0 has
been computed, continuation is performed again, this time by calculating S (f) in equation
(3.1) and solving for f using the ending bias value as the continuation parameter. Finally, the
current density can be computed from f as the bias voltage is increased from V0 to VL.

8. Conclusions. Object oriented design gives flexibility for investigating new algo-
rithms. For example, changing the discretization of the Poisson equation is a local change

244 Modeling a Resonant Tunneling Diode using Trilinos

in one class. Similarly, tradeoffs between memory usage and FLOPS, such as storing the
entire SinMat, can be easily investigated with a local change to one class.

The C++/Trilinos implementation defined above provides more computational efficiency
as well as greater flexibility in modeling a variety of devices than previous models do. Al-
though other implementations exist in both Matlab and Fortran, Trilinos is written in C++ to
handle memory allocation and computations more efficiently, which will allow finer meshes
to be simulated in shorter runs times than those in previous work [4, 6]. In addition, Trilinos’
ability to handle parallel computation will decrease run times even more.

Also, due to the flexibility inherent in the Barrier class structure, devices involving mul-
tiple barriers and nonsymmetric barrier and doping profiles can be analyzed more easily than
in previous models, which were hard-coded to accept a fixed number of barriers (generally
only two) and only symmetric barrier and doping profiles [4, 6]. Therefore, the C++/Trilinos
implementation will increase the breadth of knowledge about RTDs and potentially other
nanoscale devices that can be modeled using the Wigner-Poisson formulation.

9. Acknowledgements. This paper was partially supported by Army Research Office
grants W911NF-07-1-0112 and NanoRTD LLC.

REFERENCES

[1] F. Buot and K. Jensen, Lattice weyl-wigner formulation of exact many-body quantum-transport theory and
applications to novel solid-state quantum-based devices, Physical Review B, 42 (1990), pp. 9429–9457.

[2] L. Chang, L. Esaki, and R. Tsu, Resonant tunneling in semiconductor double barriers, Applied Physics
Letters, 24 (1974), pp. 593–595.

[3] C. Kelley, Iterative Methods for Linear and Nonlinear Equations, no. 16 in Frontiers in Applied Mathematics,
SIAM, Philadelphia, PA, 1995.

[4] M. S. Lasater, Numerical Methods for the Wigner-Poisson Equations, PhD thesis, North Carolina State Uni-
versity, 2005.

[5] K. Ng, Complete Guide to Semiconductor Devices, Wiley-Interscience, New York, New York, 2nd ed., 2002.
[6] G. J. Recine, Numerical Simulation of Quantum Electron Transport in Nanoscale Resonant Tunneling Struc-

tures, PhD thesis, Stevens Institute of Technology, 2004.
[7] T. Sollner, W. Goodhue, P. Tannenwald, C. Parker, and D. Peck, Resonant tunneling through quantum wells

at frequencies up to 2.5thz, Applied Physics Letters, 43 (1983), pp. 588–590.
[8] R. Tsu and L. Esaki, Tunneling in a finite superlattice, Applied Physics Letters, 22 (1973), pp. 562–564.
[9] P. Zhao, H. Cui, and D. Woolard, Dynamical instabilities and i-v characteristics in resonant tunneling

through double-barrier quantum well systems, Physical Review B, 63 (2001), pp. 075302–1–075302–14.
[10] P. Zhao, H. Cui, D. Woolard, K. Jensen, and F. Buot, Simulation of resonant tunneling structures: Origin of

the i-v hysteresis and plateau-like structure, Journal of Applied Physics, 87 (2000), pp. 1337–1349.

CSRI Summer Proceedings 2009 245

AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS STUDY OF
INTERMOLECULAR PROTON TRANSFER REACTIONS

ALEJANDRO PÉREZ∗, MARK E. TUCKERMAN†, HAROLD P. HJALMARSON‡, AND O. ANATOLE VON
LILIENFELD§

Abstract. Classical free energy profiles of intermolecular proton transfer for model systems of DNA base pairs,
and two models for silica, H2—Si(OH)3, and H2—OSi(OH)3 were computed using ab initio molecular dynamics
in gas phase at 300 K. For all of the tested exchange-correlation functionals the description of the energetics of
the silicon reactions has been found to be insufficiently accurate. The quantum free energy profiles for the silicon
reactions were estimated using path integral Monte Carlo calculations on a fitted potential. In addition, quantum free
energy profiles were computed for a proposed model of the DNA base pair using ab initio path integral molecular
dynamics. It is shown that quantum effects on nuclei lead to a near complete suppression of the reverse barrier for the
DNA base pair models. Thus, these findings do not support the idea that neutral tautomeric forms of DNA base pairs
can be implicated in mutagenesis. Our path integral results underscore the importance of nuclear quantum effects in
proton transfer reactions even at room temperature.

1. Introduction. Free energy is a fundamental quantity in chemistry and biology that
characterizes the probability of an event to happen in the canonical ensemble. Absolute free
energy values are difficult to compute because it entails a full sampling of the phase space,
which is clearly unfeasible for complex systems. More commonly, one deals with free energy
differences, such as the free energies of solvation, or binding of a susbtrate to the active site
of an enzyme, for which phase space is greatly reduced. Consequently, it is not surprising to
find a vast list of methods in the literature on how to compute free energy differences, which
includes thermodynamic integration, [1] umbrella sampling, [2] blue moon ensemble, [3, 4]
metadynamics, [5] etc. In the case of proton transfer reactions, high energy barriers are
frequent and these methods have proven to be useful in estimating free energy differences.

In nature there are plenty of cases where the quantum nature of the nuclei plays an im-
portant role that cannot be neglected. Solving the quantum dynamics of many-body sys-
tems involving light atoms remains one of the most challenging problems in computational
physics and chemistry due to the unfavorable computer scaling with system size and time
scale of numerically exact methods. Quantum equilibrium properties, however, are routinely
investigated using the path integral (PI) formalism developed by Feynman. [6, 7, 8] The PI
interpretation fostered a new understanding of the microscopic world and provided a deep
insight into various complex quantum phenomena, such as superfluidity. [9] The PI method
was successfully applied to a wide variety of model systems, [10] and it represents a promis-
ing avenue in condensed matter physics. Unfortunately, direct application of this formalism
to real time dynamics faces a severe sign problem that necessitates approximation schemes
and continues to be one of the unsolved in natural sciences.

With the advent of fast parallel machines, recent ab initio path integral molecular dy-
namics (AIPIMD) simulations [11, 12] of hydrogen bonded system have become possi-
ble [13, 14, 15, 16]. In AIPIMD, the nuclei are quantized following the Feynman’s path
integral (PI) formalism [6, 7, 8] and the many-body potential is obtained “on the fly” from
an electronic structure calculations using the Car-Parrinello methodology [17]. Thus, in AIP-
IMD not only thermal fluctuations and the possibility for bond breaking and formation are
allowed but also tunneling and zero point energy effects on nuclei are included in the simula-
tions.

∗Corresponding author: ap1484@nyu.edu. Department of Chemistry, New York University.
†Department of Chemistry and Courant Institute of Mathematical Sciences, New York University.
‡Sandia National Laboratories, Albuquerque, New Mexico.
§Sandia National Laboratories, Albuquerque, New Mexico.

246 Ab Initio Path Integral Study of Proton Transfer Reactions

Chemical reactions involving proton transfer are ubiquitous in nature. A relevant system
for which proton transfer plays an important role is the DNA base pairs. In 1963, Löwdin
proposed that rare tautomeric forms of the DNA Watson-Crick base pairs could be implicated
in DNA point mutations [18]. These tautomers are generated by the antiparallel and concerted
transfer of two hydrogen-bonded protons between DNA base pairs: adenine (A) and thymine
(T); and cytosine (C) and guanine (G). Theoretical studies have later shown that the AT tau-
tomeric equilibrium is unlikely to play any role in DNA mispairs, whereas the GC tautomers
could potentially have an impact on mutational mechanisms. In this context, several factors
need to be considered in DNA mutagenesis: (1) concentration and lifetimes of rare tautomers
(2) barriers for the forward and backward double proton transfer (DPT) (3) characteristic time
scale of the cell’s DNA repairing mechanisms (4) physical conditions, such as hydration and
charge state of base pairs.

Despite much research in the last 10 years, so far there is a lack of direct experimental
evidence supporting the relevance of this rare forms in DNA mutagenesis. Thus, no conclu-
sive proof has been reported so far and the issue of DNA mutations induced by intermolecular
tautomerism of the base pairs remains an open question. To the best of our knowledge, full
quantum treatment of the double proton transfer in DNA base pairs have not been reported
using AIPIMD.

In this report, we have performed AIPIMD simulations for two model systems that mimic
the hydrogen-bonding pattern of DNA Watson-Crick base pairs. The model systems investi-
gated here are displayed in Fig. 4.4 and Fig. 4.7. The formamide-formamidine (FIFA) dimer
has been previously used [19] to model the interaction between AT base pair, see Fig. 4.4. Re-
cently, Leszczynski and coworkers performed a post-Hartree-Fock investigation of the FIFA
complex in gas phase and aqueous solution. [19] Their theoretical study found strong evi-
dence that in gas phase FIFA exhibits a concerted and asynchronous mechanism, whereas in
solution the reaction proceeds in a stepwise fashion with no clear minimum on the product
site. [19] The other model system (N-guanidiylformaldehyde–methanimidamide formate, or
simply GFMF) is proposed here to model the intermolecular double proton transfer in the GC
base pair, see Fig. 4.7. It is surprising, however, that nobody has attempted an exploration
of these model systems by relaxing the restriction of classical nuclei. Thus, in the present
paper we have carried out the first ab initio path integral molecular dynamics (PIMD) study
of the FIFA and GFMF complexes in gas phase. We computed the free energy profile for the
concerted double proton transfer both classically and quantum mechanically.

Hydrogen also plays an important role in metal oxide semiconductors (MOS) industry
as responsible for the generation and also the removal of defects at SiO2/Si interfaces. The
energetics of hydrogen interacting with different silicon clusters has been investigated both
theoretically and experimentally in order to elucidate the mechanism of reaction and shed
some light into the atomistic details. Yet the dynamics is poorly understood and great dis-
parity of results has been reported. [20] It is known, however, that atomic hydrogen can
depassivate the SiO2/Si interface by reaction with the hydrogen bonded to silicon sites and
thus creating silicon dangling bonds. Also, it is well established that SiO dangling bonds can
dissociate molecular hydrogen and create strong Si-OH bonds. In this article, we reexamine
the energetics and free energy profiles of some model reactions to shed some light into these
controversial results. We estimate the nuclear quantum effect on fitted potentials using a one
dimensional path integral code.

This article is organized as follows: Sec. (2.1) reviews the equilibrium path integral
molecular dynamics methodology of Ref. [21]. Sec. (2.2) presents a brief review on free
energy computation of rare events with special emphasis on the umbrella sampling tech-
nique. [2]. In the accompanying Section (3), the model systems and relevant technical de-

A. Pérez and M. E. Tuckerman and H. P. Hjalmarson and O. A. von Lilienfeld 247

tails are presented. The article continues in Sec. (4) with a discussion of the main results.
Conclusions are drawn in Sec. (6).

2. Background and Theory.

2.1. Equilibrium path-integral molecular dynamics. In this section, we briefly re-
view the methodology of path-integral molecular dynamics (PIMD). In the proceeding, Ĥ
will denote the Hamiltonian operator of the system, β = 1/kBT the inverse thermal energy,
and Z(β) = Tr

[
exp(−βĤ)

]
the canonical quantum partition function.

The discrete path-integral expression for the quantum canonical partition function for a
single particle of mass m and Hamiltonian Ĥ = p̂2/2m + V(x̂) in one dimension is

ZP(β) =

(
mP

2πβ~2

)P/2 ∫
dx1 · · · dxP (2.1)

exp

−β P∑
k=1

[
1
2

mω2
P(xk − xk+1)2 +

1
P

V(xk)
] ,

where ωP =
√

P/ (β~), and P is the Trotter number or number of imaginary time slices along
the thermal path. The paths must satisfy the cyclic condition xP+1 = x1 arising from the trace
of the (unnormalized) canonical density matrix exp(−βĤ).

Without affecting any of the thermodynamic or equilibrium properties of the system, we
can introduce a set of P uncoupled normalized Gaussian integrals into the previous expression

ZP(β) = N

∫
dp1 · · · dpP

∫
dx1 · · · dxP (2.2)

exp

−β P∑
k=1

 p2
k

2m′k
+

m
2
ω2

P(xk − xk+1)2 +
1
P

V(xk)
 ,

where m′k are some arbitrary fictitious mass parameters and N is an overall normalization
constant. These fictitious masses m′k are totally arbitrary as far as equilibrium properties are
concerned. These parameters m′k merely constitute a tool to navigate phase space and sam-
ple a rather complicated multidimensional integrand. Thus, the quantum canonical partition
function could in principle be computed via molecular dynamics (MD) using the following
classical Hamiltonian

H =

P∑
k=1

 p2
k

2m′k
+

1
2

mω2
P(xk − xk+1)2 +

1
P

V(xk)
 ,

(2.3)

which describes the motion of a cyclic polymer chain with harmonic nearest-neighbor interac-
tions in an attenuated external classical potential V(x)/P. [8, 22] Because of the resemblance
of the cyclic polymer to a necklace, the imaginary time points are colloquially referred to
as “beads”, and the variables x = x1, ..., xP are referred to as the “primitive” path-integral
variables. The parameters m′k determine the time scale on which the imaginary time points
x1, ..., xP are sampled. This computational approach to calculate the quantum partition func-
tion was termed path integral molecular dynamics (PIMD).

However, as pointed by Hall and Berne, [23] the efficiency of the primitive or naive PIMD
algorithm is very poor due to the dominance of the harmonic forces from the quantum kinetic

248 Ab Initio Path Integral Study of Proton Transfer Reactions

energy. As one tries to converge the PI by increasing the Trotter number P, the harmonic
springs become stiffer and, at the same time, the external potential gets more attenuated –
the external potential V(x)/P becomes a small perturbation to the periodic harmonic motion.
Consequently, the system enters in the so-called Kolmogorov-Arnold-Moser (KAM) regime,
and its behavior becomes highly non-ergodic. [24] Moreover, even if thermostats are coupled
to each degree of freedom in the system, the wide frequency spectrum introduced by the
harmonic coupling causes the MD time step to be limited by the fast modes, thereby leading
to very poor sampling of the low-frequency modes.

A solution to all these problems was introduced by Tuckerman et al. [21] and consists
of a combination of three elements: (1) the variables in Eq. (2.3) are transformed to a new
set of coordinates that diagonalizes the harmonic coupling; (2) the fictitious masses m′k are
adjusted so that all modes move on the same time scale; (3) a thermostat is coupled to each
mode degree of freedom in the system so as to effect rapid sampling, equipartitioning, and a
proper canonical distribution.

The transformation from “primitive” to a new set of so-called “staging” modes [21] can
be derived from similar transformations used in path-integral Monte Carlo. [25] In its simplest
form, the staging modes q1, ..., qP (denoted collectively by Q) are given by

q1 = x1

qk = xk −
(k − 1)xk+1 + x1

k
, k = 2, ..., P. (2.4)

Note that this transformation is a special case of a more general staging transformation dis-
cussed in Ref. [21]. When the change of variables given by Eq. (2.4) is introduced into
Eq. (2.3), the discretized partition function becomes

ZP(β) = N

∫
dp1 · · · dpP

∫
dq1 · · · dqP (2.5)

exp

−β P∑
k=1

 p2
k

2m′k
+

1
2

mkω
2
Pq2

k +
1
P

V(xk({Q}))
 ,

where xk({Q}) indicates the inverse transformation, and the masses mk are defined to be

m1 = 0

mk =
k

k − 1
m, k = 2, ..., P. (2.6)

Note that, by this definition, the mode variable q1 drops out of the quantum kinetic energy
part so that its motion is solely governed by the external potential V . In order to ensure that all
modes move on the same time scale, the fictitious masses m′k are chosen according to m′1 = m
and m′k = mk. Therefore, PIMD in staging modes is defined by the transformed Hamiltonian

Hstage =

P∑
k=1

 p2
k

2m′k
+

1
2

mkω
2
Pq2

k +
1
P

V(xk({Q}))
 . (2.7)

In Eq. (2.7), the momenta pk are treated as “conjugate” to the mode variables qk, which
means that the dynamics generated by Eqs. (2.7) and (2.3) are different because the transfor-
mation is not canonical. This freedom of choosing the fictitious masses is permitted as far as
equilibrium thermodynamic quantities are concerned.

Finally, once the equations of motion are derived using Eq. (2.7), each mode variable
is coupled to a separate thermostat, e.g., a Nosé-Hoover chain thermostat. [26] In Ref. [21],

A. Pérez and M. E. Tuckerman and H. P. Hjalmarson and O. A. von Lilienfeld 249

a more general staging type of approach was introduced by allowing staging “segments” of
length j to be defined, thereby providing a natural cutoff between fast and slow modes, a
generalization that was shown to possess certain advantages regarding the convergence of
path integrals with large P.

The authors of Ref. [21] also suggested that the same scheme could be used with normal
mode variables. This idea was subsequently implemented by Cao and Voth in the context of
centroid molecular dynamics (see below), [27] by Tuckerman et al., in ab initio path integrals
methods, [28] by Marx et al. in ab initio centroid molecular dynamics algorithms, [29] and
by Martyna et al. in the context of path integrals at constant pressure. [30] The transformation
in this case takes the form

qk =
1
√

P

P∑
i=1

Ukixi, (2.8)

where the linear transformation Uki diagonalizes the matrix arising from the quantum kinetic
part: Ai j = 2δi j − δi, j−1 − δi, j+1 with Ai,P+1 = Ai1 and Ai0 = AiP. Introducing this change of
variables in Eq. (2.3) yields a partition function that has the same form as Eq. (2.6) but with

mk = mλk where

λ2k−1 = λ2k−2 = 2P
{

1 − cos
[
2π (k − 1)

P

]}
(2.9)

and λ1 = 0, λP = 4P (for even P). As with the staging transformation, the mode q1 drops out
of the quantum kinetic energy term. In fact, it is the centroid mode of the ring polymer,

q1 =
1
P

P∑
i=1

xi. (2.10)

In order to ensure that all modes move on the same time scale, the fictitious masses m′k are
chosen according to m′k = mk and m′1 = m, which is the optimal choice for the free particle.
However, depending on the system, other choices for the fictitious kinetic masses may be
more efficient. [31] As in the staging case, each normal-mode degree of freedom must be also
coupled to its own thermostat.

The schemes reviewed in this section have proved highly useful in equilibrium PIMD. In
ab initio PIMD the forces and total energies are derived from a modern electronic structure
method. Most of the codes nowadays use density functional theory (DFT) to evaluate these
quantities. [32] The methods assume Born-Oppenheimer approximation although extensions
to excited states have recently been explored. Ab initio PIMD simulations are rather expen-
sive since it requires P times electronic structure calculations than its classical counterpart.
Note, however, that PIMD is embarrassingly parallelized as the replicas are propagated inde-
pendently with very little communication among them. In addition, the electronic orbital co-
efficients are not obtained by explicit diagonalization of the electronic Hamiltonian each time
step but rather are propagated from initially optimized coefficients using the Car-Parrinello
scheme. [17] For more details on ab initio PIMD, see Refs. [33, 29, 34].

2.2. Free energy methods and rare events. Free energy is a fundamental quantity in
Statistical Mechanics that measures the probability of a event happening in the canonical
ensemble. [35] The free energy along a given reaction coordinate ξ = ξ (x) (also known as
potential of mean force) is defined mathematically by

F
(
ξ′
)

= −
C
β

∫
dx e−βU(x) δ

[
ξ (x) − ξ′

]
Q (β)

, (2.11)

250 Ab Initio Path Integral Study of Proton Transfer Reactions

where Q (β) is the canonical configuration partition function, C = h−3N/N!, and U (x) is the
potential energy of the system.

If energy barriers in U are lower than or similar to the thermal energy kBT (≈ 0.6 kcal/mol
at 300K) then the free energy along a reaction coordinate ξ can be computed by standard MD
using a simple histogram technique F (ξ) = −kBT ln P (ξ).

Rare events are defined as processes characterized by the presence of energy barriers sig-
nificantly higher than the thermal energy. Direct sampling of these phenomena via ordinary
MD is difficult and special techniques are required to enhance the sampling of inaccessible re-
gions. In the literature, there are numerous approaches to compute free energies of infrequent
events, such as thermodynamic integration, [1] blue moon ensemble, [3, 4] metadynamics, [5]
umbrella sampling, [2], among others. This paper deals exclusively with reactions that have
barriers well above the thermal energy and thus with rare events. The umbrella sampling
method [2] was chosen here because of its easy implementation in existing codes.

In umbrella sampling, one restrains the position of a selected reaction coordinate ξ to a
certain window i using typically an harmonic bias potential

Ui (ξ) =
K
2

(ξ − ξi)2 . (2.12)

The harmonic force constant K should be at least twice the negative value of the curvature of
the potential energy surface (PES) at the transition state

K ≈ −2
(
∂2E
∂ξ2

)‡
, (2.13)

but its value is otherwise arbitrary. Then, one divides the interval of interest in several win-
dows and performs independent MD simulations on each window. The greater the force
constant K is, the larger is the number of windows required. A period of equilibration is
required for each window, which is then followed by a production run. From these simula-
tions, one obtains a biased probability distribution Pb

i (ξ) for each window i and using a direct
histogram Fb

i (ξ) = −kBT ln Pb
i (ξ), the biased free energy is obtained.

To reconstruct the original free energy profile from biased or non-Boltzmann MD sim-
ulations one uses the weighted histogram analysis method (WHAM). [36, 37] The unbiased
(underlying or original) free energy F = Fub is recovered by

Fub
i (ξ) = −

1
β

ln Pb
i (ξ) − Ui (ξ) −Ci, (2.14)

where Ci are some constants which differ for each window. These constants can be deter-
mined by solving iteratively the following pair of non-linear equations

Pub (ξ) =

∑Nw
i=1 Ni Pb

i (ξ)∑Nw
i=1 Ni exp

{
β
[
Ci − Ui (ξ)

]}
Ci = −

1
β

ln
∫

dξ Pub (ξ) exp {−βUi (ξ)},

(2.15)

where Ni is the number of configurations sampled in window i and Nw is the total number
of umbrella windows. Once this calculation is converged, the unbiased free energy is easily
obtained from Fub (ξ) = −kBT ln Pub (ξ). The WHAM requires sufficient overlap between
consecutive windows for successful convergency.

A. Pérez and M. E. Tuckerman and H. P. Hjalmarson and O. A. von Lilienfeld 251

A suitable reaction coordinate to study a typical proton transfer reaction from one site S 1
to another site S 2, not necessarily belonging to the same molecule,

S 1 − H · · · S 2 ⇐⇒ S 1 · · ·H − S 2 (2.16)

is the relative difference between two relevant distances ξ = rHS 1 − rHS 2 . In normal mode
PIMD simulations, one applies the restrain potential on the centroid mode of the ring poly-
mer, [22] see Eq. (2.10). Then the forces on the implicated centroids due to a harmonic
umbrella potential in window i, Eq. (2.12), are

fS 1 = K (ξ − ξi) ξ/ξ (2.17)
fS 2 = fS 1 (2.18)
fH = −2K (ξ − ξi) ξ/ξ (2.19)

for S 1, S 2, and H atoms, respectively. These forces bias the sampling of the centroids so as
the generalized reaction coordinate remains near the value given by ξi.

3. Computational details. In this section, we present the computational details for the
model systems investigated. All ab initio MD simulations were performed at the Γ-point using
Kohn-Sham density functional theory [32] within the generalized gradient approximation
functional as implemented in the plane-wave pseudopotential code CPMD. [38] The umbrella
bias potential was implemented in the routine pi_md.F of the CPMD program. The harmonic
force constant K was set to 0.1 a.u. which is high enough to drive the proton transfer in all
studied reactions. The time step used was carefully chosen to properly integrate all internal
modes and ensure conservation of the total energy. Each umbrella window was equilibrated
for about 1 ps using a time step 0.048 fs. Subsequent windows started with the last geometry
of the previous window to facilitate the equilibration. Statistics were acquired for 3.6 ps
using a time step of 0.072 fs. This small time step is necessary for the adiabatic propagation
of electronic coefficients in the Car-Parrinello approach. [17]

For ab initio path integral calculations, 16 beads were used for the quantization of all
the nuclei at these physical conditions. All the present calculations are in gas phase. Sol-
vent effects were not included due to computational cost of path integral (PI) calculations.
However, solvent is not expected to play a crucial in the intermolecular DPT of DNA base
pairs because the reaction site is excluded from the solvent and the DNA interior has small
dielectric constant [39, 40].

Canonical sampling was achieved via Nosé-Hoover chain thermostats [26] of length 4
and 7th order Suzuki/Yoshida integrator. [41, 42] All atomic degrees of freedom were ther-
mostated, which is crucial for efficient PIMD calculations. The CP mass was set to 400 a.u.
and no thermostats on the electronic orbital coefficients were necessary. The fictitious elec-
tronic kinetic energy and total energy were carefully monitored and found stable during all
the simulations. The initial velocities of the ions and electronic coefficients were set to zero at
the beginning of the equilibration using the “QUENCH” option in CPMD. The molecular sys-
tem was placed in a sufficiently large box and cluster (isolated molecule) periodic boundary
conditions were adopted. The Tuckerman-Martyna Poisson solver was used to electrostat-
ically decouple the periodic images. [43] All the atoms were placed such a way that they
were found more than 3 Å from the walls. Moreover, the electronic density was plotted and
checked that it did not touch nor cross any boundaries.

The PBE0 hybrid exchange-correlation functional was used for all silicon reactions. [44,
45, 46] The local-spin density approach was adopted in all open-shell systems. The silicon
systems were difficult to treat at the DFT level and from the energetics analysis this hybrid
functional turned out to be the best (see next paragraph). A plane wave kinetic energy cutoff

252 Ab Initio Path Integral Study of Proton Transfer Reactions

of 75 Ry and non-local Goedecker-Teter-Hutter (GTH) pseudopotentials were used to expand
the valence electronic orbitals. [47] The plane wave cutoff for orbitals and density in the exact
exchange part was set to 50 and 75 Ry, respectively, using the CPMD option “HFX CUTOFF”.
The system was placed in a box of 12 × 10 × 10 Å3 and cluster PBCs were adopted. The
free energy profile was computed at the classical level using umbrella sampling. An ab initio
path integral study was not further pursued for the silicon systems due to the computational
cost of the hybrid functionals and poorly description offered by DFT. Rather, the quantum
suppression in the free energy barrier was estimated using a path integral Monte Carlo [48]
simulation on a numerical fit to the PES.

For the FIFA complex, the energetics is very well described by DFT and the BLYP [49]
functional was used. The valence electronic orbitals were expanded using a plane wave ki-
netic energy cutoff of 100 Ry in a isolated box of 12.5 × 10.5 × 6.5 Å3. The core electronic
orbitals were represented by non-local Goedecker-Teter-Hutter (GTH) pseudopotentials [47]
as given by Krack. [50]. Classical and quantum free energy profiles were computed using
umbrella sampling. A total of 14 umbrella windows were collected.

For the GFMF complex, a plane wave cutoff of 75 Ry was used. The molecule was
placed in a box of 15 × 15 × 8 Å3. The core electronic orbitals were represented by the
Troullier-Martins pseudopotentials [51]. A total of 11 umbrella windows were simulated to
reconstruct the free energy profile.

All molecular visualization was carried out using the program VMD. [52] and the scripts
found in Ref. [53].

4. Results and Discussion.

4.1. Energetics and the choice of the DFT functional. In order to assess the validity of
the DFT parametrization employed here, we computed the energetics for each model system.
Quantum chemical calculations were performed using the cluster code TURBOMOLE using the
basis set “def-TZVPP”. [54] This doubly polarized triple-zeta valence basis set is similar
in quality to the standard Pople’s 6 − 311G(2d f) and large enough to provide sufficiently
converged results (in the basis set limit sense) for various levels of the theory. The resolution
of the identity featured in TURBOMOLE was not employed in any of the calculations for sake
of accuracy. Note that these structures are not fully relaxed; thus, it is not surprising to find
discrepancies with the free energy plots of the next section. Future work will include energy
differences of more optimized structures. Preliminary results have already revealed the same
trend (not shown).

Unrestricted (local spin density) DFT calculation of the reaction H + HSi(OH)3 ⇒ H2 +

Si(OH)3 were performed with TURBOMOLE and CPMD. The results are listed in Table 4.1. All
the exchange-correlation functionals investigated seem to describe poorly the energetics of
this reaction and severely underestimate the reaction barrier. PBE functional even predicts
a negative value (-1.172) for the forward barrier. In view of Table 4.1, it seems that exact
exchange plays a crucial to yield qualitatively correct results. Thus, we decided to carry
out free energy calculation with the hybrid functional PBE0, which has been shown to yield
reasonable values for a great number of organic compounds. [44] Full ab initio path integral
calculations on this reaction were not pursued here. Instead, the suppression in the free energy
barrier was be estimated via a one-dimensional Path Integral Monte Carlo code (PIMC) [48]
calculation on the numerical fit of the PES.

The energetics for the reaction H2 + OSi(OH)3 ⇒ H + Si(OH)4 is listed in Table (4.2).
Not surprisingly, current DFT functionals also performs very poorly for this open-shell sys-
tem and again only the hybrid exchange-correlation functionals (PBE0, B3LYP) manage to
achieve qualitative results. As before, PBE0 was used to carried out the ab initio CPMD

A. Pérez and M. E. Tuckerman and H. P. Hjalmarson and O. A. von Lilienfeld 253

Table 4.1
Relative energies (kcal/mol) of three representative structures for the silicon reaction H + HSi(OH)3 ⇒

H2 + Si(OH)3. The structures correspond approximately to reactants (R), transition state (TS), and products (P).
All energies were computed with TURBOMOLE and “def-TZVPP” basis set except the last value, which was from a
converged CPMD calculation.

method ∆ER-P ∆ETS-R ∆ETS-P

UHF 1.65 13.36 15.01
MP2 5.87 8.93 14.79
CC2 6.89 8.39 15.28
PBE0 9.89 3.00 12.89
PBE 12.93 0.74 13.89
B3LYP 12.79 1.60 14.39
BLYP 15.35 0.04 15.39
PBE0a 9.5 3.35 11.95
a values computed using CPMD.

Table 4.2
Relative energies (kcal/mol) of three representative structures for the silicon reaction H2 + OSi(OH)3 ⇒ H +

Si(OH)4. All energies were computed with TURBOMOLE and “def-TZVPP” basis set.

method ∆ER-P ∆ETS-R ∆ETS-P

MP2 28.55 6.63 35.18
CC2 27.85 3.998 31.84
PBE0 18.72 1.62 20.34
PBE 17.06 -1.172 15.35
B3LYP 13.39 2.34 15.73
BLYP 10.97 0.59 11.56

simulations. [44, 45, 46] Only the classical simulation was performed and the path integral
calculation was not pursued.

The reason of the failure of all current DFT functionals in these silicon reactions is not
clear to us but it could be related to the need of a multiple Slater determinant description.
In fact, TURBOMOLE T1-diagnostic criteria reported a too high value which indicates that the
molecular system may not be well described by a single Slater determinant [54]. Moreover, it
should be mentioned that previous DFT works reported a great variability for the energetics
of these silicon reaction. [20] If our findings are correct, they would invalid many ab initio
studies on similar silicon compounds.

The results for the FIFA complex are listed in Table (4.3). The table reveals that, unlike
the silicon reactions, all electronic methods (including DFT) agree very well with each other.
The hybrid exchange-correlation functionals Perdew-Burke-Ernzerhof zero (PBE0) [45, 46,
44] and the Becke 3-parameter Lee-Yang-Parr (B3LYP) [55] almost achieve chemical accu-
racy with respect the reference value coupled cluster doubles (CC2). The BLYP functional
was chosen to perform the ab initio MD simulations as a good compromise between accuracy
and computational cost. [49] The last line in Table (4.3) gives the value computed from con-
verged CPMD (100 Ry, box size: 12.5 × 10.5 × 6.5 Å3) which is in excellent agreement with
value predicted by TURBOMOLE (less than 0.6 kcal/mol difference).

Finally, Table (4.4) show the energetics for the GFMF dimer. Unlike the silicon systems,
the energetics is very well described at the DFT level. The BLYP functional [49] was chosen
as a good compromise between accuracy and computational cost.

254 Ab Initio Path Integral Study of Proton Transfer Reactions

Table 4.3
Relative energies (kcal/mol) of some representative structures of the FIFA complex. All energies were computed

with TURBOMOLE using the “def-TZVPP” basis set, except the last row which was obtained from a converged CPMD
calculation. The structures correspond approximately to reactants (R), transition state (TS), and products (P).

method ∆EP-R ∆ETS-P ∆ETS-R

RHF 11.80 9.47 21.27
MP2 8.62 4.37 12.99
CC2 9.24 3.08 12.32
PBE0 8.93 2.81 11.74
PBE 8.56 1.19 9.75
B3LYP 9.47 3.52 12.99
BLYP 9.30 2.44 11.74
BLYPa 9.57 2.18 11.75
a values computed using CPMD.

Table 4.4
Relative energies (kcal/mol) of some representative structures of the GFMF complex. All energies were com-

puted with TURBOMOLE using the “def-TZVPP” basis. The structures correspond approximately to reactants (R),
transition state (TS), and products (P).

method ∆EP-R ∆ETS-P ∆ETS-R

RHF 13.50 14.65 28.15
MP2 9.37 4.04 13.41
CC2 10.24 2.67 12.91
PBE0 10.95 3.00 13.95
PBE 10.63 0.55 11.18
B3LYP 11.39 4.78 16.17
BLYP 11.16 3.15 14.31

4.2. Depassivation of HSi(OH)3 by a H radical. Fig. 4.1 shows the potential energy
surface (PES) for the reaction between molecular hydrogen and a single occupied sp3 silicon
dangling bond (a simplified model of what is known as E′ centers), [20]

H + HSi(OH)3 ⇒ H2 + Si(OH)3. (4.1)

This reaction features a very late transition state and, therefore, is highly exothermic (≈
14 kcal/mol) towards products in accord with Hammond’s postulate. As mentioned before,
there has been a great disparity of activation barriers in the literature and it seems that this
reaction is a difficult case for current exchange-correlation functionals in DFT.

Fig. 4.2 shows the classical free energy profile of the reaction at 300 K. The data sug-
gest the strong tendency of hydrogen radicals to depassivate HSi(OH)3 at finite temperatures,
which has already been confirmed by theoretical [56, 57, 20] and experimental studies. The
suppression in the classical barrier was estimated using a path integral Monte Carlo (PIMC)
code. The results are shown in Fig. 4.1. PIMC predicts a barrier suppression of approximately
1.5 kcal/mol.

Another possible depassivation reaction is

H+ + HSi(OH)3 ⇒ H2 + Si(OH)+
3 . (4.2)

However, the activation energy was estimated earlier to be very large (≈ 30 kcal/mol) [58]
and was not further investigated.

A. Pérez and M. E. Tuckerman and H. P. Hjalmarson and O. A. von Lilienfeld 255

-1.5 -1 -0.5 0 0.5 1
reaction coordinate (Å)

0

2

4

6

8

10

12

14

∆F
 (

kc
al

/m
ol

)

PIMC 64 beads

PES

Fig. 4.1. Potential energy surface scan (blue) for the reaction in Eq. 4.1. In red, it is shown the estimated free
energy profile from a PIMC calculation. The left side of PES corresponds to products H2+Si(OH)3, and the right
side to reactants, H + HSi(OH)3.

-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4
generalized coordinate (Å)

0

4

8

12

16

20

∆
F

 (
kc

al
/m

ol
)

CLASSICAL

Fig. 4.2. Classical free energy profile of reaction in Eq. 4.1 at 300K. Left side: products; right side: reactants.

4.3. Cracking of H2 at OSi(OH)3 radical. In this section, we study the mechanism
of hydrogen cracking at OSi(OH)3 sites (sometimes called non-bridging oxygen or NBO
centers).

Fig. 4.3 displays the classical free energy profile for the reaction

H2 + OSi(OH)3 ⇒ H + Si(OH)4. (4.3)

Fig. 4.3 shows the classical free energy profile at 300 K. The reaction is highly exothermic
towards the formation of SiO-H bond (≈ 12 kcal/mol) and our data effectively supports the
fact that oxygen dangling bond in Si acts as strong molecular cracking sites for hydrogen.
This finding is corroborated by previous experimental and theoretical studies. [20]

4.4. Formamidine-Formamide complex in gas phase. In this section, we present the
results of the formamidine-formamide (FIFA) complex in gas phase at 300 K. The molecular
structure for the normal and “rare” tautomers are displayed in Fig. 4.4.

256 Ab Initio Path Integral Study of Proton Transfer Reactions

-1.5 -1 -0.5 0 0.5 1
generalized coordinate (Å)

0

4

8

12

16

 ∆
F

 (
kc

al
/m

ol
)

CLASSICAL

Fig. 4.3. Classical free energy profile of reaction Eq. 4.3 at 300K. The left side corresponds to reactants,
H2+OSi(OH)3, and the right side to products, H + Si(OH)4.

Fig. 4.4. TOP: Molecular structure of the optimized formamidine-formamide (FIFA) complex. BOTTOM:
Molecular structure of the double proton transfer form of FIFA dimer (“rare” tautomer).

According to Ref. [19], the system features a double proton transfer (DPT) via a con-
certed and asynchronous mechanism in gas phase. The DPT form of FIFA is displayed in
Fig. 4.4. The choice of a single reaction coordinate is a non trivial task for this system and
in principle a complete characterization of this process would require a full two-dimensional
map, which is clearly prohibitive. Here, the relative distance to the less acidic proton (H5 in
Fig. 4.4) was chosen here as a reaction coordinate, i.e., ξ = rH5N1 − rH5O4 . According to the
aforementioned study, [19] the complete transfer of H5 from nitrogen N1 to oxygen O4 marks
the appearance of products. By the time H5 migrates to O4, the other proton, H6, has already
been spontaneously transferred to N2 . Thus, this coordinate is appropriate to follow the
double proton transfer reaction as it approximates well the determining step of the reaction.

Fig. 4.5 shows the free energy profile for double proton transfer in FIFA at 300 K. The
classical profile features a very asymmetric barrier with a late transition state. The reaction is
endothermic (≈ 10 kcal/mol) towards products in accord with Hammond’s postulate. Classi-
cal simulations predict a barrier of approximately 2.5 kcal/mol from rare to normal tautomers,
with a well defined equilibrium between stable geometries. The classical free energy barrier
at 300 K agrees with the barrier computed at 0 K from adiabatic calculations. The relative
energies at 0 K of FIFA system agrees very well with the value in Ref. [19, 59, 60] computed
at the MP2/6-31+G** level. Our FIFA value for forward barrier is also in good agreement
with the energy profile reported in Ref. [61] computed at the B3LYP/6-311++G** level.

Nuclear quantum effects, on the other hand, have a dramatic impact on the reverse barrier
in FIFA, which is now completely eliminated (red line in Fig. 4.5). Thus, according to the

A. Pérez and M. E. Tuckerman and H. P. Hjalmarson and O. A. von Lilienfeld 257

Fig. 4.5. Classical (blue) and quantum (red) free energy profile of FIFA at 300 K computed at the BLYP level.
Inset shows the corresponding structures. Left: normal tautomer; right: “rare” tautomer. Statistical errors (not
shown) are too small to be visible.

Fig. 4.6. Path integral representation of double proton transfer form (or “rare” tautomer) of FIFA.

path integral result, there is no stable structure corresponding to the double proton transfer
form of FIFA. As reported in Ref. [13], not only the transferring proton species, but also the
heavy-atom skeleton must be quantized as the latter has a non-trivial effect on the proton tun-
neling reaction. Our findings highlight the importance of nuclear quantum effects on protons
in biomolecules even at room temperature. The path integral representation of the “rare” tau-
tomer of FIFA is given in Fig. 4.6. For a path integral dynamical animation of FIFA dimer,
see links in Ref. [62].

4.5. GC model system in gas phase. Fig. 4.7 shows the chemical structure of our pro-
posed model system (guanidylformaldehyde-methanimidamidyil formide or hereafter GFMF)
for the GC base pair. To our knowledge, this is the first time that this system is used to model
the intermolecular DPT in GC base pair.

Fig. 4.8 shows the free energy profile for double proton transfer in GFMF at 300 K. As
in FIFA dimer, the relative distance to the less acidic proton (H in Fig. 4.7) was chosen here
as a reaction coordinate, i.e., ξ = rHN − rHO. This model system features similar energetics

258 Ab Initio Path Integral Study of Proton Transfer Reactions

Fig. 4.7. Scheme of model GFMF (big spheres) superimposed to the true Watson-Crick GC base pair (small
spheres). LEFT shows normal tautomers; RIGHT shows “rare” tautomers. Hydrogen atoms have been added to
both models in order to satisfy valency. Color code: carbon (black), oxygen (red), hydrogen (grey), nitrogen (blue).
The most relevant atoms in the double proton transfer have been labeled.

as the FIFA dimer, although the shape of the classical barrier is sharper. Classically, it is
predicted a reverse barrier of approximately 4 kcal/mol separating well defined equilibrium
geometries. The energetics at 0 K of our GC model system agrees very well with the value
for true GC in Ref. [63] computed at the MP2/6-31G** level. This agreement shows that
our model system provides a decent description of the DPT in the real system despite of
lacking aromaticity. Once again, upon quantization of nuclei, the barrier entirely disappears
and the system shows no clear minimum structure on the products side (right in Fig. 4.8).
Thus, nuclear quantum effects on proton have a major role in the stability of canonical DNA
base pairs and are ultimately responsible of the fidelity of DNA replication against neutral
intermolecular tautomeric forms. For a path integral animation of the transition state of the
DPT in GFMF, see links in Ref. [62].

Thus, neutral tautomers have little role in DNA mutagenesis. Obviously, this does not
exclude the possibility that charged or radical DNA base pairs play a relevant role in point
mutations. In fact, recent theoretical studies [64, 59, 61] have shown that charged protonated
base pairs display smaller activation barriers, which makes proton transfer facile. In addition,
hydration effects [65], coordination to a metal cation [60], and molecular environment will
also have an undoubtedly effect but too complicated to be modeled with path integrals.

5. Future Work. The entropic contribution for these gas phase reactions is small owing
to the small molecular reorganization accompanying the DPT. This is not surprising, as the
thermal fluctuations in a rigid heavy-skeleton play a minor role in the proton hopping mech-
anism. In solution, however, this may not be the case, and the solvent molecules reorganize
to stabilize the transition state, leading to a reduction in entropy. However, a competing ef-
fect also exists of favorable enthalpic interactions with the solvent. Thus, future work will
include studying the same reactions in the presence of explicit solvent (perhaps a few water
molecules). In addition, an unbiased MD simulation will be performed starting from products
to histogram the centroid position of hydrogens H5 and H6 (see Fig. 4.4). Experimental data
on FIFA system will be searched to possibly establish a comparison with our numerical re-
sults. The umbrella sampling will be repeated using different initial conditions with the goal
of further reducing the statistical error. Alchemical transmutation of the transferring protons
to deuteriums are currently underway to estimate the isotope effect in FIFA. Finally, free en-
ergies will also be estimated (within the harmonic approximation for the vibrational degrees

A. Pérez and M. E. Tuckerman and H. P. Hjalmarson and O. A. von Lilienfeld 259

Fig. 4.8. Free energy profile for the double proton transfer in GFMF at 300 K. Full quantum: red; Classical
nuclei: blue. Inset shows the corresponding structures. Left: normal tautomer; right: “rare” tautomer. Statistical
errors (not shown) are too small to be visible.

of freedom) using a thermochemistry analysis.

6. Conclusions. In the first part of this paper, we studied the interaction of hydrogen
molecule with various silicon clusters in gas phase to gain some atomistic insight into the
mechanism of the reaction of hydrogen with silica. Classical free energy profiles were com-
puted at 300 K using density functional theory with biased molecular dynamics. For the
silicon reaction studied here it is shown that the E′ centers acts as depassivating sites whereas
the NBO centers get strongly passivated by homolytically dissociating H2. Quantum effects
as estimated by PIMC show a significant suppression in the barrier for these reactions.

Quantum effects on nuclei were also included to study the double proton transfer reaction
in models of DNA base pairs in gas phase. Using the Feynman’s path integral formalism, a
complete suppression in the reverse barrier was found which suggest that “rare” tautomers
are not implicated in DNA point mutations.

In summary, it is shown that nuclear quantum effects play a crucial role in the double
proton transfer reaction of model systems resembling the hydrogen bonding pattern of DNA
base pairs. Inclusion of nuclear quantum effects leads to a complete suppression of the re-
verse barrier, which implies that these rare tautomers do not play any significant role in DNA
mutations. Based on energetic arguments, these results are expected to carry over the true
Watson-Crick base pairs unless external factors help stabilizing “rare” tautomers.

In a broader context, it was shown that proton tunneling can qualitatively affect the out-
come in complex biological systems, such as DNA or enzyme active sites. Our results rep-
resent a fundamental change of paradigm with respect to previous studies on DNA base pair
mutations. This work hopes to influence the way simulations on biomolecules are carried out
in the future.

7. Acknowledgments. The authors would like to thank Dr. Ann E. Mattsson for critical
reading of this manuscript. Special thanks go to Peter A. Schultz for many discussions. A. P.
and H. P. H. gratefully acknowledge financial support from LDRD Project No. 117866/02.
O.A.vL. acknowledges support from SNL Truman Program LDRD Project No. 120209. San-

260 Ab Initio Path Integral Study of Proton Transfer Reactions

dia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for
the United States Department of Energys National Nuclear Security Administration under
Contract No. DE-AC04-94AL85000.

REFERENCES

[1] J. G. Kirkwood. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys., 3:300, 1935.
[2] G. M. Torrie and J. P. Valleau. Monte Carlo free energy estimates using non-Boltzmann sampling: Application

to the sub-critical Lennard-Jones fluid. Chem. Phys. Letts., 28:578–581, 1974.
[3] E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Karpal. Constrained reaction coordinate dynamics for the

simulation of rare events. Chem. Phys. Lett., 156:472–477, 1989.
[4] M. Sprik and G. Ciccotti. Free energy from constrained molecular dynamics. J. Chem. Phys., 109:7737–7744,

1998.
[5] A. Laio and M. Parrinello. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA, 99:12562–12566, 2002.
[6] R. P. Feynman (ed. L. M. Brown). Feynman’s thesis: A new approach to Quantum Theory. World Scientific,

Singapore., 2005.
[7] R. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys., 20:367–

387, 1948.
[8] R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals, McGraw-Hill, New York., 1965.
[9] D. M. Ceperley. Path integrals in the theory of condensed helium. Rev. Mod. Phys., 67:279–355, 1995.

[10] J. Cao and G. A. Voth. The formulation of quantum statistical mechanics based on the Feynman path centroid
density. II. Dynamical properties. J. Chem. Phys., 100:5106–5117, 1994.

[11] D. Marx and M. Parrinello. Ab initio path integral molecular dynamics: Basic ideas. J. Chem. Phys.,
104:4077–4082, 1996.

[12] M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello. Efficient and general algorithms for path integral
Car-Parrinello molecular dynamics. J. Chem. Phys., 104:5579, 1996.

[13] M. E. Tuckerman and D. Marx. Heavy-Atom Skeleton Quantization and Proton Tunneling in Intermediate-
Barrier Hydrogen Bonds. Phys. Rev. Lett., 86:4946, 2001.

[14] S. Miura, M. E. Tuckerman, and M. L. Klein. An ab initio path integral molecular dynamics study of double
proton transfer in the formic acid dimer. J. Chem. Phys., 109:5290, 1998.

[15] J. A. Morrone and R. Car. Nuclear Quantum Effects in Water. Phys. Rev. Lett., 101:017801, 2008.
[16] M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello. On the Quantum Nature of the Shared Proton in

Hydrogen Bonds. Science, 275:817–820, 1997.
[17] R. Car and M. Parrinello. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys.

Rev. Lett., 55:2471–2474, 1985.
[18] P. O. Löwdin. Proton Tunneling in DNA and its Biological Implications. Rev. Mod. Phys., 35:724–732, 1963.
[19] Y. Podolyan, L. Gorb, and J. Leszczynski. Double-Proton Transfer in the Formamidine-Formamide Dimer.

Post-HartreeFock Gas-Phase and Aqueous Solution Study. J. Phys. Chem. A, 106:12103, 2002.
[20] M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni. H2 Cracking at SiO2 Defect Centers. J. Phys. Chem. A,

104:4674–4684, 2000.
[21] M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein. Efficient molecular dynamics and hybrid

Monte Carlo algorithms for path integrals. J. Chem. Phys., 99:2796–2808, 1993.
[22] D. Chandler and P. G. Wolynes. Exploiting the isomorphism between quantum theory and classical statistical

mechanics of polyatomic fluids. J. Chem. Phys., 74:4078, 1981.
[23] R. W. Hall and B. J. Berne. Nonergodicity in path integral molecular dynamics. J. Chem. Phys., 81:3641,

1984.
[24] V. I. Arnold. Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small

perturbations of the Hamiltonian. Russ. Math. Surv., 18:9–36, 1963.
[25] E. L. Pollock and D. M. Ceperley. Simulation of quantum many-body systems by path-integral methods.

Phys. Rev. B, 30:2555–2568, 1984.
[26] G. J. Martyna, M. L. Klein, and M. E. Tuckerman. Nosé-Hoover chains: The canonical ensemble via contin-

uous dynamics. J. Chem. Phys., 97:2635–2643, 1992.
[27] J. S. Cao and G. A. Voth. The formulation of quantum statistical mechanics based on the Feynman path

centroid density. IV. Algorithms for centroid molecular dynamics. J. Chem. Phys., 101:6168, 1994.
[28] M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello. Efficient and general algorithms for path integral

Car-Parrinello molecular dynamics. J. Chem. Phys., 104:5579, 1996.
[29] D. Marx, M. E. Tuckerman, and G. J. Martyna. Quantum dynamics via adiabatic ab initio centroid molecular

dynamics. Comput. Phys. Comm., 118:166–184, 1998.
[30] G. J. Martyna, A. Hughes, and M. E. Tuckerman. Molecular dynamics algorithms for path integrals at constant

pressure. J. Chem. Phys., 110:3275–3290, 1999.
[31] M. H. Musër. On new efficient algorithms for PIMC and PIMD. Comput. Phys. Comm., 147:83–86, 2002.

A. Pérez and M. E. Tuckerman and H. P. Hjalmarson and O. A. von Lilienfeld 261

[32] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.,
140:A1133–A1138, 1965.

[33] D. Marx and M. Parrinello. Ab initio path integral molecular dynamics: Basic ideas. J. Chem. Phys.,
104:4077–4082, 1996.

[34] J. Cao and G. J. Martyna. Adiabatic path integral molecular dynamics methods. II. Algorithms. J. Chem.
Phys., 104:2028–2035, 1996.

[35] L. D. Landau and E. M. Lifshitz. Statistical Physics. Pergamon Press, New York, 1968.
[36] A. M. Ferrendberg and R. H Swendsen. New Monte Carlo technique for studying phase transitions. Phys.

Rev. Lett., 61:2635–2638, 1988.
[37] A. M. Ferrendberg and R. H Swendsen. Optimized Monte Carlo data analysis. Phys. Rev. Lett., 63:1195–1198,

1989.
[38] CPMD version 3.13.2, Copyright IBM Corp 1990-2008, Copyright MPI für Festkörperforschung Stuttgart.,

http://www.cpmd.org/, 1997-2001.
[39] A. O. Colson, B. Besler, and M. D. Sevilla. Ab initio molecular orbital calculations on DNA base pair radical

ions: effect of base pairing on proton-transfer energies, electron affinities, and ionization potentials. J.
Phys. Chem., 96:9787–9794, 1992.

[40] A. O. Colson, B. Besler, and M. D. Sevilla. Ab initio molecular orbital calculations of DNA bases and their
radical ions in various protonation states: evidence for proton transfer in GC base pair radical anions. J.
Phys. Chem., 96:661–668, 1992.

[41] M. Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical
physics. J. Math. Phys., 32:400, 1991.

[42] H. Yoshida. Construction of higher order symplectic integrators. Phys. Lett. A, 150:262–268, 1990.
[43] G. J. Martyna and M. E. Tuckerman. A reciprocal space based method for treating long range interactions in

ab initio and force-field-based calculations in clusters. J. Chem. Phys., 110:2810, 1999.
[44] C. Adamo and V. Barone. Toward reliable density functional methods without adjustable parameters: The

PBE0 model. J. Chem. Phys., 110:6158, 1999.
[45] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev.

Lett., 77:3865, 1996.
[46] J. P. Perdew, Ernzerhof, and K. Burke. Rationale for mixing exact exchange with density functional approxi-

mations. J. Chem. Phys., 105:9982, 1996.
[47] S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B,

54:1703–1710, 1996.
[48] V. M. Zamalin and G. E. Norman. The Monte-Carlo method in Feynman’s formulation of quantum statistics.

USSR Comp. Math. and Math. Phys., 13:408–420, 1973.
[49] C. Lee, W. Yang, and R. G. Parr. J. Chem. Phys., 37:785, 1988.
[50] M. Krack. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals.

Theor. Chem. Acc., 114:145–152, 2005.
[51] N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43:1993,

1991.
[52] A. Dalke W. Humphrey and K. Schulten. VMD version 1.8.6. J. Molec. Graphics, 14:33–38, 1996.
[53] http://www.theochem.ruhr-uni-bochum.de/ axel.kohlmeyer/cpmd-vmd/part6.html.
[54] R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel. Electronic structure calculations on workstation

computers: The program system turbomole. Chem. Phys. Letters, 162:165–169, 1989.
[55] A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98:5648,

1993.
[56] H. A. Kurtz and S. P. Karna. Hydrogen Cracking in SiO2: Kinetics for H2 Dissociation at Silicon Dangling

Bonds. J. Phys. Chem. A, 104:4780–4784, 2000.
[57] L. D. Crosby and H. A. Kurtz. Application of electronic structure and transition state theory: Reaction of

hydrogen with silicon radicals. Int. J. Q. Chem., 106:3149–3159, 2006.
[58] L. Tsetseris and S. T. Pantelides. Migration, incorporation, and passivation reactions of molecular hydrogen

at the Si-SiO2 interface. Phys. Rev. B, 70:245320, 2004.
[59] M. Noguera, M. Sodupe, and J. Bertran. Effects of protonation on proton transfer processes in Guanine-

Cytosine Watson-Crick base pair. Theor. Chem. Acc., 112:318–326, 2004.
[60] L. Gorb, Y. Podolyan, P. Dziekonski, W. A. Sokalski, and J. Leszczynski. Double-Proton Transfer in Adenine-

Thymine and Guanine-Cytosine Base Pairs. A Post-Hartree-Fock ab Initio Study. J. Am. Chem. Soc.,
126:10119–10129, 2004.

[61] M. Noguera, M. Sodupe, and J. Bertran. Effects of protonation on proton transfer processes in Adenine-
Thymine Watson-Crick base pair. Theor. Chem. Acc., 118:113–121, 2007.

[62] For a path integral animation of the double proton transfer reaction in FIFA and GFMF, see links at
http://www.cs.sandia.gov/ oavonli/. The movie does not show any real dynamics but only the
sampling of different microstates of the molecule accessible at that temperature.

[63] J. Florián and J. Leszczynski. Spontaneous DNA Mutations Induced by Proton Transfer in the Guanine-

262 Ab Initio Path Integral Study of Proton Transfer Reactions

Cytosine Base Pairs: An Energetic Perspective. J. Am. Chem. Soc., 118:3010–3017, 1996.
[64] J. P. Cerón-Carrasco, A. Requena, C. Michaux, E. A. Perpéte, and D. Jacquemin. Effects of ions on the Proton

Transfer Mechanism in DNA. J. Phys. Chem. A, 120:8159–8167, 2009.
[65] J. P. Cerón-Carrasco, A. Requena, C. Michaux, E. A. Perpéte, and D. Jacquemin. Effects of Hydration on

the Proton Transfer Mechanism in the Adenine-Thymine Base Pair. J. Phys. Chem. A, 113:7892–7898,
2009.

CSRI Summer Proceedings 2009 263

A TWO-TEMPERATURE MODEL OF RADIATION DAMAGE IN α-QUARTZ

CAROLYN L. PHILLIPS∗, PAUL S. CROZIER†, AND RUDOLPH J. MAGYAR‡

Abstract. Two-temperature models are used to represent the interaction between atoms and electrons during
thermal transients such as radiation damage, laser heating, and cascade simulations. We introduce a two-temperature
model applied to a wide-gap semiconductor, α-quartz, to model a heat deposition in a SiO2 lattice. Our model of
the SiO2 electronic subsystem is based on quantum simulations of the electronic response in a SiO2 repeat cell. We
observe how the parameterization of the electronic subsystem impacts the degree of permanent amorphization of
the lattice, especially compared to a metallic-like electronic subsystem. The parameterization of the semiconductor
electronic subsystem has a significant effect on the amount of residual defects in the crystal after 10 picoseconds.

1. Introduction. Two-temperature models (TTM) attempt to capture the interplay be-
tween electrons and ions in a material by modeling the electrons and the ions as two separate
systems, with two separate temperatures, that are able to exchange energy through frictional
forces applied to the ions [12, 32]. These models are used to capture high-energy events
like laser heating [7, 6, 11, 22, 33, 13], sputtering [28], shock-induced melting[16], heteroge-
neous melting[14], and cascade simulations [5, 9, 10]. Electron interaction with fast moving
ions, electron-phonon coupling, and heat transfer through the electronic subsystem provide
additional heat transport mechanisms to the system.

Several models have been proposed to capture the energy exchange between the elec-
tronic and atomic subsystems. In 1989, Caro and Victoria [4] proposed that the inelas-
tic scattering between electrons and high velocity ions could be modeled as a drag force,
while electron-phonon interactions could be modeled as a Langevin thermostat connecting
the atomic subsystem to the electronic subsystem. In 2007, Duffy and Rutherford [8, 27]
introduced a TTM based on the work of Caro and Victoria [4]. Their version of TTM can
account for the electronic stopping, electron-phonon coupling, and spatial and temporal evo-
lution of the electronic subsystem. In [25], an energy conserving version of this inhomoge-
neous Langevin thermostat TTM was introduced. The material is modeled as heavy atoms,
evolving under MD equations of motion, coupled to a continuum finite heat reservoir, which
represents the electrons. Electronic stopping is modeled as a drag force that is only applied
to atoms whose velocity exceeds a threshold velocity. A stochastic force term and a second
drag force term on each atom, that is, a Langevin thermostat, is introduced to represent the
energy interchange between the atomic subsystem and the excited electrons. The electronic
subsystem is modeled as a continuum with energy evolved by numerical integration of the
heat diffusion equation. This model permits the energy stored in the electronic subsystem to
vary both spatially and temporally.

Algorithmically, at each MD time step, energy is exchanged between the atomic subsys-
tem and electronic subsystem. The interaction with the atomic subsystem is a source term in
the electronic subsystem heat diffusion equation, while the Langevin thermostat temperature
is the local electronic temperature.

The force, due to the electronic subsystem, applied to each atom takes the form,

FLangevin = −γivi + F̃(t)

∗The University of Michigan, phillicl@umich.edu
†Sandia National Laboratories, pscrozi@sandia.gov
‡Sandia National Laboratories, rjmagya@sandia.gov

264 A Two-Temperature Model and α-quartz

where

γi = γp + γs for vi > v0

γi = γp for vi ≤ v0

where γp and γs represent the friction coefficients due to electron-ion interaction and electron-
stopping, respectively, and v0 is the threshold velocity for the electron-stopping interaction.
In regimes where electronic stopping does not apply, this force satisfies the fluctuation-
dissipation theorem,

〈F̃(t)〉 = 0

〈F̃(t′) · F̃(t)〉 = 2kbTeγpδ(t′ − t)

and the atomic and electronic system will equilibrate to a shared temperature.
The electronic temperature, Te, is calculated by solving the equation for heat diffusion,

Ce
∂Te

∂t
= ∇ (κe∇Te) − ∆E f̃ /∆V (1.1)

where, ∆E f̃ , j is the energy transfered to the atomic system during the time step. Using this
model, we consider the implications of a TTM for heat deposition in α-quartz.

2. Model.

2.1. Modeling an electronic subsystem for a semiconductor. In reference [15], it was
proposed that a two temperature model is inappropriate for a system of covalent bonds be-
cause the structural response of the material to heating is different from metals and the model
electron-phonon coupling is less valid. Instead, a molecular dynamic simulations performed
on the basis of time-dependent, many-body potential energy surfaces derived from tight-
binding Hamiltonians was used to model small (≈ 60 atom) carbon and germanium systems.
This quantum tight-binding method limits the size, energy range, and timstep of the system
that can be modeled. While the specific formulation of the TTM may be less rigorous, by
a careful parameterization of the TTM for a semiconductor system, we seek to coarse-grain
model the energy transfer between the electrons and ions in a system large enough to study
large heat deposition events. We could, in principle, capture the effects of temperature on the
force-field to reproduce some of the bond creation and breaking, but temperature dependent
force-fields are not available.

In order to obtain parameters for our TTM, we appeal to basic physics and density func-
tional molecular dynamics simulations as implemented in VASP [19, 20, 17, 18, 3, 21, 24].
The version of the TTM [27] that we use requires that several parameters be judiciously
gleaned from literature, theory, and computational results. These parameters are: Ce, elec-
tronic specific heat; κe, electronic thermal conductivity; gp, energy exchange rate between
electrons and lattice; and γp, electron-ion interaction rate.

The basic unit of the quantum simulations is 9 atom α-quartz (SiO2) hexagonal super-
cell. In our calculations, we employed projected-augmented wave pseudopotentials, a 400
eV plane-wave cut off, and 9×9×9 points in the reduced brilluon zone. Many electron ef-
fects are considered at finite temperatures with the Mermin local density approximation to
the exchange-correlation energy.

The heat capacity of the electrons was extracted by comparing the internal energy change
of the free electrons at room temperature and 10,000 K while keeping the nuclei fixed. Since

C.L. Phillips, P.S. Crozier, R.J. Magyar 265

α-quartz is a large gap system (≈ 9 eV), the heat capacity of the electrons should be a highly
non-linear function of temperature and could, in practice, be extracted as an interpolation by
sampling many temperature points. The heat capacity prediction based on internal energy
calculations compares to about a factor of two to what would have been extracted using the
density of states to calculate this quantity according to the method Celli et al. [22].

The electron-phonon scattering rate is not directly accessible in ground-state calcula-
tions, and a number schemes have been put forth to obtain this quantity numerically. Celli et
al. proposed a scheme that would extract this quantity from a calculated density of states but
requires empirical data to describe certain phonon energies. An alternate scheme relies on
real-time propagation of the many-body system within a time-dependent density functional
framework [23]. The investigators simulated dynamics of excited carriers in a (3,3) carbon
nanotube identifying a 230 fs time scale when coupling to ionic motion starts to dominate.
We are currently developing the capacity to perform analogous simulations. We estimate the
SiO2 coupling time should be shorter than what was found in the TDDF-MD simulations
of the carbon nanotubes since the α-quartz system has a larger gap. On the other hand, the
electron-phonon time scale is unlikely to be shorter than 20 fs since this is the time-scale
of electron-electron interactions. Thus, we can bracket the probably electron-phonon time
scales between 20-200 fs.

The thermal conductivity of the electrons in α-quartz is expected to be exceedingly small
at zero temperature and to vary drastically with the number of carriers at higher temperature.
An estimate for this value can be found by appealing to the Wiedemann-Franz rule relating
thermal to electronic conductivities. Since the experimentally known electronic conductivity
at room temperature is exceedingly small, the thermal conductivity of the electrons is also
small. Note that application of the Wiedemann-Franz rule is valid since we are considering
only the electronic subsystem which near the Fermi-surface will experience nearly elastic
collisions. A more rigorous treatment of conductivity would require the calculation of the
temperature dependent carrier density, but owing to the large gap in α-quartz, is likely to
remain well below the metallic and semi-conductor values.

2.2. Molecular Dynamics Model. Using the LAMMPS code [26], a simulation cell
containing 19×19×20 repeat cells (3 SiO2) of α-quartz (21,660 silicon atoms) was initialized
at zero pressure. The silicon and oxygen atoms interacted via BKS interaction potential [30],
which has been used to model quartz in the crystal and amorphous states [31] and transition
between the two [2]. The system was equilibrated for 10,000 times steps to T = 300K as
an NPT ensemble, using a time step of 1.6 femtoseconds. A Nose/Hoover pressure barostat
was used with a damping parameter of 1000.0 fs and a Langevin thermostat was used with
a coupling parameter γ = m/D, where D is a damping parameter set to 33.333 fs. Next, for
1000 time steps, heat was pumped into a spherical region encompassing 567 silicon atoms
(1700 total atoms) at a rate of 205.76 Kcal/(mole-fs). At the same time, at a distance of
84.26 Å, 410 silicon atoms (1230 total atoms) were thermally coupled to an infinite heat
reservoir at T = 300K by a Langevin thermostat with the damping parameter set to 33.333
fs. These atoms effectively become a heat sink. After 1000 time steps, the system was still
94% crystalline (per the definition provided in Section 2.2), but with a liquid spot at the
center of the simulation box at a peak temperature of approximately T = 11, 100K, and a
descending thermal gradient to the heat sink at a temperature of approximately T = 300K.
The heat source was then turned off. An electronic subsystem was then coupled to the system.
A coarse grid of 6×6×6 electronic cells was used, with approximately 300.9 atoms per cell
(100.3 silicon atoms). We did not vary the number of electronic cells used to be consistent
with reference [25]. At this grid cell decomposition, the initial damage spot used for the
bulk of the simulations contains ≈ 13 grid cells. The electronic temperature of each cell was

266 A Two-Temperature Model and α-quartz

Table 2.1
Electronic Subsystems

Type Label Shared Parameters Initialized

Semiconductor

SCI κe = 0 τ = 20 local atomic temp
SCII Ce = 0.00144 τ = 200 local atomic temp
SCIII ρe = 0.781 τ = 20 300K
SCIV τ = 200 300K

Metallic
MI κe = 0.011 Ce = 0.0004 local atomic temp
MII τ = 1000 Ce=F(Te) same energy as SCI
MIII ρe = 2.16 Ce=F(Te) 300K

Weak WI Ce = 1/100 SCI local atomic temp
WII τ = 100× SCI 300K

initialized. Over the course of the simulation, the residual heat from the liquid spot flowed to
the heat sink until, after a long time, the system has uniformly cooled to T = 300K.

In reference [25], model systems for a material that heals from a heat deposition (Lennard
Jones FCC crystal) and a material that partially heals but sustains permanent damage (a glass-
forming Binary Lennard-Jones crystal) were considered with model electronic subsystems.
The annealing behavior of the α-quartz system over several different spot sizes was consid-
ered with both ”no electrons” and ”Quench”. The heated spot was scaled in both energy and
size, for scale values of s = 0.89,1.0, 1.1, 1.2, 1.56, and 2.0 relative to the reference spot size.

Multiple electronic subsystems were attached to the α-quartz. The details of the elec-
tronic subsytems are contained in Table 2.1. Thermal conductivity, κe has units Kcal/(fs-
K-Å-electron). The electronic specific heat has units Kcal/(mole-electron-K). The relaxation
time, τ has units of femtoseconds and is related to the electron-ion coupling by γp = m

τ
, where

m was chosen to be the mass of a silicon atom. Electronic density, ρe has units electron/Å3.
The metallic heat capacity function is F(Te) = 0.00595 · tanh(0.0002 ·Te) as used in reference
[27].

The electronic subsystems SCI-IV were chosen to represent a ”semiconductor” electronic
subsystem with parameters selected by the method described in Section 2.1. The metallic sub-
systems MI-III were chosen to represent a metallic electronic subsystem based on the α-Fe
electronic subsystem of reference [27]. This value was chosen by using the Wiedermann-
Franz law based on the electronic conductivity of α-Fe at 300 K. Based on the density of a
FCC α-Fe, an electronic density of 2.16 electrons/A3 was used. The weak subsystems WI,II
were chosen to have one-hundredth of the thermal capacity and one-hundredth the electron-
ion coupling the SCI semiconductor system. For SCI, SCII, MI, and WI, the electronic tem-
perature of each cell was initialized to the local temperature of the atoms in the grid cell. For
MII, the electronic temperature was initialized so that each grid cell had the same electronic
thermal energy as SCI. (Note that this is true for MI, as well, due to the choice of heat capac-
ity.) For SCIII, SCIV, MIII, and WII, the electronic temperature of each cell was initialized
to 300K.

For comparison, two more systems were considered, a system with no electronic system,
(”No electrons”) and a system where the heat sink Langevin Thermostat is coupled to every
atom in the system (”Quench”) with a damping parameter of 33.33 fs.

2.3. Characterizing Defect vs Crystal Atoms. To characterize the effect of the differ-
ent electronic subsystems coupled to the atomic subsystem, we needed to distinguish between
regions of the material that are damaged and regions that are crystalline. We used a variation
on the local bond order analysis method [1, 29]. We compute the correlation function of the

C.L. Phillips, P.S. Crozier, R.J. Magyar 267

normalized local bond order parameter q8 vectors, or α j = q8(i) · q8(j), for each silicon atom j
in the coordination shell of a silicon atom i. If more than a fraction f of the atoms in the co-
ordination shell of an atom i are such that α j exceeds a threshold value αthresh, then that atom
is designated a crystalline atom. Otherwise the atom may be in a liquid region or may be an
interstitial defect, but is generically designated a “defect” atom. We define the coordination
shell to be all silicon atoms within 3.6 Å of each silicon atom (≈ 4 atoms), corresponding
to the first peak of the radial distribution function, and use αthresh = 0.8 and f = 0.75. In
practice, we found that the defect atoms remained clustered at the center of the simulation
cell in a localized liquid/amorphous region.

0 5000 10000 15000
femtoseconds

0

500

1000

1500

2000

N
um

be
r D

ef
ec

t S
ilic

on
 A

to
m

s

Fig. 3.1. Annealing response in α-quartz to different degrees of initial damage. Circles represent no electron
subystem, straight line represents quenching the system.

3. Results. In Figure 3, we can see the result of different initial damage in the system.
Like the glass-forming binary LJ system of reference [25], permanent damage was sustained
in the α-quartz after annealing, and the degree of damage was less over the entire simulation
duration if heat was removed faster (i.e., “Quench”). Unlike the glassing-forming binary LJ
system, even the smallest damage tested (48 defect silicon atoms) did not anneal completely
(19 permanent defect atoms for a “Quench” system, 28 permanent defect atoms for a “No
electron system”).

In Figure 3.2(a), we see the impact on annealing of damage in the α-quartz of the different
electronic subsystems. It is apparent that the presence of an electronic subsystem does have
a significant impact on the healing of the system.

The primary way the electronic subsystem affects the annealing of damage appears to be
in the added local specific heat. As the electronic subsystems in Figure 3.2(a) were initialized
with a thermal energy above the equilibrium temperature, the “no electron” case, compara-
tively, has the least amount of energy to dissipate at initiation of the simulation. And yet, we
observe that the “no electron” case has among the largest amount of damage for the α-quartz.
The increased initial and permanent damage for “no electron-subsystem” can be seen in the
LJ and BLJ systems of [25] as well. The SCII electronic subsystem has the same additional
local heat capacity as the SCI electronic subsystem, but, also has a lower electron-ion cou-

268 A Two-Temperature Model and α-quartz

0 5000 10000 15000
femtoseconds

1000

1200

1400
D

ef
ec

t S
ilic

on
 A

to
m

s

Metalllic MI
Metal MII
SemiConductor SCI
Semiconductor SCII
No electrons
Quench
Weak WI

(a) Different Electronic Subsystems with energy deposited in the subsystem

0 5000 10000 15000
femtoseconds

1000

1200

1400

D
ef

ec
t S

ilic
on

 A
to

m
s No electrons

Quench
Metallic MIII
Semiconductor SCIII
Semiconductor SCIV
Weak WII

(b) Initially ambient electronic susbsystems

Fig. 3.2. Influence of Electronic subsystems on annealing of α-quartz damage

pling, making its additional heat capacity inaccessible to the lattice over the time of the heat
flow evolution.

To illustrate this further, we consider the difference in the atomic temperature of the grid
cells between the system with a “Weak” electronic subsystem, and a system with semicon-
ductor SCI electronic subsystem in Figure 3. While the average atomic temperature of all the
grid cells is lower for the “Weak” system versus the “Semiconductor” system, at increasing
distance from the damage spot, the grid cells are hotter in the “Weak” system. These hotter

C.L. Phillips, P.S. Crozier, R.J. Magyar 269

0 5000 10000 15000
femtoseconds

-800

-600

-400

-200

0

200

Te
m

p
D

iff
er

en
ce

 Δ
 K

0.75
2.75
4.75
6.75
8.75
10.75
12.75
14.75
18.75
Average Temp Difference

Fig. 3.3. Difference in the atomic temperature between grid cells (labeled by squared distance in grid cell
lengths from the center of the heat deposit) between the Weak W1 and Semiconductor SC1 system. Although the
temperature of W1 is less on average, a substantial fraction of the cells are warmer in the system with less deposited
energy due the smaller per cell net heat capacity.

cells represent the part of the lattice where new damage is occurring over the simulation, or
local reversible damage is becoming irreversible. In reference [25], we found that permanent
damage in a glass forming material was correlated with significant displacement from the
original lattice position. The added heat capacity of the SCI electronic subsystem removes
kinetic energy from the atoms and lowers the amount of ”irreversibly damaged” atoms. In
fact, even the “Weak” electronic subsystem had reduced permanent damage relative to the
“No electrons” case.

For MII, the specific heat per volume of the metallic electronic subsystem is approxi-
mately linear over the temperature range considered. It is half of that of the semiconductor
at room temperature and twice that of the semiconductor at 1100K. This functionality is con-
sidered to be a more accurate model for a metallic electronic heat capacity. However, the
functional details of the heat capacity for the two metallic electronic subsystems MI and MII
appears to have little impact on the annealing of the system. The metallic electron subsystem
also has a 1/50th the electron-ion coupling of SCI and 1/5th electron-ion coupling of SCII.
It is apparent that substantial electronic conductivity of the metallic electronic subsystem
compensates for the reduced electron-ion coupling and helps anneal the damage faster.

In Figure 3.2(b), electronic subsystems were attached to the α-quartz that were initialized
to 300K (i.e. no energy deposited in the electronic subsystem). The electronic subsystem now
acts to absorb the kinetic energy from the damaged region and results in the lowest amount of
permanent damage. The degree of permanent damage in the α-quartz is now directly inversely
correlated with the electron-ion coupling. The role of the heat capacity in the annealing of
the damage suggests the details of the ”heat sink” at the corner of the simulation may not be
important.

4. Conclusions. A TTM has been applied to a model of damage in a SiO2 α-quartz sys-
tem, parameterized based on a VASP quantum simulation of electrons in an α-quartz repeat

270 A Two-Temperature Model and α-quartz

cell. We find that the thermal conductivity of an electronic subsystem for this SiO2 small
enough to be discounted, however, that the relaxation time of the electronic system is 5-50×
shorter than a metallic system. The heat capacity of the semiconductor electron subsystem is
comparable to the that of the metallic system.

The influence of an electronic subsystem on local damage is proportional to the tem-
perature difference between the electronic and atomic subsystems, the electron-ion coupling
strength, and the heat capacity of the electronic subsystem. For example, the metallic elec-
tronic subsystem has a weaker electron-ion coupling, but due to a significant thermal con-
ductivity (rapidly cooling the local hot electronic regions), results in the same amount of
permanent damage as semiconductor subsystem with a tighter coupling and no thermal con-
ductivity.

A cold electronic subsystem with even a weak coupling can significantly reduce the
permanent damage. This is not because the electronic subsystem provides a “short circuit”
to a heat sink or the thermal sink of the rest of the lattice, but because the added local heat
capacity lowers the local peak temperature which reduces the net diffusion of the local atoms
and reduces the net irreversible damage to the lattice.

For the systems where the electronic subsystem was initialized to the local atomic tem-
perature, the amount of permanent damage for the semiconductor electronic subsystem de-
pended strongly on the strength of the electron-ion coupling.

This coarse-grained model of energy transfer between electronic and atomic subsys-
tems in α-quartz shows that the electronic subsystem plays a significant role in mediating
the amount of damage that results from a heat deposition event and needs to be included in
models of radiation damage in SiO2 to understand resultant transient and residual damage.

REFERENCES

[1] S. Auer and D. Frenkel, Numerical prediction of absolute crystallization rates in hard-sphere colloids, The
Journal of Chemical Physics, 120 (2004), pp. 3015–3029.

[2] J. Badro, P. Gillet, and J.-L. Barrat, Melting and pressure-induced amorphization of quartz, EPL (Euro-
physics Letters), 42 (1998), pp. 643–648.

[3] P. E. Blochl, Projector augmented-wave method, Phys. Rev. B, 50 (1994), p. 17953.
[4] A. Caro andM. Victoria, Ion-electron interaction in molecular-dynamics cascades, Phys. Rev. A, 40 (1989),

pp. 2287–2291.
[5] A. Caro, M. Victoria, T. Diaz de la Rubia, and M. W. Guinan, The effect of electronic energy loss on the

dynamics of thermal spikes in Cu, Journal of Materials Research, 6 (1991), pp. 483–491.
[6] J. Chen, D. Tzou, and J. Beraun, A semiclassical two-temperature model for ultrafast laser heating, Interna-

tional Journal of Heat and Mass Transfer, 49 (2006), pp. 307 – 316.
[7] J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, Modeling of femtosecond laser-induced non-

equilibrium deformation in metal films, International Journal of Solids and Structures, 39 (2002),
pp. 3199 – 3216.

[8] D. M. Duffy and A. M. Rutherford, Including the effects of electronic stopping and electron–ion interactions
in radiation damage simulations, Journal of Physics: Condensed Matter, 19 (2007), p. 016207 (11pp).

[9] M. W. Finnis, P. P. Agnew, and A. J. E. Foreman, Thermal excitation of electrons in energetic displacement
cascades, Phys. Rev. B, 44 (1991), pp. 567–574.

[10] F. Gao, D. J. Bacon, P. E. J. Flewitt, and T. A. Lewis, The effects of electron-phonon coupling on defect
production by displacement cascades in α-iron, Modelling and Simulation in Materials Science and
Engineering, 6 (1998), pp. 543–556.

[11] H. Hakkinen and U. Landman, Superheating, melting, and annealing of copper surfaces, Phys. Rev. Lett., 71
(1993), pp. 1023–1026.

[12] M. Head-Gordon and J. C. Tully, Molecular dynamics with electronic frictions, The Journal of Chemical
Physics, 103 (1995), pp. 10137–10145.

[13] D. S. Ivanov and L. V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and
disintegration of metal films, Phys. Rev. B, 68 (2003), p. 064114.

[14] D. S. Ivanov and L. V. Zhigilei, Kinetic limit of heterogeneous melting in metals, Physical Review Letters, 98
(2007), p. 195701.

C.L. Phillips, P.S. Crozier, R.J. Magyar 271

[15] H. O. Jeschke, M. S. Diakhate, andM. E. Garcia, Molecular dynamics simulations of laser-induced damage
of nanostructures and solids, Applied Physics A: Materials Science & Processing, (2009).

[16] L. Koči, E. M. Bringa, D. S. Ivanov, J. Hawreliak, J. McNaney, A. Higginbotham, L. V. Zhigilei, A. B.
Belonoshko, B. A. Remington, and R. Ahuja, Simulation of shock-induced melting of Ni using molecular
dynamics coupled to a two-temperature model, Physical Review B (Condensed Matter and Materials
Physics), 74 (2006), p. 012101.

[17] G. Kresse and J. Furthmller, Efficiency of ab-initio total energy calculations for metals and semiconductors
using a plane-wave basis set, Comput. Mat. Sci, 6 (1996), p. 15.

[18] , Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys.
Rev. B, 54 (1996), p. 11169.

[19] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47 (1993), p. 558.
[20] , Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in

germanium, Phys. Rev. B, 49 (1994), p. 14251.
[21] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys.

Rev. B, 50 (1999), p. 1758.
[22] Z. Lin, L. V. Zhigilei, and V. Celli, Electron-phonon coupling and electron heat capacity of metals under con-

ditions of strong electron-phonon nonequilibrium, Physical Review B (Condensed Matter and Materials
Physics), 77 (2008), p. 075133.

[23] Y. Miyamoto, A. Rubio, andD. Tomanek, Real-time ab initio simulations of excited carrier dynamics in carbon
nanotubes, Phys. Rev. Lett., (2006).

[24] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-
electron systems, Phys. Rev. B, 23 (1981), p. 5048.

[25] C. L. Phillips and P. S. Crozier, An energy-conserving two-temperature model of radiation damage in single-
component and binary lennard-jones crystals, Journal of Chemical Physics, submitted, (2009).

[26] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics,
117 (1995), pp. 1 – 19.

[27] A. M. Rutherford and D. M. Duffy, The effect of electron–ion interactions on radiation damage simulations,
Journal of Physics: Condensed Matter, 19 (2007), p. 496201 (9pp).

[28] L. Sandoval and H. M. Urbassek, Influence of electronic stopping on sputtering induced by cluster impact on
metallic targets, Physical Review B (Condensed Matter and Materials Physics), 79 (2009), p. 144115.

[29] P. R. tenWolde, M. J. Ruiz-Montero, andD. Frenkel, Numerical calculation of the rate of crystal nucleation
in a Lennard-Jones system at moderate undercooling, The Journal of Chemical Physics, 104 (1996),
pp. 9932–9947.

[30] B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Force fields for silicas and aluminophosphates based
on ab initio calculations, Phys. Rev. Lett., 64 (1990), pp. 1955–1958.

[31] K. Vollmayr, W. Kob, andK. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study,
Phys. Rev. B, 54 (1996), pp. 15808–15827.

[32] Y. Wang and L. Kantorovich, Nonequilibrium statistical mechanics of classical nuclei interacting with
the quantum electron gas, Physical Review B (Condensed Matter and Materials Physics), 76 (2007),
p. 144304.

[33] L. V. Zhigilei and D. S. Ivanov, Channels of energy redistribution in short-pulse laser interactions with metal
targets, Applied Surface Science, 248 (2005), pp. 433 – 439. 4th International Conference on Photo-
Excited Processes and Applications.

