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• Target problem: multiscale models without sufficient scale separation

• Macroscopic quantities depend on unobservable dynamics at smaller scales.

• Macroscopic model’s dependence on small scales is significant but uncertain.

• This dependence is commonly modeled away, but this can cause errors.

• Application: homogenized model of contaminant transport through heterogeneous porous media.



We can isolate model-form uncertainty using a hierarchy of models:

• High-fidelity model resolving all relevant physics taken as “truth”, low-fidelity model that does not.

• Discrepancies between models arises from the missing physics.

• Can use high-fidelity model to generate data and probe the physics of the problem.

High-fidelity model for field-scale contaminant transport:
∂c
∂t

+ ∇ ⋅ (uc) = νpΔc

u = −κ∇p, (x, y) ∈ [0, Lx] × [0, Ly]
∇ ⋅ u = 0

Periodic in x, zero Neumann in y



In heterogeneous porous media, permeability fields vary by orders of magnitude across the domain.

Here we will assume their statistics are homogeneous.
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For low-fidelity model, have access to statistics of  and observations of .

Apply this decomposition to  and average the high-fidelity model to get

 depends on unobservable fluctuations at the small scale. Dependence uncertain.

κ ⟨c⟩y

u, c

⟨u′�c′�⟩

∂⟨c⟩
∂t

+ ⟨u⟩
∂⟨c⟩
∂x

+
∂⟨u′�c′�⟩

∂x
= νp

∂2⟨c⟩
∂x2

⟨ f (x, y)⟩ ≡
1
Ly ∫

Ly

0
𝔼κ [f (x, y)] dy

f (x, y) = ⟨ f (x, y)⟩ + f′�(x, y)



0 1 2 3 4

x

0.00

0.25

0.50

0.75

1.00

hc
i(

x
,t
)

True evolution

ADE evolution

Typical closure model for  is gradient diffusion:⟨u′�c′�⟩

∂⟨c⟩
∂t

+ ⟨u⟩
∂⟨c⟩
∂x

= (νp + νm)
∂2⟨c⟩
∂x2

⟨u′�c′�⟩ ≈ − νm
∂⟨c⟩
∂x

Transport through heterogeneous porous media 
induces anomalous diffusion in .

ADE can dangerously underpredict contaminant 
levels downstream.

⟨c⟩



For predictions, a model-form uncertainty 

representation should (Oliver et al. 2015):

• Perturb the dynamics of the model

• Accurately extrapolate to prediction scenarios

• Represent irreducible model uncertainty

To do this it must:

• Be embedded at the source of the uncertainty

• Act on the state variable(s)

• Respect physical constraints

• Be scenario-dependent

• Be stochastic



Embedded, state and scenario dependent: represent model-form uncertainty  as an operator 

acting on :

Model for  with uncertainty is

ϵmodel

⟨c⟩

⟨c⟩

ϵmodel (⟨c⟩; s) ≡ −
∂⟨u′�c′�⟩

∂x
,  scenario parameterss

∂⟨c⟩
∂t

+ ⟨u⟩
∂⟨c⟩
∂x

= νp
∂2⟨c⟩
∂x2

+ ϵmodel (⟨c⟩; s)

Next steps:

• Enforce physical constraints on 

• Inspect and encode scenario dependence

ϵmodel • Represent remaining uncertainty with probability distributions

• Update uncertainty representations using data



Physical constraints:

∂⟨c⟩
∂t

+ ⟨u⟩
∂⟨c⟩
∂x

= νp
∂2⟨c⟩
∂x2

+ ϵmodel (⟨c⟩; s)

• Linearity in 

• Shift invariance (homogeneous statistics)

• Conservation of mass

• Solution decays with time

⟨c⟩ ϵmodel = ℒ, ℒfk = λk fk

fk = ei2πk/Lx x, ℒ⟨c⟩ = ∑
k

⟨ ̂ck⟩λkei2πk/Lx x

λ0 = 0

−νp ( 2πk
Lx )

2

+ ℜ [λk] ≤ 0



• Want to understand how  change with scenario, but diffusion in the system causes information loss.

• Could only infer the first ~10 eigenvalues of  from observations of  .

• Recast the problem to observe the eigenvalues directly.

Given a single  from an ensemble, define  such that

Connection to mean:

λk

ℒ ⟨c⟩

u ℒ̃

ℒ̃⟨c⟩y = −
∂⟨u′�c′�⟩y

∂x
Note this is only a  average!y

𝔼 [ℒ̃⟨c⟩y] = 𝔼 [−
∂⟨u′�c′�⟩y

∂x ] = −
∂⟨u′�c′�⟩

∂x



Let  be the eigenvalues of . Then

•  random  random

• If we knew , we could compute mean effect of  by taking expectation

• Developed a method to compute ensemble of  from ensemble of 

• Can study summary statistics of ensemble to characterize 

λ̃ = [λ̃1, λ̃2, . . . ] ℒ̃

⟨u′�c′�⟩y ⟹ λ̃

p(λ̃) ⟨u′�c′�⟩

λ̃ u

p(λ̃)

ℒ̃⟨c⟩y = −
∂⟨u′�c′�⟩y

∂x
⟺ λ̃k⟨ ̂ck⟩y = − ( i2πk

Lx
⟨ ̂(u′�c′�)k⟩y)



Scenario dependence

• Want to study how statistics of  depend on observable properties of , e.g.

•

•
• , the integrated autocorrelation length in the streamwise direction.

• Used these to define nondimensional scenario parameters  and  .

• Computed ensembles of  on a coarse grid in the 2D scenario space.

• Studied how the summary statistics for each ensemble changed as a function of scenario.

λ̃ u
⟨u⟩
⟨u′�2⟩
ℓ

⟨u′�2⟩1/2

⟨u⟩
ℓ
Lx

u, λ̃, ⟨c⟩y
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Anomalous diffusion scenario dependence

Evolved a Gaussian IC for each scenario.

Anomalous diffusion increases with both 

scenario parameters.
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 rapidly become stationary—within one 

flowthrough time .

Decided to focus on stationary values of .

For remainder of talk .

λ̃k

Tf =
Lx

⟨u⟩

λ̃

λ̃ ≡ λ̃(tfinal)

⟨u′�2⟩1/2

⟨u⟩

ℓ
Lx
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Mean  and  don’t depend on a fixed power of .ℜ[λ̃k] ℑ[λ̃k] k
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Covariance between  and  and as a function of k is significant, but low-rank.ℜ[λ̃k] ℑ[λ̃k]
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• Now we’re going to build our model-form uncertainty representation.

• Defined in terms of  and its eigenvalues.

• Unresolved dependence on  approximated in terms of  and  .

• Express irreducible uncertainty in  by defining  w.r.t hyper parameters , i.e. .

ℒ̃

⟨u′�c′�⟩ ⟨u′�2⟩1/2

⟨u⟩
ℓ
Lx

ℒ̃ p(λ̃) ξ p(λ̃; ξ)

Prior knowledge
• Deterministic constraints 

• Scenario constraints

 and  

λ0 = 0, ℜ[λ̃k] ≤ 0

⟨u′�2⟩1/2

⟨u⟩
ℓ
Lx

→ 0 ⟹ 𝔼[λ̃], Var[λ̃] → 0

 ensemble analysis

•  rapidly become stationary

•  different functions of 

• Covariance between  
and as function of k significant

• Covariance admits a rank-2 approximation

λ̃
λ̃
𝔼(ℜ[λ̃k]), 𝔼(ℑ[λ̃k]) k

𝔼(ℜ[λ̃k]), 𝔼(ℑ[λ̃k])



Prototype formulation of 

Assume  constant in time, and 

• Approximated ,  ,  , and  as linear functions of .

• Their slopes and intercepts and  are the hyperparameters .

p(λ̃; ξ)

λ̃

fλR
fλI

fv1
fv2

k

w1, w2 ξ

p(λ̃; ξ) = 𝒩 (𝔼[λ̃]model, Σmodel)

𝔼(ℜ[λ̃k])model = fλR
(k)

𝔼(ℑ[λ̃k])model = fλI
(k)

Σmodel = w1v1v1T + w2v2v2T

(v1)k = fv1
(k) (v2)k = fv2

(k)



• Prior information about  are encoded through . e.g.

•  enforced by constraining slope, intercept of  to be negative.

• Scenario dependence encoded through 

•  depend on  and  , but dependence is uncertain: 

• , . 

• As scenario parameters , effect from dispersion , so .

• Least-square polynomial fits for  as functions of ,  using data from ensemble analysis.

λ̃ ξ
ℜ[λ̃k] ≤ 0 fλR

ξ

ξ ⟨u′�2⟩1/2

⟨u⟩
ℓ
Lx

ξi ∼ 𝒩(mi, σ2
i )

mi = mi ( ⟨u′ �2⟩1/2

⟨u⟩
, ℓ

Lx ) σi = σi ( ⟨u′�2⟩1/2

⟨u⟩
, ℓ

Lx )
→ 0 → 0 mi(0,0) = 0, σi(0,0) = 0

mi, σi
⟨u′�2⟩1/2

⟨u⟩
ℓ
Lx



Computed push-forward of  to  for Gaussian IC over a range of scenarios

For cases on the interior of the 2D scenario grid (moderately anomalous cases), true  is mostly captured 

within uncertainty bounds.

p(λ̃; ξ) ⟨c⟩

⟨c⟩
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For an extremely anomalous case, it fails to capture the bulk of the concentration.
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The mean  are underpredicted for all .ℑ[λ̃k] k
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For nonanomalous cases it overpredicts diffusion
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The prototype  isn't perfect, but we know why not:

• Assumed linear models for  dependence.

• Made minimal asymptotic arguments for scenario dependence

Forward-propagating sample  from ensembles encapsulates the true  in all scenarios:
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• Developed a novel method to directly probe uncertain dependence in a model.

• Used the method to generate observations of inadequacy operator’s eigenvalues.

• Learned about the operator’s structure while avoiding an ill-posed inverse problem.

• Use the observations of the eigenvalues to formulate a data-informed representation of model-form uncertainty.

• Exploited the structure of the problem to develop a relatively low-dimensional representation (40 params).

• Simplest formulation performs relatively well, and there are clear ways to improve it

“Computational spectroscopy for statistically-invariant systems.” Teresa Portone, Robert D. Moser. In preparation.
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