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Abstract

Progressive hedging (PH) is a scenario-based decompuotbnique well-suited
to solving stochastic mixed-integer programs. While PHiF&en successfully applied
to a number of problems, a variety of issues arise when imgieimg PH in practice,
especially when dealing with large-scale problems. Inigaldr, decisions must be
made regarding the value of the perturbation paramgterriteria for convergence,
and techniques for accelerating convergence. We invéstthase issues in the con-
text of a large-scale, real-world stochastic mixed-intggeblem for minimizing the
procurement costs associated with spare-parts suppanpeises. We introduce a
mathematically-based heuristic for setting thparameter, novel techniques for con-
vergence acceleration, and methods for detecting and eeiogvfrom oscillatory be-
havior. The efficacy of these techniques is empirically ssse on two categories of
test problems: those in which only spare-parts procureteeels are considered, and
those that additionally consider procurement of repdateel resources. The latter
class of problem represents a significant open challengeeititerature, which we
show to be efficiently and effectively solved via our PH impkntations. Addition-
ally, we demonstrate that variable-specijficalues are more effective than traditional
fixed p values, and that the PH algorithm can serve as a very eféehuristic even
when the mathematical conditions for convergence are spected.



1 Introduction

When confronted with a very large, mixed integer stochgstogramming problem
[10] for which there exists fast, good heuristics for sotyvindividual scenarios, the
progressive hedging algorithm proposed by Rockafellar \Aets [17] is appropri-
ate. Progressive hedging (PH) is sometimes referred tdhasizontal decomposition
method because it decomposes the problem by scenarios tlaéimeby time stages.
In this paper we report on innovations that improve the gerénce of the baseline
PH algorithm and on computational experiments with larcgdes real-world problem
instances.

For an individual scenarie, many problems of practical interest can be cast in the
general framework of constrained optimization:

minimize ¢ -z,  (P,)
subjectto: zs € Qs

wherez; is a decision vector of length,, ¢ is a vector of cost coefficients, and the
requirement; € Q. expresses the problem constraints, i.e., to ensyig a feasible
solution. We use the subscripto emphasize that the specific problem characteristics
will depend on the scenario that is actually observed.

Prescient decision makers can simply make use of the deoisictorz? that is
optimal for the scenarie that they somehow know to be the scenario that will be real-
ized. All real-world decision makers must make a decisicgnethougha priori they
are not sure which scenario will be realized. The optimaatnodel must therefore
possess some mechanisms for dealing with this uncertainty.

For each scenarie € S, we denote the probability of occurrence by Hr These
probabilities allow us to take into account prior knowleadé¢he distribution of indi-
vidual scenarios, or to weight the relative importance afipalar scenarios based on
problem-specific knowledge. For the operational decisthssussed in this paper, the
the goal is minimize expected investment cost, which can titéenw

minimize ) _sPr(s)(c-z) (EF)
subject to: r € Qs
where the use of the decision vectofz; = z,Vs € S) that does not depend on the
scenario implicitly implements theon-anticipativityconstraints that avoid allowing
the decisions to depend on the scenario.

For such an optimization problem, the basic PH algorithmheastated as follows,
taking a perturbation factgr > 0 as the sole input parameter:

1. k=0

2. For all scenario indiciesc S

20 .= argmin(c - z) : z € Q,

3. 20 = s Pr(s)zl”
4, wgo) = p(xgo) — ;Z'(O))
5 k=k+1



6. For all scenario indiciesc S

k

x? = argmin,(c- x)
w4 p/2 || — 21
tx e Qg

I o (l,gkq) _ f(kq))

and

k) = Z Pr(s)xgk)

seS

7. If the termination criteria are not met, then go to step 5.

The termination criteria are based mainly on the convergehti’lexgk) to a common
Z, but we must also deal with the fact that non-convergencepigsaibility for non-
convex optimization problems, as discussed below.

Integer constraints on elements of the decision vectender stochastic program-
ming problems non-convex and add considerable difficulth&r solution. A vari-
ety of algorithms for solving such (mixed-)integer stoditagrogramming problems
have been proposed (e.g., see [13]). For some smaller pnobktances, standard
mixed-integer programming (MIP) solvers can be used [1@]itectly solve theex-
tensive formEF) of the problem. However, for the problem instances tdrigst to
us, standard MIP solvers can not even reasonably be uselvéisdividual scenario
sub-problems, let alone the extensive form of the problem.

In contrast, PH is a natural algorithm for solving largelsctochastic mixed in-
teger problems via scenario decomposition. Although theger variables also add
complexity to solution via the PH algorithm, they can be usedpeed convergence
because equality is well-defined and easily detected [18]alkernative approach is
to use PH to solve the version of the instances with integgricgions relaxed and
then round at the end [11], although for the problem we carghis technique yields
poor-quality solutions.

A large class of real-world resource allocation / optim@atproblems can be
characterized by integer variables that represent reeewt some sort that can be
purchased, with per-unit costs given by the non-negatietéove. For such procure-
ment problems, the binding constraints effectively putdowmits on the values of
x, perhaps in complicated ways or perhaps as simpldaas> b for matricesA and
vectorb with non-negative elements amcconstrained to be non-negative. This family
of problems is often referred to as diet problems [5], which @ften generalized to
constrainAz from both sides. In many diet problems, the decision vegt@ only
constrained from below. We will refer to this type of problesaone-sidedliet prob-
lem. The problem we address in this paper resides in this,clesl we propose and
demonstrate three methods of accelerating convergende ffri3olving this class of
problem.

The next section (2) describes a particular real-world j@mkfrom this class that
we use as atest case. In Section 3 we describe innovatiohtttralPallow us to com-
pute a value for the parameterthat is based on the input data, speed convergence,
detect non-convergence, and terminate PH based on predpedurther improve-
ment. We conclude in Section 5 with a discussion of the impéaur results, in
addition to directions for further research.



2 A SpareParts Support Enterprise Problem

We now detail the specific stochastic mixed-integer probilesad in our PH tests.
Sections 2.1 and 2.2 respectively introduce the real-wortdlem upon which our
analysis is based and the formulation of and solution teghes for individual scenar-
ios.

2.1 Background

A central problem in aviation fleet management is the miniowat sustainability of
deployed aircraft [14]. In military contexts, this requirent is typically expressed as
the need to ensure a minimal fraction of aircraft in each doua- for example 95% -
are always available for operations. The proportion oflale aircraft in a squadron
- also known a®perational availability- is locally (e.g., at a base) driven by two pri-
mary factors: availability of resources to perform airtrafintenance and availability
of spare parts to replace failed aircraft components. Attiterprise level, the avail-
ability of spare parts to supply demands (e.g., those inpbgbases) is influenced by
the capacity of repair depots to fix failed parts, the ingiack and re-order policies of
supply depots (which are equivalent in the case of commaseg (s, s — 1) re-order
policies), and the lead time required to procure new rephece parts. In practical
terms, the sustainability cost is thus dictated by the cesbe@ated with procuring
both the initial stocks of spare parts and the quantity cbueses allocated to repair
and maintenance activities. Various secondary costsjdirey) those associated with
the one-for-one replacement of consumable parts, sigit¢dransportation, and shop
materials for part repair, are generally ignored; suchscast "sunk” in the sense that
they are in practice unavoidable once the spares and reslawels throughout a sys-
tem are determined. This basic sustainability / suppoilera extends well beyond
aircraft, to systems including military ground combat bdgs, oil rigs, computing
infrastructures, and commercial trucking companies.

A family of analytic optimization models for such sustaiiidp problems - with
an emphasis on military aircraft fleets - has been developedthe last 40 years,
beginning with METRIC [19] and more recently with ASM [22]. e powerful,
especially in terms of their ability to quickly deliver mimal-cost sustainability solu-
tions, these models generally operate under a large setwigaions, e.g., fixed repair
turn-around times and specific parametric part failurerithistions. Recently, many
military and commercial customers have deemed theseatistis unrealistic and, as
aresult, have turned to simulation as a method to modelshstainability enterprises.
One example of note is the Support Enterprise Model (SEM), @8omplex, highly
detailed discrete event simulation jointed developed bgkbeed Martin and San-
dia National Laboratories for use on the Lockheed Martimt)8trike Fighter (JSF)
program. While eliminating various assumptions presertheyMETRIC-like ana-
Iytic optimization models and facilitating the deploymefitcomplex business rules,
simulation models such as SEM lack an inherent optimizatagability. This paper
addresses the development of a stochastic programmingifation of the SEM sus-
tainability optimization problem, and introduces a statltaprogramming algorithm
based on PH to solve the formulation.

In any given SEM problem instance, the decision variablessisd of (1) stock
re-order levels for each part at each site in the systemmger relevant sites include
all supply depots (independent of echelon level), OEMs, lzagks, and (2) assigned
quantities for all repair-related resources for each sitéhe system; relevant sites
include repair depots, OEMs, and bases. Resources agsbuidh aircraft mainte-



nance, e.g., technicians or engine lifts, are providedutinan external analysis tool,
and are considered fixed in the current SEM context. Althaugihrequired by SEM,
we assume for present context@ns — 1) inventory re-order policy, such that the ini-
tial procurement level for each part/site combination &nigcal to the re-order level.
Resource-related costs include both initial procuremiéainfy) and on-going opera-
tional and maintenance costs. The elements of the costrweate then the per-item
procurement costs associated with the various part/siteesource/site combinations.
We denote this general class of optimization problem as &uinterprise Sustain-
ability Problems, or SESPs.

Given a problem instance, we use the SEM simulator to gempeat failure data at
each squadron in the system foindependent replications or scenarios. These repli-
cations are executed in a “flooded” mode, i.e., one in whiehsihpply of parts and
available resources is unconstrained. By directly levie@§EM in this manner, it is
possible to sample part failures from non-parametric oigeoierally accessible (from
an analytic standpoint) parametric distributions, e.gmplex wear-out distributions
or failure due to combat damage. The resulting part faileguences are optimistic
relative to a cost-constrained environment. In partigyart failures are assumed to
be independent. For example, consider a part failure segufen a particular plane
from a flooded SEM replication in which a landing gear compuriails on dayn
and the engine fails on day+ 5. In a resource-rich environment, the landing gear
is quickly repaired, such that the engine will fail due to #iecraft being operational;
in a resource-constrained environment, lack of a spardrgrgear component may
down the plane for. > 5 days, in which case the engine failure could not occur. How-
ever, given the typically high availability requirements (the order of 90% through
95%) for JSF and other military fleets, the degree of consismads in practice not
significant.

We observe that although the input data for our SESP opttinizaroblem derives
from a simulation, we are not using the simulator to compitteeethe constraints or
objective function value associated with a solution. Thera rich literature on this
topic (simulation-based optimization) [7]. However, stiblack-box” approaches are
not feasible for our problem; individual evaluations requninutes to hours of run-
time, and the number of decision variables is very largen@dgh it is notimmediately
relevant in the context of this paper, simulators such as SEin practice used as
a final verification step for the solutions we obtain, i.eg thitimate quality of our
resulting solutions is assessed via discrete-event straaldn summary, high-fidelity
simulation provides the input and final validation of ourwgmins, but is not used in
the process of actually generating those solutions.

2.2 Mixed-Integer Formulation and Heuristic Solution Alterna-
tives

For any given SESP scenarig, it is conceptually straightforward to develop a MIP
formulation to express the cost minimization of the suppoterprise, subject to the
constraint that the average daily operational availahilittach squadron over the time
horizon of the simulation is greater than or equal to a upeci§ied threshold. Such
a MIP must track state variables such as on-hand and duevertory quantities,
repair queue and repair in-process status, and the numlagércodft downed due to
lack of a spare part. Constraints in the MIP then conservenitory position across
time, enforce limits on the utilization of repair resourcasd model inter-site trans-
port delays. In practice, there exist numerous subtle ssthat significantly inflate the
complexity of the straightforward MIP formulation, suchthe need to prevent clair-



voyance induced by the up-front availability of all partéaés that will occur during
the scenaric.

We have developed such a MIP for the SESP; due to the lengtteahbdel, we
defer to [6] for a complete description. The model (exprdssehe AMPL [2] math-
ematical programming language) is available from the asthg request. Although it
was not known at the time of construction, we observe thafaunulation is a large-
scale instance of Schruben’s [18] event graph methodolagyifP models of discrete
event systems. Because the decision variables in the SERBramon across all sce-
narios, an extensive form EF of the SESP can be easily catstiby replicating the
constraints and scenario-specific (state) variables feit eén scenarios.

Ideally, it would be possible to solve the extensive formhaf SESP stochastic
program directly with existing commercial MIP solvers. Hawer, this is not currently
feasible. Because the aforementioned state variables lmeusacked on a daily (or
higher-resolution) basis, the size of the resulting MIP erefor relatively small en-
terprises, let alone the full-scale JSF deployment - is {aage. As reported below in
Section 4, the memory requirements using commercial MiRssfrequently exceeds
the 4GB RAM limit for 32-bit computing architectures, anédcaes nearly 20GB for
moderate-scale problems. Additionally, the solve time®f@n the LP relaxation can
extend to several days on powerful 64-bit workstations; BbRes are therefore not
practical in the foreseeable future.

Despite the observed difficulties, failure to solve the egiee form of the SESP
does not necessarily preclude usefulness of the MIP fortioula Given the ability
to efficiently solve the SESP for one scenario, it is theoatty possible to gener-
ate approximate solutions to the extensive form using steibased decomposition
methods such as PH. However, for the real-world instancesidered here, the MIP
solves for a scenario are too expensive to be practical.rticpkar, individual-scenario
MIP solves for the moderate-sized problem instances ioted below in Section 4
requires tens of minutes using commercial MIP solvers. €guaently, when used in
a multi-iteration, multi-scenario PH context, the reqigtsolution times for the SESP
are highly impractical for full sized, real-world instarsce

Based on this observation, and following lengthy attemptadhieve a scalable
MIP formulation, we devoted significant effort to developagaful domain-specific
heuristics for solving individual-scenario variants o# tBESP. These heuristics, based
on randomized descent strategies and coarse-grainedasionufwhich can compute
the implications of specific, arbitrarily complex businesles), can generate solutions
to even large-scale SESP instances in at most minutes dimen-and are used to
generate the experimental PH results described in Sectiomh& details of these
heuristics are not relevant in the context of broader PHgpeténce, the analysis of
which is our objective in this paper. Rather, we simply obser as quantified in
Section 4 - that the performance of our heuristics is exoglkchieving near-optimal
solutions in significantly lower run-times than obtainethgsour MIP formulation.

3 PH Algorithmic Innovations

Our experience applying PH to large, real-world problendsue to a number of al-
gorithmic enhancements to the basic algorithm, which casutedivided into the
following three categories: effectivevalue computation (Section 3.1), convergence
accelerators (Section 3.2), and termination criteria {i8e&.3). We additionally de-
scribe techniques for detecting cycling behavior in Secial.



3.1 Computing Effective p Values

Early - and some recent - experiments concerning PH repartte literature gen-
erally use fairly small values of the perturbation parameteFor example, Mulvey
and Vladimirou [15] report that the best valuesgoivere much less than 1 and that
performance was sensitive to the choicepofHowever, this need not always be the
case. The “best” value gfis clearly data dependent. For example, Listes and Dekker
[11, p. 374] observe that “there is no conclusive theoreéinalysis to support a gen-
eral selection rule ford]". In their experiments, the best results were obtainedgisi
p values between 50 and 100.

In the context of the SESP, examination of the weighted ¢ivéormula for PH
(Step 6 of the pseudocode presented in Section 1) suggestsigificantly larger
values ofp may be required to achieve convergence in practical tiramés. We
observe that elementsof the cost vector may range in magnitude from several
hundred dollars to several hundred thousand dollars perinventory or resource
element. In the case of an expensive elemean effectivep value should be close
in magnitude to the unit cogt. Otherwise, computation of the initial;(:) (Step 4
of the pseudocode presented in Section 1) will yield a smadition ofz (i) - whose
value represents a quantity, typically less than 100 in 888F5- and the per-iteration
change in the penalty term{"” (1)z (%) will be comparatively small. Slow changes in
the penalty terms necessarily yield little movement (i), which in turn significantly
delays PH convergence. As a corollary, we comment that thienapp value for
a given problem needot be fixed at a constant value, i.e., the introduction of per-
elementp; may in fact be more appropriate for some problems, inclutiegSESP.

Based on these observations, we have developed a novehaplé shethod of de-
termining element-specifijg; values based on problem-specific data. As demonstrated
in Section 4, the method results in substantially improveldoerformance relative to
constantp values, and partially alleviates the need for problem-ddpat parameter
tuning. In particular, the method is not based on the SESPisatherefore applicable
in other problem domains.

To motivate the method, consider a scalar quantifgr which non-anticipativity
must be enforced. Consequently, only a single correspgndiweight multiplier is
required. Suppose thatis constrained to be an integer taking on small values. Sup-
pose further, that at optimality = w™ is quite large. This can occur, for example,
whenz is the quantity of an expensive resource and other (perhapgrous) vari-
ables represent lower cost operational decisionsidfsmall, this situation will result
in many iterations required for convergence of PH becausaeh iterationw can
grow only by the product of two small quantities.

Our objective is to develop a heuristic method of setjirthat will allow the up-
dates to proceed more quickly to the optimal vaduieof the weightw. For practical
reasons, we want the magnitudeuofo approach from below in order to minimize os-
cillation or thrashing. This can occur when tlesalues are updated too aggressively
or converge from both sides particularly in MIPs becausecttanges in the value of
one integer variable can precipitate changes in others;hwdnie then reversed if the
w multiplier “shoots past” its optimal value. Before proceeg] we note that the mo-
tivation for our heuristic is based on separability of theidi®n variables, although it
is not required for use of the method. For clarity of the mation, we proceed in the
context of a single variable and linear objective function.

Consider a single decision varialtewith corresponding cost coefficient indi-
vidual problem scenarios are denotedshyAfter iteration zero of PH completes, we
have an estimate of the optimal value fgomwhich isz. If we set a value op that will



result inw = ¢, then the proximal term
2
el |
will force the solution to be: on the next iteration. The value afis updated by

w® = =D 4 (l,gkq) _ f(kq))

so the value op for a given scenarie resulting inw = cis

c

R —
|$s _I|

However, using a value gf that depends on will violate the convergence as-
sumptions made by Rockafeller and Wets. Furthermore, we thamabsolute value
of all w elements to approach their ultimate value from below to meliigate cy-

cling. After PH iteration zero, for each variabteve definer™** = maxgcs x@ and
2™ = minges 7. Since(x™a* — g™in 4 1) > |z, — Z| we use

c(i)

(xmax _ xmin + 1)

p(i) :=

for variablei, which does not depend an We denote this heuristic method for select-
ing per-elemenp(i) by sep

The primary advantage of theselection heuristisepis its problem-independent
nature. However, there exists a high likelihood that mofeotize methods exist for
any specific problem. We have investigated a number of a@ltiey selection strate-
gies for the SESP. The best-performing alternatives (dinlyisep were all based on
the simple observation that the valuegdf) should be proportional to element unit
cost, as discussed above. In Section 4, we report resulesgoaightforward yet ef-
fective “cost-proportional” method for setting). Specifically, we seb(i) equal to
a multiplierk > 0 of the element unit cosf(¢). The method is denoted ly,, where
cp stands forcost-proportional Intuitively, the number of PH iterations required for
convergence under this method is proportiona té-inally, as a control measure, we
consider the performance of PH using various fixed, globkiesofp. For a given
constant:, we denote the corresponding methodflpywhere thef stands foffixed

3.2 Accelerating Convergence

Although PH may eventually drive agreement among the datigariable vectors
xs 10 @ common vectot, in practice the number of iterations required is frequentl
excessive for complex, non-convex optimization problems.

The following three acceleration methods are designed fiersided diet prob-
lems, such as when the problem for each scenario is to miaimizx subject to
Ax > b with x > 0 where the elements of vectorsandb and the matrix4 are all
non-negative. For problems where the constraints effelgtiimit = from both sides,
these methods may result in PH encountering infeasibleasicesub-problems even
though the problem is ultimately feasible. For one-sidezt groblems, as we will
demonstrate, the methods are however quite effective.

A detailed analysis of PH algorithm behavior on the SESP dhergroblems in-
dicates that individual decision variables(i) frequently converge to specific, fixed
valuez for all s € S in early PH iterations. Further, despite interactions agntbre
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xs(1) for any particular scenarig, the value of: frequently fails to change in subse-
quent iterations. Such variable “fixing” behaviors leadri@avious, albeit potentially
powerful heuristic: once ") (1) = zforall s € S at a particular PH iteratioh, fix
a:gl)(i) = 7 for all subsequent iteratioris> k. As shown in Section 4, variable fix-
ing can yield substantial reductions in solution times byederating (through variable
elimination) the solution times for individual scenaridosproblems, at the expense of
slight reductions in solution quality for both individualls-problems and the final PH
solution.

In applying this heuristic to the SESP in particular, weadndiice dag parameter
w € {0,1,...}. Consider a given PH iteration We then fixzF) (¢) for all subsequent
iterations! > k oncez{™ (i) = zforalls € Sandm € {k — p|S]|,. .., k}, such that
m > p|S|. In other words, we fix decision variables once their valugstabilized to
a fixed > over the lasu|S| PH iterations. Low values qgi yield immediate or near-
immediate variable fixing; larger values @ftan respond to the empirically rare event
that the value ot may in fact vary over moderate time horizons, i.e., it maydoee
“undone” due to the influence of competing decision varigbl&éhe multiplicative
factor |S| accounts for the observation that the number of PH iteratiequired for
convergence in general is proportional to the total numbscenarios under consid-
eration.

This idea can be taken further by fixing values for integeas ttave not yet con-
verged as a means of quickly forcing termination of the atgor, which we refer to
asslamming Consider a situation in which it has been determined tteairttiividual
scenario solution$§k) are “sufficiently” converged, i.e., they are very nearly loge-
neous in both the values of the decision vectdfs and the scenario costsz'". The
basic PH algorithm can take very large number of iterationgsolve the remaining
discrepancies, despite minimal impact on the final solutjoality. One alternative,
widely reported in the literature [11, 12], is to solve a aatiof the extensive form
in which all currently-converged decision variables aredixo their common value.
Another alternative, explored here, is to force absoluteBhvergence via aggressive
variable fixing.

Once the condition of sufficient convergence has been agthiafter some PH it-
erationk (the specific criteria are described next in Section 3.3)fivge set the lag
1 = 0, independent of its current value. Then, evergubsequent iterations we
identify the free decision variable; for which the per-element cosfi) is minimal.
We then fixz; = maxses x5(i). Given our one-sided diet formulation, feasibility of
the scenario sub-problems is necessarily not lost via sunbxamum-value scheme.
Clearly, this scheme is guaranteed for force PH convergewee have investigated
performance using various includingx = |S|. However, we found minimal perfor-
mance gains using such largeat the expense of significantly increased run-times;
consequently, we fix = 2 in the experiments reported below in Section 4.

3.3 Termination Criteria

In practice, PH empirically yields large reductionsin, —x, | for s1, so € Sin early
iterations, while the remaining and majority of iterati@gsve in a fine-tuning role to
drive the already small differences jm;, — z,,| to 0. To detect near-convergence
in the solution vectors, s € S, we first define the average per-scenario deviation
from the “average” solutiotd = (>, . (i) — Z(7))/|S|, whereZ (i) represents the
average ofr,(i) over alls € S. We then can invoke variable slamming to quickly
force PH convergence onta drops below some parametric threshald The value



of \; places a threshold on the degree of heterogeneity allowttgtiset of solutions

Such a termination criterion assumes that small differencgrs, — «,,| are cor-
related with small differences in the co$tsz,, —c- z,|. In practice, however, this is
oftennotthe case. For example, in the SESP there often exist "hdldoanarios that
require more high-cost parts - for example, engines - thheradicenarios. Further,
these additional high-cost parts are required to achiexglfdity in the holdout sce-
narios. Consequently, the valuetdfmay in fact be very small, while the discrepancy
in overall costs may be quite large.

To protect against such situations, we additionally cagrsal termination crite-
rion based on the variability of solution quality in any giveH iterationk. For this
problem, upper bounds on th€i) are easily obtained, e.qg., by considering the total
number of a part / resouréehat could ever be used in a given scenarie S. At an
arbitrary PH iteratiork, consider the solutions; for all scenarios € S. LetzM®de-
note the decision vector whose elements represent the rabyé@hoie appearing in any
solutionzy, i.e., M) = maxse‘g(xgk) (i)). Clearly,xM®is a feasible (albeit likely
suboptimal) solution to all scenariess S. Finally, letqd = (c-2M#/c-Z) % 100. We
can then terminate PH iterations orgukdrops below a parameterized threshold value
Ags €.9., where\, = 1%.

In our PH implementation for solving the SESP, we invokeatale slamming once
both td< X; andqgd < ), after an iteratiork.

3.4 Detecting Cyclic Behavior

Finally, we note that for all types of non-convex optimipatproblems, there is a risk
of non-convergence of the PH algorithm. This is due in patthéouse of various con-
vergence acceleration techniques, including those destpreviously; furthermore,
the basic PH algorithm introduced by Rockafellar and Wetg gnarantees eventual
convergence to a local optimum in the non-convex case. lexperiments discussed
in Section 4, non-convergence occurs in roughly one tentil algorithmic trials. In
particular, we observe non-convergence in the form of cymdihavior across differ-
ent PH iterations, e.g., repeated identical weight andsét@tivectorav, (i) andx ()

for specific elements. To detect cycles, we chose to focus on repeated occurrences
of w, (i) vectors, implemented using a hashing scheme [24] to mieinmmpact on
run-time. Once a cycle is detected for any decision variall¢, the value ofz(7)

is immediately fixed tanaxscs xs(4); feasibility is again ensured in the case of one-
sided diet problems. In practice, few variables are fixeduichsa fashion, yielding
minimal impact on final solution quality while assuring ténation.

4 Experimental Analysis of PH Performance

We now perform a comprehensive empirical performance aisabf the various PH
algorithmic techniques described in Section 3, using th8F5Bs a test-bed. Sec-
tion 4.1 describes the problem instances, which are basedoooprietary real-world
data set. The experimental methodology is presented inoBet2. Performance re-
sults on spares-only and spares-plus-resources test a@sesspectively detailed in
Sections 4.3 and Section 4.4. We conclude in Section 4.5anlitfief discussion con-
cerning parallelization of the PH algorithm to yield sigo#nt run-time reductions in
a deployment environment.

10



41 TheTest Problems

We quantify the performance of our PH variants using twogmates of test problems.
The instances in both categories are based on a simple aaetloork structure con-
sisting of a single repair depot, supply depot, and OEM, iditazh to »n operational
bases; however, our general methodology can handle agbéithelon structures. Five
aircraft, composed in a single squadron, are assigned to &fathe n bases. Each
squadron flies a single sortie consisting of two aircraftsuasing they are functional
- for 4 hours every day. Each aircraft consistshb6fmodeled parts, representing a
range of failure distributions (e.g., random and wearoxpegienced during opera-
tional flying time. A failure mode is associated with eachidid part type: consum-
able, base-repairable, and depot-repairable. Upon &imconsumable part (e.g., a
tire) is immediately disposed of, while base- and depogirgble parts (e.g., engines)
enter the repair queue at the respective locations. RepkEmteconsumable parts are
built by the OEM, with lead times ranging from 30 to 120 dayattiPepair times range
from 5 days (for base-repairable parts) to 120 days (for Gegpmirable parts). Part
procurement costs range from around $100 to over $500,880ectively representing
components such as tubes and engines.

Parts repaired at a base immediately re-enter inventohaabiase; parts repaired
at the repair depot enter inventory at the sole supply defpert shipment. Each base
requests additional inventory from the supply depot, whickurn can request new
OEM builds for consumable parts. A simple, s — 1) stocking policy is assumed,
and we assume unitary batch size for new builds. Inter-sitesportation times vary
from immediately (e.g., from a plane to the containing bdsea)early a week (e.g.,
when shipping carcasses from a base to a repair depot). ih#asion time horizon
is over a single year, and the optimization objective is tontaén a high operational
tempo in each scenario - specifically 95% availability of direraft in each squadron
- at the minimal cost required to procure the initial invegtof spare parts and the
acquisition cost of any resources; the latter includesatjmaral costs incurred during
the simulation period. The subsequent costs associatbduilding replacements for
consumable parts and any shop material required to regeer parts are not treated
in the course of optimization, as these are considered "scodts, i.e., the actions
must be performed irregardless. This basic operationat@mwent, albeit simple, is
inspired by a proprietary real-world data set analyzed byaththors for a distinct anal-
ysis and customer. Finally, each test problem containsriadata fot realizations or
operational scenarios. The data for each realization iserg¢ed via the SEM discrete
event simulator, as discussed in Section 2.

In the first category of test problem, the decision varialolessist of the initial
procurement level for each part at each base in the systeaxldition to those at
the supply depot. Because we assume one-for-one replesiththese variables are
equivalent to the re-order up-to levelsRepair processes do not require personnel or
support equipment, and are completed after a fixed duraliothese problems, both
the bases and repair depots are non-capacitated, i.e ishaw limit to the number of
concurrent repairs and parts enter repair immediately upoeipt at a site. The first
category of test problem was devised to mirror the assumgtimderlying traditional
approaches to spare-parts management, including METRIGafid VARI-METRIC
[21] (non-capacitated depots with a fixed repair duratiprare equivalent to capac-
itated depots with a fixed repair duratids > d;). These assumptions are relaxed
in the second category of test problem, in which each baskdapot-repairable part
requires one or more resources to accomplish the repair tRglsources are sub-
divided into two categories: personnel and support equipm8upport equipment
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costs range from $5,000 to $20,000, while annualized peedgray rates range from
under $20,000 to over $60,000. Repairs require the asedaiasources for the du-
ration of the repair task, and are released upon complefidheorepair task. The
decision variables in this category of test problem inclodth the initial procurement
levels for spare parts and the number of each resource typachtbase and repair
depot in the system. The second category of test problem gasatl to represent the
much more difficult class of "inventory plus repair” sustaient problem [1], which
receives comparatively little attention in the logisticglaustainability literature.

For both the spares-only and spares-plus-resources caggae consider test
problems with bothk = 10 andk = 30 scenarios, in additionte = 2, n = 5, and
n = 10 bases. This yields a total @P test problems. We note that solutions obtained
with & > 30 scenarios are not significantly different than for= 30 scenarios, i.e.,
k = 30 is sufficient for these instances (due to the long time horemed heavy oper-
ational pace) to achieve target performance on unobsecesthsos. The parameters
underlying the spares-only test problems are not overlistaa(being heavily modi-
fied to disguise the original source data set), principallg tb the repair of otherwise
inexpensive parts and strictly moderate correlation betwepair times and procure-
ment cost. However, neither factor plays a critical role tiuthe lack of repair queue
modeling. In contrast, the spares-plus-resources tebtgns necessarily correct this
deficiency, and are consequently much more realistic ing@rfitheir overall behavior.
However, they are less representative of the original ®data set, which accounts
for the differences in cost observed for the two problemssagas reported in Sec-
tions 4.3 and 4.4. The number of decision variables for treresponly problems
ranges between 144 and 528, and between 157 and 566 for tles-gpas-resources
problems. In this particular formulation, no recourse (tlueeal-world constraints
imposed by the target enterprises) is possible from potaimiecisions, although this
is clearly supported by the PH framework.

All of the test problems are freely available for general @sel can be obtained by
contacting the authors. The size of the test problems wastsel to allow for investi-
gation of a wide range of PH algorithmic settings, many reqgilengthy run-times.
Significantly larger, real-world test problems have alserb#vestigated. In partic-
ular, specific PH variants have been successfully executedinous test problems
representing the enterprise-level deployment structéitbeosupport system for the
Lockheed Martin Joint Strike Fighter or JSF [9], and limiszhle forms of the US
Army’s Future Combat System [4]. Although the details aresgié/e, we note that the
full JSF deployment contains over 3,000 aircraft (eachaioing thousands of mod-
eled parts) assigned to over 50 bases worldwide, tens ofysapg repair depots, tens
of OEMs, all arranged in a complex multi-echelon networkisture.

4.2 Methodology

As discussed previously, we have developed MIP models oS88P optimization
problem. Ultimately, we moved to deployment of domain-sfiebeuristics to solve
individual scenario sub-problems due to the difficulty af MIP formulation, in terms
of both run-time and memory requirements, even using hjgged, multi-processor,
64-bit workstations running CPLEX 10.0 [8]. However, theRViormulation is not
without use in our analysis, as it can be used to solve reléoeeas of the Extensive
Form (EF) of each test problem. In particular, we use the l#xedion of the EF MIP
to bound the performance of the PH heuristic below in Sestib8 and 4.4; we denote
the corresponding relaxed solutions &5y, Additionally, we report results relative to
the corresponding LP-rounded solution, in which each dmtigariable is set to the
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next highest integer value in the case of fractional vagéabDue to limitations in the
accuracy of the MIP formulation (for reasons described iatiSe 2), such rounded
solutions - which we denoter*] - fail to achieve the target operational availabilities
when assessed in the context of the SEM simulator. In mangscdle resulting
availabilities fall far short, e.g., tens of percent, of tequired targets. Consequently,
gaps in the cost of the PH arfd*] solutions are not necessarily indicative of the
inability of the PH heuristic - or the greedy heuristic foerario sub-problems - to
locate very-near or even optimal solutions; by definitioesth solutions achieve the
requisite performance targets in the context of SEM.

In Sections 4.3 and 4.4, we describe the results of pararsetssitivity experi-
ments on our PH variants for spares-only and spares-psgsirees test problems. For
each problem category and specific valuer@ndk, we execute PH for each combi-
nation of variable fixing lag

uw=1{0,1,2,5}

andp(i) selection strategy

k = {CPy.5,CPy.0, SeR f20x, fro0K s fr00K }

For each individual PH run, we set the termination crite@aapneters\, and \;
equal t00.5% and0.5, respectively. The objective of these experiments is totifya
the effectiveness of the various PH algorithmic techniguna®duced in Section 3,
and to assess the sensitivity of the PH algorithm to spec#fiameter settings. For
each run, we report the lowest-cost “maximum” solutié??* generated duringny
PH iterationk. Althoughz™2*generally equals the obtained by PH at convergence,
differences do occur in a minority of runs. Such discrepaseire possible because
the algorithmic techniques that accelerate (and therdbyfare with) the standard PH
algorithms may in fact lead to convergence to a solution ithabt locally optimal.
All runs are executed on a quad-processor 64-bit AMD Opt@r@Hz workstation,
64GB of RAM (relevant only for LP solves) running Linux 2.6; in@lual scenario
sub-problems require at most ten megabytes of memory te s@vhe greedy heuris-
tic.

4.3 Spares-Only Performance Results

Num. Basesif) | Num. Scenariosk) | ¢ - z* ¢ [(z)] Sol. Time | Memory
2 10 54,432,705.04 | 55,107,950 | 10.7m 1.4GB
30 56,586,131.16 | 57,445,700 | 48.96m 3.2GB
5 10 117,512,266.69 119,044,750| 50.36m 3.3GB
30 126,277,945.18 126,639,800| 328.78m | 5.9GB
10 10 326,354,459.20 326,902,300| 357.86m | 7.0GB
30 338,255,374.29 340,216,550| 6226.48m| ~ 19GB

Table 1: Solution and solver statistics for Extensive Foil%$B LP relaxation using ILOG
CPLEX 10.0.

We first consider experimental results for the spares-ady problems. The LP
and LP-rounded solution quality and CPLEX 10.0 solver stias for each test prob-
lem are shown in Table 1. For fixed we observe no more than 8% growth in solution
cost (which occurs when = 5) when moving fromk = 10 to £ = 30 scenarios.
The increase in solution cost is due to the increased diyarspart failure sequences.
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Empirically, the growth in cost for these test problemsdakark = 30; this is con-
sistent with the fact that PH solutions for a specific sek 6 30 scenarios achieve
target performance objectives under disparate sets ofdosnin other words, their
performance generalizes to new scenarios. Overall, thaigoltimes are moderate
for most problems, ranging from a few minutes to roughly sxits. However, run-
time peaks for the largest test cage=£ 10, kK = 30) at over 4 days. In practice, such
a large run-time is not practical, especially given the carmapve size of real-world
problems (e.g., JSF) and the difficulty of LP solver parahlon. Of equal concern
is the required memory; onee= 5, the requirements exceed the limits of commonly
available hardware. Finally, we reiterate that the sotusitatistics relate to the cost of
solvingonly the LP relaxation; integer-feasible solutions are cutydénipractical for
then = 5 andn = 10 test problems.

Fix Lag
Num. Bases#) | Num. Scenariosk) | u=0 | u=1|pu=2| pu=5
2 10 CPo.s | CPys | CPhs | CPio
2 30 CPo.s sep| Cpio | CPio
S 10 CPo.5s | CPio Sep| CPio
5 30 cp; sep sep| N/A
10 10 sep sep sep| N/A
10 30 CPy 5 sep| cpys N/A

Table 2: Thep selection strategy obtaining the lowest-cost solutiorditierent lag values,
independent of run time.

Next, we compare the performance of the fixesklection strategie¥4o i, f100x
and f5o0x’) with the variablep selection strategiest, 5, cp; o, andsep. In Table 2,
we record thep selection strategy achieving the lowest-cost solutiorr tive range
of variable fixing lagsu, independenbf run-time. Table entries with “N/A” indi-
cate the run-times for that particular PH configuration wexeessive (ranging past
several days), and were not allowed to run to completion. fEselts conclusively
demonstrate that the variabfestrategies dominate the fixedstrategies in terms of
final solution quality, supporting the hypothesis advanite&ection 3.1; the rela-
tive run-times of the methods is considered below. In lichitgéals, we experimented
with additional values of fixeg. Due to disparities with average part costs, smaller
fixed values ofp yielded excessive run-times, while valuesmofreater than 500K
yielded monotonically decreasing solution quality. Ollere single variablep selec-
tion strategy dominates in terms of performance. Althouwheé are some apparent
patterns in the data, e.gepdominating for large: andk, the number of samples is
too limited to make an accurate inference. Further, peréoree is not clearly depen-
dent onu. However, the results do clearly illustrate the power ofalalep strategies
for the SESP relative to the standard fixedtrategies.

Although the quality of fixeds solutions is worse than that of varialpesolutions,
we have not considered the relative run-times of the two @gugres, nor quantified
the relative performance of the various fixedtrategies. To expand on the results
presented in Table 2, we consider PH performance omthe 10, £ = 10 spares-
only test problem under the selection strategiegox, fioox, and fsoox; the per-
formance trends observed on this problem are represantdtther problems in this
class. In Figure 1, we show plots pfversus the following PH performance statis-
tics: solution quality, number of iterations required fangergence, and run-time.
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As expected, with the noted exceptioniat= 0 andp = 100,000, higher-quality
solutions are obtained as the fix lagsubject to a fixegh strategy) is increased (Fig-
ure 1la). However, the highest-quality solutions are natioled with smallep values.
While p = 500, 000 clearly yields lower-quality solutions, there is no cleegference
betweerp = 20,000 andp = 100, 000. This is despite the significant increase in run-
time (Figure 1c). Overall, the results suggest that 100, 000 with eithery = 0 or

1 = 1vyields the best solution quality vs. run-time performamadéoff; detailed anal-
yses of results on the other spares-only test problems sigthis general conclusion.
Finally, we observe that the total number of PH iteratiorguneed for convergence
on these large-scale test problems - even using the varimedesiation techniques we
propose - is quite large, ranging from approximately 50 ter@000 (Figure 1b).

Fix Lag
p Selection Strategy =0 p=1 w=2
sep 0.1790% 0% | 0.0034%
CPy 5 0.4440%| 0.1188%| 0.3794%
CpPi o 0.4490%| 0.3056%| 0.0070%
f1o0x 0.3149%| 0.7612%| 0.5402%

Table 3: Quality of solutions obtained by variableand f1oox Strategies on the = 10,
k = 10 spares-only test problem; values represent the perceatsmye the cost of the best
known solution.

We now analyze the performance of the variabletrategies, comparing solution
quality and run-time relative to both one another and tofthgx baseline strategy;
the latter yielded the best overall performance for a figestrategy. Solution quality
results for then = 10, £ = 10 test problem, expressed as a percentage above the cost
of the best known solution, are shown in Table 3. The reslilistiate that all of the
variablep strategies yield comparable solutions in terms of costiadieg by no more
than 0.5% from the best known solutions. Although small iatiee terms, the corre-
sponding absolute cost deviations range between $2 andik3mniirom the baseline
of approximately $343 million). Consequently, there is samotivation for identify-
ing a clear winner among the three strategies. Unfortupatelclear pattern emerges
in the analysis of the data in either Table 3 or for the othst peoblems. In gen-
eral, the results for theepandcp, ; strategies are comparable, and together slightly
outperformep, ,. However, any given variablg-strategy may yield the best over-
all performance on an individual problem. Finally, compgrihe variablep strategies
with the f190x Strategy, we find that althoughoo x outperforms some of the variable-

p strategies whep = 0, it is dominated by all of the variablestrategies fop, > 1;
further, thep = 0 results are not replicated on any of the other test problems.

Fix Lag
Variablep Selection Strategy =0 | u=1 | p=2
sep 375% | 456% | 312%
Chy.5 198% | 342% | 152%
cp o 52% | 178% | 122%

Table 4: Run-time of variable-PH strategies on the = 10, & = 10 spares-only test
problem, relative to the baselinggx Strategy.
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Despite superior performance, the solution quality of theablep strategies does
come with an increase in run-time cost. In Table 4, we shovp#reentage increase
in overall run-time for the variable-strategies relative to thé ook Strategy on the
n = 10, £ = 10 test problem. The results indicate that variablstrategies can
require nearly 5 times the run-time of the fixpdtrategies. Theepstrategy typically
requires more computation than tbg, ; andcp, , strategies, although we note that
the latter are domain-specific heuristics, while the formsegeneral-purpose. The
cp, , strategy yields high-quality solutions with only a moderaicrease in run-time
relative to fixedp strategies. Theepandcp, 5 strategies yield better solutions, but at
the cost of even greater run-times. However, we observeatifedtor of five or less
in run-time is often not considered significant in practiggplications, especially for
planning-level problems such as the SESP.

In summary, our experimental results for various PH confijans on spares-
only test problems support two specific conclusions. Fiustiablep strategies yield
higher-quality solutions than fixed-strategies, at the expense of slightly increased
run-times. Second, increases in the fix Jagmprove solution quality, but again at
the expense of run-time. However, the relative increasesristime are modest, such
that adoption of the techniques to applications involviogd-term planning can be
practical. Viewed from another perspective, our resulissitate a classic quality vs.
run-time tradeoff, yielding a family of algorithms, the magppropriate of which can
be leveraged depending on the context. In particular, we thatt planning-level prob-
lems are often solved iteratively as both the model and dateefined. Consequently,
high-speed strategies such fagox with low 1 can be used in early iterations where
model and data uncertainties are high. In practice, spalijfion large-scale data sets
such as JSF - where the run-times required to solve scendrip®blems is high - we
generally usq: < 1 with acp, , selection strategy to obtain high-fidelity solutions,
andp = 0 with a figox Selection strategy to obtain low-fidelity solutions.

Num. Basesif) | Num. Scenariosk) | % abovec - z* | % abovec - [(z™)]
2 10 4.15 2.88
30 5.09 3.52
5 10 6.28 4.92
30 6.07 5.77
10 10 5.05 4.87
30 5.48 4.87

Table 5: Deviation in the cost of the best solution obtaingd®HB under varioup selection
strategies and the cost of both tlieand|[(z*)] LP solutions.

We conclude our analysis of the spares-only test problenesbsidering the qual-
ity of the solutions resulting from PH relative to the abselbaseline costs reported
in Table 1, as opposed to the solution costs obtained by ptbelection strategies. In
Table 5, we report the percentage difference in cost bettredrestsolution obtained
by one of ourp selection strategies and both the and [(«*)] solutions. The data
indicate that the cost of the best PH solution is no more tRangéeater than both
c-x* andc- [(z*)]. Recall that both the* and[(x*)] solutions fail to achieve the
target availabilities when assessed in the context of thd Silhulator, and therefore
serve strictly as lower bounds on the optimal solution c@t:en the degree of un-
derperformance observed for these solutions, we congtitat the best PH solutions
are in fact at most a few percent sub-optimal. Overall, thesalts indicate that de-
spite the lack of provable convergence behavior to a gloptimum, PH is locating
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very high-quality solutions to the SESP. In other words, Ri¥en with convergence
acceleration techniques - can serve as a very effectivadtieudor solving stochastic
integer programs.

4.4 Spares Plus Resour ces Performance Results

As discussed in Section 2.1, the overwhelming majority séeech on SESP optimiza-
tion is focused on spares-only problems. This is primaunilg tb the relative difficulty
of spares-plus-resources problems, which is reflectedargtbwth of the run-times
required to solve the LP relaxation of our MIP formulationfiee SESP. For example,
consider the case with = 5 andk = 10. As recorded in Table 1, the spares-only test
problem with these dimensions required slightly over 50utés and 3 GB of RAM
to solve the LP relaxation. In the case of the correspondiages-plus-resources test
problem, the run-time increases to over 3 days and 8GB of REi.growth is due to
a combination of the additional state tracking variabled @srresponding constraints
required to monitor resource usage and the empirical oasernvthat additional con-
sideration of resource optimization significantly comates planning-oriented MIPs,
including the SESP. The growth in difficulty with increasesni and & is also re-
markable, e.g., CPLEX ran for over 9 days attempting to stiteeL P relaxation of
then = 10, k = 10 spares-plus-resources test problem (requiring roughy226f
RAM) before we terminated execution. Consequently, we weig able to obtain:*
and[z*] solutions to the spares-plus-resources test problems dipnensionn = 5
andk = 10. On these problems, the cost of the PH solutions ranges fredmeen
8% and 12% greater than that of thieand[z*] LP-based solutions. Although larger
than the deviations observed for the spares-only test @nabl(reported in Table 5),
there is evidence that the increase is primarily due to thekesming of the LP bound
when resources are introduced; in particular, the perfoomaf the[2*] solutions for
spares-plus-resources problems are significantly worsnwassessed via the SEM
simulator than that observed for the corresponding spamgsproblems.

To avoid replication of the presentation in Section 4.3, ingo$y note that the main
experimental conclusions observed for our PH variants amesponly test problems
extend to spares-plus-resources test problems. In plariauve find that variable
strategies generally outperform fixedstrategies, albeit at the expense of moderate
increases in run-time. However, for any giveandk, a specific fixeds strategy may
outperform a specific variable-strategy. Similarly, increases in the fix lagyield
marginally better solutions, at the expense of significaotaases in run-time; for the
larger test problemg;, = 0 andp = 1 were the only tractable (in a practical sense)
PH variants. Finally, the domain-specifig, ; andcp, , variablep strategies yielded
roughly equivalent performance in terms of solution gyaiélative to the problem-
independensepcounterpart, although the run-times were generally muaieio

In terms of impacting practice - specifically the developiwdia high-performance
algorithm for solving spares-plus-resources instancéiseoEESP - the relevant ques-
tion is: What is the relative run-time required to solve gsaonly problems versus
spares-plus-resources problems. To answer this questéoonsider the case where
n = 10 andk = 10, under acp, 5 p selection strategy with = 0. In the spares-only
case, our PH algorithm required 117 iterations for conuecgewith an aggregate
run-time of 173.37 minutes. In contrast, the spares-phssuirces problem required
only 105 iterations for convergence, at the cost of 314.1duteis of run-time. The
discrepancy in run-time is attributable to the increasé@riumber of decision vari-
ables (i.e., the number of resources of each type allocateddh site), which in turn
increases the scenario sub-problem solve times. Sulisjtiite sepstrategy for the
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cp, 5 Strategy, we observe an increase from 185 to 541 iteratemsned for conver-
gence, with an increase from 276.10 minutes to 1048.22 ménuln this case, the
growth in difficulty is additionally due to the increase irethumber of PH iterations,
which is frequently correlated with the number of decisianiables. In general, the
aggregate PH run-time for spares-plus-resources proliemihin a factor of four
(and often much less) relative to the run-time required lier ¢corresponding spares-
only test problems. Consequently, and in contrast to oue&pce in solving the
LP-relaxation of our MIP formulation to the SESP, the PH ligiaris both effective
and scalable, demonstrating the practicality of the preg@pproach to solving com-
bined spares and resource SESP instances.

4.5 Parallelization and Practical Deployment of PH

High-speed throughput is a key issue in the deployment ofsaagtical optimization
algorithm. This would appear to be an issue for PH, even giemproposed acceler-
ation techniques. In particular, the run-times associatffdthe experiments reported
in Sections 4.3 and 4.4 range from several hours to seveyal @ag., on the larger
n = 10, k = 30 test problem. Fortunately, as observed by a number of relsea,
PH is trivially parallelized by distributing the solutiofigcenario sub-problems across
distinct processors [3, 20]. Due to the empirically low adility of sub-problem solve
times, we have observed speed-ups of at wey&ton our test problems, whereis
the number of CPUs. Consequently, given a modest clustsepsisig approximately
50 compute nodes, it is possible to reduce the wall clock smittmes of PH on these
data sets to at most an hour. Similar deployment platforrageguired to achieve
tractable optimization via PH on the JSP data sets.

5 Conclusions and Directions for Further Research

We have introduced an important real-world stochastigetg@roblem and described
extensive computational experiments that demonstrateffloacy of the Progressive
Hedging scenario-based decomposition algorithm and tHeusaenhancements that
we have introduced to facilitate its practical, real-waalgplication. We have devel-
oped and motivated a problem-independent method for cangatgood value of
the main PH parametep, that depends on problem-specific data. We additionally
describe techniques for accelerating convergence, aedtide cycling behavior and
damping it as appropriate. Our experiments indicate thaabe-specifiqp selection
strategies outperform globalstrategies that are commonly associated with PH imple-
mentations reported in the literature, at the expensedgitsincreases in run-time.

Some of the enhancements that we introduce exploit theliatirte are solving a
diet problem with one-sided constraints, specifically aing the decision variables
from below. Our convergence accelerators - which yield owea-times with limited
impact on quality - rely on such one-sided constraints; taesis true of the ter-
mination criteria that we develop. This covers a large angbirtant class of resource
allocation problems, but it remains as future researchtieneithese PH enhancements
or develop analogs for more general constraints.

Our experimental analysis represents, to the best of owledlge, the largest and
most complex stochastic integer programming problem tcckvirogressive Hedg-
ing has been successfully applied. The algorithmic teal@sgvere necessitated and
driven by the scale of our test problems, illustrating theslgier need for more complex
and realistic problems to drive the development of pratstachastic programming
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solvers. In terms of domain-specific impact, our approackdwing the SESP is
tractable for both spares-only and spares-plus-resoprodgem instances. In con-
trast, nearly all literature on the SESP focuses exclugwelthe spares-only case. We
are currently in the process of extending the approach tewedd SESPs other than

JSF.
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Figure 1: The performance of fixgdPH variants on the = 10, £ = 10 spares-only test
problem. The log-linear plots in the upper, middle, and lofigures displayp versus (a)
solution quality, (b) the number of PH iterations, and (¢)-tume, respectively.
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