
Progressive Hedging Innovations for a Stochastic Spare
Parts Support Enterprise Problem

Jean-Paul Watson,1 David L. Woodruff,2 and David R. Strip3

Sandia National Laboratories1

P.O. Box 5800, MS 1318
Albuquerque, NM 87185-1318 USA

jwatson@sandia.gov

Graduate School of Management2

University of California, Davis
Davis, CA 95616-8609 USA

dlwoodruff@ucdavis.edu

Sandia National Laboratories3

P.O. Box 5800, MS 1316
Albuquerque, NM 87185-1316 USA

drstrip@sandia.gov

Abstract

Progressive hedging (PH) is a scenario-based decomposition technique well-suited
to solving stochastic mixed-integer programs. While PH hasbeen successfully applied
to a number of problems, a variety of issues arise when implementing PH in practice,
especially when dealing with large-scale problems. In particular, decisions must be
made regarding the value of the perturbation parameter,ρ, criteria for convergence,
and techniques for accelerating convergence. We investigate these issues in the con-
text of a large-scale, real-world stochastic mixed-integer problem for minimizing the
procurement costs associated with spare-parts support enterprises. We introduce a
mathematically-based heuristic for setting theρ parameter, novel techniques for con-
vergence acceleration, and methods for detecting and recovering from oscillatory be-
havior. The efficacy of these techniques is empirically assessed on two categories of
test problems: those in which only spare-parts procurementlevels are considered, and
those that additionally consider procurement of repair-related resources. The latter
class of problem represents a significant open challenge in the literature, which we
show to be efficiently and effectively solved via our PH implementations. Addition-
ally, we demonstrate that variable-specificρ values are more effective than traditional
fixed ρ values, and that the PH algorithm can serve as a very effective heuristic even
when the mathematical conditions for convergence are not respected.

1

1 Introduction

When confronted with a very large, mixed integer stochasticprogramming problem
[10] for which there exists fast, good heuristics for solving individual scenarios, the
progressive hedging algorithm proposed by Rockafellar andWets [17] is appropri-
ate. Progressive hedging (PH) is sometimes referred to as ahorizontal decomposition
method because it decomposes the problem by scenarios rather than by time stages.
In this paper we report on innovations that improve the performance of the baseline
PH algorithm and on computational experiments with large-scale, real-world problem
instances.

For an individual scenarios, many problems of practical interest can be cast in the
general framework of constrained optimization:

minimize c · xs (Ps)

subject to: xs ∈ Qs

wherexs is a decision vector of lengthns, c is a vector of cost coefficients, and the
requirementxs ∈ Qs expresses the problem constraints, i.e., to ensurexs is a feasible
solution. We use the subscripts to emphasize that the specific problem characteristics
will depend on the scenario that is actually observed.

Prescient decision makers can simply make use of the decision vectorx∗
s that is

optimal for the scenarios that they somehow know to be the scenario that will be real-
ized. All real-world decision makers must make a decision even thougha priori they
are not sure which scenario will be realized. The optimization model must therefore
possess some mechanisms for dealing with this uncertainty.

For each scenarios ∈ S, we denote the probability of occurrence by Pr(s). These
probabilities allow us to take into account prior knowledgeof the distribution of indi-
vidual scenarios, or to weight the relative importance of particular scenarios based on
problem-specific knowledge. For the operational decisionsdiscussed in this paper, the
the goal is minimize expected investment cost, which can be written

minimize
∑

s∈S
Pr(s)(c · x) (EF)

subject to: x ∈ Qs

where the use of the decision vectorx (xs = x, ∀s ∈ S) that does not depend on the
scenario implicitly implements thenon-anticipativityconstraints that avoid allowing
the decisions to depend on the scenario.

For such an optimization problem, the basic PH algorithm canbe stated as follows,
taking a perturbation factorρ > 0 as the sole input parameter:

1. k := 0

2. For all scenario indiciess ∈ S

x(0)
s := argmin

x

(c · x) : x ∈ Qs

3. x̄(0) :=
∑

s∈S
Pr(s)x(0)

s

4. w
(0)
s := ρ(x

(0)
s − x̄(0))

5. k := k + 1

2

6. For all scenario indiciess ∈ S

xk
s := argminx(c · x)

+w
(k−1)
s · x + ρ/2

∥

∥x − x̄k−1
∥

∥

2

: x ∈ Qs

w(k)
s := w(k−1)

s + ρ
(

x(k−1)
s − x̄(k−1)

)

and
x̄(k) :=

∑

s∈S

Pr(s)x(k)
s

7. If the termination criteria are not met, then go to step 5.

The termination criteria are based mainly on the convergence of thex
(k)
s to a common

x̄, but we must also deal with the fact that non-convergence is apossibility for non-
convex optimization problems, as discussed below.

Integer constraints on elements of the decision vectorx render stochastic program-
ming problems non-convex and add considerable difficulty totheir solution. A vari-
ety of algorithms for solving such (mixed-)integer stochastic programming problems
have been proposed (e.g., see [13]). For some smaller problem instances, standard
mixed-integer programming (MIP) solvers can be used [16] todirectly solve theex-
tensive form(EF) of the problem. However, for the problem instances of interest to
us, standard MIP solvers can not even reasonably be used to solve individual scenario
sub-problems, let alone the extensive form of the problem.

In contrast, PH is a natural algorithm for solving large-scale stochastic mixed in-
teger problems via scenario decomposition. Although the integer variables also add
complexity to solution via the PH algorithm, they can be usedto speed convergence
because equality is well-defined and easily detected [12]. An alternative approach is
to use PH to solve the version of the instances with integer restrictions relaxed and
then round at the end [11], although for the problem we consider this technique yields
poor-quality solutions.

A large class of real-world resource allocation / optimization problems can be
characterized by integer variables that represent resources of some sort that can be
purchased, with per-unit costs given by the non-negative vector c. For such procure-
ment problems, the binding constraints effectively put lower limits on the values of
x, perhaps in complicated ways or perhaps as simple asAx ≥ b for matricesA and
vectorb with non-negative elements andx constrained to be non-negative. This family
of problems is often referred to as diet problems [5], which are often generalized to
constrainAx from both sides. In many diet problems, the decision vectorx is only
constrained from below. We will refer to this type of problemas aone-sideddiet prob-
lem. The problem we address in this paper resides in this class, and we propose and
demonstrate three methods of accelerating convergence of PH for solving this class of
problem.

The next section (2) describes a particular real-world problem from this class that
we use as a test case. In Section 3 we describe innovations to PH that allow us to com-
pute a value for the parameterρ that is based on the input data, speed convergence,
detect non-convergence, and terminate PH based on prospects for further improve-
ment. We conclude in Section 5 with a discussion of the impactof our results, in
addition to directions for further research.

3

2 A Spare Parts Support Enterprise Problem

We now detail the specific stochastic mixed-integer problemused in our PH tests.
Sections 2.1 and 2.2 respectively introduce the real-worldproblem upon which our
analysis is based and the formulation of and solution techniques for individual scenar-
ios.

2.1 Background

A central problem in aviation fleet management is the minimal-cost sustainability of
deployed aircraft [14]. In military contexts, this requirement is typically expressed as
the need to ensure a minimal fraction of aircraft in each squadron - for example 95% -
are always available for operations. The proportion of available aircraft in a squadron
- also known asoperational availability- is locally (e.g., at a base) driven by two pri-
mary factors: availability of resources to perform aircraft maintenance and availability
of spare parts to replace failed aircraft components. At theenterprise level, the avail-
ability of spare parts to supply demands (e.g., those imposed by bases) is influenced by
the capacity of repair depots to fix failed parts, the initialstock and re-order policies of
supply depots (which are equivalent in the case of commonly used(s, s − 1) re-order
policies), and the lead time required to procure new replacement parts. In practical
terms, the sustainability cost is thus dictated by the cost associated with procuring
both the initial stocks of spare parts and the quantity of resources allocated to repair
and maintenance activities. Various secondary costs, including those associated with
the one-for-one replacement of consumable parts, site-to-site transportation, and shop
materials for part repair, are generally ignored; such costs are ”sunk” in the sense that
they are in practice unavoidable once the spares and resource levels throughout a sys-
tem are determined. This basic sustainability / support problem extends well beyond
aircraft, to systems including military ground combat brigades, oil rigs, computing
infrastructures, and commercial trucking companies.

A family of analytic optimization models for such sustainability problems - with
an emphasis on military aircraft fleets - has been developed over the last 40 years,
beginning with METRIC [19] and more recently with ASM [22]. While powerful,
especially in terms of their ability to quickly deliver minimal-cost sustainability solu-
tions, these models generally operate under a large set of assumptions, e.g., fixed repair
turn-around times and specific parametric part failure distributions. Recently, many
military and commercial customers have deemed these restrictions unrealistic and, as
a result, have turned to simulation as a method to model theirsustainability enterprises.
One example of note is the Support Enterprise Model (SEM) [23], a complex, highly
detailed discrete event simulation jointed developed by Lockheed Martin and San-
dia National Laboratories for use on the Lockheed Martin Joint Strike Fighter (JSF)
program. While eliminating various assumptions present inthe METRIC-like ana-
lytic optimization models and facilitating the deploymentof complex business rules,
simulation models such as SEM lack an inherent optimizationcapability. This paper
addresses the development of a stochastic programming formulation of the SEM sus-
tainability optimization problem, and introduces a stochastic programming algorithm
based on PH to solve the formulation.

In any given SEM problem instance, the decision variables consist of (1) stock
re-order levels for each part at each site in the system enterprise; relevant sites include
all supply depots (independent of echelon level), OEMs, andbases, and (2) assigned
quantities for all repair-related resources for each site in the system; relevant sites
include repair depots, OEMs, and bases. Resources associated with aircraft mainte-

4

nance, e.g., technicians or engine lifts, are provided through an external analysis tool,
and are considered fixed in the current SEM context. Althoughnot required by SEM,
we assume for present context an(s, s−1) inventory re-order policy, such that the ini-
tial procurement level for each part/site combination is identical to the re-order level.
Resource-related costs include both initial procurement (if any) and on-going opera-
tional and maintenance costs. The elements of the cost vector c are then the per-item
procurement costs associated with the various part/site and resource/site combinations.
We denote this general class of optimization problem as Support Enterprise Sustain-
ability Problems, or SESPs.

Given a problem instance, we use the SEM simulator to generate part failure data at
each squadron in the system forn independent replications or scenarios. These repli-
cations are executed in a “flooded” mode, i.e., one in which the supply of parts and
available resources is unconstrained. By directly leveraging SEM in this manner, it is
possible to sample part failures from non-parametric or notgenerally accessible (from
an analytic standpoint) parametric distributions, e.g., complex wear-out distributions
or failure due to combat damage. The resulting part failure sequences are optimistic
relative to a cost-constrained environment. In particular, part failures are assumed to
be independent. For example, consider a part failure sequence for a particular plane
from a flooded SEM replication in which a landing gear component fails on dayn
and the engine fails on dayn + 5. In a resource-rich environment, the landing gear
is quickly repaired, such that the engine will fail due to theaircraft being operational;
in a resource-constrained environment, lack of a spare landing gear component may
down the plane forn > 5 days, in which case the engine failure could not occur. How-
ever, given the typically high availability requirements (on the order of 90% through
95%) for JSF and other military fleets, the degree of conservatism is in practice not
significant.

We observe that although the input data for our SESP optimization problem derives
from a simulation, we are not using the simulator to compute either the constraints or
objective function value associated with a solution. Thereis a rich literature on this
topic (simulation-based optimization) [7]. However, such“black-box” approaches are
not feasible for our problem; individual evaluations require minutes to hours of run-
time, and the number of decision variables is very large. Although it is not immediately
relevant in the context of this paper, simulators such as SEMare in practice used as
a final verification step for the solutions we obtain, i.e., the ultimate quality of our
resulting solutions is assessed via discrete-event simulation. In summary, high-fidelity
simulation provides the input and final validation of our solutions, but is not used in
the process of actually generating those solutions.

2.2 Mixed-Integer Formulation and Heuristic Solution Alterna-
tives

For any given SESP scenario,s, it is conceptually straightforward to develop a MIP
formulation to express the cost minimization of the supportenterprise, subject to the
constraint that the average daily operational availability of each squadron over the time
horizon of the simulation is greater than or equal to a user-specified threshold. Such
a MIP must track state variables such as on-hand and due-out inventory quantities,
repair queue and repair in-process status, and the number ofaircraft downed due to
lack of a spare part. Constraints in the MIP then conserve inventory position across
time, enforce limits on the utilization of repair resources, and model inter-site trans-
port delays. In practice, there exist numerous subtle issues that significantly inflate the
complexity of the straightforward MIP formulation, such asthe need to prevent clair-

5

voyance induced by the up-front availability of all part failures that will occur during
the scenarios.

We have developed such a MIP for the SESP; due to the length of the model, we
defer to [6] for a complete description. The model (expressed in the AMPL [2] math-
ematical programming language) is available from the authors by request. Although it
was not known at the time of construction, we observe that ourformulation is a large-
scale instance of Schruben’s [18] event graph methodology for MIP models of discrete
event systems. Because the decision variables in the SESP are common across all sce-
narios, an extensive form EF of the SESP can be easily constructed by replicating the
constraints and scenario-specific (state) variables for each ofn scenarios.

Ideally, it would be possible to solve the extensive form of the SESP stochastic
program directly with existing commercial MIP solvers. However, this is not currently
feasible. Because the aforementioned state variables mustbe tracked on a daily (or
higher-resolution) basis, the size of the resulting MIP - even for relatively small en-
terprises, let alone the full-scale JSF deployment - is verylarge. As reported below in
Section 4, the memory requirements using commercial MIP solvers frequently exceeds
the 4GB RAM limit for 32-bit computing architectures, and reaches nearly 20GB for
moderate-scale problems. Additionally, the solve times for even the LP relaxation can
extend to several days on powerful 64-bit workstations; MIPsolves are therefore not
practical in the foreseeable future.

Despite the observed difficulties, failure to solve the extensive form of the SESP
does not necessarily preclude usefulness of the MIP formulation. Given the ability
to efficiently solve the SESP for one scenario, it is theoretically possible to gener-
ate approximate solutions to the extensive form using scenario-based decomposition
methods such as PH. However, for the real-world instances considered here, the MIP
solves for a scenario are too expensive to be practical. In particular, individual-scenario
MIP solves for the moderate-sized problem instances introduced below in Section 4
requires tens of minutes using commercial MIP solvers. Consequently, when used in
a multi-iteration, multi-scenario PH context, the resulting solution times for the SESP
are highly impractical for full sized, real-world instances.

Based on this observation, and following lengthy attempts to achieve a scalable
MIP formulation, we devoted significant effort to develop powerful domain-specific
heuristics for solving individual-scenario variants of the SESP. These heuristics, based
on randomized descent strategies and coarse-grained simulation (which can compute
the implications of specific, arbitrarily complex businessrules), can generate solutions
to even large-scale SESP instances in at most minutes of run-time, and are used to
generate the experimental PH results described in Section 4. The details of these
heuristics are not relevant in the context of broader PH performance, the analysis of
which is our objective in this paper. Rather, we simply observe - as quantified in
Section 4 - that the performance of our heuristics is excellent, achieving near-optimal
solutions in significantly lower run-times than obtained using our MIP formulation.

3 PH Algorithmic Innovations

Our experience applying PH to large, real-world problems led us to a number of al-
gorithmic enhancements to the basic algorithm, which can besub-divided into the
following three categories: effectiveρ value computation (Section 3.1), convergence
accelerators (Section 3.2), and termination criteria (Section 3.3). We additionally de-
scribe techniques for detecting cycling behavior in Section 3.4.

6

3.1 Computing Effective ρ Values

Early - and some recent - experiments concerning PH reportedin the literature gen-
erally use fairly small values of the perturbation parameter ρ. For example, Mulvey
and Vladimirou [15] report that the best values ofρ were much less than 1 and that
performance was sensitive to the choice ofρ. However, this need not always be the
case. The “best” value ofρ is clearly data dependent. For example, Listes and Dekker
[11, p. 374] observe that “there is no conclusive theoretical analysis to support a gen-
eral selection rule for [ρ]”. In their experiments, the best results were obtained using
ρ values between 50 and 100.

In the context of the SESP, examination of the weighted objective formula for PH
(Step 6 of the pseudocode presented in Section 1) suggests that significantly larger
values ofρ may be required to achieve convergence in practical time-frames. We
observe that elementsi of the cost vectorc may range in magnitude from several
hundred dollars to several hundred thousand dollars per unit inventory or resource
element. In the case of an expensive elementi, an effectiveρ value should be close
in magnitude to the unit costci. Otherwise, computation of the initialws(i) (Step 4
of the pseudocode presented in Section 1) will yield a small fraction ofx(i) - whose
value represents a quantity, typically less than 100 in the SESP - and the per-iteration
change in the penalty termw(k)

s (i)x(i) will be comparatively small. Slow changes in
the penalty terms necessarily yield little movement inx(i), which in turn significantly
delays PH convergence. As a corollary, we comment that the optimal ρ value for
a given problem neednot be fixed at a constant value, i.e., the introduction of per-
elementρi may in fact be more appropriate for some problems, includingthe SESP.

Based on these observations, we have developed a novel and simple method of de-
termining element-specificρi values based on problem-specific data. As demonstrated
in Section 4, the method results in substantially improved PH performance relative to
constantρ values, and partially alleviates the need for problem-dependent parameter
tuning. In particular, the method is not based on the SESP, and is therefore applicable
in other problem domains.

To motivate the method, consider a scalar quantityx for which non-anticipativity
must be enforced. Consequently, only a single corresponding w weight multiplier is
required. Suppose thatx is constrained to be an integer taking on small values. Sup-
pose further, that at optimalityw = w∗ is quite large. This can occur, for example,
whenx is the quantity of an expensive resource and other (perhaps numerous) vari-
ables represent lower cost operational decisions. Ifρ is small, this situation will result
in many iterations required for convergence of PH because ateach iteration,w can
grow only by the product of two small quantities.

Our objective is to develop a heuristic method of settingρ that will allow the up-
dates to proceed more quickly to the optimal valuew∗ of the weightw. For practical
reasons, we want the magnitude ofw to approach from below in order to minimize os-
cillation or thrashing. This can occur when thew values are updated too aggressively
or converge from both sides particularly in MIPs because thechanges in the value of
one integer variable can precipitate changes in others, which are then reversed if the
w multiplier “shoots past” its optimal value. Before proceeding, we note that the mo-
tivation for our heuristic is based on separability of the decision variables, although it
is not required for use of the method. For clarity of the motivation, we proceed in the
context of a single variable and linear objective function.

Consider a single decision variablex with corresponding cost coefficientc; indi-
vidual problem scenarios are denoted bys. After iteration zero of PH completes, we
have an estimate of the optimal value forx, which isx̄. If we set a value ofρ that will

7

result inw = c, then the proximal term

ρ/2
∥

∥

∥
x(k−1)

s − x̄(k−1)
∥

∥

∥

2

will force the solution to bēx on the next iteration. The value ofw is updated by

w(k)
s := w(k−1)

s + ρ
(

x(k−1)
s − x̄(k−1)

)

so the value ofρ for a given scenarios resulting inw = c is

ρs :=
c

|xs − x̄|

However, using a value ofρ that depends ons will violate the convergence as-
sumptions made by Rockafeller and Wets. Furthermore, we want the absolute value
of all w elements to approach their ultimate value from below to helpmitigate cy-
cling. After PH iteration zero, for each variablex we definexmax = maxs∈S x

(0)
s and

xmin = mins∈S x
(0)
s . Since(xmax − xmin + 1) > |xs − x̄| we use

ρ(i) :=
c(i)

(xmax − xmin + 1)

for variablei, which does not depend ons. We denote this heuristic method for select-
ing per-elementρ(i) by sep.

The primary advantage of theρ selection heuristicsepis its problem-independent
nature. However, there exists a high likelihood that more effective methods exist for
any specific problem. We have investigated a number of alternativeρ selection strate-
gies for the SESP. The best-performing alternatives (including sep) were all based on
the simple observation that the value ofρ(i) should be proportional to element unit
cost, as discussed above. In Section 4, we report results fora straightforward yet ef-
fective “cost-proportional” method for settingρ(i). Specifically, we setρ(i) equal to
a multiplierk > 0 of the element unit costc(i). The method is denoted bycpk, where
cp stands forcost-proportional. Intuitively, the number of PH iterations required for
convergence under this method is proportional tok. Finally, as a control measure, we
consider the performance of PH using various fixed, global values ofρ. For a given
constantk, we denote the corresponding method byfk, where thef stands forfixed.

3.2 Accelerating Convergence

Although PH may eventually drive agreement among the decision variable vectors
xs to a common vectorx, in practice the number of iterations required is frequently
excessive for complex, non-convex optimization problems.

The following three acceleration methods are designed for one-sided diet prob-
lems, such as when the problem for each scenario is to minimize c · x subject to
Ax ≥ b with x ≥ 0 where the elements of vectorsc andb and the matrixA are all
non-negative. For problems where the constraints effectively limit x from both sides,
these methods may result in PH encountering infeasible scenario sub-problems even
though the problem is ultimately feasible. For one-sided diet problems, as we will
demonstrate, the methods are however quite effective.

A detailed analysis of PH algorithm behavior on the SESP and other problems in-
dicates that individual decision variablesxs(i) frequently converge to specific, fixed
valuez for all s ∈ S in early PH iterations. Further, despite interactions among the

8

xs(i) for any particular scenarios, the value ofz frequently fails to change in subse-
quent iterations. Such variable “fixing” behaviors lead to an obvious, albeit potentially
powerful heuristic: oncex(k)

s (i) = z for all s ∈ S at a particular PH iterationk, fix

x
(l)
s (i) = z for all subsequent iterationsl > k. As shown in Section 4, variable fix-

ing can yield substantial reductions in solution times by accelerating (through variable
elimination) the solution times for individual scenario sub-problems, at the expense of
slight reductions in solution quality for both individual sub-problems and the final PH
solution.

In applying this heuristic to the SESP in particular, we introduce alag parameter
µ ∈ {0, 1, ...}. Consider a given PH iterationk. We then fixx(k)

s (i) for all subsequent

iterationsl > k oncex
(m)
s (i) = z for all s ∈ S andm ∈ {k − µ|S|, . . . , k}, such that

m ≥ µ|S|. In other words, we fix decision variables once their value has stabilized to
a fixedz over the lastµ|S| PH iterations. Low values ofµ yield immediate or near-
immediate variable fixing; larger values ofµ can respond to the empirically rare event
that the value ofz may in fact vary over moderate time horizons, i.e., it may become
“undone” due to the influence of competing decision variables. The multiplicative
factor |S| accounts for the observation that the number of PH iterations required for
convergence in general is proportional to the total number of scenarios under consid-
eration.

This idea can be taken further by fixing values for integers that have not yet con-
verged as a means of quickly forcing termination of the algorithm, which we refer to
asslamming. Consider a situation in which it has been determined that the individual
scenario solutionsx(k)

s are “sufficiently” converged, i.e., they are very nearly homoge-
neous in both the values of the decision vectorsx

(k)
s and the scenario costsc ·x(k)

s . The
basic PH algorithm can take very large number of iterations to resolve the remaining
discrepancies, despite minimal impact on the final solutionquality. One alternative,
widely reported in the literature [11, 12], is to solve a variant of the extensive form
in which all currently-converged decision variables are fixed to their common value.
Another alternative, explored here, is to force absolute PHconvergence via aggressive
variable fixing.

Once the condition of sufficient convergence has been achieved after some PH it-
erationk (the specific criteria are described next in Section 3.3), wefirst set the lag
µ = 0, independent of its current value. Then, everyκ subsequent iterations we
identify the free decision variablexi for which the per-element costc(i) is minimal.
We then fixxi = maxs∈S xs(i). Given our one-sided diet formulation, feasibility of
the scenario sub-problems is necessarily not lost via such amaximum-value scheme.
Clearly, this scheme is guaranteed for force PH convergence. We have investigated
performance using variousκ, includingκ = |S|. However, we found minimal perfor-
mance gains using such largeκ, at the expense of significantly increased run-times;
consequently, we fixκ = 2 in the experiments reported below in Section 4.

3.3 Termination Criteria

In practice, PH empirically yields large reductions in|xs1
−xs2

| for s1, s2 ∈ S in early
iterations, while the remaining and majority of iterationsserve in a fine-tuning role to
drive the already small differences in|xs1

− xs2
| to 0. To detect near-convergence

in the solution vectorsxs, s ∈ S, we first define the average per-scenario deviation
from the “average” solutiontd = (

∑

i,s xs(i) − x(i))/|S|, wherex(i) represents the
average ofxs(i) over all s ∈ S. We then can invoke variable slamming to quickly
force PH convergence oncetd drops below some parametric thresholdλt. The value

9

of λt places a threshold on the degree of heterogeneity allowed inthe set of solutions
x(s).

Such a termination criterion assumes that small differences in |xs1
− xs2

| are cor-
related with small differences in the costs|c ·xs1

−c ·xs2
|. In practice, however, this is

oftennot the case. For example, in the SESP there often exist ”holdout” scenarios that
require more high-cost parts - for example, engines - than other scenarios. Further,
these additional high-cost parts are required to achieve feasibility in the holdout sce-
narios. Consequently, the value oftd may in fact be very small, while the discrepancy
in overall costs may be quite large.

To protect against such situations, we additionally consider a termination crite-
rion based on the variability of solution quality in any given PH iterationk. For this
problem, upper bounds on thex(i) are easily obtained, e.g., by considering the total
number of a part / resourcei that could ever be used in a given scenarios ∈ S. At an
arbitrary PH iterationk, consider the solutionsxs for all scenarioss ∈ S. Letxmaxde-
note the decision vector whose elements represent the maximal value appearing in any
solutionxs, i.e.,xmax(i) = maxs∈S(x

(k)
s (i)). Clearly,xmax is a feasible (albeit likely

suboptimal) solution to all scenarioss ∈ S. Finally, letqd = (c ·xmax/c ·x)∗100. We
can then terminate PH iterations onceqddrops below a parameterized threshold value
λq, e.g., whereλq = 1%.

In our PH implementation for solving the SESP, we invoke variable slamming once
both td≤ λt andqd≤ λq after an iterationk.

3.4 Detecting Cyclic Behavior

Finally, we note that for all types of non-convex optimization problems, there is a risk
of non-convergence of the PH algorithm. This is due in part tothe use of various con-
vergence acceleration techniques, including those described previously; furthermore,
the basic PH algorithm introduced by Rockafellar and Wets only guarantees eventual
convergence to a local optimum in the non-convex case. In theexperiments discussed
in Section 4, non-convergence occurs in roughly one tenth ofall algorithmic trials. In
particular, we observe non-convergence in the form of cyclic behavior across differ-
ent PH iterations, e.g., repeated identical weight and decision vectorsws(i) andxs(i)
for specific elementsi. To detect cycles, we chose to focus on repeated occurrences
of ws(i) vectors, implemented using a hashing scheme [24] to minimize impact on
run-time. Once a cycle is detected for any decision variablex(i), the value ofx(i)
is immediately fixed tomaxs∈S xs(i); feasibility is again ensured in the case of one-
sided diet problems. In practice, few variables are fixed in such a fashion, yielding
minimal impact on final solution quality while assuring termination.

4 Experimental Analysis of PH Performance

We now perform a comprehensive empirical performance analysis of the various PH
algorithmic techniques described in Section 3, using the SESP as a test-bed. Sec-
tion 4.1 describes the problem instances, which are based ona proprietary real-world
data set. The experimental methodology is presented in Section 4.2. Performance re-
sults on spares-only and spares-plus-resources test casesare respectively detailed in
Sections 4.3 and Section 4.4. We conclude in Section 4.5 witha brief discussion con-
cerning parallelization of the PH algorithm to yield significant run-time reductions in
a deployment environment.

10

4.1 The Test Problems

We quantify the performance of our PH variants using two categories of test problems.
The instances in both categories are based on a simple echelon network structure con-
sisting of a single repair depot, supply depot, and OEM, in addition to n operational
bases; however, our general methodology can handle arbitrary echelon structures. Five
aircraft, composed in a single squadron, are assigned to each of then bases. Each
squadron flies a single sortie consisting of two aircraft - assuming they are functional
- for 4 hours every day. Each aircraft consists of50 modeled parts, representing a
range of failure distributions (e.g., random and wearout) experienced during opera-
tional flying time. A failure mode is associated with each distinct part type: consum-
able, base-repairable, and depot-repairable. Upon failure, a consumable part (e.g., a
tire) is immediately disposed of, while base- and depot-repairable parts (e.g., engines)
enter the repair queue at the respective locations. Replacement consumable parts are
built by the OEM, with lead times ranging from 30 to 120 days. Part repair times range
from 5 days (for base-repairable parts) to 120 days (for depot-repairable parts). Part
procurement costs range from around $100 to over $500,000, respectively representing
components such as tubes and engines.

Parts repaired at a base immediately re-enter inventory at that base; parts repaired
at the repair depot enter inventory at the sole supply depot after shipment. Each base
requests additional inventory from the supply depot, whichin turn can request new
OEM builds for consumable parts. A simple(s, s − 1) stocking policy is assumed,
and we assume unitary batch size for new builds. Inter-site transportation times vary
from immediately (e.g., from a plane to the containing base)to nearly a week (e.g.,
when shipping carcasses from a base to a repair depot). The simulation time horizon
is over a single year, and the optimization objective is to maintain a high operational
tempo in each scenario - specifically 95% availability of theaircraft in each squadron
- at the minimal cost required to procure the initial inventory of spare parts and the
acquisition cost of any resources; the latter includes operational costs incurred during
the simulation period. The subsequent costs associated with building replacements for
consumable parts and any shop material required to repair other parts are not treated
in the course of optimization, as these are considered ”sunk” costs, i.e., the actions
must be performed irregardless. This basic operational environment, albeit simple, is
inspired by a proprietary real-world data set analyzed by the authors for a distinct anal-
ysis and customer. Finally, each test problem contains failure data fork realizations or
operational scenarios. The data for each realization is generated via the SEM discrete
event simulator, as discussed in Section 2.

In the first category of test problem, the decision variablesconsist of the initial
procurement level for each part at each base in the system, inaddition to those at
the supply depot. Because we assume one-for-one replenishment, these variables are
equivalent to the re-order up-to levelss. Repair processes do not require personnel or
support equipment, and are completed after a fixed duration.In these problems, both
the bases and repair depots are non-capacitated, i.e., there is no limit to the number of
concurrent repairs and parts enter repair immediately uponreceipt at a site. The first
category of test problem was devised to mirror the assumptions underlying traditional
approaches to spare-parts management, including METRIC [19] and VARI-METRIC
[21] (non-capacitated depots with a fixed repair durationd1 are equivalent to capac-
itated depots with a fixed repair durationd2 > d1). These assumptions are relaxed
in the second category of test problem, in which each base- and depot-repairable part
requires one or more resources to accomplish the repair task. Resources are sub-
divided into two categories: personnel and support equipment. Support equipment

11

costs range from $5,000 to $20,000, while annualized personnel pay rates range from
under $20,000 to over $60,000. Repairs require the associated resources for the du-
ration of the repair task, and are released upon completion of the repair task. The
decision variables in this category of test problem includeboth the initial procurement
levels for spare parts and the number of each resource type ateach base and repair
depot in the system. The second category of test problem was devised to represent the
much more difficult class of ”inventory plus repair” sustainment problem [1], which
receives comparatively little attention in the logistics and sustainability literature.

For both the spares-only and spares-plus-resources categories, we consider test
problems with bothk = 10 andk = 30 scenarios, in addition ton = 2, n = 5, and
n = 10 bases. This yields a total of12 test problems. We note that solutions obtained
with k > 30 scenarios are not significantly different than fork = 30 scenarios, i.e.,
k = 30 is sufficient for these instances (due to the long time horizon and heavy oper-
ational pace) to achieve target performance on unobserved scenarios. The parameters
underlying the spares-only test problems are not overly realistic (being heavily modi-
fied to disguise the original source data set), principally due to the repair of otherwise
inexpensive parts and strictly moderate correlation between repair times and procure-
ment cost. However, neither factor plays a critical role dueto the lack of repair queue
modeling. In contrast, the spares-plus-resources test problems necessarily correct this
deficiency, and are consequently much more realistic in terms of their overall behavior.
However, they are less representative of the original source data set, which accounts
for the differences in cost observed for the two problem classes (as reported in Sec-
tions 4.3 and 4.4. The number of decision variables for the spares-only problems
ranges between 144 and 528, and between 157 and 566 for the spares-plus-resources
problems. In this particular formulation, no recourse (dueto real-world constraints
imposed by the target enterprises) is possible from poor initial decisions, although this
is clearly supported by the PH framework.

All of the test problems are freely available for general use, and can be obtained by
contacting the authors. The size of the test problems was selected to allow for investi-
gation of a wide range of PH algorithmic settings, many requiring lengthy run-times.
Significantly larger, real-world test problems have also been investigated. In partic-
ular, specific PH variants have been successfully executed on various test problems
representing the enterprise-level deployment structure of the support system for the
Lockheed Martin Joint Strike Fighter or JSF [9], and limited-scale forms of the US
Army’s Future Combat System [4]. Although the details are sensitive, we note that the
full JSF deployment contains over 3,000 aircraft (each containing thousands of mod-
eled parts) assigned to over 50 bases worldwide, tens of supply and repair depots, tens
of OEMs, all arranged in a complex multi-echelon network structure.

4.2 Methodology

As discussed previously, we have developed MIP models of theSESP optimization
problem. Ultimately, we moved to deployment of domain-specific heuristics to solve
individual scenario sub-problems due to the difficulty of the MIP formulation, in terms
of both run-time and memory requirements, even using high-speed, multi-processor,
64-bit workstations running CPLEX 10.0 [8]. However, the MIP formulation is not
without use in our analysis, as it can be used to solve relaxedforms of the Extensive
Form (EF) of each test problem. In particular, we use the LP relaxation of the EF MIP
to bound the performance of the PH heuristic below in Sections 4.3 and 4.4; we denote
the corresponding relaxed solutions byx∗. Additionally, we report results relative to
the corresponding LP-rounded solution, in which each decision variable is set to the

12

next highest integer value in the case of fractional variables. Due to limitations in the
accuracy of the MIP formulation (for reasons described in Section 2), such rounded
solutions - which we denote⌈x∗⌉ - fail to achieve the target operational availabilities
when assessed in the context of the SEM simulator. In many cases, the resulting
availabilities fall far short, e.g., tens of percent, of therequired targets. Consequently,
gaps in the cost of the PH and⌈x∗⌉ solutions are not necessarily indicative of the
inability of the PH heuristic - or the greedy heuristic for scenario sub-problems - to
locate very-near or even optimal solutions; by definition these solutions achieve the
requisite performance targets in the context of SEM.

In Sections 4.3 and 4.4, we describe the results of parametersensitivity experi-
ments on our PH variants for spares-only and spares-plus-resources test problems. For
each problem category and specific value ofn andk, we execute PH for each combi-
nation of variable fixing lag

µ = {0, 1, 2, 5}

andρ(i) selection strategy

κ = {cp0.5, cp1.0, sep, f20K , f100K , f500K}

For each individual PH run, we set the termination criteria parametersλq andλt

equal to0.5% and0.5, respectively. The objective of these experiments is to quantify
the effectiveness of the various PH algorithmic techniquesintroduced in Section 3,
and to assess the sensitivity of the PH algorithm to specific parameter settings. For
each run, we report the lowest-cost “maximum” solutionxmax generated duringany
PH iterationk. Althoughxmax generally equals thex obtained by PH at convergence,
differences do occur in a minority of runs. Such discrepancies are possible because
the algorithmic techniques that accelerate (and thereby interfere with) the standard PH
algorithms may in fact lead to convergence to a solution thatis not locally optimal.
All runs are executed on a quad-processor 64-bit AMD Opteron2.2GHz workstation,
64GB of RAM (relevant only for LP solves) running Linux 2.6; individual scenario
sub-problems require at most ten megabytes of memory to solve via the greedy heuris-
tic.

4.3 Spares-Only Performance Results

Num. Bases (n) Num. Scenarios (k) c · x∗ c · ⌈(x∗)⌉ Sol. Time Memory
2 10 54,432,705.04 55,107,950 10.7m 1.4GB

30 56,586,131.16 57,445,700 48.96m 3.2GB
5 10 117,512,266.69 119,044,750 50.36m 3.3GB

30 126,277,945.18 126,639,800 328.78m 5.9GB
10 10 326,354,459.20 326,902,300 357.86m 7.0GB

30 338,255,374.29 340,216,550 6226.48m ≈ 19GB

Table 1: Solution and solver statistics for Extensive Form SESP LP relaxation using ILOG
CPLEX 10.0.

We first consider experimental results for the spares-only test problems. The LP
and LP-rounded solution quality and CPLEX 10.0 solver statistics for each test prob-
lem are shown in Table 1. For fixedn, we observe no more than 8% growth in solution
cost (which occurs whenn = 5) when moving fromk = 10 to k = 30 scenarios.
The increase in solution cost is due to the increased diversity of part failure sequences.

13

Empirically, the growth in cost for these test problems halts neark = 30; this is con-
sistent with the fact that PH solutions for a specific set ofk = 30 scenarios achieve
target performance objectives under disparate sets of scenarios; in other words, their
performance generalizes to new scenarios. Overall, the solution times are moderate
for most problems, ranging from a few minutes to roughly six hours. However, run-
time peaks for the largest test case (n = 10, k = 30) at over 4 days. In practice, such
a large run-time is not practical, especially given the comparative size of real-world
problems (e.g., JSF) and the difficulty of LP solver parallelization. Of equal concern
is the required memory; oncen = 5, the requirements exceed the limits of commonly
available hardware. Finally, we reiterate that the solution statistics relate to the cost of
solvingonly the LP relaxation; integer-feasible solutions are currently impractical for
then = 5 andn = 10 test problems.

Fix Lag
Num. Bases (n) Num. Scenarios (k) µ = 0 µ = 1 µ = 2 µ = 5
2 10 cp0.5 cp0.5 cp0.5 cp1.0

2 30 cp0.5 sep cp1.0 cp1.0

5 10 cp0.5 cp1.0 sep cp1.0

5 30 cp1.0 sep sep N/A
10 10 sep sep sep N/A
10 30 cp0.5 sep cp0.5 N/A

Table 2: Theρ selection strategy obtaining the lowest-cost solution fordifferent lag values,
independent of run time.

Next, we compare the performance of the fixed-ρ selection strategies (f20K , f100K ,
andf500K) with the variable-ρ selection strategies (cp0.5, cp1.0, andsep). In Table 2,
we record theρ selection strategy achieving the lowest-cost solution over the range
of variable fixing lagsµ, independentof run-time. Table entries with “N/A” indi-
cate the run-times for that particular PH configuration wereexcessive (ranging past
several days), and were not allowed to run to completion. Theresults conclusively
demonstrate that the variable-ρ strategies dominate the fixed-ρ strategies in terms of
final solution quality, supporting the hypothesis advancedin Section 3.1; the rela-
tive run-times of the methods is considered below. In limited trials, we experimented
with additional values of fixedρ. Due to disparities with average part costs, smaller
fixed values ofρ yielded excessive run-times, while values ofρ greater than 500K
yielded monotonically decreasing solution quality. Overall, no single variable-ρ selec-
tion strategy dominates in terms of performance. Although there are some apparent
patterns in the data, e.g.,sepdominating for largen andk, the number of samples is
too limited to make an accurate inference. Further, performance is not clearly depen-
dent onµ. However, the results do clearly illustrate the power of variable-ρ strategies
for the SESP relative to the standard fixed-ρ strategies.

Although the quality of fixed-ρ solutions is worse than that of variable-ρ solutions,
we have not considered the relative run-times of the two approaches, nor quantified
the relative performance of the various fixed-ρ strategies. To expand on the results
presented in Table 2, we consider PH performance on then = 10, k = 10 spares-
only test problem under theρ selection strategiesf20K , f100K , andf500K ; the per-
formance trends observed on this problem are representative of other problems in this
class. In Figure 1, we show plots ofρ versus the following PH performance statis-
tics: solution quality, number of iterations required for convergence, and run-time.

14

As expected, with the noted exception atµ = 0 andρ = 100, 000, higher-quality
solutions are obtained as the fix lagµ (subject to a fixedρ strategy) is increased (Fig-
ure 1a). However, the highest-quality solutions are not obtained with smallerρ values.
While ρ = 500, 000 clearly yields lower-quality solutions, there is no clear preference
betweenρ = 20, 000 andρ = 100, 000. This is despite the significant increase in run-
time (Figure 1c). Overall, the results suggest thatρ = 100, 000 with eitherµ = 0 or
µ = 1 yields the best solution quality vs. run-time performance tradeoff; detailed anal-
yses of results on the other spares-only test problems supports this general conclusion.
Finally, we observe that the total number of PH iterations required for convergence
on these large-scale test problems - even using the various acceleration techniques we
propose - is quite large, ranging from approximately 50 to over 2000 (Figure 1b).

Fix Lag
ρ Selection Strategy µ = 0 µ = 1 µ = 2
sep 0.1790% 0% 0.0034%
cp0.5 0.4440% 0.1188% 0.3794%
cp1.0 0.4490% 0.3056% 0.0070%
f100K 0.3149% 0.7612% 0.5402%

Table 3: Quality of solutions obtained by variable-ρ andf100K strategies on then = 10,
k = 10 spares-only test problem; values represent the percentageabove the cost of the best
known solution.

We now analyze the performance of the variable-ρ strategies, comparing solution
quality and run-time relative to both one another and to thef100K baseline strategy;
the latter yielded the best overall performance for a fixed-ρ strategy. Solution quality
results for then = 10, k = 10 test problem, expressed as a percentage above the cost
of the best known solution, are shown in Table 3. The results illustrate that all of the
variable-ρ strategies yield comparable solutions in terms of cost, deviating by no more
than 0.5% from the best known solutions. Although small in relative terms, the corre-
sponding absolute cost deviations range between $2 and $3 million (from the baseline
of approximately $343 million). Consequently, there is some motivation for identify-
ing a clear winner among the three strategies. Unfortunately, no clear pattern emerges
in the analysis of the data in either Table 3 or for the other test problems. In gen-
eral, the results for thesepandcp0.5 strategies are comparable, and together slightly
outperformcp1.0. However, any given variable-ρ strategy may yield the best over-
all performance on an individual problem. Finally, comparing the variable-ρ strategies
with thef100K strategy, we find that althoughf100K outperforms some of the variable-
ρ strategies whenµ = 0, it is dominated by all of the variable-ρ strategies forµ ≥ 1;
further, theµ = 0 results are not replicated on any of the other test problems.

Fix Lag
Variable-ρ Selection Strategy µ = 0 µ = 1 µ = 2
sep 375% 456% 312%
cp0.5 198% 342% 152%
cp1.0 52% 178% 122%

Table 4: Run-time of variable-ρ PH strategies on then = 10, k = 10 spares-only test
problem, relative to the baselinef100K strategy.

15

Despite superior performance, the solution quality of the variable-ρ strategies does
come with an increase in run-time cost. In Table 4, we show thepercentage increase
in overall run-time for the variable-ρ strategies relative to thef100K strategy on the
n = 10, k = 10 test problem. The results indicate that variable-ρ strategies can
require nearly 5 times the run-time of the fixed-ρ strategies. Thesepstrategy typically
requires more computation than thecp0.5 andcp1.0 strategies, although we note that
the latter are domain-specific heuristics, while the formeris general-purpose. The
cp1.0 strategy yields high-quality solutions with only a moderate increase in run-time
relative to fixed-ρ strategies. Thesepandcp0.5 strategies yield better solutions, but at
the cost of even greater run-times. However, we observe thata factor of five or less
in run-time is often not considered significant in practicalapplications, especially for
planning-level problems such as the SESP.

In summary, our experimental results for various PH configurations on spares-
only test problems support two specific conclusions. First,variable-ρ strategies yield
higher-quality solutions than fixed-ρ strategies, at the expense of slightly increased
run-times. Second, increases in the fix lagµ improve solution quality, but again at
the expense of run-time. However, the relative increases inrun-time are modest, such
that adoption of the techniques to applications involving long-term planning can be
practical. Viewed from another perspective, our results illustrate a classic quality vs.
run-time tradeoff, yielding a family of algorithms, the most appropriate of which can
be leveraged depending on the context. In particular, we note that planning-level prob-
lems are often solved iteratively as both the model and data are refined. Consequently,
high-speed strategies such asf100K with low µ can be used in early iterations where
model and data uncertainties are high. In practice, specifically on large-scale data sets
such as JSF - where the run-times required to solve scenario sub-problems is high - we
generally useµ ≤ 1 with a cp1.0 selection strategy to obtain high-fidelity solutions,
andµ = 0 with af100K selection strategy to obtain low-fidelity solutions.

Num. Bases (n) Num. Scenarios (k) % abovec · x∗ % abovec · ⌈(x∗)⌉
2 10 4.15 2.88

30 5.09 3.52
5 10 6.28 4.92

30 6.07 5.77
10 10 5.05 4.87

30 5.48 4.87

Table 5: Deviation in the cost of the best solution obtained by PH under variousρ selection
strategies and the cost of both thex∗ and⌈(x∗)⌉ LP solutions.

We conclude our analysis of the spares-only test problems byconsidering the qual-
ity of the solutions resulting from PH relative to the absolute baseline costs reported
in Table 1, as opposed to the solution costs obtained by otherρ selection strategies. In
Table 5, we report the percentage difference in cost betweenthebestsolution obtained
by one of ourρ selection strategies and both thex∗ and⌈(x∗)⌉ solutions. The data
indicate that the cost of the best PH solution is no more than 6% greater than both
c · x∗ andc · ⌈(x∗)⌉. Recall that both thex∗ and⌈(x∗)⌉ solutions fail to achieve the
target availabilities when assessed in the context of the SEM simulator, and therefore
serve strictly as lower bounds on the optimal solution cost.Given the degree of un-
derperformance observed for these solutions, we conjecture that the best PH solutions
are in fact at most a few percent sub-optimal. Overall, theseresults indicate that de-
spite the lack of provable convergence behavior to a global optimum, PH is locating

16

very high-quality solutions to the SESP. In other words, PH -even with convergence
acceleration techniques - can serve as a very effective heuristic for solving stochastic
integer programs.

4.4 Spares Plus Resources Performance Results

As discussed in Section 2.1, the overwhelming majority of research on SESP optimiza-
tion is focused on spares-only problems. This is primarily due to the relative difficulty
of spares-plus-resources problems, which is reflected in the growth of the run-times
required to solve the LP relaxation of our MIP formulation for the SESP. For example,
consider the case withn = 5 andk = 10. As recorded in Table 1, the spares-only test
problem with these dimensions required slightly over 50 minutes and 3 GB of RAM
to solve the LP relaxation. In the case of the corresponding spares-plus-resources test
problem, the run-time increases to over 3 days and 8GB of RAM.The growth is due to
a combination of the additional state tracking variables and corresponding constraints
required to monitor resource usage and the empirical observation that additional con-
sideration of resource optimization significantly complicates planning-oriented MIPs,
including the SESP. The growth in difficulty with increases in n and k is also re-
markable, e.g., CPLEX ran for over 9 days attempting to solvethe LP relaxation of
then = 10, k = 10 spares-plus-resources test problem (requiring roughly 25GB of
RAM) before we terminated execution. Consequently, we wereonly able to obtainx∗

and⌈x∗⌉ solutions to the spares-plus-resources test problems up todimensionn = 5
andk = 10. On these problems, the cost of the PH solutions ranges from between
8% and 12% greater than that of thex∗ and⌈x∗⌉ LP-based solutions. Although larger
than the deviations observed for the spares-only test problems (reported in Table 5),
there is evidence that the increase is primarily due to the weakening of the LP bound
when resources are introduced; in particular, the performance of the⌈x∗⌉ solutions for
spares-plus-resources problems are significantly worse when assessed via the SEM
simulator than that observed for the corresponding spares-only problems.

To avoid replication of the presentation in Section 4.3, we simply note that the main
experimental conclusions observed for our PH variants on spares-only test problems
extend to spares-plus-resources test problems. In particular, we find that variable-ρ
strategies generally outperform fixed-ρ strategies, albeit at the expense of moderate
increases in run-time. However, for any givenn andk, a specific fixed-ρ strategy may
outperform a specific variable-ρ strategy. Similarly, increases in the fix lagµ yield
marginally better solutions, at the expense of significant increases in run-time; for the
larger test problems,µ = 0 andµ = 1 were the only tractable (in a practical sense)
PH variants. Finally, the domain-specificcp0.5 andcp1.0 variable-ρ strategies yielded
roughly equivalent performance in terms of solution quality relative to the problem-
independentsepcounterpart, although the run-times were generally much lower.

In terms of impacting practice - specifically the development of a high-performance
algorithm for solving spares-plus-resources instances ofthe SESP - the relevant ques-
tion is: What is the relative run-time required to solve spares-only problems versus
spares-plus-resources problems. To answer this question,we consider the case where
n = 10 andk = 10, under acp0.5 ρ selection strategy withµ = 0. In the spares-only
case, our PH algorithm required 117 iterations for convergence, with an aggregate
run-time of 173.37 minutes. In contrast, the spares-plus-resources problem required
only 105 iterations for convergence, at the cost of 314.11 minutes of run-time. The
discrepancy in run-time is attributable to the increase in the number of decision vari-
ables (i.e., the number of resources of each type allocated to each site), which in turn
increases the scenario sub-problem solve times. Substituting thesepstrategy for the

17

cp0.5 strategy, we observe an increase from 185 to 541 iterations required for conver-
gence, with an increase from 276.10 minutes to 1048.22 minutes. In this case, the
growth in difficulty is additionally due to the increase in the number of PH iterations,
which is frequently correlated with the number of decision variables. In general, the
aggregate PH run-time for spares-plus-resources problemsis within a factor of four
(and often much less) relative to the run-time required for the corresponding spares-
only test problems. Consequently, and in contrast to our experience in solving the
LP-relaxation of our MIP formulation to the SESP, the PH heuristic is both effective
and scalable, demonstrating the practicality of the proposed approach to solving com-
bined spares and resource SESP instances.

4.5 Parallelization and Practical Deployment of PH

High-speed throughput is a key issue in the deployment of anypractical optimization
algorithm. This would appear to be an issue for PH, even givenour proposed acceler-
ation techniques. In particular, the run-times associatedwith the experiments reported
in Sections 4.3 and 4.4 range from several hours to several days, e.g., on the larger
n = 10, k = 30 test problem. Fortunately, as observed by a number of researchers,
PH is trivially parallelized by distributing the solution of scenario sub-problems across
distinct processors [3, 20]. Due to the empirically low variability of sub-problem solve
times, we have observed speed-ups of at worstn/2 on our test problems, wheren is
the number of CPUs. Consequently, given a modest cluster possessing approximately
50 compute nodes, it is possible to reduce the wall clock solution times of PH on these
data sets to at most an hour. Similar deployment platforms are required to achieve
tractable optimization via PH on the JSP data sets.

5 Conclusions and Directions for Further Research

We have introduced an important real-world stochastic integer problem and described
extensive computational experiments that demonstrate theefficacy of the Progressive
Hedging scenario-based decomposition algorithm and the various enhancements that
we have introduced to facilitate its practical, real-worldapplication. We have devel-
oped and motivated a problem-independent method for computing a good value of
the main PH parameter,ρ, that depends on problem-specific data. We additionally
describe techniques for accelerating convergence, and detecting cycling behavior and
damping it as appropriate. Our experiments indicate that variable-specificρ selection
strategies outperform globalρ strategies that are commonly associated with PH imple-
mentations reported in the literature, at the expense of slight increases in run-time.

Some of the enhancements that we introduce exploit the fact that we are solving a
diet problem with one-sided constraints, specifically bounding the decision variables
from below. Our convergence accelerators - which yield lower run-times with limited
impact on quality - rely on such one-sided constraints; the same is true of the ter-
mination criteria that we develop. This covers a large and important class of resource
allocation problems, but it remains as future research to extend these PH enhancements
or develop analogs for more general constraints.

Our experimental analysis represents, to the best of our knowledge, the largest and
most complex stochastic integer programming problem to which Progressive Hedg-
ing has been successfully applied. The algorithmic techniques were necessitated and
driven by the scale of our test problems, illustrating the broader need for more complex
and realistic problems to drive the development of practical stochastic programming

18

solvers. In terms of domain-specific impact, our approach tosolving the SESP is
tractable for both spares-only and spares-plus-resourcesproblem instances. In con-
trast, nearly all literature on the SESP focuses exclusively on the spares-only case. We
are currently in the process of extending the approach to real-world SESPs other than
JSF.

Acknowledgments

Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy under contract DE-
AC04-94AL85000.

References

[1] P. Alfredsson, “Optimization of Multi-Echelon Repairable Item Inventory Sys-
tems with Simultaneous Location of Repair Facilities”,European Journal of Op-
erational Research, Volume 99 (1997), pp. 584–595.

[2] http://www.ampl.com.

[3] N.J. Berland and K.K. Haugen, “Mixing Stochastic Dynamic Programming and
Scenario Aggregation”,Annals of Operations Research, Volume 64 (1996), pp.
1–19.

[4] http://www.army.mil/fcs.

[5] S.G. Garille and S.I. Gass, “Stigler’s Diet Problem Revisited,” Operations Re-
search49 (2001).

[6] H. Greenberg, “A Fine-Grained Mixed-Integer Programming Model for Logis-
tics Optimization”, Sandia National Laboratories, 2007.

[7] A. Gosavi, “Simulation-Based Optimization: Parametric Optimization Tech-
niques and Reinforcement Learning”, Springer, 2004.

[8] http://www.ilog.com.

[9] http://www.jsf.mil.

[10] P. Kall and S.W. Wallace. “Stochastic Programming”, Wiley, Chichester, 1994.

[11] O. Listes and R. Dekker, “A Scenario Aggregation Based Approach for Deter-
mining a Robust Airline Fleet Composition”,Transportation Science, Volume 39
(2005), pp. 367-382.

[12] A. Løkketangen and D. L. Woodruff, “Progressive Hedging and Tabu Search
Applied to Mixed Integer (0,1) Multistage Stochastic Programming,”Journal of
Heuristics, Volume 2 (1996), pp. 111–128.

[13] H. Maarten and M.H. van der Vlerk,Stochastic Integer Programming Bibliog-
raphy, http://mally.eco.rug.nl/biblio/stoprog.html, 1996-
2003.

[14] J.A. Muckstadt, “Analysis and Algorithms for Service Parts Supply Chains”,
Springer, 2005.

[15] J.M. Mulvey and H. Vladimirou, “Applying the progressive hedging algorithm
to stochastic generalized networks”,Annals of Operations Research, Volume 31
(1991), pp. 399–424.

19

[16] G.R. Parija, S. Ahmed, and A.J. King, “On Bridging the Gap Between Stochas-
tic Integer Programming and MIP Solver Technologies,”INFORMS Journal on
Computing, Volume 16 (2004), pp. 73-83.

[17] R.T. Rockafellar and R. J-B. Wets, “Scenarios and policy aggregation in op-
timization under uncertainty,”Mathematics of Operations Research, 1991, pp.
119–147.

[18] E.L. Savage and L.W. Schruben and E. Yucesan, ”On the Generality of Event-
Graph Models”,INFORMS Journal on Computing, Volume 17 (2005), pp. 3–9.

[19] C.C. Sherbrooke, “METRIC: A Multi-Echelon Technique for Recoverable Item
Control”, Operations Research, Volume 16 (1968), pp. 121–141.

[20] A. Silva and D. Abramson, “Computational Experience with the Parallel Pro-
gressive Hedging Algorithm for Stochastic Linear Programs”, Proceedings of
the 1993 Parallel Computing and Transputers Conference, pp. 164–174, 1993.

[21] F.M. Slay, “VARI-METRIC: An approach to modeling multi-echelon resupply
when the demand process is Poisson with a gamma prior”, Report AF501-2,
Logistics Management Institute, Washington, D.C., 1984.

[22] F.M. Slay and R.M. King, “Prototype Aircraft Sustainability Model”, Logistics
Management Institute, Washington, D.C. Report AF601-R2 (1987).

[23] V.D. Smith, D.G. Searles, B.M. Thompson, and R.M. Cranwell, “SEM: Enter-
prise Modeling of JSF Global Sustainment”,Proceedings of the 37th Conference
on Winter Simulation, 2006, 1324–1331.

[24] D.L. Woodruff and E. Zemel, “Hashing Vectors for Tabu Search”, Annals of
Operations Research, Volume 41 (1993), 123–137.

20

10
4

10
5

10
6

3.43

3.44

3.45

3.46

3.47

3.48

3.49
x 10

8

Fixed rho

So
lu

tio
n

co
st

fix lag = 0
fix lag = 1
fix lag = 2

10
4

10
5

10
6

0

500

1000

1500

2000

2500

Fixed rho

N
um

be
r o

f P
H

 it
er

at
io

ns

10
4

10
5

10
6

0

500

1000

1500

2000

2500

3000

Fixed rho

R
un

 ti
m

e
(m

in
ut

es
)

fix lag = 0
fix lag = 1
fix lag = 2

Figure 1: The performance of fixed-ρ PH variants on then = 10, k = 10 spares-only test
problem. The log-linear plots in the upper, middle, and lower figures displayρ versus (a)
solution quality, (b) the number of PH iterations, and (c) run-time, respectively.

21

