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Abstract. Transport algorithms are highly important for dynamical
modeling of the atmosphere, where it is critical that scalar tracer species
are conserved and satisfy physical bounds. In this paper we present an
optimization-based algorithm for the conservative transport of scalar
quantities (i.e. mass) on the cubed sphere grid, which preserves mono-
tonicity without the use of flux limiters. In this method the net mass
updates to the cell are the optimization variables, the objective is to
minimize the discrepancy between a high-order mass update (the “tar-
get”) and a mass update that satisfies physical bounds, whereas mass
conservation is imposed by a single equality constraint. The resulting ro-
bust and efficient algorithm for conservative and monotone transport on
the sphere further demonstrates the flexibility and scope of the recently
developed optimization-based modeling approach [1, 2].

1 Introduction

In this paper we describe a conservative, and monotone optimization-based
transport algorithm and its application to a cubed sphere grid. The method is
based on an incremental remap approach [3] with an optimization-based remap
step at the core. The efficient mass variable mass target (MVMT) algorithm [4]
is used for the remap step. In this approach a high-order mass update is used
as the target for the optimization and monotonicity and mass conservation are
guaranteed through the constraints.

Numerical results are shown for standard transport tests on the sphere. An
incremental remap transport algorithm in which the remap step is implemented
using the flux-corrected remap (FCR) [5] provides a benchmark for the numerical
studies. The studies show that the optimization-based algorithm is computation-
ally competitive with the benchmark and is more robust in the case of complex
flows.

3 Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.
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2 Optimization-based MVMT Transport

We briefly review the MVMT optimization-based transport algorithm for the
scalar transport problem

∂ρ

∂t
+∇ · ρv = 0 on Ω × [0, T ] and ρ(x, 0) = ρ0(x) (1)

while conserving mass and maintaining monotonicity and positivity. To achieve
conservative and monotone numerical solution we use an incremental remapping
approach [3] with an optimization-based framework for the remap step [6, 4, 7].

Consider a partition C(Ω) of Ω into cells ci, i = 1, ...C. We define the cell
mass to be mi =

∫
ci
ρ(x, t)dV and the cell measure to be µi =

∫
ci
dV . In the

incremental remapping transport algorithm, the cell average density defined as
ρi = mi/µi, is the primary quantity of interest. The algorithm is motivated
by the fact that mass is conserved within Lagrangian volumes and cell average
density depends only on the constant mass and the updated Lagrangian volume
measure. Given a grid configuration C(Ω(t)), cells masses (mi(t)), cell areas
(µi(t)), and cell average densities (ρi(t)) at time t the incremental remapping
algorithm consists of three steps:

1. Project the grid at time t to an arrival grid at time t+∆t using the velocity
field: C(Ω(t)) 7→ C(Ω(t+∆t));

2. Update to mass and cell average density after the Lagrangian step: mi(t +
∆t) = mi(t), ρi(t+∆t) = mi(t)/µi(t+∆t) for i = 1, ...C;

3. Remap cell average density to departure grid C̃: m(t+∆t) 7→ m̃ and ρ(t+
∆t) 7→ ρ̃, for i = 1, ...C.

In the final remap step the mean density values on the Lagrangian grid ρi(t+
∆t) are used to find approximations of the new masses m̃i and mean densities
ρ̃i on the departure grid. The remapped values should satisfy conservation of
mass and local bounds. This step can be formulated as an optimization problem
where we define a target quantity (uT) that is a function of a stable and accurate
density solution to the transport problem in Eq. (1), but may not be conservative
or satisfy local bounds. We minimize the distance between our solution û and the
target with the constraints of mass conservation and local bounds preservation.
This ensures that the solution is globally optimal with respect to the target and
the desired physical properties. This MVMT formulation can be written as

minimize
1

2
‖û− uT‖2`2 subject to

û ∈ Ch ;

C∑
i=1

ûi = 0 and m̃min ≤ m+ û ≤ m̃max

(2)

where Ch is the piecewise constant space with respect to cells.
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The target in each cell is defined to be the difference between the mass in
the final configuration c̃i and the Lagrangian cell ci

uTi :=

∫
c̃i

ρh(x)dV −
∫
ci

ρh(x)dV ; i = 1, . . . , C (3)

for the following mean preserving linear density reconstruction

ρh(x)|ci = ρi + gi · (x− bi) (4)

where

gi ≈ ∇ρ and bi =

∫
ci
xdV

µi
. (5)

In practice, the approximation to the gradient of the density (g) is obtained by a
least-squares fit that employs the cell averaged density in neighboring cells. The
target mass increment is computed by integrating the density reconstruction
over the intersections of the old (Lagrangian) mesh with the new mesh. Rather
than computing exact intersections we use a swept region approximation [6, 7].

3 Extension of MVMT Transport to cubed sphere grid

The cubed sphere grid, originally introduced by Sadournay [8], consists of six
faces or panels of a cube that are projected onto the surface of a sphere. This
configuration avoids the pole singularity that plagues latitude/longitude grids
and is in increasing use among the climate community. To define the grid par-
tition we use an equiangular gnomonic projection where α, β ∈ [−π/4, π/4] are
central angles, which can be related to the local panel coordinates xp, yp by

xp = a tanα yp = a tanβ p = 1, ..., 6. (6)

The coefficient a is related to the radius of the sphere R as a = R/
√

3. A
plot of the six cube panels and an example cubed sphere grid are shown in
Figure 1. Mappings between latitude/longitude coordinates and the cubed sphere
coordinates can be found in [9].

Extension of the MVMT algorithm to a cubed-sphere grid requires modifica-
tions to the target computation, but does not in any way affect the definition of
the constraints or the optimization algorithm. This is one of the key advantages
of the optimization-based approach, which has been exploited in [?]

To compute the target mass increment the area integrals and linear den-
sity reconstruction must be reformulated for the cubed sphere curvilinear co-
ordinates. In the incremental remap approach the area integrals are generally
converted to line integrals via Green’s theorem. Using Green’s theorem with the
nonorthogonal curvilinear cubed sphere panel coordinates, the area integral over
a cell can be expressed as

µi =

∫
ci

dV = −
∫
∂ci

yp
rp(1 + x2p)

dxp , (7)
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Fig. 1. (a) The six cube panels. (b) A sample cubed-sphere grid with 10x10 elements
per panel.

The linear density reconstruction additionally requires barycenters of cells, which
can be similarly written as

bxi =
1

µi

∫
ci

xpdV = − 1

µi

∫
∂ci

xpyp
rp(1 + x2p)

dxp , (8)

and

byi =
1

µi

∫
ci

ypdV = − 1

µi

∫
∂ci

1

rp
dxp . (9)

Using these expressions, the mean preserving density reconstruction on the cubed
sphere grid for a position s on a panel p is

ρh(s)|ci = ρi + g
xp

i (xp − bxi) + g
yp

i (yp − byi). (10)

Once this density reconstruction is determined the MVMT algorithm as de-
scribed in [4, 7] can be applied.

4 Results

To test the formulation on the cubed sphere grid, two standard test cases for
transport on the sphere described in [10, 11] are used. In Example 1, we com-
pute the solid body rotation of a Gaussian distribution on the sphere to test the
convergence rate of the algorithm for the cubed sphere geometry. The tempo-
rally constant zonal flow field is given in terms of zonal (u) and meridional (v)
components of the velocity on a sphere with longitude (λ) and latitude (θ) as

u(λ, θ) = 2π (cos(θ) cos(α) + cos(λ) sin(θ) sin(α))

v(λ, θ) = 2π sin(λ) sin(α).
(11)

The rotation angle α provides the orientation of the flow. For this test α is
taken to be π/4, which is the most demanding orientation for the cubed-sphere
geometry because the density distribution is transported over four of the corners
of the cubed-sphere grid. The smooth Gaussian density distribution is initially
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centered at (λ1, θ1) = (3π/2, 0) and is defined in terms of three-dimensional
Cartesian coordinates (X,Y, Z) as

ρ(λ, θ) = exp(−5((X −X1)2 + (Y − Y1)2 + (Z − Z1)2) (12)

where X1 = cosλ1 cos θ1, Y1 = sinλ1 cos θ1, and Z1 = sin θ1.
Three grids are used with 30×30, 60×60, and 120×120 elements per panel

corresponding to resolutions of 3◦, 1.5◦, and 0.75◦ along the equator. Results
are computed using the incremental remapping approach discussed in Section 2
with the MVMT algorithm used for the remap step. For comparison results for
FCR are given. At the final time the density distribution returns to the initial
position, which allows for an error analysis. L1 errors are computed as in [11].

Solid-body translation on the sphere (timings and L1 error)

FCR MVMT FCR MVMT
mesh # steps time(sec) time(sec) L1 error rate L1 error rate

3◦ 240 18.1 17.6 1.33e-2 — 1.49e-2 —
1.5◦ 480 108.5 109.3 2.43e-3 2.45 2.65e-3 2.50
0.75◦ 960 816.5 811.0 5.17e-4 2.34 5.44e-4 2.39

Table 1. (1) Comparison of the computational costs of FCR and MVMT-a as mea-
sured by MatlabTM wall-clock times in seconds, on a single Intel Xeon X5450 3.0GHz
processor, for the slotted-cylinder translation test on the sphere. (2) Comparison of the
L1 errors with respect to the initial condition.

Timings as well as L1 errors and rates for the MVMT and FCR solutions
are given in Table 1. For this simple translation of a smooth density distribution
it is expected that MVMT and FCR perform similarly. Slightly better than
second-order convergence is seen for both methods and the absolute errors are
comparable. The computational costs of MVMT and FCR are virtually identical,
owing to the efficiency of the MVMT optimization scheme. Plots of the density
distribution at the initial time, at time t = 0.15 as the Gaussian hill is passing
over a cubed sphere corner, and at the final time t = 1 are shown in Figure 2.

Example 2 is more demanding with an initial density distribution consisting
of two notched cylinders with radius r = 1/2, height h = 1, and initial positions
(λ1, θ1) = (5π/6, 0) and (λ2, θ2) = (7π/6, 0). Given the great circle distance
between an arbitrary point (λ, θ) and a cylinder center (λi, θi)

ri(λ, θ) = arccos (sin θi sin θ + cos θi cos θ cos(λ− λi)) , (13)

the initial configuration of the notched cylinders may be expressed in latitude-
longitude coordinates as

ρ(λ, θ) =


h if ri < r and |λ− λi| ≥ r/6 for i = 1, 2
h if r1 < r and |λ− λ0| < r/6 and θ − θ0 < −5r/12
h if r2 < r and |λ− λ1| < r/6 and θ − θ1 > 5r/12
0 otherwise.
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Initial FCR t = 0.15 FCR t = 1

MVMT t = 0.15 MVMT t = 1

Fig. 2. Transport results for the solid-body rotation test on the sphere at the time
the center of the density distribution passes over a cubed sphere corner (t=0.15) and
at the final time (t=1) after one revolution (960 time steps) on a mesh with 120x120
elements per panel. The rotation angle of π/4 determines the trajectory shown on the
plots as a white dashed line.

The cylinders are transported in the following deformation flow field with super-
imposed rotation

u(λ, θ, t) = 2 sin2(λ− 2πt/T ) sin(2θ) cos(πt/T ) + 2π cos(θ)/T

v(λ, θ, t) = 2 sin
(
2(λ− 2πt/T )

)
cos(θ) cos(πt/T )

(14)

where the period T is set to 5.
Timings as well as L1 errors and rates for the MVMT and FCR solutions

are given in Table 2 and plots of the density distribution at the initial time, at
a time of maximum deformation t = 2.5 and a final time t = 5 are shown in
Figure 3. Second-order convergence is not seen for either method in this case due
to the discontinuous density field, but the errors and convergence rates appear
comparable. Note, however that the FCR solution has a minimum value of -
0.0639 and a maximum value of 1.075, while the MVMT solution remains within
the physical bounds [0, 1]. If the number of time steps is decreased to 1650, which
corresponds to a maximum Courant-Friedrichs-Lewy (CFL) number of 0.985,
the FCR solution blows up, but the MVMT solution still remains monotone and
appears reasonable visually (Figure 4).

5 Conclusion

A computationally efficient optimization-based transport algorithm detailed in
[4, 7] has been modified for the cubed sphere geometry. The resulting formula-
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Deformational transport on the sphere (timings and L1 error)

FCR MVMT FCR MVMT
mesh # steps time(sec) time(sec) L1 error rate L1 error rate

3◦ 600 45.9 45.0 9.38e-1 — 9.54e-1 —
1.5◦ 1200 274.1 277.5 6.17e-1 0.60 6.53e-1 0.55
0.75◦ 2400 2081.0 2071.5 4.16e-1 0.59 4.45e-1 0.55

Table 2. (1) Comparison of the computational costs of FCR and MVMT as measured
by MatlabTM wall-clock times in seconds, on a single Intel Xeon X5450 3.0GHz pro-
cessor, for the nondivergent deformational velocity test on the sphere. (2) Comparison
of the L1 errors with respect to the initial condition.

Initial FCR t = 2.5 FCR t = 5

MVMT t = 2.5 MVMT t = 5

Fig. 3. Transport results for the nondivergent deformational flow test on the sphere,
shown at the time of maximum deformation (t = 2.5) and at the final time (t = 5) for
a total of 2400 time steps on a mesh with 120x120 elements per panel.

tion has been tested on two standard transport cases for the sphere [12]. The
optimization-based transport is shown to be computationally competitive with
an algorithm based on flux-corrected remap and to exhibit similar errors for the
simplest test case. For the more challenging test case MVMT maintains positiv-
ity and is more robust for larger time steps.
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