
1

TITLE:
Graph Partitioning

BYLINE:
Bruce Hendrickson
Computer Science and Mathematics Group
Sandia National Laboratories1

Department of Computer Science
University of New Mexico
bahendr@sandia.gov

DEFINITION:
Graph partitioning is a technique for dividing work amongst processors to make

effective use of a parallel computer.

DISCUSSION:
When considering the data dependencies in a parallel application, it is very conve-

nient to use concepts from graph theory. A graph consists of a set of entities called
vertices, and a set of pairs of entities called edges. The entities of interest in parallel
computing are small units of computation that will be performed on a single processor.
They might be the work performed to update the state of a single atom in a molecular
dynamics simulation, or the work required to compute the contribution of a single row of
a matrix to a matrix-vector multiplication. Each such work unit will be a vertex in the
graph which describes the computation. If two units have a data dependence between
them (that is, the output of one computation is required as input to the other), then
there will be an edge in the graph that joins the two corresponding vertices.

For a computation to perform efficiently on a parallel machine each of the P pro-
cessors needs to have about the same amount of work to perform, and the amount of
inter-processor communication must be small. These two conditions can be viewed in
terms of the computational graph. The vertices of the graph (signifying units of work)
need to be divided into P sets with about the same number of vertices in each. Addi-
tionally, the number of edges that connect vertices in two different sets needs to be kept
small since these will reflect the need for interprocessor communication. This problem
is known as graph partitioning and is an important approach to the parallelization of
many applications.

More generally, the vertices of the graph can have weights associated with them,
reflecting different amounts of computation, and the edges can also have weights cor-
responding to different quantities of communication. The graph partitioning problem
involves dividing the set of vertices into P sets with about the same amount of total ver-
tex weight, while keeping small the total weight of edges that cross between partitions.
This problem is known to be NP-hard, but a number of heuristics have been devised

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the US Department of Energy under contract DE-AC04-94AL85000.

SAND2010-5486J



2

that have proven to be effective for many parallel computing applications. Several soft-
ware tools have been developed for this problem, and they are an important piece of the
parallel computing ecosystem. Important algorithms and tools are discussed below.

1 Parallel computing applications of graph parti-

tioning

Graph partitioning is a useful technique for parallelizing many scientific applications. It
is appropriate when the calculation consists of a series of steps in which the computa-
tional structure and data dependencies don’t vary much. Under such circumstances the
expense of partitioning is rewarded by improved parallel performance for many compu-
tational steps.

The partitioning model is most applicable for bulk synchronous parallel applications
in which each step consists of local computation followed by a global data exchange.
Fortunately, many if not most scientific applications exhibit this basic structure. Particle
simulations are one such important class of applications. The particles could be atoms
in a material science or biological simulation, stars in a simulation of galaxy formation,
or units of charge in an electromagnetic application.

But by far the most common uses of graph partitioning involve computational meshes
for the solution of differential equations. Finite volume, finite difference, and finite
element methods all involve the decomposition of a complex geometry into simple shapes
that interact only with near neighbors. Various graphs can be constructed from the
mesh and a partition of the graph identifies subregions to be assigned to processors. The
numerical methods associated with such approaches are often very amenable to the graph
partitioning approach. These ideas have been used to solve problems from many areas of
computational science including fluid flow, structural mechanics, electromagnetics, and
many more.

2 Graph partitioning algorithms for parallel com-

puting

A wide variety of graph partitioning algorithms have been proposed for parallel com-
puting applications. Here we review some of the more important approaches.

Geometric partitioning algorithms are very fast techniques for partitioning sets
of entities that have an underlying geometry. For parallel computing applications involv-
ing simulations of physical phenomena in two or three dimensions, the corresponding
data structures typically have geometric coordinates associated with each entity. Ex-
amples include molecules in atomistic simulations, masses in gravitational models, or
mesh points in a finite element method. Recursive coordinate partitioning is a method
in which the elements are recursively divided by planar cuts that are orthogonal to one
of the axes [1]. This has the advantage of producing geometrically simple subdomains -



3

just rectangular parallelepipeds. Recursive inertial bisection also uses planar cuts, but
instead of being orthogonal to an axis, they are orthogonal to the direction of greatest
inertia [9]. Intuitively, this is a direction in which the point set is elongated, so cutting
perpendicular to this direction is likely to produce a smaller cut. Yet another alternative
is to cut with circles or spheres instead of planes [8]. Geometric methods tend to be
very fast, but produce low quality partitions. They can be improved via local refinement
methods like the approach of Fiduccia-Mattheyses discussed below.

A quite different set of approaches uses eigenvectors of a matrix associated with the
graph. The most popular method in this class uses the second smallest eigenvector of the
Laplacian matrix of the graph [9]. A justification for this approach is beyond the scope
of this article, but spectral methods generally produce partitions of fairly high quality.
In a global sense, they find attractive regions for cutting a graph, but they are often
poor in the fine details. This can be rectified by the application of a local refinement
method. The main drawback of spectral methods is their high computational cost.

Local refinement methods are epitomized by the approach proposed by Fiduccia
and Mattheyses [5] (FM). This method works by iteratively moving vertices between
partitions in a manner that maximally reduces the size of the set of cut edges. Moves
are considered even if they make the cut size larger since they may enable subsequent
moves that lead to even better partitions. Thus, this method has a limited ability
to escape from local minima to search for even better solutions. The key advance
underlying FM is the use of clever data structures that allow all the moves and their
consequences to be explored and updated efficiently. The FM algorithm is quite fast, and
consistently improves results generated by other approaches. But since it only explores
sets of partitions that are not far from the initial one, it is generally limited to making
small changes and will not find better partitions that are quite different.

The most widely used class of graph partitioning techniques are multilevel algorithms
as they provide a good balance between speed and quality. They were independently
invented by several research groups more or less simultaneously [2, 7, 4]. Multilevel
algorithms work by applying a local refinement method like FM at multiple scales.
This largely overcomes the myopia that limits the effectiveness of local methods. This
is accomplished by constructing a series of smaller and smaller graphs that roughly
approximate the original graph. The most common way to do this is to merge small
clusters of vertices within the original graph (e.g. combine two vertices sharing an edge
into a single vertex). Once this series of graphs is constructed, the smallest graph is
partitioned using any global method. Then the partition is refined locally and extended
to the next larger graph. The refinement/extension process is repeated on larger and
larger graphs until a partitioning of the original graph has been produced.

A number of general purpose global optimization approaches have been proposed for
graph partitioning including simulated annealing, genetic algorithms, and tabu search.
These methods can produce high quality partitions but are usually very expensive and
so are limited to niche applications within parallel computing.

A variety of open source graph partitioning tools have been developed in serial or
parallel including Chaco, METIS, Jostle, and Scotch. Several of these are discussed in



4

companion articles below.

3 Limitations of graph partitioning

Although widely used to enable the parallelization of scientific applications, graph parti-
tioning is an imperfect abstraction. For a parallel application to perform well, the work
must be evenly distributed among processors and the cost of interprocessor communi-
cation must be minimized. Graph partition provides only a crude approximation for
achieving these objectives.

In the graph partitioning model, each vertex is assigned a weight that is supposed to
represent the time required to perform a piece of computation. On modern processors
with complex memory hierarchies it is very difficult to accurately predict the runtime
of a piece of code a priori. Cache performance can dominate runtime, and this is very
hard to predict in advance. So the weights assigned to vertices in the graph partitioning
model are just rough approximations.

An even more significant shortcoming of graph partitioning has to do with commu-
nication. For most applications, a vertex has data that needs to be known by all of its
neighbors. If two of those neighbors are owned by the same processor, then that data
need only be communicated once. In the graph partitioning model, two edges would be
cut and so the actual volume of communication would be over-counted. Several alter-
natives to standard graph partitioning have been proposed to address this problem. In
one approach, the number of vertices with off-processor neighbors is counted instead of
the number of edges cut. A more powerful and elegant alternative uses hypergraphs and
is sketched below.

Yet another deficiency in graph partitioning is that it emphasizes the total volume of
communication. In many practical situations, latency is the performance limiting factor,
so it is the number of messages that matters most, not the size of messages.

As discussed above, graph partitioning is most appropriate for bulk synchronous ap-
plications. If the calculation involves complex interleaving of computations with commu-
nication or partial synchronizations then graph partitioning is less useful. An important
application with this character is the factorization of a sparse matrix.

Finally, graph partitioning is only appropriate for applications in which the work
and communication pattern are predictable and stable. This happens to be the case for
many important scientific computing kernels, but there are other applications that do
not fit this model.

4 Hypergraph partitioning

A hypergraph is a generalization of a graph. Whereas a graph edge connects exactly
two vertices, a hyperedge can connect any subset of vertices. This seemingly simple
generalization leads to improved and more general partitioning models for parallel com-
puting [3].



5

Consider a graph in which vertices represent computation and an edges represent
data dependencies. For each vertex, replace all the edges connected to it with a single
hyperedge that joins the vertex and all of its neighbors. When the vertices are parti-
tioned, if a particular vertex is separated from any of its neighbors, the corresponding
hyperedge will be cut. For the common situation in which the vertex needs to commu-
nicate the same information to all of its neighbors, this single hyperedge will reflect the
amount of data that needs to be shared with another processor. Thus, the number of cut
hyperedges (or more generally the total weight of cut hyperedges) correctly captures the
total volume of communication induced by a partitioning. In this way, the hypergraph
model resolves an important shortcoming of standard graph partitioning.

Hypergraphs also address a second deficiency of the graph model. If the commu-
nication is not symmetric (e.g. vertex i needs to send data to j, but j does not need
to send data to i), then the graph model has difficulty capturing the communication
requirements. The hypergraph model does not have this problem. A hyperedge simply
spans a vertex i and every other vertex that i needs to send data to. There is no implicit
assumption of symmetry in the construction of the hypergraph model.

Graph and hypergraph partitioning models, algorithms, and software continue to be
active areas of research in parallel computing.

RELATED ENTRIES: Distributed Memory Load Balancing, Hypergraph Partition-
ing, Chaco, METIS and ParMETIS

BIBLIOGRAPHIC NOTES AND FURTHER READING: Graph partitioning
is a well studied problem in theoretical computer science and is known to be difficult
to solve optimally. For parallel computing, the challenge is to find algorithms that are
effective in practice. Algebraic methods like Laplacian partitioning [9] are an important
class of techniques, but can be expensive. Local refinement techniques like FM are also
important [5], but get caught in local optima. Multilevel methods seem to offer the best
trade off between cost and performance [2, 7, 4].

Hypergraph partitioning provides an important alternative to graph partition in
many instances [3]. A survey of different partitioning models can be found in the paper
by Hendrickson and Kolda [6].

Several good codes for graph partitioning are available on the internet including
Chaco, METIS, PATOH and Scotch.

BIBLIOGRAPHY:

References

[1] M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems
on multiprocessors. IEEE Trans. Computers, C-36(5):570–580, 1987.



6

[2] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization. In
Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445–452.
SIAM, 1993.

[3] Ü. Çatalyürek and C. Aykanat. Decomposing irregularly sparse matrices for parallel
matrix-vector multiplication. In Lecture Notes in Computer Science 1117, pages
75–86. Springer-Verlag, 1996. Proc. Irregular’96.

[4] J. Cong and M. L. Smith. A parallel bottom-up clustering algorithm with appli-
cations to circuit partitioning in VLSI design. In Proc. 30th Annual ACM/IEEE
International Design Automation Conf., DAC ’93., pages 755–760. ACM, 1993.

[5] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network
partitions. In Proc. 19th ACM/IEEE Design Automation Conference, pages 175–181,
Las Vegas, NV, June 1982. ACM/IEEE.

[6] B. Hendrickson and T. Kolda. Graph partitioning models for parallel computing.
Parallel Comput., 26:1519–1534, 2000.

[7] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In
Proc. Supercomputing ’95. ACM, December 1995. Previous version published as
Sandia Technical Report SAND93–1301.

[8] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric approach to graph
separators. In Proc. 32nd Symp. Foundations of Computer Science, pages 538–547.
IEEE, October 1991.

[9] H. D. Simon. Partitioning of unstructured problems for parallel processing. In
Proc. Conference on Parallel Methods on Large Scale Structural Analysis and Physics
Applications. Pergammon Press, 1991.


