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Abstract
Today’s largest High Performance Computing (HPC) systems ex-
ceed one Petaflops (1015 floating point operations per second) and
exascale systems are projected within seven years. But reliability
is becoming one of the major challenges faced by exascale com-
puting. With billion-core parallelism, the mean time to failure is
projected to be in the range of minutes or hours instead of days.
Failures are becoming the norm rather than the exception during
execution of HPC applications.

Current fault tolerance techniques in HPC focus on reactive
ways to mitigate faults, namely via checkpoint and restart (C/R).
Apart from storage overheads, C/R-based fault recovery comes at
an additional cost in terms of application performance because
normal execution is disrupted when checkpoints are taken. Studies
have shown that applications running at a large scale spend more
than 50% of their total time saving checkpoints, restartingand
redoing lost work.

Redundancy is another fault tolerance technique, which em-
ploys redundant processes performing the same task. If a process
fails, a replica of it can take over its execution. Thus, redundant
copies can decrease the overall failure rate. The downside of redun-
dancy is that extra resources are required and there is an additional
overhead on communication and synchronization.

This work contributes a model and analyzes the benefit of C/R
in coordination with redundancy at different degrees to minimize
the total wallclock time and resources utilization of HPC applica-
tions. We further conduct experiments with an implementation of
redundancy within the MPI layer on a cluster. Our experimental
results confirm the benefit of partial, dual and triple redundancy
and show a close fit to the model. We show that combined C/R
and redundancy results in shorter overall execution time even for
medium-sized HPC applications with 4,000 processes and partial
redundancy (a replica for every other process). At 60,000 pro-
cesses, dual redundancy requires twice the number of processing
resources for an application but allows two jobs of 128 hourswall-
clock time to finish within the time of just one job without re-
dundancy. For other configurations, partial redundancy results in
the lowest time. Partial redundancy further allows one to trade-off
additional resource requirements for redundancy against wallclock
time, which provides a tuning knob for users to adapt to resource
availabilities.

1. Introduction
Today’s HPC systems are commonly utilized by long-running
application jobs that employ MPI message passing as an exe-
cution model [16, 35]. Yet, application execution may be inter-
rupted by faults. For large-scale HPC, faults have become the norm
rather than the exception for parallel computation on clusters with
10s/100s of thousands of cores. Past reports attribute the causes
to hardware (I/O, memory, processor, power supply, switch failure
etc.) as well as software (operating system, runtime, unscheduled
maintenance interruption). In fact, recent work indicatesthat (i)
servers tend to crash twice a year (2-4% failure rate) [32], (ii) 1-
5% of disk drives die per year [27] and (iii) DRAM errors occur
in 2% of all DIMMs per year [32], which is more frequent than
commonly believed.

Even for small systems, such causes result in fairly low mean-
time-between-failures/interrupts (MTBF/I) as depicted in Table 1,
and the 6.9 hours estimated by Livermore National Lab for its

System # CPUs MTBF/I

ASCI Q 8,192 6.5 hrs
ASCI White 8,192 5/40 hrs (’01/’03)

PSC Lemieux 3,016 9.7 hrs
Google 15,000 20 reboots/day

ASC BG/L 212,992 6.9 hrs (LLNL est.)

Table 1. Reliability of HPC Clusters [17]
BlueGene confirms this. In response, long-running applications on
HEC installations are required to support the checkpoint/restart
(C/R) paradigm to react to faults. This is particularly critical for
large-scale jobs: As the core count increases, so does the overhead
for C/R, and it does so at an exponential rate. This does not come
as a surprise as any single component failure suffices to interrupt
a job. As we add system components (such as cores, memory and
disks), the probability of failure combinatorially explodes.

For example, a study from 2005 by Los Alamos National Labo-
ratory estimates the MTBF, extrapolating from current system per-
formance [26], to be 1.25 hours on a Petaflop machine. The wall-
clock time of a 100-hour job in such as system was estimated to
increase to 251 hours due to the C/R overhead implying that 60%
of cycles are spent on C/R alone, as reported in the same study.
More recent investigations [7, 8] revealed that C/R efficiency, i.e.,
the ratio of useful vs. scheduled machine time, can be as highas
85% and as low as 55% on current-generation HEC systems.

# Nodes work checkpt recomp. restart
100 96% 1% 3% 0%

1,000 92% 7% 1% 0%
10,000 75% 15% 6% 4%

100,000 35% 20% 10% 35%

Table 2. 168-hour Job, 5 year MTBF
A study by Sandia National Lab from 2009 [14] shows rapidly

decaying useful work for increasing node counts (see Table 2).
Only 35% of the work is due to computation for a 168 hour job on
100k nodes with a MTBF of 5 years while the remainder is spent
on checkpointing, restarting and then partial recomputation of the
work lost since the last checkpoint. Table 3 shows that for longer-
running jobs or shorter MTBF (closer to the ones reported above),
useful work becomesinsignificantas most of the time is spent on
restarts. job work MTBF work checkpt recomp. restart

168 hrs 5 yrs 35% 20% 10% 35%
700 hrs 5 yrs 38% 18% 9% 43%

5,000 hrs 1 yr 5% 5% 5% 85%

Table 3. 100k Node Job, varied MTBF

The most important finding of the Sandia study is thatredun-
dancy in computing can significantly revert this picture. By
doubling up the compute nodes so that every node N has a shadow
node N’, a failure of primary node N no longer stalls progressas the
shadow node N’ can take over its responsibilities. Their prototype,
rMPI, provides dual redundancy [14]. Andredundancy scales: As
more nodes are added to the system, the probability for simultane-
ous failure of a primary Nand its shadow rapidly decreases. This
is due to the fact that only one node of the remaining n-1 nodesaf-
ter a failure represents the shadow node, and only failing this node
causes the job to fail — and choosing just that shadow node be-
comes less likely as the number of nodes increases (see the “birth-
day problem” in Section 4 for details). Of the above overheads, the
recompute and restart overheads can be nearly eliminated (to about



1%) with only the checkpointing overhead remaining — at the cost
of having to deploy twice the number of nodes (200,000 nodes in
Table 3) and up to four times the number of messages [14]. But
once restart and rework overheads exceed 50%, redundancy isac-
tually cheaperthan traditional C/R at large core counts.

In summary, redundancy cuts down the failure rate of the MPI
application, which result in less overhead for checkpointing and
repeated execution. The downside is that additional computing
resources are required depending on the degree of redundancy, i.e,
dual (2x), triple (3x) or some partial level of redundancy (1.5x,
2.5x). There is also an increase in the total execution time due to
redundant communication.

Contributions: In this work, we try to answer following ques-
tions: (1) Is it advantageous to use both C/R and redundancy at the
same time to improve performance or job throughput? (2) What
are the optimal values for the (partial) degree of redundancy and
checkpoint interval to achieve the best performance?

HPC users, depending on their needs, may have different goals.
The primary goal of the user may be to complete application ex-
ecution in the smallest amount of time. Other users may want to
execute their application with least number of required resources.
A user may also create a cost function giving different weights to
execution time and number of resources used.

We derive a mathematical model to analyze the effect of using
both redundancy and checkpointing on the execution time of the
application. Using this model, we identify the best configuration
to optimize the cost of executing the application. Our results not
only show benefits due to redundancy for large-scale clusters, they
also provide a model to fine-tune application needs: Given a set of
spare nodes, a HPC job can exploit partial redundancy where only
some nodes are replicated. This delimits the resource requirements
of redundancy at a lower reliability level. Thus, partial redundancy
presents a knob to trade off cost vs. benefit.

2. Background
A widely researched topic in HPC is to mitigate the effects offaults
occurring during the execution of an application. Individual faults
are generally classified into permanent, transient, and intermittent
[1]. A permanent fault is a fault that continues to exist until it is
repaired. A transient fault is a fault that occurs for a finitetime and
disappears at an unknown frequency. Intermittent faults occur and
disappear at a known frequency.

A parallel HPC system is composed of a number of system
components with processes that cooperate to solve a single job. The
system components (nodes) are coupled via communication sothat
failure of one process can lead to failure of the entire job. Process
failure is often classified into one of the following categories [10]:

(1) Fail-stop failure: when the process completely stops, e.g.,
due to system crash. (2) Omission failure: if a process failsto
send or receive messages correctly. (3) Byzantine failure:when a
process continues operating but propagates erroneous messages or
data. Byzantine failures are usually caused by soft errors resulting
from radiation.

In this work, we focus on the issues emanating from fail-stop
process failures. Detection and correction of Byzantine errors using
software redundancy and voting are beyond the scope of this paper.

Fault tolerance uses protective techniques to provide a resilient
computing environment in the presence of failures. These tech-
niques can be broadly classified into Algorithm-Based FaultTol-
erance (ABFT), message logging, checkpoint/restart and replica-
tion/redundancy. ABFT requires special algorithms that are able to
adapt to and recover from process loss due to faults [19]. ABFT is
achieved by techniques such as data encoding and algorithm re-
design. MPI-based ABFT applications require resilient message
passing. E.g., FT-MPI [12] continues the MPI task even if some

processes are lost. Applications that follow a master/slave program-
ming paradigm can be easily adapted to ABFT applications [22].

Message logging techniques record message events in a log that
can be replayed to recover a failed process from its intermediate
state. All message logging techniques require the application to
adhere to the piecewise deterministic assumption that states that
the state of a process is determined by its initial state and by the
sequence of messages delivered to it [30].

Checkpoint/restart (C/R) techniques involve taking snapshots of
the application during failure-free operation in a synchronous fash-
ion and storing them to stable storage. Upon failure, an application
is restarted from the last successful checkpoint. Stable storage is an
abstraction for some storage devices that ensure that the recovery
data persists through failures.

Checkpoint Restart: The C/R service supported by MPI run-
time environments utilizes a single-process checkpoint service
specified by the user as a plug-in facility. Depending upon the
transparency with regard to the application program, single-process
checkpoint techniques can be classified as application level, user
level or system level.Application-levelcheckpoint services inter-
act directly with the application to capture the state of theprogram
[33]. User-levelcheckpoint services are implemented in user space
but are transparent to the user application. This is achieved by
virtualizing all system calls to the kernel, without being tied to a
particular kernel [24].System-levelcheckpointing services are ei-
ther implemented inside the kernel or as a kernel module [9].The
checkpoint images in system-level checkpointing are not portable
across different kernels. for our experiments, we used Berkeley Lab
Checkpoint Restart (BLCR) [9], a system-level checkpoint service
implemented as a Linux kernel module.

The state of a distributed application is composed of states
of each individual process and all the communication channels.
Checkpoint coordination protocols ensure that the states of the
communication channels are consistent across all the processes
to create a recoverable state of the distributed application. These
protocol events are triggered before the individual process check-
points are taken. A distributed snapshot algorithm [4], also com-
monly known as Chandy-Lamport algorithm, is one of the widely
used coordination protocols. This protocol requires everyprocess
to wait for marker tokens from every other process. After a process
receives tokens from every other process, it indicates thatthe com-
munication channel between the process and every other process
is consistent. At this point, this process can be checkpointed. The
checkpoint coordination protocol implemented in OpenMPI [20]
is an all-to-all bookmark exchange protocol. Processes exchange
message totals between all peers and wait until the totals equalize.
The Point-to-point Management Layer (PML) in OpenMPI tracks
all messages moving in and out of the point-to-point stack.

As expected, the C/R techniques come at an additional cost
since performing checkpoints interrupts the normal execution of
the application processes. Additional overhead is incurred due to
sharing of processors, I/O storage, network resources, etc. When
assessing the cost of C/R fault tolerance techniques, we must con-
sider the effect on both the application and the system. Checkpoint
overhead accounts for the increase in execution of the application
due to the introduction of a checkpoint operation [28, 34]. Check-
point latency is the time required to create and establish a check-
point to a stable storage. Various optimization techniqueshave been
studied to improve both forms of overhead as described below.

Forked checkpointingforks a child process before the check-
point operation is performed [5, 33]. The image of the child process
is taken, while the parent process resumes execution. Afterward,
the pages that have changed since the fork are captured from the
parent process, thereby reducing the checkpoint overhead.



(a) Redundancy (b) Partial Redundancy

Figure 1. Blocking Point to Point Communication
Checkpoint compressionis a method for reducing the check-

point latency by reducing the size of process images before writing
them to stable storage [23, 33].Memory exclusionskips temporary
or unused buffers to improve checkpoint latency [29]. This is done
by providing an interface to the application to specify regions of
memory that can be safely excluded from the checkpoint [2].In-
cremental checkpointingreduces the checkpoint latency by saving
only the changes made by the application from the last checkpoint.
These techniques commonly rely on hardware paging support,e.g.,
the modified or dirty bit of the MMU [15, 18]. During recovery,in-
cremental checkpoints are combined with the last full one tocreate
a complete process image.

Redundancy:To decrease the failure rate for large-scale appli-
cations, redundancy can be employed at the process level [14, 21].
Multiple copies (or replicas) of a process run simultaneously, so
that if a process stops performing its desired function, a replica of
the process can take over its computation. Thus, a distributed ap-
plication can sustain failure of a process if redundant copies are
available. An active node and its redundant partners form a node
sphere that is considered to fail if all the nodes in the sphere be-
come non-functional. Overall, redundancy increases the mean time
between failures (MTBF). This allows us to checkpoint less fre-
quently while retaining the same resiliency level.

rMPI [14] developed at Sandia National Laboratories is a user-
level library that allows MPI applications to transparently use re-
dundant processes. MR-MPI [11] is a modulo-redundant MPI so-
lution for transparently executing HPC applications in a redundant
fashion that uses the PMPI layer of MPI. VolpexMPI [21] is a MPI
library implemented from scratch that supports redundancyinter-
nally with the objective to convert idle PCs into virtual clusters for
executing parallel applications. In Volpex MPI, communication fol-
lows the pull model; the sending processes buffer data objects lo-
cally and receiving process contact one of the replicas of the send-
ing process to get the data object. RedMPI is another user-level li-
brary that uses the PMPI layer to implement wrappers around MPI
calls and provide transparent redundancy capabilities. RedMPI is
capable of detecting corrupt messages from MPI processes that be-
come faulted during execution. With triple redundancy, it can vote
out the corrupt message and thereby provide the error-free message
to the application. The library operates in one of the two modes:
All-to-all mode or Msg-PlusHash mode. In All-to-all mode, com-
plete MPI messages are sent from each replica process of the sender
and received by each replica of the receiver process. In contrast,
one complete MPI message from a sender replica and a hash of the
message from another replica is received by the receiver process
in Msg-PlusHash mode. We used the RedMPI redundancy library
with its All-to-all mode in this work for experiments.

3. Design
The RedMPI library is positioned between the MPI application and
the standard MPI library (e.g., OpenMPI, MPICH2). It is imple-
mented inside the profiling layer of MPI and intercepts all the MPI
library calls made by the application. No change is needed inthe
application source code. The redundancy module is activated by
MPI Init(), which divides the MPICOMM WORLD communica-
tor into active and redundant nodes.

To maintain synchronization between the redundant processes,
each replica should receive exactly the same messages in the
same order. This is performed by sending/receiving MPI messages
to/from all the replicas of the receiver/sender process.

Consider the scenario shown in Figure 1(a), where A sends
a message via MPISend() to process B while Process B issues
a blocking receive operation via MPIRecv(). Process A has 2
replicas, A and A’, similarly process B has 2 replicas, B and B’.
Corresponding to this send operation, process A performs a non-
blocking send to each of the replicas of the destination process, B
and B’. Only after both these sends have been completed is thesend
performed by the application considered complete. The redundant
partner of A, A’, performs exactly the same operations.

At the receiver side, process B posts two receive calls, one
receive from A and other from A’. In the general case, a process
posts receives from all redundant partners of the sender processes
that are alive. The RedMPI library allocates additional buffers
for receiving redundant copies. When all receives are complete,
the message from one of the buffers is copied to the application-
specified buffer before returning control to the application.

Figure 1(b) depicts the sequence of steps that take place when
partial redundancy is employed. Here, process A has two replicas
while process B has just one. Hence, process B receives two mes-
sages via two MPIRecv() calls. On the other hand, processes A
and A’ send just one message each to the single copy of processB.

Special consideration is required for wildcard receives (MPI ANY SOURCE).
Since a message sent from any process can complete a wildcardre-
ceive request, we have to make sure that all the replicas of the
process get the message from the same “virtual” sender. To ensure
this, RedMPI performs the following steps:

(1) On the receiving node B, only one receive operation with tag
MPI ANY SOURCE is posted.

(2) When this call completes, the receiver information is deter-
mined and is sent to node B’ (if it exists). Also, another receive is
posted to determine the message from the remaining replicasof the
sender process.

(3) Node B’ uses this envelope information to post a specific
receive call to obtain the redundant message from the node that
sent the first message to B.



The MPI specification requires that non-blocking MPI calls re-
turn a handle to the caller for tracking the status of the correspond-
ing communication. When redundancy is employed, corresponding
to a non-blocking MPI call posted by the application, multiple non-
blocking MPI calls are posted for each replica of the peer process.
RedMPI maintains the set of request handles returned by all the
non-blocking MPI calls. A request handle that acts as an identifier
to this set is returned to the user application. When the application,
at a later point, issues a call to MPIWait(), RedMPI waits on all
the requests belonging to the set before returning from the call.
4. Mathematical Analysis
We make the following assumptions in our model about the exe-
cution environment: (1) Studies [31] have shown that the failure
rate of a system grows proportional to the number of sockets in the
system. Researchers usually consider a socket as a unit of failure
and refer to the number of sockets when measuring system reli-
ability. But for simplicity and to abstract away machine specific
details from the discussion, we refer tonodesin this work. Here,
a node refers to an execution unit that fails independently. Most
commonly, the termnodeis used interchangeably withsocket. (2)
Each process of the parallel application is allotted a separate node.
Spare resources are used for performing redundant computation.
This means that if an application runningN processes moves to 2x
redundancy, it now utilizes2N processes on twice the number of
nodes. This assumption guarantees that redundancy does notslow
down the computation of the application. (3) Node failures follow
a Poisson process. The interval between failures is given byan ex-
ponential distribution. (4) The failure model is that of fail-stop be-
havior. This is the most frequent failure type in practice that can
be detected via timeout-based monitoring. Other failure models are
beyond the scope. (5) Spare nodes are readily available to replace to
failed node. This gives an implied assumption that failurescan oc-
cur anytime between the start and the end of application execution,
i.e., failures can occur even when a checkpoint is taken or when the
application is restarted after a failure.

4.1 Degree of Redundancy and Reliability

When redundancy is employed, each participating application pro-
cess is a sphere of replica processes that perform exactly the same
task. The replicas coordinate with each other so that another copy
can readily continue their task after failure of a copy. The set
(sphere) of replica processes, performing the same task andhidden
from each other at the application level, is called a virtualprocess.
The processes inside a sphere are called “physical processes”.

Here, we present a qualitative model of the effect of redundancy
on reliability of the system. Reliability of a system is defined as the
probability that the given system will perform its requiredfunction
under specified conditions for a specified period of time.

The analysis that follows applies not only to MPI-based appli-
cations but to any parallel applications where failure of one or more
participating processes cause failure of the entire application.

Consider such a parallel application with the following parame-
ters:

N : number of virtual processes involved in the parallel applica-
tion;

M : number of virtual messages within the parallel application;
r: redundancy degree (number of physical processes per virtual

process);
N × r: total number of physical processes;
t: base execution time of the application;
θ: Mean Time to Failure (MTBF) of each node.
(1) As discussed before, due to the overhead of redundancy, the

time taken by the application due to redundancy is greater than the
base execution time. The overhead depends on many factors, in-
cluding communication to computation ratio of the application, de-

gree of redundancy, placement of replicas and relative speed of the
replica processes. It is very difficult to construct an exactformula
to represent the overhead in terms of the degree of replication. In
the analysis developed here, we consider overhead due to redun-
dant communication but ignore overheads caused by other factors,
such as redundant I/O (which is not supported by RedMPI and not
triggered in experiments).

Let α be the communication/computation ratio of the appli-
cation. Hence,(1 − α) is the fraction of the original time t re-
quired for computation. This time remains the same with redun-
dancy since only communication is affected by redundancy. The
remaining time, namelyα · t, is the time required for communica-
tion, which is affected by redundancy.

All collective communications in MPI are based on point-to-
point MPI messages (except when hardware collectives are used).
The redundancy library interposes the point-to-point calls and
sends/receives to/from each copy of the virtual process. Thus, each
point-to-point MPI call is translated intor point-to-point MPI calls
per physical process, wherer is the redundancy level (e.g., 2 or 3).

Hence, the total number of point-to-point MPI calls per process
with redundancy isr times the number of MPI point-to-point calls
per process in plain (non-redundant) execution. This implies that
the total communication time with redundancy isr ·α · t. The total
execution time with redundancy can then be expressed as

tRed = (1− α)t+ αtr. (1)

(2) As per the assumption, the arrival of failures for each node
follows a Poisson process. Hence, reliability of a physicalprocess,
which is the probability that the process survives for time t, is
R(t) = e−t/θ. Whenθ is large, it can be approximated asR(t) =
1 − t/θ. Hence, the probability that a node survives for the entire
duration tRed of application execution isP (Survival) = 1 −

tRed/θ. Using this result, the probability of failure of a node over
the time periodtRed isP (Failure) = 1−(1−tRed/θ) = tRed/θ.

(3) Each virtual process has r physical processes, implyingthe
following relation:
Reliability of a virtual process

= P(at least one physical process survives)
= 1 - P(all physical processes fail)
= 1− (tRed/θ)

r.
(4) Since failure of one or more virtual processes will make the

entire application fail, all N virtual processes need to survive until
the end. Thus, the reliability of the entire system is:
Rsys = P(all virtual nodes survive until the end)

= [1− (tRed/θ)
r]N .

(5) Reliability can be written in terms of failure rate (λ) as
R(t) = e−λt. Using the above equation, the failure rate of the
system can be obtained asλsys = −log(Rsys)/tRed or:

λsys = −N
log[1− ( tRed

θ
)r]

tRed
(2)

Figure 2 shows how varying r (the degree of redundancy)
changes the reliability of the entire system, given the indicated
sample input parameters,

4.2 Effect of Checkpointing on Execution Time

Checkpointing does not affect the reliability of the system, i.e., it
does not improve the mean time between failures, but it avoids the
need to restart the process from the beginning by capturing the state
of the application at an intermediate execution state.

As discussed earlier, performing checkpoints comes at a cost.
Each checkpoint taken has certain overheads depending on various
parameters including the number of parallel tasks, time taken to
synchronize the processes and time taken to store checkpoints to
stable storage. The minimum number of checkpoints should be
performed so as to reduce these overheads.
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Figure 2. Effect of Redundancy on Reliability
Another consideration while choosing a checkpoint interval is

that it determines the average time for repeated execution after a
failure. The greater the checkpoint interval, the more rework needs
to be performed after a failure to return the application to the state
at which a failure occurred.

Consider an application running with the following parameters:
t: time taken by the original application to complete in absence

of failure;
λ: system failure rate, i.e., the number of failures per unit time;
δ: checkpoint interval, i.e. the time between successive check-

points;
c: time required for a single checkpoint to complete;
Θ: mean time between failures of the entire system on which

the parallel application runs — can be expressed in terms of failure
rate as1/λ;

R: restart overhead accounting for the time taken to read check-
point images, instantiation of each application process, coordina-
tion between processes, etc.

Ttotal: total time taken for completion, i.e., time after which ‘t’
amount of actual work is performed.

Figure 3 shows the lifetime of a process in the presence of
periodic checkpointing and occurrence of failures.

Figure 3. Life-cycle of an application
Number of failures: Failures can occur anytime during the ex-

ecution of the application, including the restart and rework phases.
Hence, the entire execution time of the application,Ttotal, is sus-
ceptible to failures. Letnf be the number of failures that occur till
the application completes, which can be calculated as:

nf = Total time× Failure rate= Ttotalλ
The total time taken by application (T) is the sum of:

(1) The time taken by the application to perform actual compu-
tation = t.

(2) The total time taken to take checkpoints until the end of task.
We assume that there is no information available about impending
failures through a monitoring or feedback system. Instead,we
periodically checkpoint at a constant interval ofδ. This time is
equal to (number of checkpoints)× (overhead per checkpoint) or:

(Total Time)/(Checkpoint interval)× c = (t/δ)c
(3) The total restart time derived from the total number of

failures during the lifetime of the application and the expected
amount of restart time. Since failures can occur even when the
application is undergoing restart, the average time spend in a single
restart phase is less than the maximum possible time,R, of a restart
phase.

(4) The total rework time, i.e., the total time spend on recom-
puting lost work. The amount of lost work depends on the time at
which a failure occurs after a checkpoint is established andalso the

likelihood of failure during checkpointing (handling multiple fail-
ures, incl. failures during recovery). We will use the termtlw to
denote the expected amount of work lost due to failures.tlw is also
the maximum possible duration of the rework phase.

However, when the application begins the rework phase, there is
a possibility that a failure occurs before entirely re-computing the
lost work. Thus, the expected time spent in a rework phase is less
than the maximum possible time of a rework phase (which is equal
to the average amount of lost work).

Since after occurrence of a failure, restart is always followed by
rework, we can combine them into a single phase. The maximum
duration of this phase isR + tlw. Using the same argument as
before, the expected time of this combined phase is less thanthe
maximum. Let us denote the expected time of this phase astRR.

Before derivingtRR, let us find the average amount of work
that could be lost due to failure during computation. Lettlw be this
expected value, i.e, the expected time at which a failure occurs after
a checkpoint is taken.

The computation time of the application can be divided into
segments of lengthδ + c. Each segment consists of work phase
(length=δ) followed by checkpoint phase (length=c). The lost work
depends on the time at which a failure occurs after the start of a
segment. Letδc = δ + c. The PDF describing the probability
of failure occurring at timet from the start of a segment can be
calculated as:

p(t) = 1
Θ
e

−t

Θ + 1
Θ
e

−(t+δc)
Θ + 1

Θ
e

−(t+2δc)
Θ + · · · = e

−t

Θ

Θ(1−e
−δc
Θ )

When a failure occurs at time0 ≤ t ≤ δ, the lost work is also
t. When failure occurs at timeδ < t ≤ δc (during checkpoint), lost
work isδ. Hence, the expected time for lost work can be calculated
as:

tlw =
∫ δ

0
t.p(t) dt+

∫ δc
δ

δ · p(t) dt
Solving the above integral and substitutingδc = δ + c yields:

tlw = Θe
δ
Θ −δ−Θ

e
δ
Θ −e

c
Θ

+ δ (1−e
−c

Θ )

e
δ
Θ −e

−c

Θ

After occurrence of a failure, the application begins in therestart
phase, which takesR time followed bytlw rework time. As men-
tioned earlier, we combine these two phases into a single phase of
maximum duration:R + tlw. The derivation of the expected time
of this phase,tRR, is presented below:

The reliability of a system, i.e, the probability of survival until
time t is e

−t

Θ . This implies that the probability of a system failing
before timeR + tlw is:

1− P (system survives up to timeR+ tlw) = 1− e
−(R+tlw)

Θ .
This also implies that probability of failure after time (R + tlw)

is e
−(R+tlw)

Θ . This is the probability that application completes
restart andtlw amount of rework.tRR can now be calculated as:
tRR = P (failure beforeR + tlw)

∗ (expected time of failure in interval 0 toR + tlw)
+ P (failure afterR+ tlw) ∗ (R + tlw)

= (1−e
−(R+tlw)

Θ )(
∫ R+trw
0

t · 1
Θ
e

−t

Θ dt)+e
−(R+tlw)

Θ · (R+ tlw)

= (1− e
−(R+tlw)

Θ )(M − (R+ tlw)e
−(R+tlw)

Θ −Θe
−(R+tlw)

Θ )+

e
−(R+tlw)

Θ · (R + tlw).
Thus, the total time spent in rework and restart during the entire

run of the application is:
(Number of failures)× tRR = TtotalλtRR.

The total time taken by the application can be written as:
Ttotal = t+ tc

δ
+ TtotalλtRR

Ttotal =
t+ tc

δ

(1− λtRR)
(3)

where

tRR = (1− e
−tlw

Θ )(Θ− tlwe
tlw
Θ −Θe

−tlw
Θ )+ e

−tlw
Θ · tlw (4)



tlw = Θe
δ
Θ −δ−Θ

e
δ
Θ −e

c
Θ

+ δΘe
−δ

Θ (1− e
−c

Θ )

Its easy to understand that there is a trade-off between the interval
between checkpoints, i.e,δ and the checkpoint/restart overhead.
Too low a checkpoint interval leads to unnecessary checkpoints
and thus higher overheads. On the other hand, having a very high
checkpoint interval leads to greater loss of computation due to
failures. Thus, we need to choose the right checkpoint interval that
gives the minimum overhead.

We qualitatively and quantitatively compared the above equa-
tion for total application execution time with the one derived by
Daly in [6]. Eq. 3 and Daly’s exact formulation are approximated
by Eq. 5 below, i.e., the share the same trends (see [6]). We also
performed quantitative simulations for the relevant valueranges of
the parameters of both Eqs. 3 and 5 to confirm this in plots (omit-
ted due to space). Plots are nearly a perfect match (with single digit
% deviations). The next section will feature model and experiment
side-by-side (Figure 8).

We observe that these two equations are very similar with a low
% difference. Instead of deriving our own optimum checkpoint in-
terval, and to simplify the analysis, we use Daly’s optimal check-
point interval [6]:

δopt =
√

(2δΘ)[1 +
1

3
(
δ

2Θ
)
1
2 +

1

9
(
δ

2Θ
)]− δ (5)

The minimum time required for application completion can be
obtained by substitutingδopt in Eq. 3.

4.3 Combining Redundancy and Checkpointing
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Figure 4. Configuration 1: Total Execution Time with Varying
Degree of Redundancy

Employing redundancy helps to increase the reliability of the
system. But even a high degree of redundancy does not guarantee
failure free execution, though it certainly decreases the probability
of failure: The probability of simultaneous failure of a node and
its replica is equivalent to the “birthday problem”, which is can be
approximated asp(n) ≈ 1 − (n−2

n
)n(n−1)/2 for n nodes, which

very rapidly approaches zero for increasingn, i.e., lim
n→∞

p(n) = 0.

Thus, we still need to checkpoint so that an application can be
we can recovered after a failure instead of having to re-run the
application from the scratch. Eq. 3 shows that the time required
for application completion increases as the failure rate increases
(equivalently, the MTBF decreases). From Eq. 2, we see that with
redundancy we can decrease the failure rate of the system andthus
decrease the checkpointing frequency, which ultimately results in
less checkpointing overhead and faster execution of the application.

Let us assess the effect of this hybrid approach qualitatively. Be-
low are the set of equations that determine the overall relationship
between redundancy and the total time for completion.

(1) The application time with redundancy degree r istRed =
(1− a)t+ (αt)r.

(2) The failure rate with redundancy degree r isλsys =

−N
log[1−(

tRed
Θ

)r]

tRed
.

(3) The total execution time including C/R overheads isTtotal =
tRed+

tRedc

δ

(1−λtRR)
, wheretRR is given by Eq. 4.

Figure 4 shows the variation in total time with varying degree
of redundancy of an application for an original running timeof
128 hrs. We see that as we increase the degree of redundancy, the
execution time decreases initially. The minimum time achieved is at
162 hours when the redundancy degree is≈ 2. As we increase the
redundancy further, the total time increases as well. Figure 5 shows
the execution time with the same configuration as above, but the
MTBF of a node is increased to 15 years. As seen in the graph, the
minimum execution time is obtained at a lower redundancy degree
of ≈ 1.6.
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Figure 5. Configuration 2: Total Execution Time with Varying
Degree of Redundancy

Figure 6 shows the variation in execution time when the sin-
gle checkpoint overhead is 1 minute compared to 10 minutes in
configuration 1 (Figure 4). The effect of this is that the minimum
execution time is obtained at a lower redundancy degree of≈ 1.7.
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Figure 6. Configuration 3: Total Execution Time with Varying
Degree of Redundancy

5. Experimental Framework
Some assumptions and approximations had to be made while per-
forming the mathematical analysis. The most significant oneis in
Equation 1 and relates to the degree of redundancy and total execu-
tion time. Here, we omitted the overheads originating from factors
such as placement of replicas and relative speeds of replicapro-
cesses. It is expected that in a real execution environment the out-
come observed will differ to some extent from those in Figures 4,
5 and 6 in the previous section.

To validate the mathematical analysis of the previous section,
we collected empirical data by running benchmark applications in
a HPC environment. Though the study performed in this work is
targeted towards exascale computing, computing systems atsuch a
large scale are not available today. Hence, we run the application to
the maximum scale possible on current available resources.Node



failures are injected instead of waiting for actual failures. We scale
down the MTBF per node according to the number of nodes avail-
able and the execution time of application so that the application
suffers a sufficient number of failures to analyze the combined ef-
fect of C/R and redundancy. We run the application with a certain
degree of redundancy and also checkpoint the application atthe
optimum frequency calculated from Equation 5. Two processes run
in the background of the application, which perform the two tasks
specified above. The first background process is the failure injector
that triggers failures for the entire application based on per-process
failures. The occurrence of a failure for each process is assumed to
be a Poisson process.

The failure injector performs the following steps: (1) It main-
tains a mapping of virtual to physical processes. The statusof each
physical process at a particular time is either dead or alive. (2) For
each physical process in the MPI environment, the time for the next
failure is calculated using an exponential distribution that describes
the time between events of a Poisson process. (3) As and when
the failure time of a physical process is reached, the mapping is
updated by marking the process as dead. (4) If all the physical pro-
cesses corresponding to a virtual process have been marked dead,
application termination is triggered followed by a restartfrom the
last checkpoint.

Figure 7 shows how failure of a physical process does not
necessarily imply a failure of the MPI application. The application
fails and a restart is triggered only when all the physical processes
corresponding to a virtual process fail. The second background

Vrank=0 Vrank=1 Vrank=2 Vrank=3

Process 
failure

Restart

Application 
failure

- Virtual Process - Physical Process

0 4 1 5 8 2 6 3 7

Figure 7. Failure Injection within MPI Applications
process is a checkpointer that calculates the optimal checkpoint
interval δ using Equations 5 and 2 . It sets a timer for timeδ and
checkpoints the application when the timer goes off.

6. Results
Experimental platform: Experiments were conducted on a 108
node cluster with QDR Infiniband. Each node is a dual socket
shared-memory multiprocessor with two octo-core AMD Opteron
6128 processors (16 cores per nodes). Each node runs CentOS 5.5
Linux x86 64. We used Open MPI 1.5.3 for running our exper-
iments and BLCR as the per-process checkpointing service. The
RedMPI library is used for performing redundant computation.

We chose the CG benchmark of the NAS parallel benchmarks
(NPB) suite as a test program. CG stands for conjugate gradient.
It is used to compute an approximation to the smallest eigenvalue
of a large sparse symmetric positive definite matrix. This kernel is
typical of unstructured grid computations in that it tests irregular
long distance communication employing unstructured matrix vec-
tor multiplication. CG spends approximately 20% of the total time
on MPI communication. Since this study is targeted towards long
running applications, we need an application that runs longenough

to suffer a sufficient number of failures to assess its behavior in a
failure prone environment. Hence, the CG benchmark was modified
to run longer by adding more iterations. This was done by repeating
the computation performed between MPIInit() and MPI Finalize()
calls ‘n’ number of times. This modified CG, class D benchmark
with 128 processes takes 46 minutes under failure free execution
without redundancy and C/R. Larger inputs would become infeasi-
ble (require weeks of experiments). Processes were pinned onto 14
cores per node for application tasks leaving one core each for the
operating system and runtime activities.

The MTBF of a node was chosen between 6 hours and 30 hours,
with an increment of 6 hours. A MTBF/node of 6 hours gives a
high failure rate of≈ 20 failures per hour, while MTBF/node of 30
hours gives a lower failure rate of 4 failures per hour. We ranthe
application with the injector initially without redundancy and then
with double and triple redundancy. To denote redundancy degrees
we use the notation “rx” to signify that there arer physical pro-
cesses corresponding to a virtual process. For example, 2x redun-
dancy means that there are 2 physical processes corresponding to
a virtual process. Experiments were also performed with partial re-
dundancy, i.e., some processes have replicas, while some have just
one primary copy. For example, a redundancy degree of 1.5x means
that every other process (i.e., every even process) has a replica. Par-
tial redundancy was assessed in steps of 0.25x between 1x and3x.

The results of the experiments for the optimal application ex-
ecution time using various degrees of redundancy is shown inTa-
ble 4. The minimum time taken by the application for each value
of MTBF is highlighted in the table. As seen from the results,the
minimum application execution time (maximum performance)with
MTBF of 6 hours is obtained at 3x redundancy. When the MTBF
is 12 hrs, the maximum performance is seen at 2.5x redundancy.
Yet for a MTBF of 18, 24 and 30 hrs, the maximum performance
is achieved at 2x redundancy. Figures 8 and 9 show these results
in the form of line graphs and surface graphs, respectively.As the
surface graph shows, local minima exist at different pointsof the
surface indicating an intricate interplay of MTBF and redundancy
with respect to overall performance.

MTBF Degree of Redundancy
1x 1.25x 1.5x 1.75x 2x 2.25x 2.5x 2.75x 3x

6 hrs 275 279 212 189 146 158 139 132 123
12 hrs 201 207 167 143 103 113 98 111 125
18 hrs 184 179 148 120 72 126 88 80 84
24 hrs 159 143 133 100 67 92 78 84 83
30 hrs 136 128 110 101 66 73 80 82 84

Table 4. Performance of an Application (Execution Time in Min-
utes) with Combined C/R+Redundancy Technique
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Figure 9. Surface Plot of Performance of an Application (Execu-
tion Time in Minutes) with Combined C/R+Redundancy Technique

We make the following observations from the above results: (1)
For a high failure rate or, equivalently, lower MTBF (e.g., 6hrs), the
minimum total execution time (maximum performance) is achieved
at higher redundancy levels (> 3x in this case).

(2) For lower failure rates (e.g., 24 hrs and 30 hrs) the minimum
total execution time (maximum performance) is achieved at are-
dundancy level of 2x. Increasing the redundancy degree further has
adverse effects on execution time.

(3) The minimum execution time (maximum performance) can
also be achieved at partial redundancy levels, e.g. for MTBF=12
hrs. Here, the maximum performance is obtained when 2.5x redun-
dancy is employed.

(4) An interesting finding is that in most cases 1.25x redundancy
yields poor performance compared to 1x (when no redundancy is
employed). Similarly, 2.25x yields poor performance compared to
2x redundancy. This behavior can be attributed to a higher increase
in redundancy overhead in return for a smaller decrease in failure
rate as we move from 1x to 1.25x (or from 2x to 2.25x). To support
this argument, a separate experiment was carried out to calculate
the failure-free execution time with increasing redundancy levels.
The results are shown in Table 5 and Figure 10. It can seen thatthe
rate of increase in execution time is larger in the first step (i.e., from
1x to 1.25x) while there is a decrease in the rate in the subsequent
steps.

Figure 10. Increase in Execution Time with Redundancy
(5) The purpose of these experiments is to verify the mathe-

matical model developed in Section 4. Hence, we modeled our ex-
ecution by estimating/calculating the environment parameters and
substituting them in the set of equations developed in Section 4.3.

There is a subtle difference in the experimental setup and our model
discussed in Section 4.3. While running the application, failures
are not triggered when a checkpoint is performed or when restart
is in progress. Our model, though, considers failures at anytime,
including checkpointing and restart. We simplified our model to
match our experiments, which results in the following time func-
tion: Ttotal = tRed + tRed

√

2cλsys + tRedλsysR. We have used
this equation for modeling the application behavior in the presence
of C/R and redundancy. This simplified model pertains just tothis
sub-section, specifically to Figures 11 and 12.

The overhead per checkpoint (c) was calculated as 120 sec. by
first running the plain application, then running it with onecheck-
point taken during execution, and calculating the difference be-
tween the later and former execution times. Time taken to restart
the application after a failure and beginning of re-execution (restart
overhead, R) was measured as approx. 500 sec. The CG bench-
mark, on average, spends 20% of the total time in MPI communica-
tion, so the communication to computation ratio (α) is 0.2. Plotting
the equations in MATLAB, we get the expected application behav-
ior shown in Figure 11. It can be seen that the actual behaviorof the
application (Figure 8) is similar to the modeled behavior shown in
Figure 11, thus validating our analytical model. For closercompar-
ison, Figure 12 overlays the performance curves in Figure 11over
those in Figure 8 for selected MTBF values. The trend followed by
the observed curves is very similar to the modeled curves. How-
ever, we see some absolute differences in the execution times that
can be attributed to various causes :

(a) The redundancy overhead in actual runs is more than the
modeled overhead (see Figure 10). An increase in the execution
time is due to additional failures occurring during this extra time.
(b) The fault injector generates failures by using inputs from a
random number generator that follow a Poisson distribution. The
application running time may not be long enough for the observed
failure rate to converge to the average failure rate (λ).
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Degree of Redundancy 1x 1.25x 1.5x 1.75x 2x 2.25x 2.5x 2.75x 3x
Observed increase in execution time46 55 59 61 63 70 76 78 82

Expected linear increase 46 48 51 53 55 58 60 62 64

Table 5. Increase in Execution Time with Redundancy

Simulations: We also performed simulations using our analyti-
cal model to determine at which point an application begins to ben-
efit from redundancy. Figure 13 depicts the execution time ofa 128
hour job for different redundancy levels and number of processes
(with a factor of 10,000 on the latter/x-axis) under weak scaling,
i.e., the problem size is scaled at the same rate as the numberof pro-
cesses resulting in a constant compute overhead per process. The
cross-over points between no redundancy (1x) and dual redundancy
(2x) at≈4,000 processes and triple redundancy (3x) at≈10,500
processes indicate an early benefit for combined C/R+redundancy.
When it is not always feasible to minimize runtime due to resource
scarcity, resilience may still be improved through partialredun-
dancy as a tunable knob (e.g., 1.5x). As seen in the figure, when
the number of processes is between 3851 and 25180, we obtain the
best results by running the application at 1.5x rather than 2x. Only
beyond N=25180 does 2x yields a lower execution time than 1.5x.
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Figure 13. Modeled Wallclock Time of a 128 Hour Job for Differ-
ent Redundancy Levels up to 30k Nodes

Using additional nodes for redundancy is a cost, while gaining
a shorter execution time is a benefit: The nodes become available
sooner and can be used for other jobs. Hence, when the runtime
with redundancy is twice that of dual redundancy at 60,000 pro-
cesses, we can actually run two dual redundant jobs of 128 hours
in the time of just one job without redundancy (see Figure 14).
This indicates that redundancy is a powerful technique to increase
the utilization of exascale HPC installation for capacity comput-
ing (where job throughput is the objective). It does not provide a
solution to capability computing (where all nodes are utilized by
a job without redundancy), which presents an open problem tore-
silience handling of exascale systems. The figure further underlines
that pure C/R without redundancy results at exponential increases
in execution time after≈ 60,000 nodes.

7. Related Work
Several models to determine the optimal checkpointing strategy for
parallel programs have been developed in prior works. Young[37]
presented an optimal checkpoint and recovery model and obtained
a constant optimal checkpoint interval to reduce the overall execu-
tion time. Based on Youngs work, Daly [6] improved the model to
an optimal checkpoint placement from a first order to a higherorder
approximation. These studies establish a cost function forthe total
execution time and try to minimize the output of the cost function.
The results derived are similar to those obtained in Section4.2.
Other work considers those and additional approximations under a
variety of failure distributions [3].
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Figure 14. Modeled Wallclock Time of a 128 Hour Job for Differ-
ent Redundancy Levels up to 200k Nodes

Authors of [29], [36] have taken a different approach by mod-
eling the problem as a Markov availability model and obtained an
optimal checkpoint placement that maximizes system availability.
[29] has addressed the issue of placing processes on available pro-
cessors (task mapping) and determining corresponding checkpoint
intervals to obtain the best execution time. They model the perfor-
mance of coordinated checkpointing systems where the number of
processors dedicated to the application (termed “a” for active) and
the checkpoint interval (termed “I”) are selected by the user before
running the program. The model is used to determine the average
availability of the program in the presence of failures thatcan be
used to select values of a and I to minimize the expected running
time of the program.

In [25], authors have presented a reliability-aware methodfor an
optimal C/R strategy towards minimizing rollback and checkpoint
overheads. Their model considers variable checkpoint intervals by
taking actual system reliability into account.

The works cited above have considered C/R as the only method
for achieving fault tolerance and analyzed the effect of C/Ron ap-
plication execution time. As discussed before, redundancyis an-
other way of achieving fault tolerance. Ferreira et al. [13]have
studied the viability of process replication as the primaryfault tol-
erance mechanism for exascale systems, employing C/R as a sec-
ondary mechanism. Results from their work show that replication
outperforms traditional C/R approaches for large sockets counts
and limited I/O bandwidths frequently anticipated at exascale. The
study compares only two models of execution, one without redun-
dancy and another with dual (2x) redundancy assuming that pro-
cesses have to double up on the same number of nodes. In con-
trast, our work assumes that the number of nodes is increasedat the
same rate that the number of processes increases under redundancy.
This is more realistic since high-performance applications tend to
fully utilize the available memory space of a node. Furthermore,
we model the execution of an application in the presence of redun-
dancy at various degrees (including partial redundancy) incombi-
nation with C/R. Using this model, we study the trade-off between
levels of redundancy and checkpoint frequencies with the goal of
optimizing system performance.
8. Conclusion
Petascale and forthcoming exascale computing systems experience
outages due to failed components, software bugs, and power disrup-
tions. A common method to allow application runs longer thanin-
terval between faults is to checkpoint applications to stable storage.
But studies show that large-scale applications spend more than 50%



of their time in C/R activities. Another way to achieve faulttoler-
ance is to employ redundancy, wherein multiple processes perform
the same computation.

This work shows that C/R-based fault tolerance can be used in
synergy with redundancy to optimize application performance. We
have developed an analytical model to estimate the execution time
of long-running large-scale programs in presence of failures that
combines C/R with redundancy. Using this model, HPC users can
configure their application with the right amount of redundancy de-
gree and checkpoint frequency to obtain the maximum performance
from the available resources. We also validated the model byin-
jecting faults into applications with an implemented redundancy
layer on our computing cluster. The modeled application behav-
ior closely mimics the observed application behavior on ourcluster
and we obtain the maximum performance at the same redundancy
levels as given by the model. We observed that there are some de-
viations from the modeled performance curve, especially atpartial
redundancies. The reason for such behavior was traced to thedevia-
tion of observed redundancy overhead from the expected overhead.

Overall, combined C/R and redundancy results in shorter overall
execution time even for medium-sized HPC applications with4,000
and 25,000 processes for 1.5x and 2x redundancy. At 60,000 pro-
cesses, dual redundancy (2x) requires twice the number of process-
ing resources for an application but allows two jobs of 128 hours
wallclock time to finish within the time of just one job without re-
dundancy. Partial redundancy of 2.5x also results in the lowest time
for certain MTBF values. But partial redundancy goes one step fur-
ther: It allows a trade-off between additional resources and wall-
clock time, which effectively presents a tuning knob for users to
adapt to resource availabilities.
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