Combining Partial Redundancy and Checkpointing for HPC

Kishor Kharbas, David Fiala, Frank Mueller, Kurt Ferrei@hristian Engelmann
North Carolina State University, Sandia National Labariag) Oak Ridge National Laboratories
mueller@cs.ncsu.edu

Abstract [Systtm [#CPU§___ MTBFI_ |

, . - .5hrs
Today'’s largest High Performance Computing (HPC) systexns e ASCIQ 8,192 6.5 =
ceed one Petaflops@'® floating point operations per second) and ASCIWhite | 8,192 1 5/40 hrs (01/03)

. L S PSC Lemieux 3,016 9.7 hrs
exascale systems are projected within seven years. Babilél Google | 15,000 20 reboots/day

is becoming one of the major challenges faced by exascale com ASC BG/L [212,9926.9 hrs (LLNL est.

puting. With billion-core parallelism, the mean time toltae is

projected to be in the range of minutes or hours instead of.day Table 1. Reliability of HPC Clusters [17]

Failures are becoming the norm rather than the exceptioimgiur BlueGene confirms this. In response, long-running apjtinaton

execution of HPC applications. HEC installations are required to support the checkpeistart
Current fault tolerance techniques in HPC focus on reactive (C/R) paradigm to react to faults. This is particularly icat for

ways to mitigate faults, namely via checkpoint and restarRy. large-scale jobs: As the core count increases, so does ékead

Apart from storage overheads, C/R-based fault recoveryesoa for C/R, and it does so at an exponential rate. This does moeco
an additional cost in terms of application performance bsea as a surprise as any single component failure suffices teripte

normal execution is disrupted when checkpoints are takerli&s a job. As we add system components (such as cores, memory and
have shown that applications running at a large scale sp@&md m disks), the probability of failure combinatorially explesl

than 50% of their total time saving checkpoints, restartamgl For example, a study from 2005 by Los Alamos National Labo-
redoing lost work. ratory estimates the MTBF, extrapolating from currentsysper-

Redundancy is another fault tolerance technique, which em- formance [26], to be 1.25 hours on a Petaflop machine. The wall
ploys redundant processes performing the same task. If@®§0 clock time of a 100-hour job in such as system was estimated to

fails, a replica of it can take over its execution. Thus, rethnt increase to 251 hours due to the C/R overhead implying tHét 60

copies can decrease the overall failure rate. The downsidelon- of cycles are spent on C/R alone, as reported in the same. study

dancy is that extra resources are required and there is @madd More recent investigations [7, 8] revealed that C/R efficiene.,

overhead on communication and synchronization. the ratio of useful vs. scheduled machine time, can be asdsgh
This work contributes a model and analyzes the benefit of C/R 85% and as low as 55% on current-generation HEC systems.

in coordination with redundancy at different degrees toimine # Nodeg work| checkp{ recomp] restart

the total wallclock time and resources utilization of HP@®laga- 100| 96% 1% 3%| 0%

tions. We further conduct experiments with an implemeatatf 1,000 92% 7% 1%| 0%

redundancy within the MPI layer on a cluster. Our experiraent 10,000 75%| 15%| 6%| 4%

results confirm the benefit of partial, dual and triple redumay 100,009 35%]| 20%| 10%] 35%

and show a close fit to the model. We show that combined C/R Table 2. 168-hour Job, 5 year MTBF
and redundancy results in shorter overall execution tines dar - . ' .

medium-sized HPC applications with 4,000 processes artéhpar A study by Sandia National Lab from 2009 [14] shows rapidly
redundancy (a replica for every other process). At 60,0G8 pr decaying useful work for increasing node counts (see Taple 2
cesses, dual redundancy requires twice the number of iages Only 35% of the work is due to computation for a 168 hour job on

resources for an application but allows two jobs of 128 hoat- 100k nodes with a MTBF of 5 years while the remainder is spent
clock time to finish within the time of just one job without re- ©N checkpointing, restarting and then partial recomportatif the
dundancy. For other configurations, partial redundancylteén work lost since the last checkpoint. Table 3 shows that fogés-

the lowest time. Partial redundancy further allows one ddéroff running jobs or shorter MTBF (closer to the ones reportedejyo
additional resource requirements for redundancy agaiabihack useful work becomemsignificantas most of the time is spent on
time, which provides a tuning knob for users to adapt to resou '€Stars. [fob work| MTBF [work| checkp{ recomp] restar]

availabilities. 168 hr§ 5yrs| 35%| 20%| 10%| 35%
. 700 hry 5yrs| 38%| 18% 9%)| 43%
1. Introduction o A sy 0 o o

5000hrg 1yr| 5% 5% 5%| 85%
Today's HPC systems are commonly utilized by long-running

application jobs that employ MPI message passing as an exe- Table 3. 100k Node Job, varied MTBF

cution model [16, 35]. Yet, application execution may beeint The most important finding of the Sandia study is tretun-
rupted by faults. For large-scale HPC, faults have becomedhm dancy in computing can significantly revert this picture. By
rather than the exception for parallel computation on eltgstvith doubling up the compute nodes so that every node N has a shadow
10s/100s of thousands of cores. Past reports attributeathses node N’, a failure of primary node N no longer stalls prog@sthe

to hardware (I/O, memory, processor, power supply, swiadre shadow node N’ can take over its responsibilities. Theitqiype,

etc.) as well as software (operating system, runtime, ethded rMPI, provides dual redundancy [14]. Amddundancy scalef\s
maintenance interruption). In fact, recent work indicattest (i) more nodes are added to the system, the probability for tameH
servers tend to crash twice a year (2-4% failure rate) [30]1€ ous failure of a primary Nand its shadow rapidly decreases. This

5% of disk drives die per year [27] and (iii) DRAM errors occur is due to the fact that only one node of the remaining n-1 nafles
in 2% of all DIMMs per year [32], which is more frequent than ter a failure represents the shadow node, and only failirggtbde

commonly believed. causes the job to fail — and choosing just that shadow node be-
Even for small systems, such causes result in fairly low mean comes less likely as the number of nodes increases (seeittie “b
time-between-failures/interrupts (MTBF/I) as depictadlable 1, day problem” in Section 4 for details). Of the above overlse#ke

and the 6.9 hours estimated by Livermore National Lab for its recompute and restart overheads can be nearly eliminatat@ut

1%) with only the checkpointing overhead remaining — at th&t c
of having to deploy twice the number of nodes (200,000 nodes i

Table 3) and up to four times the number of messages [14]. But

once restart and rework overheads exceed 50%, redundaacy is
tually cheaperthan traditional C/R at large core counts.

In summary, redundancy cuts down the failure rate of the MPI
application, which result in less overhead for checkpomtand
repeated execution. The downside is that additional coimgut
resources are required depending on the degree of redyndanc
dual (2x), triple (3x) or some partial level of redundancy5{l
2.5x). There is also an increase in the total execution tioeetd
redundant communication.

Contributions: In this work, we try to answer following ques-
tions: (1) Is it advantageous to use both C/R and redundartbe a
same time to improve performance or job throughput? (2) What
are the optimal values for the (partial) degree of redungam
checkpoint interval to achieve the best performance?

HPC users, depending on their needs, may have differerg.goal
The primary goal of the user may be to complete application ex
ecution in the smallest amount of time. Other users may want t
execute their application with least number of requiredueses.

A user may also create a cost function giving different wtsgb
execution time and number of resources used.

We derive a mathematical model to analyze the effect of using
both redundancy and checkpointing on the execution timéef t
application. Using this model, we identify the best confagion
to optimize the cost of executing the application. Our ressobt
only show benefits due to redundancy for large-scale cleisteey
also provide a model to fine-tune application needs: Givest afs
spare nodes, a HPC job can exploit partial redundancy whiye o
some nodes are replicated. This delimits the resourcerezgants
of redundancy at a lower reliability level. Thus, partiadluedancy
presents a knob to trade off cost vs. benefit.

2. Background

A widely researched topic in HPC is to mitigate the effectfaofts
occurring during the execution of an application. Indiadtaults
are generally classified into permanent, transient, areriittent
[1]. A permanent fault is a fault that continues to exist Littis
repaired. A transient fault is a fault that occurs for a finitee and
disappears at an unknown frequency. Intermittent faultsioand
disappear at a known frequency.

A parallel HPC system is composed of a number of system
components with processes that cooperate to solve a soigl€he
system components (nodes) are coupled via communicatitiraso
failure of one process can lead to failure of the entire jabcPss
failure is often classified into one of the following cateigsr[10]:

(1) Fail-stop failure: when the process completely stops,, e
due to system crash. (2) Omission failure: if a process fails
send or receive messages correctly. (3) Byzantine failuhen a
process continues operating but propagates erroneous\gesssr
data. Byzantine failures are usually caused by soft eresslting
from radiation.

In this work, we focus on the issues emanating from fail-stop
process failures. Detection and correction of Byzantinerstusing
software redundancy and voting are beyond the scope ofépisrp

Fault tolerance uses protective techniques to provideikergs
computing environment in the presence of failures. Thesh-te
nigues can be broadly classified into Algorithm-Based Faolt
erance (ABFT), message logging, checkpoint/restart aplicee
tion/redundancy. ABFT requires special algorithms thatadle to
adapt to and recover from process loss due to faults [19]. ABF
achieved by techniques such as data encoding and algorghm r
design. MPI-based ABFT applications require resilient sage
passing. E.g., FT-MPI [12] continues the MPI task even if som

processes are lost. Applications that follow a masteréstmagram-
ming paradigm can be easily adapted to ABFT applicationk [22

Message logging techniques record message events in alog th
can be replayed to recover a failed process from its inteiaed
state. All message logging techniques require the apjgitab
adhere to the piecewise deterministic assumption thagssthtt
the state of a process is determined by its initial state anthé
sequence of messages delivered to it [30].

Checkpoint/restart (C/R) techniques involve taking shafsof
the application during failure-free operation in a synctmas fash-
ion and storing them to stable storage. Upon failure, aniegtpbn
is restarted from the last successful checkpoint. Stabtage is an
abstraction for some storage devices that ensure that theery
data persists through failures.

Checkpoint Restart: The C/R service supported by MPI run-
time environments utilizes a single-process checkpoimtice
specified by the user as a plug-in facility. Depending upaa th
transparency with regard to the application program, sipgbcess
checkpoint techniques can be classified as application, leser
level or system levelApplication-levelcheckpoint services inter-
act directly with the application to capture the state offitegram
[33]. User-levelcheckpoint services are implemented in user space
but are transparent to the user application. This is actidye
virtualizing all system calls to the kernel, without beingct to a
particular kernel [24]System-levetheckpointing services are ei-
ther implemented inside the kernel or as a kernel moduleT[94.
checkpoint images in system-level checkpointing are notapte
across different kernels. for our experiments, we usedd@eyld_ab
Checkpoint Restart (BLCR) [9], a system-level checkpoarie
implemented as a Linux kernel module.

The state of a distributed application is composed of states
of each individual process and all the communication chisnne
Checkpoint coordination protocols ensure that the statetheo
communication channels are consistent across all the gsese
to create a recoverable state of the distributed applicafibese
protocol events are triggered before the individual precd®eck-
points are taken. A distributed snapshot algorithm [4]p alem-
monly known as Chandy-Lamport algorithm, is one of the wjidel
used coordination protocols. This protocol requires eygpcess
to wait for marker tokens from every other process. Afterapss
receives tokens from every other process, it indicatestfigatom-
munication channel between the process and every otheegsoc
is consistent. At this point, this process can be checkpdinthe
checkpoint coordination protocol implemented in OpenME0][
is an all-to-all bookmark exchange protocol. Processebange
message totals between all peers and wait until the totalslieq.
The Point-to-point Management Layer (PML) in OpenMPI tick
all messages moving in and out of the point-to-point stack.

As expected, the C/R techniques come at an additional cost
since performing checkpoints interrupts the normal exeoubf
the application processes. Additional overhead is incldee to
sharing of processors, I/O storage, network resources\\ten
assessing the cost of C/R fault tolerance techniques, weagons
sider the effect on both the application and the system. Kjisat
overhead accounts for the increase in execution of the Ggtjgh
due to the introduction of a checkpoint operation [28, 34je€k-
point latency is the time required to create and establishealc
point to a stable storage. Various optimization techniduze® been
studied to improve both forms of overhead as described below

Forked checkpointindorks a child process before the check-
point operation is performed [5, 33]. The image of the chilolgess
is taken, while the parent process resumes execution. wdtel;
the pages that have changed since the fork are captured fiom t
parent process, thereby reducing the checkpoint overhead.

MPI_lsend(8’)

MPI_Irecv(A’

(a) Redundancy

MPI_Recv(A)

(b) Partial Redundancy

Figure 1. Blocking Point to Point Communication

Checkpoint compressiois a method for reducing the check-
point latency by reducing the size of process images befatagy
them to stable storage [23, 3B]lemory exclusioskips temporary
or unused buffers to improve checkpoint latency [29]. Thidane
by providing an interface to the application to specify oegi of
memory that can be safely excluded from the checkpointIf].
cremental checkpointingeduces the checkpoint latency by saving
only the changes made by the application from the last cleéekp
These techniques commonly rely on hardware paging supngrt,
the modified or dirty bit of the MMU [15, 18]. During recovein-
cremental checkpoints are combined with the last full oner¢ate
a complete process image.

Redundancy:To decrease the failure rate for large-scale appli-
cations, redundancy can be employed at the process leye 114
Multiple copies (or replicas) of a process run simultangouso
that if a process stops performing its desired function pdice of
the process can take over its computation. Thus, a distdbap-
plication can sustain failure of a process if redundant e®ire
available. An active node and its redundant partners formden
sphere that is considered to fail if all the nodes in the splber
come non-functional. Overall, redundancy increases thanrtime
between failures (MTBF). This allows us to checkpoint legs f
quently while retaining the same resiliency level.

rMPI [14] developed at Sandia National Laboratories is a-use
level library that allows MPI applications to transpargnike re-
dundant processes. MR-MPI [11] is a modulo-redundant MPI so
lution for transparently executing HPC applications in duredant
fashion that uses the PMPI layer of MPI. VolpexMPI [21] is alMP
library implemented from scratch that supports redundantsyr-
nally with the objective to convert idle PCs into virtual stars for
executing parallel applications. In Volpex MPI, commutiica fol-
lows the pull model; the sending processes buffer data tshjee
cally and receiving process contact one of the replicase&énd-
ing process to get the data object. RedMPI is another uselle
brary that uses the PMPI layer to implement wrappers arouRtl M
calls and provide transparent redundancy capabilitiesd MR is
capable of detecting corrupt messages from MPI procesatbeh
come faulted during execution. With triple redundancyaih wote
out the corrupt message and thereby provide the error-fessage
to the application. The library operates in one of the two esod
All-to-all mode or Msg-PlusHash mode. In All-to-all modeyna-
plete MPI messages are sent from each replica process @fitlers
and received by each replica of the receiver process. Irasmnt
one complete MPI message from a sender replica and a hash of th
message from another replica is received by the receiverepso
in Msg-PlusHash mode. We used the RedMPI redundancy library
with its All-to-all mode in this work for experiments.

3. Design

The RedMPl library is positioned between the MPI applicagod
the standard MPI library (e.g., OpenMPI, MPICH2). It is irpl
mented inside the profiling layer of MPI and intercepts adl MPI
library calls made by the application. No change is needetien
application source code. The redundancy module is activiaye
MPI_Init(), which divides the MPICOMM_WORLD communica-
tor into active and redundant nodes.

To maintain synchronization between the redundant presgss
each replica should receive exactly the same messages in the
same order. This is performed by sending/receiving MP| agess
to/from all the replicas of the receiver/sender process.

Consider the scenario shown in Figure 1(a), where A sends
a message via MP$end() to process B while Process B issues
a blocking receive operation via MMecv(). Process A has 2
replicas, A and A, similarly process B has 2 replicas, B arid B
Corresponding to this send operation, process A performsna n
blocking send to each of the replicas of the destinationgs®cB
and B’. Only after both these sends have been completed $etite
performed by the application considered complete. Then@alot
partner of A, A, performs exactly the same operations.

At the receiver side, process B posts two receive calls, one
receive from A and other from A. In the general case, a preces
posts receives from all redundant partners of the sendeegses
that are alive. The RedMPI library allocates additionalfénsf
for receiving redundant copies. When all receives are cetapl
the message from one of the buffers is copied to the appicati
specified buffer before returning control to the applicatio

Figure 1(b) depicts the sequence of steps that take place whe
partial redundancy is employed. Here, process A has twaceepl
while process B has just one. Hence, process B receives two me
sages via two MRRecv() calls. On the other hand, processes A
and A’ send just one message each to the single copy of prBcess

Special consideration is required for wildcard receiveR [MANY _SOUR!
Since a message sent from any process can complete a witéeard
ceive request, we have to make sure that all the replicaseof th
process get the message from the same “virtual” sender.Siwen
this, RedMPI performs the following steps:

(1) On the receiving node B, only one receive operation veith t
MPI_ANY _SOURCE is posted.

(2) When this call completes, the receiver information itede
mined and is sent to node B’ (if it exists). Also, another reeés
posted to determine the message from the remaining repif¢hs
sender process.

(3) Node B’ uses this envelope information to post a specific
receive call to obtain the redundant message from the naate th
sent the first message to B.

The MPI specification requires that non-blocking MPI cadis r
turn a handle to the caller for tracking the status of theexpond-
ing communication. When redundancy is employed, corredipgn
to a non-blocking MPI call posted by the application, muéipon-
blocking MPI calls are posted for each replica of the peecgss.
RedMPI maintains the set of request handles returned byeall t
non-blocking MPI calls. A request handle that acts as antiiien
to this set is returned to the user application. When theieatsn,
at a later point, issues a call to MWait(), RedMPI waits on all
the requests belonging to the set before returning fromahe ¢

4. Mathematical Analysis

We make the following assumptions in our model about the exe-
cution environment: (1) Studies [31] have shown that thiifai
rate of a system grows proportional to the number of socketise
system. Researchers usually consider a socket as a unituréfa
and refer to the number of sockets when measuring system reli
ability. But for simplicity and to abstract away machine dfie
details from the discussion, we referodesin this work. Here,

a noderefers to an execution unit that fails independently. Most
commonly, the ternmodeis used interchangeably witocket (2)
Each process of the parallel application is allotted a sg#parode.
Spare resources are used for performing redundant corgutat
This means that if an application runnidg processes moves to 2x
redundancy, it now utilize8 N processes on twice the number of
nodes. This assumption guarantees that redundancy doskwot
down the computation of the application. (3) Node failurelofv

a Poisson process. The interval between failures is giveamltsx-
ponential distribution. (4) The failure model is that ofifaiop be-
havior. This is the most frequent failure type in practicattban

be detected via timeout-based monitoring. Other failurdef®are
beyond the scope. (5) Spare nodes are readily availablplaresto
failed node. This gives an implied assumption that failwas oc-
cur anytime between the start and the end of applicationugiec
i.e., failures can occur even when a checkpoint is taken ernvite
application is restarted after a failure.

4.1 Degree of Redundancy and Reliability

When redundancy is employed, each participating apptiogiro-
cess is a sphere of replica processes that perform exaetiatine
task. The replicas coordinate with each other so that anctiy
can readily continue their task after failure of a copy. Tlke¢ s
(sphere) of replica processes, performing the same taskidddn
from each other at the application level, is called a virfuralcess.
The processes inside a sphere are called “physical pr&esse

Here, we present a qualitative model of the effect of redonogla
on reliability of the system. Reliability of a system is defihas the
probability that the given system will perform its requirfeehction
under specified conditions for a specified period of time.

The analysis that follows applies not only to MPI-based &appl
cations but to any parallel applications where failure af onmore
participating processes cause failure of the entire agjpdic.

Consider such a parallel application with the followingarae-
ters:

N: number of virtual processes involved in the parallel agzpli
tion;

M: number of virtual messages within the parallel appliggtio

r: redundancy degree (number of physical processes pealirtu
process);

N x r: total number of physical processes;

t: base execution time of the application;

0: Mean Time to Failure (MTBF) of each node.

(1) As discussed before, due to the overhead of redunddrey, t
time taken by the application due to redundancy is greatar the
base execution time. The overhead depends on many faaters, i
cluding communication to computation ratio of the applimatde-

gree of redundancy, placement of replicas and relativedspkthe
replica processes. It is very difficult to construct an exXaaonula

to represent the overhead in terms of the degree of remitaltn

the analysis developed here, we consider overhead due uo-red
dant communication but ignore overheads caused by othergac
such as redundant I/O (which is not supported by RedMPI ahd no
triggered in experiments).

Let o be the communication/computation ratio of the appli-
cation. Hence(1 — «) is the fraction of the original time t re-
quired for computation. This time remains the same with nedu
dancy since only communication is affected by redundantg T
remaining time, namely - ¢, is the time required for communica-
tion, which is affected by redundancy.

All collective communications in MPI are based on point-to-
point MPI messages (except when hardware collectives a&m@).us
The redundancy library interposes the point-to-point scahd
sends/receives to/from each copy of the virtual processs,Téach
point-to-point MPI call is translated intopoint-to-point MPI calls
per physical process, wherés the redundancy level (e.g., 2 or 3).

Hence, the total number of point-to-point MPI calls per gsx
with redundancy is times the number of MPI point-to-point calls
per process in plain (non-redundant) execution. This iespthat
the total communication time with redundancy-is« - ¢t. The total
execution time with redundancy can then be expressed as

trea = (1 — @)t + atr. Q)

(2) As per the assumption, the arrival of failures for eactieno
follows a Poisson process. Hence, reliability of a physiratess,
which is the probability that the process survives for timést
R(t) = e~"?. Whend is large, it can be approximated &§t) =
1 — ¢/6. Hence, the probability that a node survives for the entire
durationtr.q Of application execution i$?(Survival) = 1 —
trea/0. Using this result, the probability of failure of a node over
the time period gcq is P(Failure) = 1—(1—tgea/0) = trea/0.

(3) Each virtual process has r physical processes, implyiag
following relation:

Reliability of a virtual process

= P(at least one physical process survives)

=1 - P(all physical processes fail)

=1— (treq/0)".

(4) Since failure of one or more virtual processes will maie t
entire application fail, all N virtual processes need to/sur until
the end. Thus, the reliability of the entire system is:

Ry = P(all virtual nodes survive until the end)

= [1— (trea/0)"]".

(5) Reliability can be written in terms of failure rate))(as
R(t) = e *. Using the above equation, the failure rate of the
system can be obtained &s,s = —l0g(Rsys)/trea OF:

log[1 — (*44)"]

Asys = =N ; 2
Figure 2 shows how varying rRe(ilhe degree of redundancy)
changes the reliability of the entire system, given the datid
sample input parameters,

4.2 Effect of Checkpointing on Execution Time

Checkpointing does not affect the reliability of the systém., it
does not improve the mean time between failures, but it avibie
need to restart the process from the beginning by captunmgtate
of the application at an intermediate execution state.

As discussed earlier, performing checkpoints comes at &a cos
Each checkpoint taken has certain overheads dependingionya
parameters including the number of parallel tasks, timertaio
synchronize the processes and time taken to store chet&poin
stable storage. The minimum number of checkpoints should be
performed so as to reduce these overheads.

s
T

o
©
T

4
®
T

MTBF/node = 10 years
Number of parallel processes (N)= 10,000
Plain execution time (T)= 128 hours
Communication/computation ratio = 0.2

Reliability (R)
o o o ©° o
& 2 &8 & 2
——

o
o
T

01r

.)
1 15 2 25 3 35 4 45 5
Degree of Redundancy (R)

Figure 2. Effect of Redundancy on Reliability

Another consideration while choosing a checkpoint inteiva
that it determines the average time for repeated execuften &
failure. The greater the checkpoint interval, the more r&wneeds
to be performed after a failure to return the applicatiorhi dtate
at which a failure occurred.

Consider an application running with the following paraenst

t: time taken by the original application to complete in altgen
of failure;

A: system failure rate, i.e., the number of failures per umiet

0: checkpoint interval, i.e. the time between successivelche
points;

c: time required for a single checkpoint to complete;

©: mean time between failures of the entire system on which
the parallel application runs — can be expressed in termailofé
rate asl/\;

R: restart overhead accounting for the time taken to readkchec
point images, instantiation of each application processrdina-
tion between processes, etc.

Tiotar: total time taken for completion, i.e., time after which ‘t’
amount of actual work is performed.

Figure 3 shows the lifetime of a process in the presence of
periodic checkpointing and occgrrnence of failures.

au

{ work ‘ckpnl rewurk‘ work }ckpnl‘ work

k
Mc 5

Figure 3. Life-cycle of an application

Number of failures: Failures can occur anytime during the ex-
ecution of the application, including the restart and réwmhases.
Hence, the entire execution time of the applicati®n,:.;, is sus-
ceptible to failures. Let s be the number of failures that occur till
the application completes, which can be calculated as:

ny = Total timex Failure rate= Tiotai A
The total time taken by application (T) is the sum of:

(1) The time taken by the application to perform actual compu
tation = t.

(2) The total time taken to take checkpoints until the endekt
We assume that there is no information available about iipgn
failures through a monitoring or feedback system. Instewel,
periodically checkpoint at a constant interval &f This time is
equal to (number of checkpoints) (overhead per checkpoint) or:

(Total Time)/(Checkpoint intervatyx ¢ = (t/d)c

(3) The total restart time derived from the total number of
failures during the lifetime of the application and the extpe
amount of restart time. Since failures can occur even when th
application is undergoing restart, the average time speadingle
restart phase is less than the maximum possible thnef a restart
phase.

(4) The total rework time, i.e., the total time spend on recom
puting lost work. The amount of lost work depends on the titne a
which a failure occurs after a checkpoint is establishedadsaithe

likelihood of failure during checkpointing (handling miple fail-
ures, incl. failures during recovery). We will use the tetimp to
denote the expected amount of work lost due to failurgsis also
the maximum possible duration of the rework phase.

However, when the application begins the rework phasegtiser
a possibility that a failure occurs before entirely re-conipy the
lost work. Thus, the expected time spent in a rework phasesis |
than the maximum possible time of a rework phase (which islequ
to the average amount of lost work).

Since after occurrence of a failure, restart is always ¥adid by
rework, we can combine them into a single phase. The maximum
duration of this phase i® + ¢;,,. Using the same argument as
before, the expected time of this combined phase is lessthen
maximum. Let us denote the expected time of this phase as

Before derivingtrr, let us find the average amount of work
that could be lost due to failure during computation. L;gtbe this
expected value, i.e, the expected time at which a failurarscafter
a checkpoint is taken.

The computation time of the application can be divided into
segments of lengthh + c¢. Each segment consists of work phase
(length=) followed by checkpoint phase (length=c). The lost work
depends on the time at which a failure occurs after the sfaat o
segment. Let. = § + ¢. The PDF describing the probability
of failure occurring at time from the start of a segment can be
calculated as:

p(t) —
O(l—e @)

When a failure occurs at time < ¢ < 4, the lost work is also
t. When failure occurs at timé < ¢ < é. (during checkpoint), lost
work is §. Hence, the expected time for lost work can be calculated
as:

—t
e e

1 ZG4se) —(+260)
+ ©

1 =t
@66 +§€] @6

trw = [J tp(t)dt + [2° 8- p(t)dt
Solving the above integral and substitutiiig= ¢ + ¢ yields:
S =c
(—)e@ 7679 +5 (1676 [S])
e® —¢ O
After occurrence of a fallure the application begins in tbstart
phase, which take® time followed byt;,, rework time. As men-
tioned earlier, we combine these two phases into a singlsepbi
maximum durationR + t;,,. The derivation of the expected time
of this phasetrr, is presented below:
The reliability of a system, i.e, the probability of survivatil

timetise® . This implies that the probability of a system failing
before timeR + t;., is: .
— t],
1 — P(system survives up to timg + ¢;,,) =1 —e™ ©
This also implies that probability of failure after timé (+ tlw)

is eL@LL. This is the probability that application completes
restart and;,, amount of reworktzr can now be calculated as:
trr = P(failure beforeR + ;.)

* (expected time of failure in interval O 8 + ¢;.,)

tiw =

+ P(failure afterR + t;,,) * (R + tiw)
—(R+t —(R+ty,,)
= (e S (fRH e Lo B dty e o (Rt)
—(R+tpq,) —(Rtty,,) —(RAtyq,)
= (I o) (M= (Rtti)e™ o0 =0 o)+
~ (R

(R + tlw)
Thus, the total time spent in rework and restart during thigeen
run of the application is:
(Number of failures)x trr = Tiotal \tRR-
The total time taken by the application can be written as:
Tiotal =t + & + Tiotat A\ RR

t+ %
Tiotal = ———2— 3
total (1 — AtRR) ()
where ., . ., .,
thr = (1—e) (O —tiwe 8 — O 8%) +e 8% 1y, (4)

EX —d —c
tw = 29279 1 §0e® (1—c®)

e® —e®
Its easy to understand that there is a trade-off betweemtbeval
between checkpoints, i.8, and the checkpoint/restart overhead.
Too low a checkpoint interval leads to unnecessary cheokpoi
and thus higher overheads. On the other hand, having a vghy hi
checkpoint interval leads to greater loss of computatioa th
failures. Thus, we need to choose the right checkpointuatéhat
gives the minimum overhead.

We qualitatively and quantitatively compared the aboveaequ
tion for total application execution time with the one derdvby
Daly in [6]. Eq. 3 and Daly’s exact formulation are approxteth
by Eq. 5 below, i.e., the share the same trends (see [6]). ¥¢e al
performed quantitative simulations for the relevant vatgges of
the parameters of both Egs. 3 and 5 to confirm this in plotsttomi
ted due to space). Plots are nearly a perfect match (wittesihgit
% deviations). The next section will feature model and expent
side-by-side (Figure 8).

We observe that these two equations are very similar witkva lo
% difference. Instead of deriving our own optimum checkp@in
terval, and to simplify the analysis, we use Daly’s optimiadck-

point interval [6]: 5
11
bopr = V(200)[L+ 3(5g)% +5(5g)1 =6 (®)
The minimum time required for application completion can be
obtained by substituting,,: in Eq. 3.

1,9

4.3 Combining Redundancy and Checkpointing

450

MTBF/node 6 = 5 years

Number of parallel processes, N = 100,000
Plain execution time, t = 128 hours
Checkpoint overhead, ¢ = 10 min.

Restart overhead, R = 10 min.
Communication/computation ratia,= 0.2

350!

Total Time for Completion in hrs (Ttotal)

25 3 35
Degree of Redundancy (1)

Figure 4. Configuration 1: Total Execution Time with Varying
Degree of Redundancy

Employing redundancy helps to increase the reliability hef t
system. But even a high degree of redundancy does not gaarant
failure free execution, though it certainly decreases tiobability
of failure: The probability of simultaneous failure of a modnd
its replica is equivalent to the “birthday problem”, whichdan be
approximated ag(n) ~ 1 — (2=2)"("=Y/2 for n nodes, which
very rapidly approaches zero for increasing.e., lgn p(n) =0.

Thus, we still need to checkpoint so that an application can b
we can recovered after a failure instead of having to re-hen t
application from the scratch. Eq. 3 shows that the time requi
for application completion increases as the failure ratzeases
(equivalently, the MTBF decreases). From Eq. 2, we see titht w
redundancy we can decrease the failure rate of the systethasid
decrease the checkpointing frequency, which ultimatesylte in
less checkpointing overhead and faster execution of thiecagipn.

Let us assess the effect of this hybrid approach qualitstiBe-
low are the set of equations that determine the overalliogistip
between redundancy and the total time for completion.

(1) The application time with redundancy degree tjis, =
(1—a)t+ (at)r.

(2) The failure rate with redundancy degree rJls,s =

tRed yr

_ logl— ()]

tRed

(3) The total execution time including C/R overheads i€} 5:q1 =

tRed®
t’?lfT;) wheretrr is given by Eq. 4.

Figure 4 shows the variation in total time with varying degre
of redundancy of an application for an original running tife
128 hrs. We see that as we increase the degree of redundaacy, t
execution time decreases initially. The minimum time aohigis at
162 hours when the redundancy degreei8. As we increase the
redundancy further, the total time increases as well. Ei§shows
the execution time with the same configuration as above,Haut t
MTBF of a node is increased to 15 years. As seen in the graph, th
minimum execution time is obtained at a lower redundancyekeg
of ~ 1.6.

»
2
g

MTBF/node.® = 15 years
Number of parallel processes, N = 100,000
Plain execution time, t = 128 hours
Checkpoint overhead, ¢ = 10 min. ~
Restart overhead, R = 10 min. /
‘Communication/computation rati

Y
b
8

N
8
8

N

8

3
T

=0.2

Total Time for Completion in hrs (Ttotal)

25 3 35
Degree of Redundancy (1)

Figure 5. Configuration 2: Total Execution Time with Varying
Degree of Redundancy

Figure 6 shows the variation in execution time when the sin-
gle checkpoint overhead is 1 minute compared to 10 minutes in
configuration 1 (Figure 4). The effect of this is that the miom
execution time is obtained at a lower redundancy degree bf7.

2401

MTBF/node 8 = 5 years
Number of parallel processes, N = 100,000 -

Plain execution time, t = 128 hours
Checkpoint overhead, ¢ = 1 min

220 Restart overhead, R = 10 min.
Communication/computation refia,= 0.2

Total Time for Completion in hrs (Ttotal)

25 3 35
Degree of Redundancy (r)

Figure 6. Configuration 3: Total Execution Time with Varying
Degree of Redundancy

5. Experimental Framework

Some assumptions and approximations had to be made while per
forming the mathematical analysis. The most significantisrie
Equation 1 and relates to the degree of redundancy and iet@lie
tion time. Here, we omitted the overheads originating fractdrs
such as placement of replicas and relative speeds of repl@a
cesses. It is expected that in a real execution environrhenbut-
come observed will differ to some extent from those in Figute
5 and 6 in the previous section.

To validate the mathematical analysis of the previous gegti
we collected empirical data by running benchmark applcetin
a HPC environment. Though the study performed in this work is
targeted towards exascale computing, computing systemghta
large scale are not available today. Hence, we run the @piglicto
the maximum scale possible on current available resouhbede

failures are injected instead of waiting for actual faikiré/e scale

down the MTBF per node according to the number of nodes avail-

able and the execution time of application so that the agaftin
suffers a sufficient number of failures to analyze the comdbief-
fect of C/R and redundancy. We run the application with aadert
degree of redundancy and also checkpoint the applicatidheat
optimum frequency calculated from Equation 5. Two processe
in the background of the application, which perform the tasks
specified above. The first background process is the faifjeetor
that triggers failures for the entire application based engrocess
failures. The occurrence of a failure for each process israsd to
be a Poisson process.

The failure injector performs the following steps: (1) Itima
tains a mapping of virtual to physical processes. The stifteach
physical process at a particular time is either dead or .aR)eFor
each physical process in the MPI environment, the time f®ntxt
failure is calculated using an exponential distributioat tthescribes

to suffer a sufficient number of failures to assess its benawia
failure prone environment. Hence, the CG benchmark wasfraddi
to run longer by adding more iterations. This was done byatpg

the computation performed between MRIt() and MPLFinalize()
calls ‘n’ number of times. This modified CG, class D benchmark
with 128 processes takes 46 minutes under failure free &recu
without redundancy and C/R. Larger inputs would becomeasife
ble (require weeks of experiments). Processes were pinmedld
cores per node for application tasks leaving one core eactndéo
operating system and runtime activities.

The MTBF of a node was chosen between 6 hours and 30 hours,
with an increment of 6 hours. A MTBF/node of 6 hours gives a
high failure rate otz 20 failures per hour, while MTBF/node of 30
hours gives a lower failure rate of 4 failures per hour. Wettan
application with the injector initially without redundanand then
with double and triple redundancy. To denote redundancyegsg
we use the notationr*k” to signify that there are- physical pro-

the time between events of a Poisson process. (3) As and whencesses corresponding to a virtual process. For examplesdinyf

the failure time of a physical process is reached, the mapjsin
updated by marking the process as dead. (4) If all the physioa
cesses corresponding to a virtual process have been magkeld d
application termination is triggered followed by a resfaom the
last checkpoint.

Figure 7 shows how failure of a physical process does not
necessarily imply a failure of the MPI application. The apgtion
fails and a restart is triggered only when all the physicatpsses
corresponding to a virtual process fail. The second backyio

[- vt prcess

(O - Physical Process

Vrank=2

® ©

Vrank=0

®© 0w e

Process, i
failure

Application
failure
Restart— ¢ . . X

! ! !

Figure 7. Failure Injection within MPI Applications

process is a checkpointer that calculates the optimal guétk
interval 6 using Equations 5 and 2 . It sets a timer for timand
checkpoints the application when the timer goes off.

6. Results

Experimental platform: Experiments were conducted on a 108
node cluster with QDR Infiniband. Each node is a dual socket
shared-memory multiprocessor with two octo-core AMD Ogiter
6128 processors (16 cores per nodes). Each node runs CergOS ¢
Linux x86 64. We used Open MPI 1.5.3 for running our exper-
iments and BLCR as the per-process checkpointing service. T
RedMPI library is used for performing redundant computatio

We chose the CG benchmark of the NAS parallel benchmarks
(NPB) suite as a test program. CG stands for conjugate gradie
It is used to compute an approximation to the smallest emaav
of a large sparse symmetric positive definite matrix. Thimé&kis
typical of unstructured grid computations in that it testegular
long distance communication employing unstructured maigic-
tor multiplication. CG spends approximately 20% of the ltttae
on MPI communication. Since this study is targeted towaodg |
running applications, we need an application that runs &mgugh

Vrank=1 Vrank=3

@@

dancy means that there are 2 physical processes correagadodi
a virtual process. Experiments were also performed withiglae-
dundancy, i.e., some processes have replicas, while sorequst
one primary copy. For example, a redundancy degree of 1.5xsme
that every other process (i.e., every even process) hasicardpar-
tial redundancy was assessed in steps of 0.25x between 3xand
The results of the experiments for the optimal applicatign e
ecution time using various degrees of redundancy is showain
ble 4. The minimum time taken by the application for each @alu
of MTBF is highlighted in the table. As seen from the resuttg,
minimum application execution time (maximum performaneith
MTBF of 6 hours is obtained at 3x redundancy. When the MTBF
is 12 hrs, the maximum performance is seen at 2.5x redundancy
Yet for a MTBF of 18, 24 and 30 hrs, the maximum performance
is achieved at 2x redundancy. Figures 8 and 9 show thesdsesul
in the form of line graphs and surface graphs, respectivaythe
surface graph shows, local minima exist at different pooftthe
surface indicating an intricate interplay of MTBF and redancy
with respect to overall performance.

MTBF Degree of Redundancy
1x|1.25x|1.5%|1.75x%| 2x|2.25x|2.5%|2.75x] 3X
6 hrs|275] 279 212 189|146| 158 139 132123
12 hrg201| 207| 167| 143|103| 113] 98| 111|125
18 hr§184| 179| 148 120| 72| 126] 88| 80| 84
24 hrg159| 143| 133 100| 67 92| 78| 84| 83
30 hrg136] 128| 110] 101| 66 73| 80| 82| 84

Table 4. Performance of an Application (Execution Time in Min-
utes) with Combined C/R+Redundancy Technique

300

MTBF
18 hr

..... 6hr == e==12hr
250

200

150

100

Total Timeto Completionin min. (Ttotal)

1x 1.25x 1.5x 1.75x 2x 2.25x 2.5x 2.75x 3x

Degreeof Redundancy (r)

Figure 8. Performance of an Application (Execution Time in Min-
utes) with Combined C/R+Redundancy Technique on a Cluster

250-300

200250 ®150-200 ®100-150 ®50-100 ®0-50

300

250

150

Total Time for Completion (T mins)

100

Degree of Redundancy (r)

Figure 9. Surface Plot of Performance of an Application (Execu-
tion Time in Minutes) with Combined C/R+Redundancy Techeiq

We make the following observations from the above resulfs: (
For a high failure rate or, equivalently, lower MTBF (e.ghr8), the
minimum total execution time (maximum performance) is actd
at higher redundancy levels-(3x in this case).

(2) For lower failure rates (e.g., 24 hrs and 30 hrs) the mimm
total execution time (maximum performance) is achieved ia-a
dundancy level of 2x. Increasing the redundancy degrebduttas
adverse effects on execution time.

(3) The minimum execution time (maximum performance) can
also be achieved at partial redundancy levels, e.g. for MTIBF
hrs. Here, the maximum performance is obtained when 2.5xred
dancy is employed.

(4) Aninteresting finding is that in most cases 1.25x redunyga
yields poor performance compared to 1x (when no redundancy i
employed). Similarly, 2.25x yields poor performance consgeo
2x redundancy. This behavior can be attributed to a higleeease
in redundancy overhead in return for a smaller decreasélurda
rate as we move from 1x to 1.25x (or from 2x to 2.25x). To suppor
this argument, a separate experiment was carried out tolatdc
the failure-free execution time with increasing redungalevels.
The results are shown in Table 5 and Figure 10. It can seethiat
rate of increase in execution time is larger in the first step, from
1x to 1.25x) while there is a decrease in the rate in the suleseq
steps.

85

.. 82
80

s 76

70 70

~~~~~ Observed increase in
execution

65

60 -

55 === Modeled linear increase

50

Total execution time (T min.)

45

40

Ix 125x  1.5x  1.75x 2x 225 25 275 3

Degree of Redundancy (r)

Figure 10. Increase in Execution Time with Redundancy

(5) The purpose of these experiments is to verify the mathe

matical model developed in Section 4. Hence, we modeled»aur e
ecution by estimating/calculating the environment patanseand
substituting them in the set of equations developed in Seeti3.

There is a subtle difference in the experimental setup anchodel
discussed in Section 4.3. While running the applicatioilutfas
are not triggered when a checkpoint is performed or wherarest
is in progress. Our model, though, considers failures attzng,
including checkpointing and restart. We simplified our moe
match our experiments, which results in the following tirned-
tion: Tiotal = tRed + tRedx/QC)\sys + tRed)\sysR- We have used
this equation for modeling the application behavior in thesence
of C/R and redundancy. This simplified model pertains jushi®
sub-section, specifically to Figures 11 and 12.

The overhead per checkpoint (c) was calculated as 120 sec. by
first running the plain application, then running it with octeeck-
point taken during execution, and calculating the diffeeetve-
tween the later and former execution times. Time taken ttares
the application after a failure and beginning of re-exemutrestart
overhead, R) was measured as approx. 500 sec. The CG bench-
mark, on average, spends 20% of the total time in MP| comnaunic
tion, so the communication to computation ratg {s 0.2. Plotting
the equations in MATLAB, we get the expected applicationdveh
ior shown in Figure 11. It can be seen that the actual behafibe
application (Figure 8) is similar to the modeled behaviaovgh in
Figure 11, thus validating our analytical model. For clasempar-
ison, Figure 12 overlays the performance curves in Figurevet
those in Figure 8 for selected MTBF values. The trend folidg
the observed curves is very similar to the modeled curvesv-Ho
ever, we see some absolute differences in the executios tina¢
can be attributed to various causes :

(a) The redundancy overhead in actual runs is more than the
modeled overhead (see Figure 10). An increase in the eracuti
time is due to additional failures occurring during thisrexime.
(b) The fault injector generates failures by using inputsrfra
random number generator that follow a Poisson distributidre
application running time may not be long enough for the olesr
failure rate to converge to the average failure rafe (

3001~

—%— MTBF 6 hrs

~—— MTBF 12 hrs
—+— MTBF 18 hrs
—+— MTBF 24 hrs
—&— MTBF 30 hrs

Total Execution Time in min. (Ttotal)

175 2 2.25
Degree of Redundancy (r)

Figure 11. Modeled Application Performance

300

250 S

200

=== 18 hrs

= + +30hrs
150

=== 6 hrs-modeled

== <18 hrs - modeled

=+ <30 hrs - modeled

Total Exeaution Timein min. (T)
’

100

2.5x 3x

Degreeof redudancy (r)

Figure 12. Observed Performance vs. Modeled Performance



Degree of Redundancy Ix | 1.25x | 1.5x | 1.75x | 2x | 2.25x | 2.5x | 2.75x | 3x
Observed increase in execution tinie46 55 59 61 63 70 76 78 82
Expected linear increase 46 48 51 53 55 58 60 62 64
Table 5. Increase in Execution Time with Redundancy
Simulations: We also performed simulations using our analyti- j:: X 2 m;s;z:gg;g;gmv;é{i 128 hours

cal model to determine at which point an application begirtsen-

efit from redundancy. Figure 13 depicts the execution tine 128
hour job for different redundancy levels and number of psses
(with a factor of 10,000 on the latter/x-axis) under weakliaga
i.e., the problem size is scaled at the same rate as the nafer
cesses resulting in a constant compute overhead per pradess
cross-over points between no redundancy (1x) and dual dzchay
(2x) at~4,000 processes and triple redundancy (3x)<&0,500
processes indicate an early benefit for combined C/R+rezhoyd
When it is not always feasible to minimize runtime due to tese
scarcity, resilience may still be improved through partiediun-
dancy as a tunable knob (e.g., 1.5x). As seen in the figurenwhe
the number of processes is between 3851 and 25180, we ofgain t
best results by running the application at 1.5x rather thar©Oaly
beyond N=25180 does 2x yields a lower execution time thax 1.5

MTBF/node 0 = 5 years

Plain execution time, t = 128 hours
Checkpoint overhead, ¢ = 10 min.
Restart overhead, R = 10 min.
‘Communication/computation ratia,= 0.2

240

N: 25180
T 157

Total Time for Completion "{I}"a)

15 2
Number of Processes (N) x10*

Figure 13. Modeled Wallclock Time of a 128 Hour Job for Differ-
ent Redundancy Levels up to 30k Nodes

Using additional nodes for redundancy is a cost, while gaini
a shorter execution time is a benefit: The nodes become blaila

Checkpoint overhead, ¢ = 10 min.
Restart overhead, R = 10 min.
‘Communication/computation ratia,= 0.2

5

8

8
T

Total Time for Completion for hrs gaj)

. ; ; ; ; ; ; i
6x10"4 8x10"4 10x10M  12x10%4  14x10%4  16x10%  18x10M  20x10™4
Number of Processes (N)

L L
0 210 4x10M

Figure 14. Modeled Wallclock Time of a 128 Hour Job for Differ-
ent Redundancy Levels up to 200k Nodes

Authors of [29], [36] have taken a different approach by mod-
eling the problem as a Markov availability model and obtdiaa
optimal checkpoint placement that maximizes system abvititha
[29] has addressed the issue of placing processes on degilab
cessors (task mapping) and determining correspondindkpbéat
intervals to obtain the best execution time. They model #réop-
mance of coordinated checkpointing systems where the nuafibe
processors dedicated to the application (termed “a” favacand
the checkpoint interval (termed “I”) are selected by ther lefore
running the program. The model is used to determine the geera
availability of the program in the presence of failures ttan be
used to select values of a and | to minimize the expected mgnni
time of the program.

In [25], authors have presented a reliability-aware mefobodn
optimal C/R strategy towards minimizing rollback and chyemikt
overheads. Their model considers variable checkpointvals by
taking actual system reliability into account.

The works cited above have considered C/R as the only method
for achieving fault tolerance and analyzed the effect of GiRap-
plication execution time. As discussed before, redundas@n-

sooner and can be used for other jobs. Hence, when the runtimeother way of achieving fault tolerance. Ferreira et al. [hale

with redundancy is twice that of dual redundancy at 60,0@8 pr
cesses, we can actually run two dual redundant jobs of 126hou
in the time of just one job without redundancy (see Figure 14)
This indicates that redundancy is a powerful technique ¢eeimse
the utilization of exascale HPC installation for capacipmput-
ing (where job throughput is the objective). It does not eva
solution to capability computing (where all nodes are ziti by

a job without redundancy), which presents an open problera-to
silience handling of exascale systems. The figure furthdetimes
that pure C/R without redundancy results at exponentiakaees

in execution time afterc 60,000 nodes.

7. Related Work

Several models to determine the optimal checkpointingegyefor
parallel programs have been developed in prior works. Yd@iy
presented an optimal checkpoint and recovery model andnelta
a constant optimal checkpoint interval to reduce the oleralcu-
tion time. Based on Youngs work, Daly [6] improved the model t
an optimal checkpoint placement from a first order to a highéer
approximation. These studies establish a cost functiothfototal
execution time and try to minimize the output of the cost fiorc
The results derived are similar to those obtained in Secti@n
Other work considers those and additional approximatioeua
variety of failure distributions [3].

studied the viability of process replication as the primiaylt tol-
erance mechanism for exascale systems, employing C/R as a se
ondary mechanism. Results from their work show that refitina
outperforms traditional C/R approaches for large socketmis
and limited 1/0 bandwidths frequently anticipated at exdescThe
study compares only two models of execution, one withoutimed
dancy and another with dual (2x) redundancy assuming that pr
cesses have to double up on the same number of nodes. In con-
trast, our work assumes that the number of nodes is increaisiee
same rate that the number of processes increases undedaadyn
This is more realistic since high-performance applicatitend to
fully utilize the available memory space of a node. Furthamen

we model the execution of an application in the presencechfire
dancy at various degrees (including partial redundancygpimbi-
nation with C/R. Using this model, we study the trade-offaiezn
levels of redundancy and checkpoint frequencies with tred gb
optimizing system performance.

8. Conclusion

Petascale and forthcoming exascale computing systemsiexpe
outages due to failed components, software bugs, and pasvapd
tions. A common method to allow application runs longer thran
terval between faults is to checkpoint applications tolstatorage.
But studies show that large-scale applications spend rhare30%



of their time in C/R activities. Another way to achieve fatdter-
ance is to employ redundancy, wherein multiple processdsrpe
the same computation.

This work shows that C/R-based fault tolerance can be used in

synergy with redundancy to optimize application perforogarWe
have developed an analytical model to estimate the exectitie

of long-running large-scale programs in presence of fafuhat
combines C/R with redundancy. Using this model, HPC usars ca
configure their application with the right amount of redumciade-
gree and checkpoint frequency to obtain the maximum pedaooa
from the available resources. We also validated the modeh-by
jecting faults into applications with an implemented rediamcy
layer on our computing cluster. The modeled applicationalieh
ior closely mimics the observed application behavior onabuster

and we obtain the maximum performance at the same redundancy

levels as given by the model. We observed that there are seme d
viations from the modeled performance curve, especialpastial
redundancies. The reason for such behavior was traced de e
tion of observed redundancy overhead from the expectedheadr

Overall, combined C/R and redundancy results in shortaative
execution time even for medium-sized HPC applications &i@i00
and 25,000 processes for 1.5x and 2x redundancy. At 60,G80 pr
cesses, dual redundancy (2x) requires twice the numbepoéps-
ing resources for an application but allows two jobs of 128rko
wallclock time to finish within the time of just one job withbre-
dundancy. Partial redundancy of 2.5x also results in thesbtme
for certain MTBF values. But partial redundancy goes ong fite
ther: It allows a trade-off between additional resources waall-
clock time, which effectively presents a tuning knob for rsst®
adapt to resource availabilities.

References

[1] Mostafa Abd-El-Barr. Design and analysis of reliabledaiault-
tolerant computer systems. limperial College Pres2007.

[2] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and JoseokeiM.
Adaptive incremental checkpointing for massively patadigstems.
In Proceedings of the 18th annual international conferenc&oper-
computing 2004.

[3] Marin Bougeret, Henri Casanova, Mikael Rabie, Yves Roband
Frédéric Vivien. Checkpointing strategies for parajtabs. In Su-
percomputingnov 2011.

[4] K. Mani Chandy and Leslie Lamport. Distributed snapshdetermin-
ing global states of distributed system&CM Trans. Comput. Syst.
3:63-75, February 1985.

[5] Antonio Cunei and Jan Vitek. A new approach to real-tinheak-
pointing. InProceedings of the 2nd International Conference on Vir-
tual Execution Environment2006.

[6] J. T. Daly. A higher order estimate of the optimum chedkpmterval
for restart dumpsFuture Gener. Comput. Sys22(3):303-312, 2006.

[7] John T. Daly. ADTSC nuclear weapons highlights: Faaiiitg high-
throughput ASC calculations. Technical Report LALP-072-040s
Alamos National Laboratory, Los Alamos, NM, USA, June 2007.

[8] John T. Daly, Lori A. Pritchett-Sheats, and Sarah E. Miek. Ap-
plication MTTFE vs. platform MTTF: A fresh perspective orsggm
reliability and application throughput for computatiorissaale. In
Proceedings of the Workshop on Resiliency in High Perfocad@om-
puting (Resilience) 200®ages 19-22, May 2008.

[9] Jason Duell. The design and implementation of berkedds llinux
checkpoint/restart. Technical report, 2003.

[10] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Cems
sus in the presence of partial synchrony. Journal of the ACM,
35(2):2883231988.

[11] Christian Engelmann and Swen Bohm. Redundant exactati HPC
applications with MR-MPI. InProceedings of thad0t" IASTED
International Conference on Parallel and Distributed Cartipg and
Networks (PDCN) 201,IJpages 31-38, February 15-17, 2011.

[12] Graham E. Fagg, Edgar Gabriel, Zizhong Chen, Thara Rurgys
George Bosilca, Jelena Pjesivac-Grbovic, and Jack J. DengBro-
cess fault-tolerance: Semantics, design and applicat@risigh per-
formance computing. linternational Journal for High Performance
Applications and Supercomputing, 19(4):46542805.

Kurt Ferreira, Jon Stearley, James H. Laros lll, Ronfi@ld, Kevin
Pedretti, Ron Brightwell, Rolf Riesen, Patrick Bridgesdanorian
Arnold. Evaluating the viability of process replicatioriability for
exascale systems. IRroceedings of the ACM/IEEE International
Conference on High Performance Computing, Networkingra§e
and Analysis, SC’1Inov 2011.

Kurt B. Ferreira, Rolf Riesen, Ron Oldfield, Jon Stearlames Laros,
Kevin Pedretty, Todd Kordenbrock, and Ron Brightwell. kasing

fault resiliency in a message-passing environment. TR S200D-

6753, Sandia National Lab, October 2009.

Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, abdziea
Petrini. Transparent, incremental checkpointing at Kdevel: a foun-
dation for fault tolerance for parallel computers.S6@, 2005.

[16] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-perfance,
portable implementation of the MPI message passing irteraan-
dard. Parallel Computing 22(6):789—-828, September 1996.

[17] Chung-H. Hsu and Wu-C. Feng. A power-aware run-timeesysfor
high-performance computing. Bupercomputing2005.

[18] Shang-Te Hsu and Ruei-Chuan Chang. Continuous chetkymn
joining the checkpointing with virtual memory pagin@oftw. Pract.
Exper, 27(9):1103-1120, 1997.

[19] Kuang-Hua Huang and J. A. Abraham. Algorithm-basedt feal-
erance for matrix operations. IEEE Transactions on Computers,
33(6):5185281984.

[20] Joshua Hursey.Coordinated Checkpoint/Restart Process Fault Tol-
erance for MPI Applications on HPC SystemBhD thesis, Indiana
University, July 2010.

[21] Troy LeBlanc, Rakhi Anand, Edgar Gabriel, and Jaspabhuk.
Volpexmpi: an mpi library for execution of. parallel ap@tons on
volatile nodes. IrEuropean PVM/MPI Users’ Group Meetingages
124-133, September 2009.

[22] Claudia Leopold and Michael Sub. Observations on mpiigport
for hybrid master/slave applications in dynamic and hefeneous
environments. Inn Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 4192, pages 285292 nSsmt
2006.

[23] Chung-Chi Jim Li, Elliot M. Stewart, and W. Kent Fuchsoi@piler-
assisted full checkpointing. Software: Practice and Experience
February 1994.

[24] Michael Litzkow and Marvin Solomon. Supporting cheokging and
process migration outside the unix kernel. pages 283—22.1

[25] Yudan Liu, R. Nassar, C. Leangsuksun, N. NaksinehapbbriPaun,
and Stephen Scott. A reliability-aware approach for amoglticheck-
point/restart model in hpc environments. Gtuster Computing, 2007
IEEE International Conference opages 452 —-457, sept. 2007.

[26] lan Philp. Software failures and the road to a petafloghmee. In
HPCRI: 1st Workshop on High Performance Computing Religbil
Issues|EEE Computer Society, 2005.

[27] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz AedBarroso.
Failure trends in a large disk drive population.USENIX Conference
on File and Storage Technologie2007.

[28] J. S. Plank and W. R. Elwasif. Experimental assessnfenbikstation
failures and their impact on checkpointing systems.Ptoceedings
of the The Twenty-Eighth Annual International Symposiunfrarit-
Tolerant Computingpages 48-57, 1998.

[29] James S. Plank, Yugun Chen, Kai Li, Micah Beck, and G&ings-
ley. Memory exclusion: Optimizing the performance of chgaikting
systems.Software: Practice and Experienceéebruary 1999.

[30] Sriram Rao, Lorenzo Alvisi, and Harrick M. Vin. The castrecovery
in message logging protocols. IBEEE Transactions on Knowledge
and Data Engineering, 12(2):160173000.

(13]

[14]

[15]



[31] Bianca Schroeder and Garth A. Gibson. Understandifigrés in
petascale computergournal of PhysicsFebruary 2007.

[32] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Diéthi¢eber. Dram
errors in the wild: a large-scale field study. $IGMETRICS Con-
ference on Measurement and Modeling of Computer Systemges
193-204, 2009.

[33] L. M. Silva, J. G. Silva, S. Chapple, and L. Clarke. Pbltacheck-
pointing and recovery. Iin Proceedings of the Fourth IEEE In-
ternational Symposium on High Performance Distributed @otimg
(HPDC 95), Washington, DC, USA, 1995. IEEE Computer Sqciety
1995.

[34] Nitin H. Vaidya. Impact of checkpoint latency on ovesderatio of a
checkpointing scheme. MEEE Transactions on Computerk997.

[35] J. Vetter and F. Mueller. Communication charactersstf large-scale
scientific applications for contemporary cluster archiiegs. Journal
of Parallel Distributed Computing3(9):853—-865, September 2003.

[36] K. Wong and M. Franklin. Distributed computing systeamsl check-
pointing. InHigh Performance Distributed Computing, 1993., Pro-
ceedings the 2nd International Symposium pages 224 —233, jul
1993.

[37] John W. Young. A first order approximation to the optimeheck-
point interval. Commun. ACM17(9):530-531, 1974.



