
Performance Analysis for Using Non-Volatile Memory DIMMs:
Opportunities and Challenges

Amro Awad
University of Central Florida

Electrical and Computer Engineering
Orlando, FL

amro.awad@ucf.edu

Simon Hammond
Sandia National Laboratories

Center for Computing Research
Albuquerque, NM

sdhammo@sandia.gov

Clay Hughes
Sandia National Laboratories

Center for Computing Research
Albuquerque, NM

chughes@sandia.gov

Arun Rodrigues
Sandia National Laboratories

Center for Computing Research
Albuquerque, NM
afrodri@sandia.gov

Scott Hemmert
Sandia National Laboratories

Center for Computing Research
Albuquerque, NM

kshemme@sandia.gov

Robert Hoekstra
Sandia National Laboratories

Center for Computing Research
Albuquerque, NM
rjhoeks@sandia.gov

ABSTRACT
DRAM scalability is becoming more challenging, pushing the fo-
cus of the research community towards alternative memory tech-
nologies. Many emerging non-volatile memory (NVM) devices are
proving themselves to be good candidates to replace DRAM in
the coming years. For example, the recently announced 3D-XPoint
memory by Intel/Micron promises latencies that are comparable
to DRAM, while being non-volatile and much more dense. While
emerging NVMs can be fabricated in different form factors, the
most promising (from a performance perspective) are NVM-based
DIMMs. Unfortunately, there is a shortage of studies that explore
the design options for NVM-based DIMMs.

Because of the read and write asymmetries in both power con-
sumption and latency, as well as limited write endurance, which
often requires wear-leveling techniques, NVMs require a special-
ized controller. The fact that future on-die memory controllers are
expected to handle different memory technologies pushes future
hardware towards on-DIMM controllers. In this paper, we propose
an architectural model for NVM-based DIMMs with internal con-
trollers, explore their design space, evaluate different optimizations
and reach out to several architectural suggestions. Finally, we make
our model publicly available and integrate it with a widely used
architectural simulator.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5335-9/17/10. . . $15.00
https://doi.org/10.1145/3132402.3132422

CCS CONCEPTS
• Hardware → Memory and dense storage; • Computer sys-
tems organization → Architectures;

KEYWORDS
Multi-Level Memory, Simulation, Application Analysis

ACM Reference Format:
Amro Awad, Simon Hammond, Clay Hughes, Arun Rodrigues, Scott Hem-
mert, and Robert Hoekstra. 2017. Performance Analysis for Using Non-
Volatile Memory DIMMs: Opportunities and Challenges. In Proceedings of

MEMSYS 2017, Alexandria, VA, USA, October 2–5, 2017, 10 pages.
https://doi.org/10.1145/3132402.3132422

1 INTRODUCTION
Scaling the cell size of DRAM is becoming more challenging [20]
and emerging NVMs are being widely studied as potential replace-
ments for DRAM. Emerging NVMs, such as Phase-Change Memory
(PCM), have latencies that are comparable to DRAM (less than order
of magnitude slower) and promise high densities [8, 17, 19, 25, 30].
Additionally, because NVMs are non-volatile, there is no need for
refresh power. On the other hand, emerging NVMs have limited
write endurance and high write latencies.

While NVM technologies are expected to appear soon in the
market [3], the parameters, such as read/write latencies and power
limitations are expected to change as the technologymatures.While
NVMs are very attractive for adoption in large scale HPC systems,
it is unclear how they will affect the performance. For instance, how
would the write latency affect the performance, i.e., how sensitive
are HPC applications to write latency? How effective are write

https://doi.org/10.1145/3132402.3132422
https://doi.org/10.1145/3132402.3132422

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA A. Awad et al.

latency mitigation techniques, such as Write-Cancellation, for HPC
applications? Another example, given the high read latency of
NVMs compared to DRAM, how effective are row buffers? Can row
buffers effectively mask the high latency of emerging NVMs?

Most previous research work selected specific NVM parame-
ters and used them without considering the potential impact on
performance. This is critical, especially for HPC systems where
multiple vendors are able to provide the memory technology, often
times with different memory characteristics. As such, it is important
to know what parameters are critical for performance and power
while considering the price.

Many of the design parameters of NVM can impact the per-
formance of systems, particularly at scale. Examples are the read
latency from NVM cells, write latency and its associated optimiza-
tions such as Write-Cancellation, the maximum number of con-
current writes (typically limited by power budget), the maximum
number of outstanding requests, number of banks, number of chan-
nels, internal caching and scheduling. In this paper, we propose and
describe in detail an architectural simulation model for NVM-based
DIMMs. We use our model to evaluate the impact of different opti-
mizations and parameters on the performance of memory systems
built from NVM-based DIMMs. We integrate our model with the
Structural Simulation Toolkit (SST) simulator [26], and make it
publicly available.

This paper targets memory-intensive HPC applications. Our
analysis shows that most of the applications are very sensitive to
the read and write latencies associated with NVM modules. We
also observe that using large row buffers does not help for most
of the studied applications. The maximum number of allowed con-
current write operations, which is limited by the power budget,
can significantly affect the performance of several applications.
Additionally, we examine state-of-the-art write latency mitigation
techniques, such as Write-Cancellation [23], and examine their sen-
sitivity to write latency and impact on performance. Additionally,
we study the potential performance impact of on-DIMM caching
and compare it with a DRAM-only system. Finally, we study the
cost-performance trade-offs for alternative design options, such as
a hybrid NVM/DRAM system with different insertion policies.

The rest of the paper is organized as follows. First, in Section 2,
we discuss the key characteristics of emerging NVM technologies.
In Section 3, we describe an open-source architectural simulation
model for NVM-based DIMMs, its key parameters and the rationale
behinds each of them. In Section 4, we describe our evaluation
methodology, including the default parameters. Section 5 includes
a detailed analysis of the performance sensitivity for different NVM
parameters. Section 6 discusses the conclusions from Section 5 and

propose several architectural optimizations. Section 7 discusses the
related work. Finally, in Section 8, we conclude our paper, with
suggestions for future work.

2 BACKGROUND
In this section, we discuss emerging non-volatile memory technolo-
gies, their key characteristics and design options.

2.1 Emerging Non-Volatile Memory (NVM)
Technologies

Emerging Non-Volatile Memory (NVM) technologies, such as Phase-
Change Memory (PCM), Memristor and Spin-Transfer Torque RAM
(STT-RAM), have different characteristics. Some of these technolo-
gies have high densities, e.g., PCM and Memristor, making them
very promising candidates for building main memory and storage.
Others, such as STT-RAM, have low density, making them more ap-
pealing for building Last-Level Caches (LLCs). One common feature
across these technologies is non-volatility, which can be defined
as the ability to retain memory cell values even when there is no
power supplied. However, issues such as resistance drift may re-
quire refreshing cells, but with considerably lower frequency than
current DRAM technology.

Across emerging NVM technologies, PCM is thought to be very
promising for replacing DRAM. PCM has much higher density,
which promises large capacity main memories. PCM also has read
latencies that are comparable to DRAM. Unlike DRAM, PCM’s non-
volatility feature eliminates the need for expensive refresh power,
resulting in near-zero idle power. On the other hand, PCM has
long write latencies, which can go up to thousands of cycles, and
limited write endurance. In this paper, we focus on the usage of
PCM technology as main memory or part of main memory.

2.2 Designs and Optimizations
Since emerging NVMs are still in their infancy, there is still no
clear answer of how exactly they should be designed for high-
performance compute nodes. For instance, some vendors might
prefer to offload scheduling, optimizations, such as wear-leveling
and reduction, to occur at an on-die (near processor) memory
controller. While this approach can bring down the cost of NVM-
based DIMMs, it comes at the cost of compatibility with different
memory technologies and extra on-chip area that might be never
used, e.g., for systems which do not use NVMs. Furthermore, the
non-deterministic timing of NVMs renders processor-side access
protocols difficult to implement. An alternative design option is
an on-DIMM controller (near memory). This approach requires

Performance Analysis for Using NVM MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

a packet-based protocol, where the processor-side memory con-
troller sends a packet with a request ID, and command information,
then the on-DIMM controller decodes the command and executes it.
Optimizations, such as wear-leveling, Write-Cancellation, internal
scheduling and power-limiting considerations, are implemented on
the DIMM, i.e., by the memory vendor. This approach is promising
for several reasons. First, it does not expose the internal charac-
teristics and design details to processor vendors, while still imple-
menting appropriate optimizations through the internal controller.
Second, it requires negligible modifications on the processor side
to enable the integration of new technologies. Finally, due to signal
integrity challenges, buffering commands and data internally is
easier to implement, which is becoming more common for DRAM,
e.g., LRDIMM and RDIMM [1, 2, 18].

In this paper, we adopt the latter design approach, which we
expect to be the most dominant for future memory systems. Our
expectation is based on designs appearing in industrial patents and
current prototypes [4, 6]. Figure 1 shows an example design of
near-memory controllers.

NVM-Based DIMM

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

Rank

Bank

NVM Internal
Controller

Write
Buffer

Requests
Tracker

Request
Buffer Scheduler

Wear
Leveler
Power

Manager

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

Rank

Processor

Memory Bus

Figure 1: Example of near-memory (on-DIMM) controller,
similar to [4, 6].

The internal controller typcially includes optimizations forwrites,
wear-leveling, internal caching and buffering, power managment
and scheduling. One promising technique that has been shown to
improve performance isWrite-Cancellation [23].Write-Cancelation
cancels pending write operations in order to service read operations,
which are usually on the critical path, avoiding a long time delay for

read operations. For wear-leveling, Start-Gap wear leveling tech-
nique is expected to be used [24]. PCM write operations incur high
power, which necessitates a power management scheme to limit
the number of concurrent NVM device writes to avoid exceeding
the power budget of the DIMM.

3 THE MESSIER NVMMODEL
In this section, we describe our NVM software model, which we
use to conduct our experiments and base our analysis upon.

Our NVM model assumes a DIMM that consists of one or more
ranks, where each rank consists of several banks. Each bank has
a fast row buffer that caches the most recently read row. Note
that since PCM writes must persist, PCM bypasses the row buffer
and writes directly to the NVM cells in this case. The DIMM has
an internal memory controller that tracks outstanding requests,
schedules requests and implements several optimizations, such as
Write-Cancellation and caching. If the request is a write operation,
once scheduled, it will be written to the write buffer, which is
guaranteed to be persistent. Persistancy can be ensured either by
using a small capacitor or by using fast NVM memory such as
STT-RAM. Figure 2 shows a high-level description of our software
model.

Figure 2: The software model for our NVM-based DIMM
model.

To better describe the parameters, we will go through a read
request scenario. Once a read request is received, it is placed in
the transaction queue, where it waits until being scheduled. Once
the scheduler decides to dispatch the request, which only hap-
pens if the corresponding bank is free and the rank internal circu-
tary/bus/channel is free, it checks if it is a row buffer hit or miss,
and accordingly issue a command to the corresponding NVM bank.

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA A. Awad et al.

Sending the command occupies the rank bus for tCMD cycles. Once
the command is received by the bank, if row activation is required
(as in the case of row buffer miss), it will take tRCD cycles to load
the data into the row buffer. Later, after the row activation or in
the case of row buffer hit, the scheduler will again send another
command to read the data from the bank, which will only happen
when the rank bus is free. Once the command is received by the
bank, it occupies tCL cycles to read a column and tBURST cycles
to transfer the data over the bus. The request will be buffered in
the ready_trans buffer before the data is sent back to the pro-
cessor and notifying the on-die memory controller of the request
completion.

In case of a write operation, once the request is scheduled, the
data will be written to the persistent write buffer, and immediately
notify the on-die memory controller of the request completion.
Note that a write is scheduled only when the write buffer is not
full. To avoid throttling the system as the write buffer is nearing
getting full, a flushingmechanism is deployed. Typically, a threshold
value is deployed to determine when to start flushing the write
buffer, through prioritizing evicting write entries over servicing
new requests. The maximum number of concurrent writes is limited
by the max_writes parameter, which can be set based on the power
budget and thermal limitations. When a write is evicted, it occupies
the bank for tCL_W cycles, while the rank bus is occupied for the
time of sending the data and write command, tBURST and tCMD,
respectively.

4 METHODOLOGY
We use the Structural Simulation Toolkit (SST) [26] with theMessier
NVM-DIMM model [9] to conduct our experiments and analysis.
SST was configured to model 8 cores with private L1 caches and L2
caches. The L3 cache is shared across all cores and paritioned into
eight banks. Our simulation default parameters are shown in Table 1.
The simulation source code for these experiments is available on the
SST repository1. The simulation infrastructure allows us to model
the entire cache hierarchy, the coherency protocol, and memory
latency. SST’s memHierarchy, Merlin, and Ariel components were
used for the caches, on-chip network, and processors respectively.

Since our focus is HPC appications, we use five miniapps from
the U.S. Department of Energy (U.S. DoE): miniFE [14], an unstruc-
tured implicit finite element code; Lulesh [15, 16], a hydrodynamics
code; Pennant [11], an unstructured mesh physics mini-app; Simple-
MoC [12], a mini-app to study Method of Characterstics (MoC) for
3D neutron transport calculations; and XSBench [29], A mini-app
that represents a key computational kernel for the Monte Carlo

1https://github.com/sstsimulator/sst-elements/tree/ ADVANCED_MESSIER

Table 1: Simulation Parameters

Component Parameters

Core 2GHz, 3 issue / cycle, 16 max. outstanding mem-
ory requests

Coherency MESI protocol
L1 32KB, 8-way, 64B cache line, 4 cycles
L2 256KB, 8-way, 64B cache line, 6 cycles
L3 16MB, 16-way, 64B cache line, 12 cycles
Memory four channels, one DIMM per channel
NVM DIMM 2GHz clock, 32 banks, 32 outstanding, 32 write

buffer size, max of 4 concurrent writes
NVM DIMM Timing tRCD=150ns, tCL_W=500ns, tCL=15ns
Scheduler FR-FCFS prioritizing row buffer hits

Neutronics application OpenMC. Each application was executed
with 8 threads, starting from the region of interest until at least
one core executes 100M instructions (~800M instructions total).
Additional parameters are listed in Table 2.

These applications were selected because they are memory-
intensive and exhibit a diverse set of main memory access patterns.

Table 2: Application Parameters

Application Options

miniFE -nx 140 -ny 140 -nz 140

Lulesh -s 120

Pennant leblancbigx2.pnt

SimpleMoC -t 8 -s

XSBench -s large -t 8

5 DESIGN SPACE EXPLORATION
In this section, we investigate the impact of several state-of-the-art
optimizations and how varying several NVM parameters can affect
the performance.

5.1 The Impact of Write Latency and Write
Cancellation

Write latency is considered to be one of the key challenges for
using emerging NVMs as main memory. So, we begin our design
exploration by studying the sensitivity of the write latency of NVM
devices. Figure 3 shows the impact of write latency on performance.
We vary the write latency, tCL_W, from 100 to 1000 cycles in 100-
cycle increments. As expected, for most of the applications, the
performance decreases as the write latency increases. The exception
here is XSBench, which does not have many writes.

One way to combat the impact that write latency can have on
application performance is to use Write-Cancellation, as described
in Section 2.2. From Figure 3, we can observe that at low write

Performance Analysis for Using NVM MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

 0

 2x108

 4x108

 6x108

 8x108

 1x109

 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

Write Latency (cycles)

The Impact of NVM Write Latency and Write-Cancellation on Performance

Default
Write-Cancellation

(a) Lulesh

 0

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

 7x108

 8x108

 9x108

 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

Write Latency (cycles)

The Impact of NVM Write Latency and Write-Cancellation on Performance

Default
Write-Cancellation

(b) XSBench

 0

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

 7x108

 8x108

 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

Write Latency (cycles)

The Impact of NVM Write Latency and Write-Cancellation on Performance

Default
Write-Cancellation

(c) Pennant

 0

 2x108

 4x108

 6x108

 8x108

 1x109

 1.2x109

 1.4x109

 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

Write Latency (cycles)

The Impact of NVM Write Latency and Write-Cancellation on Performance

Default
Write-Cancellation

(d) MiniFE

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 3x108

 3.5x108

 4x108

 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

Write Latency (cycles)

The Impact of NVM Write Latency and Write-Cancellation on Performance

Default
Write-Cancellation

(e) SimpleMOC

Figure 3: The impact of write latency along with and without write cancellation on performance

latencies Write-Cancellation can actually hurt the application per-
formance. This is because it can increase the average number of
cycles that a bank is allocated for a write operation without actu-
ally decreasing the read latency as intended. The implementation
of Write-Cancellation for this study uses adaptive thresholds [23].
This adaptive technique uses the elapsed time since the beginning
of the write as well as the current number of entries in the write
buffer to determine whether or not to cancel the write. The ra-
tionale behind this implementation is to achieve a good balance

between not aggregating too many writes while still using write
cancellation effectively.

5.2 Power Constraints for Concurrent Writes
NVM write operations involve applying high current to change a
cell state. However, due to cooling constraints and thermal limits, a
maximum power budget is given for each DIMM. Accordingly, to
abide by that power budget, each DIMM should limit the maximum
number of concurrent writes to the NVM banks. Limiting this
number to only few concurrent writes will increase the chances

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA A. Awad et al.

of filling the write buffer, placing back pressure into the memory
system. In contrast, allowing a large number of concurrent writes
may cause the system to exceed its given power budget. Figure 4
shows how the number of concurrent writes affects the overall
execution time of selected applications.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30 35

E
xe

cu
tio

n
T

im
e

(r
el

at
iv

e
to

 m
ax

 #
 w

rit
es

 o
f 1

)

Max # Concurrent NVM Writes

The Impact of # Concurrent Writes on Performance

SimpleMOC
XSBench

Lulesh
MiniFE

Pennant

Figure 4: The impact of maximum number of concurrent
writes on performance.

From the figure, we can observe that some applications, such as
Pennant and Lulesh, are very sensitive to this parameter. This is
consistent with our findings from Section 5.1, where we observed
similar sensitivity for the write latency. On the other hand, we can
observe that some applications, such as XSBench, have negligible
sensitivity to the number of concurrent writes due to the read/write
patterns inherent in the application.

5.3 NVM Read Latency
While NVM read latency is much better than that for writes, it
is still slower than that of DRAM. To study the effect this has on
application performance, we vary the NVM read latency, i.e., tRCD,
and observe the change in the execution time, as shown in Figure
5.

We can observe that some applications are highly sensitive to
read latency, while others are not. Specifically, we can observe that
Lulesh and Pennant are minimally affected by increasing the read
latency, which can be explained by our observations on Section 5.1;
Lulesh and Pennant performance is heavily dominated by the write
latency.

5.4 Row Buffers Locality
As the read latency can have significant impact on the performance
of some applications, we now explore a way to mitigate it. A com-
mon way to mitigate high read latency is through row buffers,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
T

im
e

(r
el

at
iv

e
to

 tR
C

D
=

10
0)

Read Latency (tRCD in cycles)

The Impact of Read Latency on Performance

SimpleMOC
XSBench

Lulesh
MiniFE

Pennant

Figure 5: The impact of NVM read latency on performance.

which cache the row of the most recently accessed cache line in a
bank. To study the effectiveness of this technique, we vary the row
buffer size from 64B to 8KiB, as shown in Figure 6.

We can observe that applications like XSBench and MiniFE ben-
efit well from increasing the row buffer size, however, some appli-
cations are less sensitive to row buffer size, e.g., SimpleMoC and
Pennant.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
xe

cu
tio

n
T

im
e

(r
el

at
iv

e
to

 R
B

 s
iz

e
of

 6
4)

Row Buffer Size (Bytes)

The Impact of Row Buffer Size on Performance

SimpleMOC
XSBench

Lulesh
MiniFE

Pennant

Figure 6: The impact of row buffer size on performance.

5.5 The Impact of Internal Caching on
Performance

One way to improve NVM performance is through caching blocks
internally. To maintain the persistence feature of NVMs, we use
read-only caches, where any write request immediately invalidates
the cache copy once received. This internal cache is checked in
parallel when adding the request to the transactions queue. If the
block is found, i.e., a cache hit, the block will be returned from the
cache and the pending request will be squashed. As the NVM does

Performance Analysis for Using NVM MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

not incur significant idle power, the additional power overhead
of SRAM or DRAM caches can still be comparable to DRAM-only
systems. To study the performance gains of caching, we model
an internal cache inside each DIMM with an access latency of 15
cycles.

Figure 7: The impact of internal caching on performance.

Figure 7 shows the results for using caches and compare it with
no-cache-NVM and DRAM-only systems. We can observe that most
applications benefit from using a cache as small as 4MiB. However,
even with large caches, the NVM performance is by far worse than
a DRAM-only system.

5.6 Paged Multi-Level Memory
Another mechanism to improve NVM performance is a multi-level
memory (MLM). In this organization (See Figure 8), main memory is
comprised of both NVM and DRAMmemories. Memory is accessed
through a controller that can implement a number of policies to
determine which data is placed in the fast, stacked DRAM or in the
slower NVM-based DIMMs. An SRAM table within the controller
contains the mapping of which pages are in which memory and ad-
ditional meta-information (e.g. page access frequency) to implement
its paging policy. For this study, we use an optimized NVM-based
DIMM that implements the Write-Cancellation technique.

There are several possible policies for MLM management[13]
which govern which pages are removed from fast memory and
which are added. For this work, we tested2 the addMFRPU (More
Frequent, More Recent Previous Use with threshold) and addT (sim-
ple threshold) addition policies and a simple LRU (Least Recently
Used) replacement policy. We found the addMFRPU yielded better

2https://github.com/sstsimulator/sst-elements/tree/afrodri/pagedMessier commit
3026e21

Processor

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

Stacked DRAM

MLM Controller

SRAM
Mapping

Table
Policy

Dispatcher

DMA UnitDMA Unit

NVM-Based DIMM

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

(Cache)

Figure 8: Multi-Level Memory Organization

performance on XSBench and Lulesh, however its performance
was no more than 1-3% better than the simple addT policy. More
significant was the threshold level. The threshold level defines a
minimum number of accesses to a page before the page is consid-
ered for addition to the fast memory. We tested two thresholds (2
and 16) and found that different applications benefit form different
thresholds.

Figure 9 summarizes the results of different policies for an MLM
system with roughly 1

4 of the memory as fast DRAM and the re-
mainder NVM and using the addMFRPU policy. We varied both
the threshold and the presence of a 16MB persistent cache in the
NVM. The results are very application dependent. XSBench did
better with a high threshold, while Lulesh, MiniFE, and Pennant
do worse with a high threshold and no cache, but prefer a high
threshold if there is a cache. Generally, an NVRAM cache did not
help the performance of an MLM system, as would be expected
since the page-level caching of the MLM system would interfere
with the block-level cache of the NVM cache. However, the best
XSBench performance was achieved with both paged-level MLM
caching and the NVM cache. In general, performance was less than
that of DRAM, though SimpleMOC performance was as good or
better.

We also examined the impact of amount of fast stacked DRAM
on the application performance (Figure 10). In all cases, total main
memory was 1GB. Lulesh, MiniFE, and SimpleMOC were largely
insensitive to the size of the “fast” memory. XSBench and Pennant
were very sensitive with XSBench more than doubling performance.

Overall, a MLM organization shows promise in improving the
performance of a NVM system, however in most cases the raw
performance is still inferior to conventional DDR DRAM.

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA A. Awad et al.

Figure 9: MLM Paging policy impact (lower=faster)

��

����

��

����

��

����

��

����

��

��� ���� ����

�
�
�
�
��
�
��
�

�
��
�
�
�
�
�
�
�

��������������

�������������������������������������

������
������

���������
�������
�������

Figure 10: MLM “Fast” memory size vs. Performance
(lower=faster)

6 DISCUSSION

6.1 Performance
From Section 5, we can observe that the write latency of emerg-
ing NVMs can have a large impact on application performance.
Although the Write-Cancellation technique may reduce much of
the write overhead, some applications, such as Lulesh and Pennant,
still suffer from long write latencies. Given the power limits of
concurrent writes, we could also observe how this significantly
affects the performance. Based on our observations, we can con-
clude that NVMs with long write latencies, if used as main memory,
can incur significant overhead. While our results raise a warning
for using emerging NVMs as the sole building block of the main
memory, it helps to provide a case for architectures with multi-level
memory – where NVMs can be used as an extension to memory
capacity [7]. Additionally, we found that internal caching within

NVM-based DIMMs is of limited use, which raises the case for
software-managed caching for hot pages. For energy efficiency, we
found that some applications do not benefit as much from large
row buffer sizes, which motivates dynamic enabling/disabling or
adjustable size row buffers solutions.

6.2 Cost & Performance
As show above, even with caching, NVM main memories generally
have lower performance than conventional DRAMmemories. How-
ever, the value proposition of NVM is not raw performance but
its potential cost and power savings. Current and emerging NVM
technologies have storage densities much higher than conventional
DRAM cells, which will lead to significant cost savings. An NVM
main memory may not be higher performance, but with its much
lower cost it may still be a valuable architectural alternative.

To test this, we propose a simple cost model (Table 3) based
on rough cost per bit for different memory technologies. These
cost estimates are based on the relative silicon area [5], market
costs [10], or (in the case of Stacked DRAM) an adjustment for
higher packaging costs. Though these numbers are open to debate,
they provide a useful starting point for cost-performance analysis.

Table 3: Cost Model

Memory Cost/Bit Use

DDR4 1.0 Baseline Configuration
Stacked DRAM 1.25 “Fast” MLM
SRAM Tags 22.0 Storage for MLM meta-data
SRAM Cache 20.0 NV-DIMM Cache
NVRAM 0.133 NV-DIMM

Using this simple cost model, Figure 11 shows cost and perfor-
mance points for a variety of memory configurations – conven-
tional DDR4 (DDR4); NVM possibly with an internal SRAM Cache
(NV+(Cache)); and paged NVM with a stacked DRAM page cache
(NV+DRAM). With the exception of XSBench, NVM systems have
lower performance. However, many of the NVM systems are much
lower cost. Depending on the goals of the system designer, there
are many cases where an NVM-based main memory system make
sense.

Examined another way, Figure 12(a) shows the raw performance
of the best configuration (cache size, paging policy, etc...) for the
paged NVM system and for NVM systems with and without inter-
nal caching. With a few exceptions (SimpleMOC with 256MB of
stacked DRAM, low threshold addT policy, NVM internal cache
and XSBench NVM with 128MB caches), performance is worse
than a conventional DDR4 system. However, Figure 12(b) shows

Performance Analysis for Using NVM MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

��

����

����

����

����

��

����

�� ���� �� ���� �� ���� ��

������

������

�
�
��
�
��
�
�
�
�

�
��
�
�
�
�
�
�

�����������������

����
����������
�������

�� ���� �� ���� �� ���� ��

������

�����������������

��

����

����

����

����

��

����

�� ���� �� ���� �� ���� ��

���������

�
�
��
�
��
�
�
�
�

�
��
�
�
�
�
�
�

�����������������

�� ���� �� ���� �� ���� ��

�������

�����������������

��

����

����

����

����

��

����

�� ���� �� ���� �� ���� ��

�������

�
�
��
�
��
�
�
�
�

�
��
�
�
�
�
�
�

�����������������

Figure 11: Cost and Performance Tradeoffs

that the performance/cost ratio for NVM systems can outperform
DDR-based systems for all applications.

Figure 12: Performance/Cost Ratio for NVM systems that
can outperform DRAM-only system.

7 RELATEDWORK
NVMain, which is a detailed NVM simulator, has been proposed
to provide an architectural model to simulate emerging NVM de-
vices [22]. Our proposed NVMmodel is more specific in that it aims
to capture the form factor of NVM-based DIMMs with a high-end
internal controller. We expect this model to resemble a large portion
of the future NVM products. Additionally, our model is integrated
in a widely used architectural simulator, SST. A hardware protoype
to emulate PCM-based Storage Arrays has been proposed in [6]. In
contrast, our work targets PCM-based DIMMs.

Many previous studies have explored using Multi-level Memory
that consists of DRAM and NVRAM [7, 28] and demand paging in-
sertion policy for DRAM, occasionally using dynamic policies [21].
Some others explored hybrid policies to minimize energy [27]. Our
work and study of the Multi-level Memory design option focuses
more on cost and performance, aiming for a better understanding
of the trade-offs when considering design options.

8 CONCLUSIONS
In this paper, we propose an new architectural simulation model
for NVM-based DIMMs and explore implementation options. This
model is highly parameterized and provides fast execution perfor-
mance to permit scaling for long-duration simulations or complex
application modeling. Later, we use the model to explore perfor-
mance sensitivity to different NVM parameters. We used our model
to investigate key parameters such as read latency, write latency,
number of concurrent writes, row buffer size, internal caching, the
effectiveness of the Write-Cancellation technique, and integration
with paged multi-level memory systems.

Our study showed that the studied HPC applications vary in their
performance sensitivity to read latency. For instance, we found
that MiniFE and SimpleMoC are very sensitive to read latency,
while less sensitive to write latency. In contrast, we found that
MiniFE and SimpleMoC has less sensitivity to write latency, when
compared to Pennant and Lulesh. We also studied how limiting
the number of concurrent writes can affect the performance. Our
analysis also shows the potential gains for increasing the row buffer
sizes and augmenting DIMMs with internal caching. We publish
our infrastructure integrated in a widely used simulator (SST), to
enable community researchers to investigate designs such as hybrid
memory systems, performance optimizations and write latency
mitigation optimizations.

These experiments show that NVM-DIMM based systems gen-
erally have lower performance than conventional DDR4 systems.
However, when analyzed with memory system cost in mind, main
memory with NVM becomes more attractive. There are a number of

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA A. Awad et al.

configurations which provide a better performance / cost tradeoff
than conventional DDR-based main memory. These results can be
used to guide future NVM-DIMM implementations and can be used
by system architects to select a more efficient memory system.

For future work, we plan to incorporate models for Multi-Level
Cell (MLC) technologies and model the impact of read latency
asymmetry for different levels in cells. We also plan to investigate
the impact of wear-leveling techniques, such as start-gap, in the
lifetime of the system. Additional MLM policies can be crafted for
NV memory, particularly policies that account for the difference
between read and write latency. The impact of power and energy
on total system cost will also be explored.

REFERENCES
[1] [n. d.]. 4RCD0124K DDR4, http://www.idt.com/. ([n. d.]).
[2] [n. d.]. CAB4A DDR4, http://www.ti.com/lit/ds/symlink/cab4a.pdf. ([n. d.]).
[3] [n. d.]. Intel 3D XPoint. ([n. d.]). http://newsroom.intel.com/docs/DOC-6713
[4] [n. d.]. Published U.S Patent Application. Dynamic partial power down of

memory-side cache in a 2-level memory hierarchy, PCT/US2011/066302. ([n. d.]).
https://www.google.com/patents/US20140304475

[5] 2008. International Technology Roadmap for Semiconductors. (2008).
[6] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta, and Steven

Swanson. 2011. Onyx: A Protoype Phase Change Memory Storage Array. In
Proceedings of the 3rd USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage’11). USENIX Association, Berkeley, CA, USA, 2–2. http://dl.acm.org/
citation.cfm?id=2002218.2002220

[7] Amro Awad, Sergey Blagodurov, and Yan Solihin. 2016. Write-Aware Manage-
ment of NVM-based Memory Extensions. In Proceedings of the 2016 International
Conference on Supercomputing (ICS ’16). ACM, New York, NY, USA, Article 9,
12 pages. https://doi.org/10.1145/2925426.2926284

[8] Amro Awad, Pratyusa Manadhata, Stuart Haber, Yan Solihin, and William Horne.
2016. Silent Shredder: Zero-Cost Shredding for Secure Non-Volatile MainMemory
Controllers. SIGOPS Oper. Syst. Rev. 50, 2, 263–276. https://doi.org/10.1145/
2954680.2872377

[9] Amro Awad, Gwendolyn Renae Voskuilen, Arun F Rodrigues, Simon David
Hammond, Robert J Hoekstra, and Clayton Hughes. 2017. Messier: A Detailed
NVM-Based DIMM Model for the SST Simulation Framework. Technical Report.
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States).

[10] dramexchange.com. 2017. DRAMeXchange. http://www.dramexchange.com/
DRAM/NVRAM Spot Prices. (May 4 2017).

[11] Charles R Ferenbaugh. 2015. PENNANT: an Unstructured Mesh Mini-App for
Advanced Architecture Research. Concurrency and Computation: Practice and
Experience 27, 17 (2015), 4555–4572.

[12] Geoffrey Gunow, John Tramm, Benoit Forget, Kord Smith, and Tim He. [n. d.].
Simplemoc-a performance abstraction for 3d moc. ([n. d.]).

[13] Simon D. Hammond, Arun F. Rodrigues, and Gwendolyn R. Voskuilen. 2016.
Multi-Level Memory Policies: What You Add Is More Important Than What You
Take Out.. In MEMSYS 2016. 88–93.

[14] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratories.

[15] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. Lawrence Livermore National Lab. 1–9 pages.

[16] Lawrence Livermore National Lab. 2013. Hydrodynamics Challenge Problem,
Lawrence Livermore National Laboratory. Technical Report LLNL-TR-490254.
Lawrence Livermore National Lab. 1–17 pages.

[17] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Phase Change Memory as a Scalable DRAM Alternative. In ACM SIGARCH
Computer Architecture News, Vol. 37. ACM, 2–13.

[18] Krishna TMalladi, Benjamin C Lee, FrankANothaft, Christos Kozyrakis, Karthika
Periyathambi, and Mark Horowitz. 2012. Towards Energy-proportional Datacen-
ter Memory with Mobile DRAM. SIGARCH Comput. Archit. News 40, 3, 37–48.
https://doi.org/10.1145/2366231.2337164

[19] Prashant J Nair, Chiachen Chou, Bipin Rajendran, andMoinuddin KQureshi. 2015.
Reducing read latency of phase change memory via early read and Turbo Read.
In In Proceedings of 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). 309–319. https://doi.org/10.1109/HPCA.2015.
7056042

[20] Prashant J Nair, Dae-Hyun Kim, and Moinuddin K Qureshi. 2013. ArchShield:
Architectural Framework for Assisting DRAM Scaling by Tolerating High Error
Rates. SIGARCH Comput. Archit. News 41, 3, 72–83. https://doi.org/10.1145/
2508148.2485929

[21] M. Pavlovic, N. Puzovic, and A. Ramirez. 2013. Data placement in HPC archi-
tectures with heterogeneous off-chip memory. In Computer Design (ICCD), 2013
IEEE 31st International Conference on. 193–200. https://doi.org/10.1109/ICCD.
2013.6657042

[22] Matthew Poremba, Tao Zhang, and Yuan Xie. 2015. Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems. IEEE Computer
Architecture Letters 14, 2 (2015), 140–143.

[23] Moinuddin KQureshi, MicheleM Franceschini, and Luis A Lastras-Montano. 2010.
Improving Read Performance of Phase Change Memories via Write Cancellation
and Write Pausing. In High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on. IEEE, 1–11.

[24] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing Lifetime and Security of
PCM-based Main Memory with Start-gap Wear Leveling. In Proceedings of the
42Nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
42). ACM, New York, NY, USA, 14–23. https://doi.org/10.1145/1669112.1669117

[25] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. 2009. Scal-
able High Performance Main Memory System Using Phase-change Memory
Technology. (2009), 24–33. https://doi.org/10.1145/1555754.1555760

[26] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,
R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and B. Jacob. 2011. The Structural
Simulation Toolkit. SIGMETRICS Perform. Eval. Rev. 38, 4 (March 2011), 37–42.
https://doi.org/10.1145/1964218.1964225

[27] ChunYi Su, David Roberts, Edgar A. León, KirkW. Cameron, Bronis R. de Supinski,
Gabriel H. Loh, and Dimitrios S. Nikolopoulos. 2015. HpMC: An Energy-aware
Management System of Multi-level Memory Architectures. In Proceedings of the
2015 International Symposium on Memory Systems (MEMSYS ’15). ACM, New
York, NY, USA, 167–178. https://doi.org/10.1145/2818950.2818974

[28] Kshitij Sudan, Anirudh Badam, and David Nellans. 2012. NAND-Flash: Fast
Storage or Slow Memory? Technical Report. University of Utah.

[29] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. [n. d.].
XSBench-the development and verification of a performance abstraction for
Monte Carlo reactor analysis. ([n. d.]).

[30] Jue Wang, Xiangyu Dong, Guangyu Sun, Dimin Niu, and Yuan Xie. 2009. Ar-
chitecting Phase Change Memory As a Scalable Dram Alternative. SIGARCH
Comput. Archit. News 37, 3, 2–13. https://doi.org/10.1145/1555815.1555758

http://newsroom.intel.com/docs/DOC-6713
https://www.google.com/patents/US20140304475
http://dl.acm.org/citation.cfm?id=2002218.2002220
http://dl.acm.org/citation.cfm?id=2002218.2002220
https://doi.org/10.1145/2925426.2926284
https://doi.org/10.1145/2954680.2872377
https://doi.org/10.1145/2954680.2872377
https://doi.org/10.1145/2366231.2337164
https://doi.org/10.1109/HPCA.2015.7056042
https://doi.org/10.1109/HPCA.2015.7056042
https://doi.org/10.1145/2508148.2485929
https://doi.org/10.1145/2508148.2485929
https://doi.org/10.1109/ICCD.2013.6657042
https://doi.org/10.1109/ICCD.2013.6657042
https://doi.org/10.1145/1669112.1669117
https://doi.org/10.1145/1555754.1555760
https://doi.org/10.1145/1964218.1964225
https://doi.org/10.1145/2818950.2818974
https://doi.org/10.1145/1555815.1555758

	Abstract
	1 Introduction
	2 Background
	2.1 Emerging Non-Volatile Memory (NVM) Technologies
	2.2 Designs and Optimizations

	3 The Messier NVM Model
	4 Methodology
	5 Design Space Exploration
	5.1 The Impact of Write Latency and Write Cancellation
	5.2 Power Constraints for Concurrent Writes
	5.3 NVM Read Latency
	5.4 Row Buffers Locality
	5.5 The Impact of Internal Caching on Performance
	5.6 Paged Multi-Level Memory

	6 Discussion
	6.1 Performance
	6.2 Cost & Performance

	7 Related Work
	8 Conclusions
	References

