
Towards Lightweight and Scalable Simulation of
Large-Scale OpenSHMEM Applications

M.J. Levenhagen, S.D. Hammond, and K.S. Hemmert

Center for Computing Research
Sandia National Laboratories

Albuquerque NM 81723
United States

{mjleven, sdhammo, kshemme}@sandia.gov

Abstract. Significant changes are coming to the high-performance com-
puting community, including unprecedented growth in the use of machine
learning and large-scale high-performance data analytics. Traditionally,
HPC has been dominated by the use of the Message Passing Interface
(MPI), but the increasing use of smaller, fine-grained communication in
these new classes of workload is now making efficient one-sided program-
ming models like OpenSHMEM more attractive.

Historically, the accurate analysis and performance projection of parallel
algorithms written to one-sided models has been challenging, in part,
because of the complexity associated with the tight bounds on model-
ing fine grained data movement, as well as complex interactions between
the network and memory subsystems. In this paper, we describe recent
extensions to Sandia’s high-performance, parallel Structural Simulation
Toolkit (SST) which permit rapid evaluation and projection for commu-
nication patterns written to one-sided paradigms – including explicit sup-
port for OpenSHMEM like functionality and communication patterns.

In our initial work we demonstrate multi-rank random-access like com-
munication patterns, comparing simulated results with benchmarked val-
ues from a Cray XC40 Aries-based interconnect that is known to be effi-
cient for fine-grained communication. The models show strong predictive
accuracy and trends when varying characteristic hardware parameters
such as the Aries virtual page size.

We document our current approaches and the significant components
of our model that allow for what-if analyses to be completed by the
community, thereby establishing SST as a reliable predictive toolkit for
users of OpenSHMEM.

Keywords: Performance Analysis · Simulation · SHMEM

1 Introduction

Traditionally, high-performance, parallel computing applications have been writ-
ten to utilize the Message Passing Interface (MPI) standard [2] [3] – a technol-

2 M.J. Levenhagen et al.

ogy which was largely defined during the late 1990s and has been incremen-
tally adapted since to adopt a number of more modern code constructs. The
HPC community has been mostly content to pursue this path over the past
two decades because of a stable, agreed standard that has gained significant
vendor/implementation support and provided a performant path to parallel ex-
ecution. For the simulation and performance modeling community, MPI has been
the premeninent focus because of the large community interest [8] [11][10].

However, applications written in several other domains experience different
requirements. For applications with low degrees of messaging locality and, typi-
cally small, fine-grained message transfers, traditional MPI two-sided semantics
add considerable burden and performance overhead. MPI has adapted through
its “one-sided” semantics (added in the MPI 3.0 specification) to address these
concerns, but alternatives such as OpenSHMEM [1][12] have proven to be easier
to adopt for some communities and have also gained interest from important
classes of communities such as those pursuing large-scale graph processing and
data analytics. The growing interest in supporting these communities, which is
now arguably one of the main drivers for contemporary server-class hardware ar-
chitecture design, is fundamentally shifting the focus of technology development.
Understanding the performance of applications written to OpenSHMEM-class
semantics is becoming a progressively more important aspect to modern archi-
tecture and application performance analysis.

To this end, we have begun work on adapting models in Sandia’s scalable,
high-performance Structural Simulation Toolkit (SST) [14],[13], [15] to support
OpenSHMEM style semantics and application models. This work has required a
fundamental redesign of our simulated software stack to permit the lightweight
semantics required for OpenSHMEM and required thorough redesign of com-
ponents to ensure that simulations are rapid to execute and do not require
significant amounts of memory or computation during use. Remembering that
our goal with this class of SST models (other SST models provide full cycle-
accuracy at higher simulation runtime cost) is to provide accurate predictive
capabilities for medium to large-scale network designs (upwards of thousands of
nodes) within tractable runtimes. The reader is reminded that many tradeoffs
must be made to achieve this goal. Therefore, our models are intended to cap-
ture critical performance concerns, allowing us to focus simulation time in the
areas which affect predictive capability. To this end, not every artifact which can
affect performance, or indeed, every hardware structure is fully replicated in our
model. The ones selected, and documented in this paper, represent our current
approach to modeling OpenSHMEM.

The contributions of this work are as follows:

– Documentation of our progress in developing a new, high-performance, scal-
able, open-source simulation capability for the OpenSHMEM runtime and
performance analysis community;

– Presentation of the simulation parameters used in the new SST models,
enabling what-if analyses to be completed for future machine designs;

Lightweight and Scalable Simulation of OpenSHMEM 3

– Validation of an initial suite of OpenSHMEM benchmarks that show the
predictive capabilities of the SST OpenSHMEM simulation modules when
compared to a Cray XC40.

The remainder of this paper is laid out as follows: Section 2 describes the con-
struction of OpenSHMEM communication models in the SST simulation frame-
work and highlights some of the important components used during model. Sec-
tion 3 compares results obtained from the initial SST models against benchmark
runs using the optimized Cray SHMEM runtime on our test XC40 development
platforms. Finally, we conclude the paper in Section 4.

2 Modelling OpenSHMEM in the Structural Simulation
Toolkit

SST is designed to be a fast parallel simulation framework which supports flexible
configuration (or extension) of its various simulation models. From the ground
up, SST has utilized dynamic loading of components to support highly config-
urable simulation models. To date, the simulation framework has been used to
study a variety of next-generation architectures or architectural features that
could be utilized to provide significant application or workload performance im-
provement.

Within the domain of modeling large-scale interconnect/communication per-
formance, SST has historically been focused on modeling of two-sided or collec-
tive MPI communications, e.g. [4]. In our experience, the models used to project
MPI behavior have driven higher fidelity for components which capture the be-
havior of MPI match list resolution and typically, the transfer of large messages
(kilobytes or upwards). Thus, the effect has been for the authors of SST’s models
to direct time to increased modeling accuracy in parts of the simulation which
are exercised by heavier bandwidth utilization and MPI messaging rates. Ac-
curately replicating MPI behavior also typically requires lower fidelity models
in areas such as cache and TLB performance because MPI application writers
have historically manually packed communication buffers resulting in stream-like
behavior when performing memory-to-network transfers.

In Figure 1, we show the components of a typical interconnect/communication
simulation that are included in SST and how these map into communication pat-
terns (the model of an application), the software runtime and the networking
layers. With each model being independent, it is possible for users or vendor
suppliers to change out the current implementations with optimized versions
that increase modeling accuracy or permit the analysis of alternative hardware
approaches. Alternatively, users can utilize the models provided and adjust the
modeling parameters to represent current or next-generation platforms.

As we have adapted models within SST originally intended for simulating
MPI communication, we have extended the components shown in Figure 1 to
work with OpenSHMEM patterns. Specifically, we have introduced extra com-
ponents for our models to capture atomic memory operations within the NIC as

4 M.J. Levenhagen et al.

Application Motif
(Communication Pattern)

Runtime

Packetization and I/O

Network Transport

"Ember" Motif
Library

Hades Runtime
Modeling

FireFly
Packetizer

Merlin Transport
Layer

Fig. 1. Relationship between Logical Model and SST Components (SST Component
Names shown on the Right-Hand Side)

well as state machines and timing models to replicate the behavior of caches and
TLBs to capture the overheads associated with fine-grain or small (up to a few
hundred bytes) communications where the hardware structures can dominate
efficiency and operation timing.

2.1 Ember Motifs - Lightweight Communication Patterns for
Scalable Simulation

The Ember component within SST [6] contains parameterizable communication
patterns (which we term motifs), written to utilize either MPI or SHMEM-like
semantics. Each motif is designed to focus on a specific communication pattern
which can then be used with others during a simulation to form a model for a
larger application or workflow. Since each motif is intentionally limited in scope
to a specific communication sequence, and focused only on the communication
aspects of the algorithm, the model is usually easy to write and the basic pattern
can be scaled as a representation of our application to much larger node/instance
counts than alternatives such as those that utilize trace replays or direct exe-
cution of an application binary. In previous studies, SST has been scaled to
simulate over one million MPI ranks using its parallel multi-node discrete-event
core.

The basic behavior of an Ember motif is that the communication pattern
is repeatedly polled until it marks itself as complete. A poll will occur when
there are no events left to process in the motif’s queue, indicating that the last
round of events provided during the previous poll has all been passed to the
lower-level Hades runtime. Note, this does not mean that all previous events
have completed, just that they have been processed and have either completed,
or, are now in flight/being performed. The polling nature of Ember allows us
to further reduce the memory overheads associated with an end-point model as

Lightweight and Scalable Simulation of OpenSHMEM 5

well crafted communication patterns can provide only a minimal set of events to
be processed for each poll. For MPI patterns, Ember motifs typically encode one
iteration worth of communication events, where an iteration relates to a period
of interest in the application model – for instance, a complete set of messages
associated with one round of nearest neighbor communication exchanges. For
OpenSHMEM patterns, we have been able to lower the overheads substantially
by making each poll return only a small number of fine-grained communication
events such as one random remote atomic increment. Repeated polling of the
motif adds very little to the simulation overhead.

2.2 Hades Runtime Layer

Events that are generated in an Ember motif are processed and then passed to the
Hades SST component which maps each event type into a state-machine handler.
Each state-machine reads the event operations and parameters, for instance,
the target node and address of a remote atomic increment, and then proceeds
to generate an event stream to complete the request. The state machines are
therefore responsible for model timing and the semantic behavior of a specific
MPI or OpenSHMEM function – note that we implement a selection of the most
commonly used routines from both runtimes. Over time we intended to expand
the functions available to a broader set but for the purposes of architecture
exploration, only a limited subset which feature in our applications and models
need implementation. State transitions generate timing which progresses the
discrete event simulation forward. As each operation implements a unique state
machine, timing for any individual operation can be easily replaced through
SST’s dynamic loading of sub-components with an alternative implementation
of the same interface. Our experience with these models during development
has been that vendor/academic partners have used this approach to perform
analysis of hardware accelerated features or improved optimizations in their
software stacks.

2.3 FireFly Packetization Layer

The FireFly model of SST performs network input/output state-machine han-
dling. The model implements a series of low-level state machines that provide
the ability to packetize data movement requests in the form of remote put, get
and atomic operations. FireFly accepts data movement requests from the Hades
layer and handles these by generating a series of simulated memory subsystem
reads/writes, fracturing the data requests into network packet sized chunks that
can then be given to the network transport layers for routing and delivery. For
our adaption of SST to perform modeling of OpenSHMEM patterns, we have
added interaction with NIC/node memory subsystem handlers for NIC-based
TLBs and on-host caches (shown in Figure 2). These new state-machine interac-
tions ensure that the overheads associated with address resolution and whether
or not the data exists in processor caches are adequately captured.

6 M.J. Levenhagen et al.

Network Fabric M
odel

Receive

Transmit

Operation
Engine

Operation
Engine

Load

Store

PCIe Bus (Arbitrated)

Cross Bar
Cache

M
em

ory Tim
ingLoad

Store

... ...

Load

Store

Load

Store

Core Core

Network Interface Card
Host Processor

Shared TLB

Network Fabric M
odel

Receive

Transmit

Operation
Engine

Operation
Engine

Load

Store

PCIe Bus (Arbitrated)

Cross Bar

Cache

M
em

ory Tim
ingLoad

Store

... ...

Load

Store

Load

Store

Core Core

Network Interface Card
Host Processor

Shared TLB

Network Fabric M
odel

Receive

Transmit

Operation
Engine

Operation
Engine

Load

Store

PCIe Bus (Arbitrated)

Cross Bar

Cache

M
em

ory Tim
ingLoad

Store

... ...

Load

Store

Load

Store

Core Core

Network Interface Card
Host Processor

Shared TLB

...

...

Fig. 2. High-Level Model Overview for OpenSHMEM Models in SST

2.4 Merlin Transport Layer

SST’s Merlin components provides an implementation of network transport for
our simulations. Both network interfaces and switches/routers are provided that
allow for various topologies to be simulated (e.g. dragonfly, fat-tree, torus, mesh,
flattened butterfly etc.). The transport layer accepts packets from FireFly (al-
though any packetization scheme which utilizes the same interface can be used)
and routes them to remote network interfaces modeling switch/router buffer
delays, congestion management, and any adaptive routing choices. Merlin simu-
lates network traffic at the packet level to improve simulation performance but
generates timing with the knowledge of packet header/tails and how this affects
router buffer utilization and timing.

2.5 SST Node Model

Since OpenSHMEM interacts deeply with the compute node, memory and var-
ious aspects of the processor, we have implemented several lightweight mod-
els of performance-relevant structures (see Figure 2). The communication pat-
tern/application is driven by events from an Ember motif as described earlier.

Lightweight and Scalable Simulation of OpenSHMEM 7

In our diagram the motif conceptually runs on a core found in the host processor
block. We implement one core per OpenSHMEM PE along with an instance of
the Hades runtime. Hades makes requests through the other node components
(arbitrated bus, PCIe connection etc.) until the FireFly packetizer is reached,
labeled as ‘Receive’ and ’Transmit’ in the our figure. The data movement oper-
ations generated by FireFly will then interact with the TLB and cache models
found in the NIC and host. Finally, Merlin, which is shown in the image as the
“Network Fabric Model”, provides network transportation and delivery.

The reader should note the use of models for the TLB and load/store mem-
ory pipes, as well as a cross-bar arbitration model to control parallel access to
the network interface. Our experience in model development has shown that
these components are critical to achieving good validation results, as well as
being places where parameterization is desired to investigate future hardware
acceleration opportunities.

On-node communication is modeled without requiring transportation using
Merlin, since, in most cases, this does not require participation of the NIC/interconnect.
We model each PE with a unique copy of the motif and Hades stack to simplify
development and permit PE to PE communication on node. When communica-
tion does occur on node, we route data transfers between the on-node instances
consuming memory operations and bandwidth but by-passing the NIC struc-
tures.

3 Initial Model Validation and Assessment

In order to assess the potential accuracy of the SST models which are still under
development, we have implemented several simple communication patterns, both
as benchmarks written in OpenSHMEM, as well as Ember communication mo-
tifs. While these current benchmarks and motifs do not directly represent larger
applications – as is our eventual goal – they have the effect of driving system
runtime and hardware components extremely hard, thus ensuring we are able
to assess the overheads and parameterization of our models. We will continue
to use aggressive micro-benchmarks (as described, and others) to establish basic
validation use cases as we build out the additional features needed for larger
application models.

The micro-benchmarks used for our validation study are the following. As a
basis, we use multi-node random access memory updates (often referred to as
Gigaupdates-per-second (GUPs)) which was popularized as a on-node bench-
mark by the HPC Challenge benchmark collection [9]). We have extended this
benchmark to OpenSHMEM to act as a proxy for high concurrency, fine-grained
multi-node data operations.

– Randomized Remote Increments (GUP/s) - performs a uniform ran-
dom selection of a remote PE and executes a remote atomic 32-bit integer
increment of an address selected from a uniform random distribution. This

8 M.J. Levenhagen et al.

behavior mimics highly randomized remote memory access patterns in an
executing job where there is no decernable locality to the accesses.

– Randomized Remote Increments with Hot-Spot (Hot-Spot GUP/s)
- selects a weighted random selection of a remote PE (weighted towards one
‘victim’ node which is intended to be a hot-spot for remote traffic) and then
executes a remote atomic 32-bit integer increment of an address selected
from a uniform random distribution. This behavior mimics graph traver-
sals or remote data structures where there is some degree of locality in the
accesses or where some graph-vertices have high connectivity.

– Randomized Remote Increment with Return Values (Finc-GUP/s)
- performs a uniform random selection of a remote PE and executes a remote
atomic 32-bit integer increment of an address selected from a uniform random
distribution with the operation requiring a return value. This behavior allows
us to analyze the performance of the return path for remote atomic memory
operations.

3.1 Model Validation - Cray XC40

For comparison to real hardware, we use the Mutrino Application Readiness
Testbed (ART) system located at Sandia National Laboratories. The system is
routinely used for application porting, development and optimization in support
of the larger Trinity supercomputer [18] deployed by Los Alamos and Sandia
during 2015 (one of the largest installations of its class in the world). Mutrino
provides one-hundred nodes of dual-socket sixteen-core Intel Haswell server pro-
cessors [5][7] which run at 2.30GHz. An additional hundred nodes of Intel’s
Knight Landing 7250 processor [16][17] are also available but we focus exclu-
sively on the Haswell partition to reduce model validation complexity, leaving
the Knights Landing comparison to future work. We utilize the optimized Cray
SHMEM software stack for benchmarking which is provided to enable high-
performance SHMEM semantics over the Cray Aries DragonFly interconnect.

The SST model for Mutrino is obtained through the specification of a Merlin
dragonfly model and using the hardware parameters specified in Table 1. The
reader should note that SST is extremely configurable, the parameters shown
are the important characteristics required for performance but additional values
can be specified as needed. In general, the SST developer group recommends
that users intending to use SST consult the example models included with the
distribution for additional examples. Additional examples are also found in the
SST project repositories.

3.2 Model/Benchmark Validation

Table 2 shows the first of our validation studies. In this example we compare
benchmarked random remote SHMEM put operations to those predicted by SST.
In this benchmark the system executes a very large number of remote memory
writes which are characterized by a very high rate of fine-grained communication.
We show a comparison for SST when running with a single PE per node and

Lightweight and Scalable Simulation of OpenSHMEM 9

Host Software Timing

Motif to Enqueue NIC Operation 140ns

NIC to Return Control to Motif (Non-Blocking Operation) 20ns

NIC to Return Control to Motif (Blocking Operations) 300ns

PCIe Bus Timing

PCIe Latency 170ns

Link Bandwidth 7.8Gb/s

Number of Links 16

PCIe TLP Overhead 30 Bytes

PCIe DLL 16 Bytes

Network Interface Timing

Setup a Transmit (TX) 25ns

Setup a Receive (RX) 25ns

Memory Subsystem Timing

Memory Read 120ns

Memory Write 20ns

TLB Size (Shared) 512 Entries

TLB Miss Penalty 850ns

Number of NIC TLB Walkers 32

Network Timing

Link Bandwidth 10GB/s

Router Crossbar Bandwidth 12.5GB/s

Link Latency 60ns

Router Input Buffer Latency 0ns

Router Output Buffer Latency 50ns

Router Input Buffer Size 8kB

Router Output Buffer Size 8kB

Network Packet Size 512 Bytes

Network Flit Size 8 Bytes

Table 1. Parameterization for SST Components (Most Significant Configurations
Shown). Most SST parameters required units to be specified unless otherwise stated.
For more information on parameterization, users should consult the SST exam-
ples/documentation included in the toolkit releases and project repositories.

10 M.J. Levenhagen et al.

Nodes 1 Core/Node 32 Cores/Node

Benchmarked Simulated Error (%) Benchmarked Simulated Error (%)

2 0.015 0.014 7.53 0.09 0.29 238.07

4 0.030 0.027 9.69 0.17 0.52 213.59

8 0.060 0.054 9.41 0.42 0.75 78.76

16 0.114 0.108 5.65 1.13 1.69 49.86

32 0.229 0.215 5.75 2.87 3.27 13.74

64 0.449 0.430 4.22 6.70 6.44 3.95

Table 2. Benchmarked and Simulated calls to PUT operations. Values are shown
for the 8MB Cray-Aries page size, higher PUT-count values are better, while lower
predictive error percentages are better.

then 32 PEs per node up to 64 nodes. In the single PE case, the SST predictive
accuracy is good with between 4.2 and 9.6% predictive error. This indicates the
on-node model and basic network parameterization are well specified. For the 32
PEs per node case, SST over predicts the performance significantly estimating
a much higher number of PUT/s than can be benchmarked. As the number of
nodes increase and the number of off-node communication partners increases as
a percentage of the application, the predictive accuracy improves significantly to
around 4%. This result indicates that the SST model predicts performance well
when more of the communication happens to be performed over the interconnect.
When there is higher probability of communication on node (as is the case with
small node counts), the predictive nature of the model is considerably poorer.
We attribute this effect to the very simplistic modeling of contention in on-node
resources. Such simple models prevent simulation time from becoming too large
but have the trade-off that when communication may congest on-node resources,
SST will be much more optimistic than the hardware results.

In Figure 3 we show benchmarked GUP/s implemented with remote 32-bit
integer atomic increment updates compared to a simulated SST model. For this
run we have included a sweep over Cray-Aries page sizes to demonstrate the
variation in results that can achieved with this architecture parameter. The SST
model used for our validation has a NIC-side TLB which is able to partition
the address space using the Cray-Aries TLB size parameter. The figure shows
strong correlation in behavioral trend with the 8MB page size performing the
best (which is why other results shown in the paper utilize the 8MB page size).
As in the case of the PUT results above, predictive accuracy is strongest when
the number of ranks per node is lower and decreases at high rank-per-node
density when contention and congestion for on-node resources increase.

Our third set of model validations are shown in Table 3. In this benchmark
we perform ‘hot-spot’ based GUP/s where the random atomic 32-bit integer in-
crements are selected with a weighting towards a particular ‘victim’ PE in the
application. In our results we have adjusted the weighting so that: (1) there is
no increased probability (“1x”); and, then, 4X and 8X higher probability re-
spectively. Predictive accuracy is again, much higher when more compute nodes

Lightweight and Scalable Simulation of OpenSHMEM 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 8 16 32

G
U

Ps

number of ranks per node

16Node-GUPs

Mutrino 2M
Mutrino 4M
Mutrino 8M

SST 2M
SST 4M
SST 8M

Fig. 3. Benchmarked (“Mutrino”) vs. Simulated (“SST”) Results for 16-Node Random
Access Increments Running on the Sandia Mutrino Cray XC40 Aries System

are used reflecting the emerging trend that the network models and parameter-
ization used have reasonable accuracy. On-node models continue to have lower
predictive accuracy when used in the 2 node, 32 PE per node case as a significant
number of the random communications occur on node. Predictive accuracy as
the simulated system increases to between 1 and 14%.

The final set of validation results are shown in Table 4. In these results we
perform benchmarking of GUP/s changing the operation type to require remote
atomic 32-bit integer updates with a returned value. This comparison therefore
adds the complexity of processing the return path of data from a remote PE. At
a single PE per core, the predictive accuracy is very strong with between 0 and
14% modeling error for up to 64-nodes. When using 32-cores per node, we see
the now familiar trend of predictive accuracy decreasing to around 50% model
error. Despite the high predictive error in terms of raw GUP/s rate, the reader’s
attention is drawn to the high correlation of performance trends shown – i.e.
both Mutrino and SST shown similar increase in application performance with
increasing node count even if the predicted benchmark performance contains a
large error. Historically, hardware designers have highly valued simulation results
with good predictive trends as the use of high-level model representations has
made exact performance prediction extremely challenging.

3.3 Discussion and Analysis

The predictive accuracy of the benchmarks shows a trend – that SST is more
faithfully able to represent OpenSHMEM application performance as the scale of
the application and system increases, or, where communication is largely reliant

12 M.J. Levenhagen et al.

Node Count x PEs/Node

Hot-Spot 2 x 32 4 x 32 8 x 32 16 x 32 32 x 32 64 x 32
Intensity

Mutrino Benchmarked GUP/s

1X 0.15 0.28 0.56 1.07 1.82 4.15

4X 0.14 0.28 0.54 1.00 1.99 3.90

8X 0.14 0.26 0.50 0.97 1.88 3.66

SST Simulated GUP/s

1X 0.25 0.33 0.57 1.08 2.08 4.14

4X 0.24 0.31 0.53 0.97 1.88 3.70

8X 0.22 0.29 0.48 0.88 1.70 3.36

Predictive Error (%)

1X 67.39 18.49 2.15 0.91 14.29 0.19

4X 68.99 10.66 2.45 3.10 5.93 5.13

8X 61.20 8.45 4.59 8.76 9.87 8.33

Table 3. Benchmarked and Simulated GUP/s for the Hot-Spot GUP/s Kernel using
32 PEs per compute node. Hot-Spot intensity refers to weighting of random selections
towards the victim-PE, 4X implies 4 times higher probability of selecting the PE over
alternatives. Values are shown for the 8MB Cray-Aries page size, higher GUP/s values
are better, while lower predictive error percentages are better.

on the network. This is perhaps not a surprise, the complexity of modeling
on-node resources with a lightweight model is extremely challenging, not least,
because of the wide variety of optimizations present in contemporary systems.
The network models used and the models associated with processing operations
as the NIC appear to be much more favorable for predictive accuracy. We argue
that modeling small applications which execute on only a handful of compute
nodes, or predominantly on-node, is of less interest to architecture designers.
Our goal in SST is to push the simulation toolkit capabilities to be useful for
larger-scale systems and more scalable applications. Our results show that our
models are more accurate in this regime.

4 Conclusion

The development of accurate, performance analysis tools for large-scale parallel
applications has historically been the preserve of the MPI community – in part
because of the widespread use at leadership science facilities. OpenSHMEM,
however, provides a promising alternative programming model for writing ap-
plications in communities that develop algorithms for scalable graph analytics
and data analysis applications. These communities are experiencing huge growth
and have somewhat unique hardware/software requirements. The development
of tools to support the assessment of these requirements on next-generation com-
puting architectures is much needed.

Lightweight and Scalable Simulation of OpenSHMEM 13

Nodes 1 Core/Node 32 Cores/Node

Benchmarked Simulated Error (%) Benchmarked Simulated Error (%)

2 0.001 0.001 3.56 0.025 0.061 142.61

4 0.002 0.003 14.09 0.048 0.097 100.85

8 0.004 0.005 1.27 0.096 0.157 64.52

16 0.009 0.009 0.05 0.190 0.288 51.83

32 0.016 0.017 5.59 0.367 0.554 51.16

64 0.032 0.034 6.41 0.724 1.088 50.25

Table 4. Benchmarked and Simulated GUP/s using calls to finc. Values are shown for
the 8MB Cray-Aries page size, higher GUP/s values are better, while lower predictive
error percentages are better.

In this paper, we have presented an overview of a new suite of simulation
components which are being written for Sandia’s Structural Simulation Toolkit
(SST) – a high-performance, scalable simulation framework which is the codesign
tool of choice for several industry leading vendors and academic institutions, as
well as several Department of Energy laboratories.

Despite the models being early in their development, the results in this paper
show the value of the high degree of parameterization which has been applied
in their construction. Such an approach is required to gain accurate predictions
on contemporary hardware, as well as allowing what-if comparisons to be per-
formed on the next-generation of architectures being developed in the research
laboratory today.

While our work is not yet fully complete and much more analysis and vali-
dation lies ahead, the models show good correlation with benchmarked perfor-
mance from Cray’s Aries optimized SHMEM implementation on several micro-
benchmarks designed to stress critical runtime/hardware performance compo-
nents. Our results show that as we push the scale of applications and systems to
progressively large node counts, the predictive accuracy of our simulation mod-
els increase. We argue that through close collaboration with the OpenSHMEM
community, we will be well placed to offer leading-edge performance projection
capabilities.

In the future versions of SST our OpenSHMEM model will continue to be
extended to support additional OpenSHMEM runtime/programming model fea-
tures and to permit even greater levels of parameterization for codesign activi-
ties. We welcome input from the community on how best to prioritize these new
features to maximize the utility of SST and look forward to showing the value
of simulation tools to supporting the future generation of graph analytics and
data analysis applications which will utilize SHMEM-like semantics.

Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and op-
erated by National Technology and Engineering Solutions of Sandia, LLC., a

14 M.J. Levenhagen et al.

wholly owned subsidiary of Honeywell International, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.

References

1. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS Community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model.
p. 2. ACM (2010)

2. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., et al.: OpenMPI: Goals,
Concept, and Design of a Next Generation MPI Implementation. In: European
Parallel Virtual Machine/Message Passing Interface Users Group Meeting. pp. 97–
104. Springer (2004)

3. Gropp, W., Lusk, E.: Users Guide for MPICH, a Portable Implementation of MPI.
Tech. rep., Argonne National Lab., IL (United States) (1996)

4. Groves, T., Grant, R., Hemmert, K., Hammond, S., Levenhagen, M., Arnold, D.:
(SAI) Stalled, Active and Idle: Characterizing Power and Performance of Large-
Scale Dragonfly Networks. In: Cluster Computing (CLUSTER), 2016 IEEE Inter-
national Conference on. pp. 50–59. IEEE (2016)

5. Hammarlund, P., Martinez, A.J., Bajwa, A.A., Hill, D.L., Hallnor, E., Jiang, H.,
Dixon, M., Derr, M., Hunsaker, M., Kumar, R., et al.: Haswell: The Fourth-
Generation Intel Core Processor. IEEE Micro 34(2), 6–20 (2014)

6. Hammond, S.D., Hemmert, K.S., Levenhagen, M.J., Rodrigues, A.F., Voskuilen,
G.R.: Ember: Reference Communication Patterns for Exascale. Tech. Rep.
SAND2015-7019C, Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States) (2015)

7. Jain, T., Agrawal, T.: The Haswell Microarchitecture - 4th Generation Processor.
International Journal of Computer Science and Information Technologies 4(3),
477–480 (2013)

8. Janssen, C.L., Adalsteinsson, H., Cranford, S., Kenny, J.P., Pinar, A., Evensky,
D.A., Mayo, J.: A Simulator for Large-Scale Parallel Computer Architectures. In-
ternational Journal of Distributed Systems and Technologies (IJDST) 1(2), 57–73
(2010)

9. Luszczek, P.R., Bailey, D.H., Dongarra, J.J., Kepner, J., Lucas, R.F., Rabenseifner,
R., Takahashi, D.: The HPC Challenge (HPCC) Benchmark Suite. In: Proceedings
of the 2006 ACM/IEEE conference on Supercomputing. vol. 213. Citeseer (2006)

10. Mubarak, M., Carothers, C.D., Ross, R.B., Carns, P.: Enabling Parallel Simula-
tion of Large-Scale HPC Network Systems. IEEE Transactions on Parallel and
Distributed Systems 28(1), 87–100 (2017)

11. Mudalige, G.R., Vernon, M.K., Jarvis, S.A.: A Plug-and-Play Model for Evaluating
Wavefront Computations on Parallel Architectures. In: Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on. pp. 1–14. IEEE
(2008)

12. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.:
OpenSHMEM - Toward a Unified RMA Model. In: Encyclopedia of Parallel Com-
puting, pp. 1379–1391. Springer (2011)

Lightweight and Scalable Simulation of OpenSHMEM 15

13. Rodrigues, A., Cooper-Balis, E., Bergman, K., Ferreira, K., Bunde, D., Hemmert,
K.S.: Improvements to the Structural Simulation Toolkit. In: Proceedings of the 5th
International ICST Conference on Simulation Tools and Techniques. pp. 190–195.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering) (2012)

14. Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston,
M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., et al.: The Structural
Simulation Toolkit. ACM SIGMETRICS Performance Evaluation Review 38(4),
37–42 (2011)

15. Rodrigues, A.F., Murphy, R.C., Kogge, P., Underwood, K.D.: The Structural
Simulation Toolkit: Exploring Novel Architectures. In: Proceedings of the 2006
ACM/IEEE conference on Supercomputing. p. 157. ACM (2006)

16. Sodani, A.: Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor. In:
Hot Chips 27 Symposium (HCS), 2015 IEEE. pp. 1–24. IEEE (2015)

17. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hut-
sell, S., Agarwal, R., Liu, Y.C.: Knights Landing: Second-Generation Intel Xeon
Phi Product. IEEE Micro 36(2), 34–46 (2016)

18. Vaughan, C.T., Dinge, D., Lin, P., Hammond, S.D., Cook, J., Trott, C.R., Age-
lastos, A.M., Pase, D.M., Benner, R.E., Rajan, M., et al.: Early Experiences with
Trinity-The First Advanced Technology Platform for the ASC Program. Tech.
Rep. SAND2016-3605C, Sandia National Laboratories (SNL-NM), Albuquerque,
NM (United States) (2016)

