On Automatic Differentiation for Optimization

David M. Gay

Optimization and Uncertainty Estimation

http://www.sandia.gov/~dmgay
dmgay@sandia.gov
+1-505-284-1456

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Released as SAND2008-3059C.
Outline

• Why AD?
• Forward and Backward
• Implementation approaches
• Sacado package in Trilinos
• Hessian-vector products
• Concluding remarks
Why AD?

Some algorithms need gradients and perhaps Hessians. Possibilities...

- Finite-differences
 - work with black boxes
 - but can be expensive
 - and introduce truncation error.
Why AD? (cont’d)

• Analytic derivatives
 + no truncation error
 + available from symbolic-computation packages
 – tedious and error-prone if done by hand
 – can be inefficient
 – possible interfacing issues
Why AD? (cont’d)

- Automatic Differentiation (AD)
 + no truncation error (uses chain rule)
 + reverse mode = efficient for gradients
 + sometimes easy to use
 - can take lots of memory
 - possible interfacing issues
 - if-then-else: which side at break?
Forward and Backward

Two modes:

• Forward: recur partials (w.r.t. independent variables) of operands at each operation
 + good locality and memory use
 + for $n = 1$ can compute high-order deriv’s (Taylor series)
 – slow for large n (# indep. vars)
Forward and Backward (cont’d)

- Backward: recur partials of final result w.r.t. intermediate results

\[+ f \text{ and } \nabla f \text{ in time proportional to computing } f \]

- memory use proportional to number of operations
Forward and Backward (cont’d)

• Backward: recur partials of final result w.r.t. intermediate results

 + f and ∇f in time proportional to computing f

 – memory use proportional to number of operations
Implementation Approaches

Implementations must augment function computations with recurrence of partial derivatives. *Logically equivalent to obtaining and manipulating an expression graph.*

- Preprocessor consumes source code (e.g., C or Fortran) and emits modified source.
 - Examples: AUGMENT, ADIFOR, ADIC
Implementation Approaches (cont’d)

• Operator overloading in some programming languages, such as C++ or Fortran
 ○ Examples: ADOL-C, ADOL-F, Sacado

• Modeling language (manipulates expression graph behind the scenes)
 ○ Examples: AMPL, GAMS

Many tools exist; http://www.autodiff.org lists 29.
Implementation: Reverse-mode Inner Loops

Reverse-mode derivative propagation: all multiplications and additions. Op’ns of form

\[a \leftarrow a + b \times c \]

AMPL/solver interface lib.:

\[
\text{do } *d->a.rp += *d->b.rp * *d->c.rp; \\
\quad \text{while}(d = d->next);
\]

Sacado:

\[
\text{do } d->c->aval += *d->a * d->b->aval; \\
\quad \text{while}((d = d->next));
\]
Sacado

Trilinos = collection of open-source tools for scientific computing in C++; see http://trilinos.sandia.gov

Sacado = Trilinos AD package (templated)

- Forward AD = rewrite of FAD package of Di Césaré and Pironneau; uses expression templates.

- Reverse AD = RAD (written by dmg).

- Taylor poly’s ($n = 1$ fwd) by Eric Phipps.
Sacado results in Charon

- **Jacobian Eval. (a)**
 - FD
 - FAD
 - Relative Eval. Time vs. DOF Per Element
 - Key Points: 1.02, 0.27

- **Jacobian Eval. (b)**
 - FD
 - FAD
 - Relative Flop Count vs. DOF Per Element
 - Key Points: 1.55, 0.94

- **Adjoint Eval. (c)**
 - RAD
 - Relative Eval. Time vs. DOF Per Element
 - Key Points: 9.5 to 7.5

- **Adjoint Eval. (d)**
 - RAD
 - Relative Flop Count vs. DOF Per Element
 - Key Points: 5.8 to 5.6
nlc for Optimized Gradients

Seeing larger expression graphs gives more opportunity for optimizing the computation.

- **ADIC** optimizes per C statement, mixing forward and reverse, in overall forward evaluation.

- **nlc** program sees entire function evaluation in `.nl` file, emits C or Fortran avoiding needless ops.
Timings on Protein-Folding Example

<table>
<thead>
<tr>
<th>Eval style</th>
<th>sec/eval</th>
<th>rel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiled C, no grad.</td>
<td>2.92e−5</td>
<td>1.0</td>
</tr>
<tr>
<td>Sacado RAD</td>
<td>1.90e−4</td>
<td>6.5</td>
</tr>
<tr>
<td>nlc</td>
<td>4.78e−5</td>
<td>1.6</td>
</tr>
<tr>
<td>ASL, fg mode</td>
<td>9.94e−5</td>
<td>3.4</td>
</tr>
<tr>
<td>ASL, pfgh mode</td>
<td>1.26e−4</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Eval. times, protein folding ($n = 66$)
Hessian-vector Products

Several approaches...

- **RAD ◦ FAD**: `ADvar<SFad<double,1> >`
- **FAD ◦ RAD**: `SFad<ADvar<double>,1>`
- **Custom mixture**: `Rad2::ADvar<double>`
- **AMPL/solver interface library**: find, exploit partial separability automatically:

\[
f(x) = \sum_i \theta_i \left(\sum_j f_{ij}(U_{ij}x) \right).
\]
Hessian-vector timings

<table>
<thead>
<tr>
<th>Eval style</th>
<th>sec/eval</th>
<th>rel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD o FAD</td>
<td>4.70e–4</td>
<td>18.6</td>
</tr>
<tr>
<td>FAD o RAD</td>
<td>1.07e–3</td>
<td>42.3</td>
</tr>
<tr>
<td>RAD2 (Custom mixture)</td>
<td>2.27e–4</td>
<td>9.0</td>
</tr>
<tr>
<td>ASL, pfgh mode</td>
<td>2.53e–5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Seconds per Hessian-vector prod

\[f = \frac{1}{2} x^T Q x, \ n = 100. \]
Concluding Remarks

- There are many possibilities, each with advantages and disadvantages. Having several tools helps, especially for treating hot spots.

- C++ — like looking through a keyhole; Seeing more expression graph can help.

- AD can save human time.

- AD may give faster, more accurate computation.

- Room for more tools to optimize evals.
Some Pointers

http://www.autodiff.org

http://trilinos.sandia.gov

http://www.sandia.gov/~dmgay