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Abstract

The optmized effective potential (OEP) method allows orbital-dependent functionals to be used

in density functional theory (DFT). Traditionally the orbital-dependent functional of interest has

been the Hartree-Fock energy, leading to exact exchange (OEP-HF or EXX) density functional

theory. Here we present results that use a generalized valence-bond (GVB) wave function, a multi-

configurational wave function that includes static correlation and dissociates to the proper limits.

We demonstrate the effectiveness of the OEP-GVB method by showing the dissociation of H2 and

the excitation spectrum of He.
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I. INTRODUCTION

The optimized effective potential (OEP) method [1] is a technique for obtaining density

functionals from orbital-dependent energy functions. Along with the closely-related exact

exchange (EXX) method of Görling and coworkers [2–5], these methods have allowed the

generation of exchange functionals that derive from the HF exchange energy expression and

yet are true density functionals. For the purposes of the current discussion, we will refer to

OEP methods that use HF as the orbital-dependent objective energy functional as OEP-HF.

The inclusion of exact exchange has allowed more accurate computation of properties such

as band gaps and the excited-state spectrum [5–10].

The purpose of the current work is to explore appropriate correlation functionals to

accompany the exchange functional produced by OEP-HF approaches. There have already

been many attempts along these lines. Several investigators have included LDA or GGA

correlation functionals [9]. There have been several attempts based on perturbation theory,

most notably Bartlett and coworkers [6, 11], who have introduced the OEP-MBPT2 method

that is based upon a second-order many-body perturbational correction to the Hartree-Fock

energy.

The current work introduces an approach based on a variational description of the elec-

tron correlation. We take as our orbital-dependent functional a generalized valence bond

perfect-pairing (GVB-PP) wave function [12], a multi-configurational wave function that

contains static electron correlation and dissociates to the proper limits. In contrast to most

multi-configurational self-consistent field (MC-SCF) approaches, GVB-PP does not require

a full four-index transformation of the two-electron integrals, and, as such, scales roughly

the same as HF or DFT calculations with problem size. The resulting approach, OEP-GVB,

provides a computationally tractible density functional theory method containing exact ex-

change and static correlation. We demonstrate the effectiveness of OEP-GVB by showing

dissociating H2 and the excitation spectrum of He.
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II. METHODS

A. Optimized Effective Potential

In the OEP method one writes the KS equations in the form of a kinetic energy operator

t, a nuclear attraction potential vN(r), and an optimized effective potential vOEP (r):

[t + vN(r) + vOEP (r)]φi = εiφi. (1)

The OEP potential vOEP (r) is determined by minimizing an orbital dependent objective

energy function E[{φi}]. We follow Yang and Wu [13], who define a particularly elegant

technique whereby the OEP is expanded in a set of Gaussian functions g(r) about a reference

potential v0(r)

vOEP (r) = v0(r) +
∑

`

b`g`(r). (2)

Yang and Wu take the reference potential v0(r) to be the Fermi-Amaldi potential

v0(r) =
N − 1

N

∫ ρ0(r
′)

|r − r′|
dr′. (3)

Because the reference potential is independent of vOEP , the derivative may be obtained by

minimizing the energy functional with respect to the expansion coefficients b` via

δE[{φi}]
δvOEP

=
∑

`

δE[{φi}]
δb`

=
∑

`

∑
i,j 6=i

∫ δE[{φi}]
δφi(r)

φj(r)dr
〈φj |g`|φi〉

εi − εj

(4)

The orbital-dependent energy functional E[{φi}] is typically taken to be the Hartree-Fock

energy, although it can in fact be any orbital-dependent functional. The following section

will describe the GVB-PP approach, which we shall use as the orbital-dependent energy

function to optimize.

B. GVB and OEP-GVB

The HF wave function contains only a single electronic configuration: in the HF descrip-

tion of H2 both electrons occupy the bonding orbital φg, shown in Figure 1, and in the

HF description of He both electrons occupy the orbital φ1s, shown in Figure 2. This single
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FIG. 1: The first and second natural orbitals for H2.

FIG. 2: The first and second natural orbitals for He.

configuration limits the ways the wave function can be variationally minimized and leads to,

for example, the well-known problem of the HF description of H2 dissociating to the wrong

limits, shown in Figure 3. Although it is possible to properly describe the dissociation of

H2 using an unrestricted HF (UHF) description, the resulting wave function contains spin

contamination and is thus no longer an eigenfunction of the spin S2 operator.

The GVB-PP wave function [12] adds a variationally determined amount of another

electronic configuration that gives the overall wave function greater freedom. In H2, the

GVB-PP wave functions adds the antibonding orbital φu, shown in Figure 1, which allows

the two electrons to build in some static electron correlation and to dissociate properly,

shown in Figure 3. In He, the GVB-PP wave function adds the second atomic orbital φ2s,

shown in Figure 2, which allows the two electrons to build in some static electron correlation
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FIG. 3: A comparison of the bond energy (kcal/mol) of H2 during dissociation using the one-

configuration HF wave function (blue circles) and the two-configuration GVB-PP wave function

(green circles). Only the GVB wave function dissociates to the correct limit.

and avoid each other to some degree. In the GVB terminology, the orbitals φg and φu, or

φ1s and φ2s, are the first and second natural orbitals of a GVB pair.

For two electron systems with one GVB pair, the GVB-PP wave function takes a partic-

ularly simple form. For the purposes of our discussion, we will refer to the first and second

natural orbitals of the GVB pair as φa and φb.

ΨGV B = (caφ
2
a − cbφ

2
b)αβ. (5)

φa and φb are spatial orbitals, and α and β are the corresponding spin components. The

coefficients ca and cb are determined by solving the 2 × 2 configuration interaction (CI)

matrix:

HC = ΛC (6)
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where

H =

 Ea Kab

Kab Eb

 . (7)

The CI matrix elements are given by

Ea = 2haa + (aa|aa) (8)

Eb = 2hbb + (bb|bb) (9)

Kab = (ab|ab) (10)

The one-electron terms hij are given by

hij =
∫

φi(r)h(r)φj(r)dr (11)

and h contains the kinetic-energy and nuclear attraction terms. The two-electron terms

(ij|kl) are in chemist’s notation (see, for example, reference [14]) and are given by

(ij|kl) =
∫ φ∗

i (r1)φj(r1)φ
∗
k(r2)φl(r2)

|r1 − r2|
d3r1d

3r2. (12)

After the CI coefficients are determined, the GVB-PP energy may be determined as

EGV B = c2
aEa + c2

bEb + 2cacbKab + EZZ′ (13)

where EZZ′ is the nuclear repulsion energy.

In the current work we take eq (13) to be the objective function to be optimized via eq

(4). The derivatives δEGV B/δb` are straightforward given the relations∫ δEGV B

δφa(r)
φj(r)dr = c2

a(haj + (aa|aj)) + cbca(ba|bj), (14)

∫ δEGV B

δφb(r)
φj(r)dr = c2

b(hbj + (bb|bj)) + cbca(ba|ja). (15)

C. Basis Sets

For the H2 results presented in this work, we use a 6-31G** contracted Gaussian basis

set; the final basis set for H2 has 10 contracted Gaussian basis functions. The He excited

states required a much more elaborate basis set to converge their energies. We start with an

aug-cc-pVTZ basis set and add 4 additional spd shells (a total of 5 diffuse shells, including

the aug spd functions), the exponents of each one scaled a factor of 3. The final basis set

has 65 contracted Gaussian basis functions, and in shown in Table I.
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TABLE I: Contracted Gaussian basis sets used for He calculations in this paper. Our basis is a

cc-pVTZ basis set, with 5 diffuse s−, p−, and d−shells added to converge the various excited states

Valence Diffuse

Type Exponent Coefficient Type Exponent Coefficient

S 234.000000 0.002587 S 0.051380 1.000000

35.160000 0.019533 P 0.199300 1.000000

7.989000 0.090998 D 0.459200 1.000000

2.212000 0.272050 S 0.017127 1.000000

S 0.666900 1.000000 P 0.066433 1.000000

S 0.208900 1.000000 D 0.153067 1.000000

P 3.044000 1.000000 S 0.005709 1.000000

P 0.758000 1.000000 P 0.022144 1.000000

D 1.965000 1.000000 D 0.051022 1.000000

S 0.001903 1.000000

P 0.007381 1.000000

D 0.017007 1.000000

S 0.000634 1.000000

P 0.002460 1.000000

D 0.005669 1.000000

D. Other Computational Details

For the GVB-PP description of H2 we use the GAMESS program suite [15]. The B3LYP,

BLYP and PBE results were obtained using the Jaguar program suite [16].

III. RESULTS

A. Dissociation of H2

Table II shows energies (Hartree atomic units) for H2 as the H—H distance (Å) is in-

creased. For H2, the OEP-HF results are identical to the HF results, and thus exhibits
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TABLE II: Comparison of HF, GVB, OEP-GVB, BLYP and B3LYP bond energies (in Hartree

atomic units) versus H—H (in Å) for H2 dissociation. OEP-HF gives the same results as HF.

R/Å HF GVB OEP-GVB BLYP B3LYP

0.6 -1.1139 -1.1286 -1.1256 -1.1479 -1.1593

0.7 -1.1305 -1.1476 -1.1441 -1.1663 -1.1772

0.8 -1.1284 -1.1484 -1.1447 -1.1663 -1.1766

0.9 -1.1165 -1.1398 -1.1359 -1.1566 -1.1663

1.0 -1.0995 -1.1265 -1.1226 -1.1421 -1.1510

1.2 -1.0594 -1.0956 -1.0915 -1.1079 -1.1151

1.4 -1.0186 -1.0666 -1.0626 -1.0739 -1.0793

1.8 -0.9468 -1.0259 -1.0241 -1.0181 -1.0194

2.2 -0.8904 -1.0067 -1.0061 -0.9795 -0.9765

2.5 -0.8571 -1.0008 -1.0007 -0.9597 -0.9536

3.0 -0.8157 -0.9975 -0.9974 -0.9387 -0.9282

4.0 -0.7702 -0.9965 -0.9965 -0.9214 -0.9051

the same difficulties dissociating that the HF wave function does. BLYP and B3LYP also

dissociate to the incorrect limit, although closer to the correct result than the HF or OEP-

HF results. The GVB and OEP-GVB methods dissociate to nearly the correct limit (the

error shown here is predominantly due to finite basis set size effects). The GVB and OEP-

GVB methods do not yield exactly the same energies because the orbitals in the OEP-GVB

method are slightly constrained by the requirement that they come from a Kohn-Sham equa-

tion of the form of eq (1). This is similar to the energy differences seen between the HF

and OEP-HF method (for example, in reference [13]), and was explained particularly well

by Kummel and Perdew in reference [17]. These data are shown graphically in Figure 4.

It is, of course, possible to dissociate a chemical bond using a unrestricted HF or a

spin-polarized DFT approach. However, these approaches only dissociate the bond prop-

erly because they introduce spin contamination into the wave functions, making the wave

functions no longer eigenfunctions of S2, and the energies somewhat suspect. We believe

that the performance of OEP-GVB in this capacity, coupled with the excitation spectrum
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FIG. 4: Comparison of HF (blue circles), GVB (green circles), OEP-GVB (black circles), BLYP (red

circles) and B3LYP (cyan circles) bond energies (kcal/mol) versus H—H (in Å) for H2 dissociation.

Here OEP-HF gives the same results as HF. Only the GVB and OEP-GVB methods dissociate to

the proper limits.

discussed below, argue strongly for the current method.

B. The excitation spectrum of He

In KS DFT, only the highest occupied eigenvalue has a true physical interpretation,

corresponding to the negative of the lowest ionization energy. In reference [19], Savin,

Umrigar and Gonze derive a nearly exact Kohn-Sham potential from quantum Monte Carlo

(QMC) calculations, and demonstrate that the resulting KS eigenvalues reproduce values

from experiment [18] and explicit Hylleraas coordinate calculations of the excited states

[20, 21]. The experiments and Hylleraas calculations give different values for the singlet and

triplet excited states; in contrast, the KS eigenvalues from the QMC exchange-correlation
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TABLE III: Comparison of the Helium experimental excited state spectrum to experimental values

(reference [18]) and those resulting from differences in eigenvalues using a high-quality QMC-derived

exchange-correlation functional (reference [19]), and those from HF, LDA, BLYP, PBE, B3LYP,

and our OEP-HF and OEP-GVB approaches. The final row reports the mean absolute deviation

(MAD) between the QMC-derived exchange-correlation functional and the other techniques.

Experiment OEP

State Triplet Singlet QMC HF LDA BLYP PBE B3LYP HF GVB

1s→2s 0.728 0.758 0.746 0.918 0.571 0.585 0.580 0.662 0.762 0.760

1s→2p 0.770 0.780 0.777 0.923 0.576 0.590 0.585 0.667 0.793 0.790

1s→3s 0.835 0.842 0.839 0.922 0.574 0.587 0.582 0.665 0.856 0.853

1s→3p 0.846 0.848 0.848 0.941 0.592 0.605 0.600 0.683 0.864 0.862

1s→3d 0.848 0.848 0.848 0.936 0.589 0.603 0.598 0.680 0.865 0.862

1s→4s 0.867 0.870 0.869 0.929 0.580 0.594 0.591 0.673 0.885 0.882

MAD 0.107 0.241 0.227 0.232 0.160 0.016 0.014

functional yield only a single, spin-averaged value for each state. The fact that these values

fall between the singlet and triplet energies for each state is a remarkable result, which

the authors interpret as evidence that the Kohn-Sham orbitals arising from their QMC-

based Kohn-Sham potential and the exact quasiparticle orbitals obey the same long-range

equations to order 1/r4. For the remainder of this paper we will take the KS eigenvalues

from reference [19] to be the “correct” values.

In the current work we report excitation spectra for He using OEP-HF and OEP-GVB.

Although these results do not display the same quantitative agreement with experiment and

Hylleraas calculations that those in reference [19] do, these methods come with substantially

less computational expense. The accuracy of these results demonstrates that this approach

does, in fact, exhibit the correct long-range behavior, and provides hope that inexpensive

DFT calculations might yield the quantitative accuracy that Savin, Umrigar, and Gonze’s

QMC-based KS-DFT calculations provided.

Table III reports a comparison of Helium excitation energies to the QMC-derived

exchange-correlation functional as well as to HF and to other LDA and GGA function-

als. We report the mean absolute deviation (MAD) between the QMC-derived values and
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FIG. 5: Comparison of excitation energies for He atom computed from the KS-DFT eigenvalues

using HF, LDA, BLYP, PBE, OEP-HF, OEP-GVB, and QMC exchange-correlation functionals.

The levels are color-coded based on the excitation, shown at the right. The OEP methods are the

only ones that obtain the correct ordering of the states, and the errors are reasonably constant

across the whole spectrum, in contrast with the other approaches.

those from HF and the DFTs. The HF excitation energies differ on the average by 0.107 h,

the LDA, BLYP, and PBE values differ by 0.241–0.273 h, and the B3LYP method by 0.160

h. The exchange-only OEP-HF values differ by only 0.016 h, and those using OEP-GVB

improve upon that slightly, differing by 0.014 h. Moreover, the OEP values differ from the

QMC values by essentially constant values across their entire spectra, whereas the LDA,

GGA, hybrid, and HF values fluctuate much more about their average deviation. As a

result, the OEP methods are the only methods that get the ordering of the states correct.

These spectra are shown graphically in Figure 5.
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IV. CONCLUSION

We have introduced the OEP-GVB DFT method that combines an exact-exchange tech-

nique with a static description of the electron correlation. The OEP-GVB method has the

same computational expense as a HF or DFT program, which means that this method can

be used for accurate description of large molecules at modest computational expense. We

demonstrate the OEP-GVB dissociates the chemical bond in H2 to the proper limits. We

also demonstrate that the OEP-GVB method makes small improvements upon the OEP-HF

calculation of the excitation spectrum of He. As proper bond dissociation and the proper

band gap descriptions are two of the more important issues motivating the development of

new DFT functionals, we believe that OEP-GVB can play an important role in this arena.
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