INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng011;00:1-28 Prepared usingqimeauth.cls [Version: 2002/09/18 v2.02]

Efficient Non-Linear Proper Orthogonal Decomposition
(POD)/Galerkin Reduced Order Models with Stable Penalty
Enforcement of Boundary Conditions

I. Kalashnikova? and M.F. Baron&

1 nstitute for Computational & Mathematical Engineeringaford University, Stanford, CA 94305, U.S.A.
2 Numerical Analysis and Applications Department, Sandiéiddal Laboratories, P.O. Box 5800, MS 1320, Albuquerque,
NM, 87185, U.S.A.
3 Wind Power Technologies Department, Sandia National Lafooies, P.O. Box 5800, MS 1124, Albuquerque, NM, 87185,
U.S.A.

SUMMARY

An efficient, stability-preserving model reduction teaiuneé for non-linear initial boundary value problems
(IBVPs) whose solutions exhibit inherently non-linear dygrics such as metastability and periodic regimes (limit
cycles) is developed. The approach is based on the “contsiuGalerkin projection approach, in which the
continuous governing equations are projected onto thecestibasis modes in a continuous inner product. The
reduced order model (ROM) basis is constructed via a progieogonal decomposition (POD). In general, POD
basis modes will not satisfy the boundary conditions of thebjem. A weak implementation of the boundary
conditions in the ROM based on the penalty method is devdlofgymptotic stability of the ROM with penalty-
enforced boundary conditions is examined using the energhonl, following linearization and localization of the
governing equations in the vicinity of a stable steady sofutThis analysis, enabled by the fact that a continuous
representation of the reduced basis is employed, leads todelmeduction method with aa priori stability
guarantee. The approach is applied to two non-linear pnagilehe Allen-Cahn (or “bistable”) equation and a
convection-diffusion-reaction (CDR) system represantintubular reactor. For each of these problems, bounds
on the penalty parameters that ensure asymptotic stabflitye ROM solutions are derived. The non-linear terms
in the equations are handled efficiently using the “besttgbinterpolation method (BPIM) proposed by Peraire,
Nguyenet al.in [22, 23]. Numerical experiments reveal that the POD/@ateROMs with stability-preserving
penalty boundary treatment for the two problems considdreth without as well as with interpolation, remain
stable in a way that is consistent with the solutions to theegting continuous equations, and capture the correct
non-linear dynamics exhibited by the exact solutions te¢hgroblems. Copyrigh© 2011 John Wiley & Sons,
Ltd.
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2 I. KALASHNIKOVA AND M.F. BARONE

1. INTRODUCTION

Many mathematical models in engineering and science ajfuits are described by non-linear partial
differential equations (PDEs) whose solutions exhibitir@ntly non-linear behavior, including static

equilibria, transient steady states, periodic or quasiepé@ time-asymptotic regimes and chaotic
oscillations. It is well-known that non-linear equatiorende very sensitive to initial conditions and
parameters appearing in these equations: a slight petioinbaf operating conditions can cause the
solution of the PDE to change dramatically. The proper dattarization of all such solution states

becomes particularly important in non-linear control syss applications, in which one may be
interested in fine-tuning a system parameter, or input,etdya particular state or configuration of the
governing system. While investigation of stability andsiévity of non-linear systems can sometimes
be carried out analytically using techniques from nondinanalysis [31, 15], numerical bifurcation

techniques are required in general. Packages and tool&f2®&rforming such bifurcation analyses are
available; however, these tools are often too computalipaapensive for use in a design or analysis
setting.

The cost associated with the analysis of non-linear equstias pushed researchers in mathematics
and engineering applications to seek modeling and sinomatchniques that retain the essential
dynamics of a high-fidelity model, but at a much lower compiateal cost. The basic idea of these
“Reduced Order Models” (ROMs) is to use a relatively smathiver of solutions generated by a high-
fidelity simulation to construct a model that is much cheamenputationally, and can be runin real or
near-real time. A ROM to be used in predictive, real-timelegapions is desired to have the following
properties:

(i) Stability: the ROM should be constructed such that it da ensureda priori that the
discretization does not introduce into the approximation@on-physical numerical instabilities
inconsistent with any physical instabilities exhibitedthg exact solutions to the equations being
solved; and

(i) Efficiency: the non-linear terms in the ROM should be i in a way that does not invalidate
the labelreducedorder model.

Many non-linear ROM techniques are derived from the Propethd@yonal Decomposition
(POD)/Galerkin projection approach [12, 7, 11]. Non-lindROD/Galerkin ROMs have been
constructed in a number of applications. An analytical téghe based on the POD method and
Galerkin projection was presented for the analysis andatharization of inter-area oscillations in
stressed power systems in [30]. Dynamical models for bétion analysis and control of self-sustained
cavity oscillations, also based on the POD/Galerkin apgrpavere examined by Rowlest al. in
[20, 19]. In[18], Bizoret al. investigated features and limitations of POD models féiedént snapshot
sampling policies for a tubular reactor with recycle. In[2Agudeloet al. presented an application
of positive polynomials to the reduction of the number of pamature constraints of a POD-based
predictive controller of a similar tubular reactor.

The aim of the present work is to develop an efficient, asytigaly stable model reduction approach
based on the Proper Orthogonal Decomposition (POD) andrkdalprojection for non-linear PDEs

exhibiting complex non-linear dynamics, such as metalityal{stable/unstable fixed points that
coalesce or vanish on a long time scale) and periodic, asmill regimes (limit cycles). The proposed
model reduction technique is based on the “continuous gtioj@’ approach: the continuous, governing
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EFFICIENT NON-LINEAR POD/GALERKIN ROMS WITH STABLE PENALY ENFORCED BCS 3

PDEs are projected onto the basis modes in a continuouspno@uct, in common with the perspective
of [13, 10, 1, 8, 2, 3]. This approach is fundamentally difetrfrom a popular approach, termed the
“discrete projection” approach, in which the semi-disersgpresentation of the governing equations
is projected onto a set of discrete modes in a discrete inregtygt. The primary advantage of the
continuous projection approach is that it allows the usewherical analysis techniques employed
by the spectral methods community [26, 25] to determangriori, the stability and convergence
properties of the ROM. Using these techniques, a ROM baséleooontinuous projection approach
can be derived to possess, by construction, a certain isfappilarantee. As shown in [1, 8, 2, 3],
the stability of the Galerkin projection step of the modeduetion procedure can be closely tied
to the choice of inner product and the formulation and imm@atation of the boundary conditions,
which are not necessarily inherited from the discretizegiatign set by a ROM constructed using the
continuous Galerkin projection approach. For non-linepragions, the energy method can be applied
to the linearized, constant coefficient version of the comdus problem in order to obtain energy
inequalities which bound the temporal growth of the solugito the IBVP in regions where the exact
solutions to these equations are asymptotically stable 28p This analysis allows one to identify
a priori if a particular choice of inner product is the “correct” inngroduct — “correct” from the
perspective of stability — for a given equation set. A pgnalethod implementation of the boundary
conditions that preserves asymptotic stability of the RONhWwoundary treatment — so as to ensure
that the boundary condition terms appearing in the ROM dalestabilize the ROM — may be derived
as well, also using the energy method. Efficiency of the RONMm@maintained via the “best points”
interpolation method (BPIM) of Peraire, Nguyenal.[22, 23].

The remainder of this paper is organized as follows. Se@idescribes the proposed non-linear model
reduction procedure. The Proper Orthogonal DecomposifiR@D)/Galerkin approach for model
reduction is overviewed in Section 2.1. In Section 2.2, thefficiency of the direct projection of
the non-linear terms in building a non-linear ROM for eqoad possessing strong non-linearities
is exhibited. It is shown how efficiency can be recovered bylypg the so-called “best points”
interpolation method (BPIM) of [22, 23]. The penalty methafdproach to enforcing boundary
conditions is outlined in Section 2.3, and a procedure fodging asymptotic stability of a Galerkin-
projected system is described in Section 2.4. In Sectionad34a efficient reduced order models
are developed for the non-linear Allen-Cahn (or “bistabletjuation, and a convection-diffusion-
reaction (CDR) model of a tubular reactor, respectivelyr Both problems considered, a penalty
implementation of the boundary conditions is formulated anoven to be asymptotically stable for
specific ranges of the penalty parameters. Numerical exyats illustrate that the proposed POD
reduced order models developed perform well both without with interpolation of the non-linear
terms: the penalty method is effective in enforcing bougdamnditions of the Dirichlet, Neumann
and Robin kind, and the ROMs are able to correctly capturérttegastability” phenomenon exhibited
by the solution to the former equation, and a stable limitewxhibited by the solution to the latter
system. It is emphasized that the model reduction approemgtoped herein and illustrated on these
small-scale benchmarks is extendable to more challengingt®ns and larger scale problems that
arise in various industrial and engineering applicatidos.example non-linear conservation laws in
the field of computational fluid dynamics (CFDYf([3] for a detailed discussion of an extension of
the technique to the full non-linear compressible Navigk8s equations). Conclusions are offered in
Section 5.
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4 I. KALASHNIKOVA AND M.F. BARONE

2. CONSTRUCTION AND ANALYSIS OF REDUCED ORDER MODELS FOR NGNNEAR
PDES

2.1. Proper Orthogonal Decomposition (POD)/Galerkin Apgech for Model Reduction

This section contains a brief overview of the Proper Orthwgdecomposition (POD)/Galerkin
method for reducing the order of a complex physical systesegwed by a general set of PDEs. The
approach consists of two steps.

The first step is the calculation of a reduced basis using @ie & an ensemble of realizations from a
high-fidelity simulation. Discussed in detail in Lumley f}d Holme®t al.[7], POD is a mathematical
procedure that, given an ensemble (or snapshot set) of datated by{u¢(x) : k = 1,... N},
constructs a basis for that ensemble that is optimal in tinses¢hat it describes more energy (on
average) of the ensemble than any other linear basis of tihe simensiorM. It is a well-known
result [1, 7, 10, 9] that the solution to this optimizatioropblem reduces to the eigenvalue problem
Z@ =A@ whereZ = (UK u¥) is a self-adjoint and positive semi-definite operator. i ba shown

[7, 6] that the set oM eigenfunctions, or POD mode§g, : i =1,2,...,M} corresponding to th#
largest eigenvalues &% is precisely the set of¢, } that solves the aforementioned POD optimization.
Given this basis, the numerical ROM solutiog can be represented as a linear combination of POD

modes
M

Um (th) - Zaj (t)‘pj (X)v (1)

J:
where thea;(t) are the so-called ROM coefficients, to be solved for in the ROM

The second step in constructing a ROM involves projectimggbverning system of PDEs onto the
POD basig @, } in some appropriate inner product, denoted genericallyr(éw) by (-, ). In this step,
the full-system dynamics are effectively translated toithplied dynamics of the POD modes. If the
governing system of equations for the state variable vectas the form

ou

E:$u+f/1/z(u,u)+f/1/3(u,u,u), 2
where.? is a linear differential operator, ands and.#3 are (non-linear) quadratic and cubic operators
respectively, then the Galerkin projection of (2) onto ti@Pmodeg; for j =1,2,....M is

(‘PjvaaL:A) = (‘Pj,fUM) + (‘Pj,«/Vz(UM,UM)) + (¢17J‘/3.(UM,UM,UM)) : 3)

Substituting the POD decomposition af; (1) into (3) and applying the orthonormality property of
the basis functiong, in the inner product-,-) gives a set of time-dependent ordinary differential
equations (ODESs) in the modal amplitudes (also referredtdha ROM coefficients) that accurately
describes the flow dynamics of the full system of PDEs for sbmi¢ed set of flow conditions:

da .
Gt =8 = 2Na(e, Z(@) + 5 Sme1 @ an(@) A2(Pr, @) )
3 e SN Aaman( @, A5(@), Py @),
forj=12,2,...,M.
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EFFICIENT NON-LINEAR POD/GALERKIN ROMS WITH STABLE PENALY ENFORCED BCS 5

The approach described herein is based on a Galerkin pimjeat the continuousgoverning partial
differential equations, in common with the perspective fof, example, [10, 13, 1, 8, 2]. This
“continuous projection” approach differs from many PODIWkin applications, where the semi-
discrete representation of the governing equations isptegl, and numerical analysis proceeds from
the perspective of a dynamical system of ordinary difféedréquations. The continuous projection
approach has the advantage that the ROM solution behavinbeaexamined using methods that
have traditionally been used for numerical analysis of Bpeapproximations to partial differential
equations [26, 25], such as the techniques employed hereitudying stability. Since the stability
analysis of the ROM can be dorepriori at the level of thecontinuousequations, the ROM can
be constructed so that its stability is ensugegriori. Unlike in the discrete approach, however, in
the continuous approach, boundary condition terms praeethe discretized equation set aret in
general inherited by the ROM, and must therefore be impléetkseparately in the ROM (Section
2.3). It is emphasized that even though a ROM constructedjuke discrete projection approach has
embedded in it the boundary conditions, many ROMs based euliftrete projection approach are
constructed without am priori stability guarantee [14, 4]. These ROMs, though potentiatistable,
are nonetheless used in some applications because theyecaasker to implement than ROMs
constructed using the continuous projection method [1, 4].

For the ROMs developed herein, the standarinner product is selected for the Galerkin projection
step of the model reduction procedure,as the Galerkin ptioje of the equations considered is
asymptotically stable in this inner product (TheoremsBadnd 4.1.1). In the implementation, the
continuoud_? inner product-, -) is approximated by a discret& inner product:

. N
(V)= [ wvde~ Y usvi). (5)

Q K=0
wherex, ..., Xy € Q are the spatial discretization points.

2.2. “Best Points” Interpolation of Non-Linear Terms in tROM

Consider the general non-linear IBVP

%+$u+ﬂ(u):f, (6)

where.Z is alinear operator,#” is a non-linear operator, arfds some source depending on space only
(not a function ofu). Assume without loss of generality thais a scalar-valued function. Projecting
(6) onto thej" POD (or any reduced basis) mode, denoteghyor j =1,...,M, gives rise to a system
of ordinary differential equations (ODES) of the form

av =F—Lav —N(am), @)
wherea, = ( a1, .. au )and
L|JE($¢J,(H), |,J:1,,M, (8)

TNote that for certain systems, e.g., the compressible EmemMNavier-Stokes equations, another inner product magdngined
to preserve stability of the Galerkin approximatiaf;[1, 8, 2, 3].
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6 |. KALASHNIKOVA AND M.F. BARONE
E(f’m)7 i:1""7M7 (9)

M
k=1

The inner products in (1@annotbe pre-computed prior to time-integration of the ROM sys{@nif

// contains a strong, e.g., a non-polynomial, non-linegritéther, these inner products would need
to be recomputed at each time (or Newton) step of the ROM. “Hiisct” treatment, or computation,
of these inner products can greatly reduce the efficiench@ROM, and motivates the consideration
of some alternative way to handle the non-linearity in (6).

To recover efficiency, the “best points” interpolation oR2[23], a technique based on a coefficient
function approximation for the non-linear terms in (6), mgoyed. The general procedure is outlined
below.

Suppos& snapshots have been taken of the unknown ficht K different times (the first step of the
POD/Galerkin approach for model reduction outlined in $ec.1):

U= {EX) = uk(x) : 1<k <K}, (11)

Given this set of snapshots of the primal unknown figldhe following set of snapshots of the non-
linear function.#” appearing in (6) are constructed:

S = L& () = A (U§(0) 1 1<k <K} (12)
The best approximations of the elements in the snapshotesabs defined as:
i (us() =arg min [l (us() —wwll,  1<k<K, (13)
wvespar @ ....q) )
where the se{@;/ }M_, is an orthonormal basis for/’, and|| - || denotes the norm induced by the

inner product-,-) in which the POD basis is constructed (in this work, the stadtl? inner product
(5)). Orthonormality of theg,!” in this inner product implies that

i (U§(0)) = iaﬁn@{ (x), 1<k<K, (14)

where
al= (@ A (), m=1..,M1I<k<K. (15)

The “best” interpolation points [22, 23], denoted l@iﬁn” m_1, are defined as the solution to the
following optimization problem:

2
min bp - bPEQ Zk— H‘/VM uh( )) zm:le(Xl 3. 7XM /VH 5 (16)
b b
S CEPIBEOGP. ... G) = (USOEP),  1<m<M.1<k<K,
i.e., the set of p0|nt$xm m_1 IS determined to minimize the average error between thegotants

M (-) and the best approximation$; (-). Substituting (14) into (16) and invoking the orthonorrtali
of the{@; }M_,, one can show that (16) is equivalent to

b
min b th)ApEQ i1 Smea(am— Bm(xl oo X)),

" b (17)
M@ O )Bn(X1, P = A (WKEP),  1<m<M,1<k<K.

Copyright(© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng011;00:1-28
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EFFICIENT NON-LINEAR POD/GALERKIN ROMS WITH STABLE PENALY ENFORCED BCS 7

The solution to the least-squares optimization problem) @ah be found using the Levenberg-
Marquardt (LM) algorithm, and is typically reached in lessan fifteen iterations of the algorithm
[23].

Given the “best points” for/, i.e., the solutions to (17) (or any set of interpolationrs), denoted
by {x;gV}Mml, it is straightforward to apply the interpolation procedwutlined in [22, 23] to the
non-linear function4 (u) that appears in (6). The first step is to compute snapshothéaron-linear
function.#” in (6). From these snapshots the interpolation poﬂnﬁé}m:l are computed following the
approach outlined above (and discussed in detail in Se2t@fi23]). Given{x;, }M_, and{g }M_,,

the so-called “cardinal functions”, denoted fa;) mzl, are computed by solving the following linear
systent
@i (9 = A1 (%), (18)

wheregy) (x) = (@' (x)..... & (x)T andgif () = (Wi (x)..... gt ()T, andAj = g (x" ), with
the cardinal functions satisfyirlgj/‘/(m) = §j.

Given the interpolation pointéx;} } and the cardinal functiongy;! }, the non-linear functiont is
approximated as

N (U) = A (u) = % N (UG )W € R, (19)
m=1
so that
M M
M) =y A <z an(t) ¢h (% >> Yy (20)
m=1 n=1

where{@n}M_, is an orthonormal basis for the primal unknowrcomputed from the snapshots (11).

The projection of 441 (u) (20) onto thd™™ POD mode fou can be written in matrix/vector form. To do
this, note that, for a general functioiy (u) and forl = 1,...,M:

(@, M) = (@, Ih 14 (i@ ) e) (21)
=Ym-1 [Jo @ W dQ] A (31 an (O (X)) -

(21) is a matrix/vector product of the for@”" .4 (3™, angn(x )) where

Gin= [, i d2 (22)

for 1 <m,n <M (so thatG"" € RM*M),

It follows that, with the interpolation procedure descdbkere, the ODE system for the ROM
coefficients is not (7) but rather

av=F—Lay—G”" 4 (D" aw), (23)

*Note that, forA to be invertible, the number of interpolation points museleal to the number of reduced basis moblesA
non-linear least squares optimization problem may be ftated if it is desired to have more interpolation points timaodes
M, but this latter approach is not considered in the presenit.wo

Copyright(© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng011;00:1-28
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8 I. KALASHNIKOVA AND M.F. BARONE

whereF andL are defined in (9) and (8) respectively, the entries of theim&-" are given by (22),
and

atd') o)
D' = P : e RMM, (24)
ag) o mxg)
To clarify the notation in (23), namely what is meant by a fime. 4 of a vector:
S -1.8m(t) @n(x") A (Eh-r8m(t) am(x("))
N (D" ay) =N : = : eRM.  (25)
3 me18m(t) @n(Xi1 ) A (Ihe1am(®) (X))

Once the ROM system (23) is constructed, the ROM is solveddvgrecing this system forward in
time using a standard time-integration scheme (e.g., ERlenge-Kutta), or a combination of a time-
integration scheme and Newton’s method, if the chosen integgration scheme is implicit.

Essentially, in the BPIM, recomputation of inner produgifection) of the non-linear terms at each
time (or Newton) step is replaced by evaluation of the basistions at the interpolation points. These
interpolation points are pre-computed and much fewer inlmemthanN, the number of spatial grid
points. Hence, with interpolation, the cost of each stephef anline time-integration stage of the
model reduction procedure is ¢f(M) — compared taZ(N) for the model reduction procedure with
interpolation. SinceM << N in practice, the savings gained in employing the interpatatan be
substantial, especially if the governing equation set @&sss a strong (hon-polynomial) non-linearity
4 (u). The computational complexity of the “best points” intelgt@mn algorithm is discussed in detall
in[22, 23].

2.3. Penalty-Enforcement of the Boundary Conditions irR@é

In a POD ROM developed using the continuous projection agrdl, 8, 2], the boundary condition
terms present in the discretized equation set from whichPl@® basis is generated are not inherited
automatically by the ROM solution. The usual way to enforaaridary conditions in a ROM
constructed using the continuous projection approach nsutih a weak implementation, that is,
by applying them directly into the boundary integrals thasa when the operataZ in (2) is
projected onto a mode and integrated by parts [1, 8, 2]. ltdee argued;f. [26], that this weak
implementation of the boundary conditions does not takeactount the fact that the equation should
be obeyed arbitrarily close to the boundary. Indeed, nurakaxperiments demonstrate that a weak
implementation in which the boundary data are substitutegttion into the boundary integrals does
not work well for some POD ROMs, particularly ROMs for eqoat with Robin boundary conditions:
the ROM solution may exhibit significant errors near the kanes, error that can grow in time and
ultimately corrupt the solution in the entire domain.

An alternative to a weak enforcement of the boundary coolitis a penalty enforcement of boundary
conditionscf. [26, 25, 24]. Formulating a boundary condition using thegignmethod amounts to
rewriting a boundary value problem as:

{”‘:"g”*”””’ NQ - Put Nutf-T(Bu—h)Sye,  (26)

Bu=nh, onodQ

Copyright(© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng011;00:1-28
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EFFICIENT NON-LINEAR POD/GALERKIN ROMS WITH STABLE PENALY ENFORCED BCS 9

in QUAQ. Here,I' is a diagonal matrix of penalty parameters selected sudlstahility is preserved,
andg,q is an indicator function marking the boundatQ:

1, forxeoQ

%0 E{ 0, otherwise. (27)

A useful technique for deriving the penalty parameterF isuch that the Galerkin projection of (26)
remains stable is described in [26]. This technique, oedlim Section 2.4, is employed in the analyses
performed in Sections 3.1 and 4.1.

2.4. Stability Analysis

For reduced order models for general non-linear problench 18 the ones considered herein, the
question of numerical stability can be a complicated onés Thbecause non-linear equations can
support (exhibit) stable as well as unstable, sometimen efiaotic, solutions. A ROM for a non-
linear equation or system of equations can only be expeocteemain numerically stable in regions
where the exact solution to the equation(s) is in a stabte.sta

As illustrated in [28, 26], linear stability of a non-linegystem can be examined for a large class of
operators if the solutions are smooth. For such problemis, sufficient to consider the questions
of well-posedness and asymptotic stability for the locdihearized, constant coefficient version
of the full non-linear problem. The goal, then, in buildinghan-linear ROM, is to formulate the
discrete problem with boundary conditions such that theefkal projection of the equations can
be asymptotically stable in a way that is consistent with degmptotic stability of the governing
continuous equations. This is done through the selecti@n@ppropriate (stability-preserving) inner
product for the given equation set, and the development t@dtalisy-preserving implementation of the
prescribed boundary conditions. Numerical stability af ROM is studied via the energy method. The
key steps involved in using the energy method to build a ROl wana priori stability guarantee for
any given equation set are summarized below:

Step 1:Select an inner product, -) to be used in building the ROM, with a corresponding ndjrnj.
Step 2:Determine the stable steady states supported by the gagaron-linear system, e.g., (26).

Step 3:Linearize the spatial terms that appear in the equations®itan constant state) at which the
solution exhibits stable behavior; that is, linearize atmstateug for which Z{A (Jo)} < 0, i.e., the
real parts of the eigenvalues of the Jacohlgrare negative, where

(L +.N)
Jo=——F1—+~ . 28
0 dau u=ug (28)
Step 4:Ensure that the rate of change of the localized (frozen aieifff) and linearized system energy,
given by,
1d

éa”U”Z:(JOU‘Ff,U), (29)

is non-positive (the system energy is non-increadirghat is, ensure that the Galerkin projection step

8Non-increasing system energy is a sufficient condition fabiity of the Galerkin scheme.
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10 I. KALASHNIKOVA AND M.F. BARONE

of the model reduction without boundary treatment is stabtbe chosen inner product.

Step 5:If an energy stability bound of the form (29) cannot be shoketyrn to Step 1 and select an
alternative inner product for the model reduction; otheeyiproceed to Step 6.

Step 6: Derive the penalty parameters (the entrie$ psuch that the rate of change of the localized
(frozen coefficient) and linearized system energy with ftgrenforced boundary treatment, given by,
1d 2
§a||u|| = (Jou+fu)—T aQ(Bu—h)-ung (30)
is non-positive (that is, the system energy remains noreasing following the addition of boundary
condition terms).

In the analyses of Sections 3.1 and 4.1, the energy estirB@jen Step 6 is recast into an algebraic
eigenvalue problem, following the procedure of [26].

3. ASTABLE POD ROM FOR THE ALLEN-CAHN (OR “BISTABLE") EQUATON

The Allen-Cahn, or “bistable”, equation is an example of misknear reaction-diffusion equation. In
(0,T] x RN, the equation has the form:

w=eAu+f(u), f(u)=u(l-u?), (31)

where A is the usual Laplacian operator, amd> 0 is a parameter, representing diffusivity. First
proposed by S.M. Allen and J.W. Cahn in the 1970s as a modgt&om boundary motion in crystalline
solids [16], Allen-Cahn equations have become a prototypdehfor isothermal phase transitions.
These equations arise in the study of mechanisms of patiemration for various phenomena, such as
phase transition, morphogenesis, population geneticslagchical reactions.

In the present work, the equation (31) in one spatial din@mgLD) is considered:
U = EUgx+ U(1—1?), xe (-1,1), te(0,T],
u(-1,t)=-1, u(1,t) =1, te (0,T], (32)
u(x,0) = 0.53x— 0.47sin(3mx), xe (-1,1).
The initial condition and the solution to this IBVP are péattin Fig. 1. It is straightforward to find the

fixed points of (32), namely by settinfu*) = 0 and solving fou*. The equation has three uniform
fixed points:

u*={-1,0,1}. (33)
Stability of these states can be studied by computing thehiac
_of _ 2
J(u):%_l—Su , (34)

and checking its sign when evaluated at each of the steaitg sTehis analysis leads to the conclusion
that the middle state is unstable, but the states +1 are attracting. The solutions to the equation
(32) exhibit a phenomenon known as “metastability”, chesarzed by relative flatness of the solution

close to the stable states, separated by interfaces thatmadgsce or vanish on a long time scale [27]

(Fig. 1 (b)).
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u(x,0)
)

L L L
-1 -0.5 ] 0.5 1
X

(a) u(x,0) (b) u(x;t)

Figure 1. Plots of initial condition and solution to the Alkahn IBVP (32)

3.1. Stability-Preserving Penalty Formulation of Boungl@onditions for the Allen-Cahn Equation

In this section, a stability-preserving penalty enforcaina the boundary conditions for the Allen-
Cahn equation (32) is formulated. The first step is to rew32) with a penalty method formulation
of the boundary conditions:

{ U = EUxx+ U(l— UZ) — Tl[U(—l,t) + 1] — Tz[U(l,t) - 1]7 Xe (_17 1)7 te (OvT]a (35)

u(x,0) = 0.53x— 0.47sin(3 x) , xe€ (-1,1),

for some penalty parameters 172 € R, to be determined such that the Galerkin projection of (85) i
theL? inner product is linearly stable (Theorem 3.1.1).

Theorem 3.1.1. Let wp € R be a stable steady state for the 1D Allen-Cahn equagBi), so that

J(up) < 0 (34) Then the Galerkin projection of the IBV@5) with a penalty-enforcement of the
boundary conditions is asymptotically stable abogifu

1
T, > 1—-3U3+¢. (36)
N—— 4

J(uo)

Proof. The first step in the analysis is to linearize the functi¢n) in (31) aboutug:

W ~ Elxx+ f(Up) + J(Up) (U — Up) = EUyx+ (1 — 3Ud)u+Kk, (37)
wherek = —(1— 3up)up is a constant depending a. According to the definition of stability (see
Definition 2.11 in [5]), it is sufficient to consider the hormeageous version of (37) in studying stability.

Therefore, the constafitis neglected from this point forward, and the homogeneoasogs of the
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12 I. KALASHNIKOVA AND M.F. BARONE

boundary conditions in (35) are considered. Then

Satllul? = & (U U) + (1 - 3ug) (u,u) — Tu?(~Lt) — TUP(L,)
= —¢&||uy| >+ eu(L,t)ux(1,t) — eu(—1,t)ux(—1,t) + (1 — 3ud)||u[|? — TyuP(—1,t)
—1u?(1,t)
< —eW2(1,t) — eU2(—1,t) + eu(L,t)ug(1,t) — eu(—1,t)ux(—1,t)

+(1—=3ud)u?(1,t) + (1 - 3ud)u?(—1,t) — Tyu?(—1,t) — Tou?(1,t) (38)
= (1-3u3— 12)u?(L,t) + eu(L,t)ux(1,t) — eu(1,t) + (1 — 3ud — 11)u?(—1,t)
—eu(—1,t)ux(—1,t) — eud(—1t)
= UEHRUR—F u[HLuL,
where L 5 ! 5
- 2-6u;—212 € _ 2—-6u;—21;, —¢€
HR_§< £ —28)’ HL—§< % _28), (39)
e (L. (-11)
_( u(lt _ [ u(=1t
o= uig ) w=(uiag ) “o
In going from step two to step three of (38) the norm idenitigguality
N N-1

—[udl == 3 ) =~ (=L (L) = ur(x) < —u(-1LH) —ug(Lt),  (41)
& 2,0

has been employed (and similarly fgu||), wherex; € (—1,1) are the spatial discretization points

employed in the numerical scheme. The fact that, by assomgtiug) = 1— 3u§ < 0 (up is a point at
which the system is asymptotically stable), has been ereglag well.

The eigenvalues dfig are:

1-3U3—-1,—€+ \/1—6u§—2T2+2£+9u6‘+6u%r2—6ug£+ 3 — 2Tp€ + 2¢2

A (HR) = 5 . @2)

Some algebra reveals that these eigenvalues are nonvpakiti

1
T, >1-3ud+ & (43)

By inspection, the matrixd, in (39) has the same trace and determinant as the ntagixt follows
that the two matrices have the same eigenvalues. Thus, tititiom onTt; is the same as the condition
on 1, namely (43).

O

To obtain an estimate of what valuesand1, to employ in practice, it is sensible for this example to
linearizeJ about one of the stable fixed points/steady states, namiety+1. For these points,

J(£1) = -2, (44)
so that (36) reduces to the bound
1
Ty > —2+ Zé‘. (45)
Copyright(© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng011;00:1-28
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EFFICIENT NON-LINEAR POD/GALERKIN ROMS WITH STABLE PENALY ENFORCED BCS 13

3.2. Implementation of the Allen-Cahn ROM

The implementation of the Galerkin projection step of thedelaeduction procedure for the Allen-
Cahn IBVP with a penalty enforcement of the boundary coad#i(35) is now outlined. Projecting
the first line of this IBVP onto thg!" POD mode and invoking the orthonormality of the modes gives
rise to the following system for the time-dependent ROM fioieita; (t) (following an integration by
parts on the diffusion term):

aj  =301a) [—(Gx Gx) + (G @) + E[Ax(D @ (1) — Gex(—D) g (—1)] (46)
G- (-1) - 2@(1) @ (1)] — 11y (1) + 295 (1) + (A (Um), 1) ,

for j=1,...,M, where
A (Un) = — Uiy, (47)

anduy = SM ; a(t) @(x).

Figure 2..47(u) (47) (solid lines) and interpolation points (circles) fdret Allen-Cahn equation (POD basis,
M = 15)

Fig. 2 shows the computed “best points” for a POD basis Witk 15 (shown in circles), compared
with the non-linear function#”(u) (47). Each curve plotted in this figure shaw (u) at a different
timet.

3.3. Numerical Results for the Allen-Cahn IBVP

A high-fidelity solution from which snapshots were taken toldb the ROM was computed using a
Chebyshev collocation spectral method in space and a faudblr Runge-Kutta scheme in time.
N = 101 spatial discretization points were used, with= 0.02. The POD basis for the ROM was
computed from a total oKk = 40 snapshots. Twenty of these were snapshots of the solati(82)
with € = 0.02; the remaining twenty were snapshots of the solution 29 {8th £ = 0.005. For each
value of the diffusivity, the solution snapshots were saswggtyAtsnap= 1 time step until timél = 20.
Fig. 3 shows the first four POD modes computed for this probléeis evident that these modes do not
satisfy the Dirichlet boundary conditionsyat +1.
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14 I. KALASHNIKOVA AND M.F. BARONE

Allen-Cahn Modes

Figure 3. POD modes for the Allen-Cahn equation

In studying the performance of the proposed model redugirocedure, the predictive capability of
the ROM is of interest. To this effect, a ROM for (32) with= 0.001 is constructed and evaluated.
Note that this value of the diffusivity differs from the valsi of the diffusivity selected in building the
reduced basis modes employed in the ROM.

Results (ROM solutions vs. high-fidelity solutions at diéfet timeg) for values oft = 1; = 1, selected
within the stable range derived in Theorem 3.1.1 are showsign4. ForM > 10, the ROM solution
with interpolation looks indistinguishable from the ROMuwion without interpolation. Fig. 5 shows
time-average errors in the ROM solution relative to the Clelison at each grid point; € (—1,1)
with T selected within the stable range (45). The time-average erdefined as

&= Z |UROM(XJ ,tsnap) - Uref(xj stsna )|7 (48)

1
T tsnapST

where thetsnap are the times at which the snapshots were takggy is the ROM solution andiet

is a high-fidelity reference solution, employed in the e@aalysis in place of the exact solution, as
the latter is unavailable analytically for this problem.eTaccuracy of the ROM with interpolation is
comparable to the accuracy of the ROM with a direct treatnoéithe non-linear term (47) at most
of the grid points. Fig. 5 (b) shows a close up of the errorg tiealeft boundaryx = —1. Although
the ROM remains stable far= 0 (a value within the stability region (45)), it is evidenbin this plot
that the Dirichlet boundary condition at this boundary isigeenforced with some error. This situation
improves by selecting a larger The time-average error (48) at the paist —1 is plotted as a function
of t, for r € [0,100 in Fig. 6. The reader may observe by examining this figure tmvergence of the
solution at the left boundary with increasing penalty pasten

As expected, the ROM goes unstablei$ selected outside the stability range derived in Theordni3
(Fig. 7). In this ROM, the non-linear term is handled dirgcslo the instability cannot be attributed to
a poor set of interpolation points.
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Solution u at time t = 5 with M = 15, € = 0.01 Solution u at time t = 10 with M = 15, € = 0.01
15 T T 15 T T

T T
POD ROM (M = 15) ——— POD ROM (M = 15)
— High-Fidelity — High-Fidelity

u(x,t)
u(x,ty

-15 L L L _15 L . L
-1 -0.5 0 05 1 -1 -0.5 0 0.5 1
X

@t=5 (b) t=10

Solution u at time t = 12 with M = 15, € = 0.01 Solution u at time t = 15 with M = 15, € = 0.01
15 T T 15 T T

T T
POD ROM (M = 15) ——— POD ROM (M = 15)
— High-Fidelity — High-Fidelity

u(x,t)
u(x,ty

-15 L L L _15 L . L
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

X X

©t=12 d)t=15

Figure 4. POD ROM solutions to the Allen-Cahn equation with= 15 modesg = 0.01, 11 = 1, = 100 (with
interpolation)

4. A STABLE POD ROM FOR A TUBULAR REACTOR WITH OSCILLATORY REMES

In this section, a reduced order model for a non-linear sysé&hibiting more complex non-linear
dynamics than the Allen-Cahn equation considered in Secionamely oscillatory regimes, is
developed. The mathematical model is that of a one-dimaak{dD) non-adiabatic tubular reactor,
represented by a non-linear convection-diffusion-resctCDR) system with a singld — B reaction
[17]. In dimensionless form, the governing equations, dbsg the conservation of reactaAtand
energy for the non-adiabatic tubular reactor with mixing'ar

2, yo
— :%ij%—g—i—mwnem, L oxe©, teT. o
2 =089 _p(6+1-6)+BD(y+1)es, xe(0,1), te[0,T),

TNote that the equations (49)—(52) are exactly the equationsidered in [17], but with the transformatigr-y+1, 6 « 6+ 1.
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16 I. KALASHNIKOVA AND M.F. BARONE

x10"
T T T 4F T T T T T ™
% o
0.012}+ * -~ POD ROM with interpolation (M = 15, T = 100)
© -+ POD ROM without interpolation (M = 15, T = 100)| o
+ -+ POD ROM without interpolation (M = 15, T = 0)
0011 sl 1
> * * >
< ol c * ©
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I3 * Kk k¥ @
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£ & éﬁ * * % % E
F 0.004 » @@e;ea ¥ ®®$® o =
t 1k 1
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0,002 # 540 o ® g * -- POD ROM with interpolation (M = 15, T = 100)
’ B r s e ¥ oe s x iH B © - POD ROM without interpolation (M = 15, T = 100)
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oL I T é Pl T S o ‘ ‘ ‘ ‘ ‘ ‘
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(a) Spatial errors i (b) Spatial errors neat= —1 boundary

Figure 5. Time-average errors for the ROM solutions to thiedCahn equation witM = 15 modesg = 0.01,
differenttr=11 =1,

N
N

Time average errorinu atx = -1
o o In I g [
o © = N S =) @ N
x

o
S
x

o
N

20 40 60 80 100

Figure 6. Time-average errors for the ROM solutions to thedCahn equation witM = 15 modesg = 0.01 at
the left boundark = —1 as afunctionof =11 =1

for 6y € R, Pay,Pay > 0, subject to boundary conditions

g_% x=0 i EQ‘/'y|X:07 te (OvT]v (50)
il =PeaBlx—0, te(0,T],
% _
5 20 o =
Ot Ix=1 — 1D
and initial conditions
Ylt=0=VYin, OBli—o=06n, xe(0,1). (52)

Here,y is the dimensionless concentratighis the dimensionless temperatuxas the dimensionless
axial distancet is the dimensionless time§ is the dimensionless heat transfer coefficignis the

Copyright(© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng011;00:1-28
Prepared usingqimeauth.cls



EFFICIENT NON-LINEAR POD/GALERKIN ROMS WITH STABLE PENALY ENFORCED BCS

Solution u at time t = 5 with M = 15, € = 0.01
T T

15

u(x,t)

:
POD ROM (M = 15)
— High-Fidelity

(@t=5

u(x,ty

Solution u at time t = 10 with M = 15, € = 0.01
T

0.5

T
——— POD ROM (M = 15)
— High-Fidelity

L L L
-0.5 0 0.5 1

X

(b) t=10

Solution u at time t = 15 with M = 15, € = 0.01
T T

17

Solution u at time t = 12 with M = 15, € = 0.01
T T

:
POD ROM (M = 15)
— High-Fidelity

15

. T
——— POD ROM (M = 15)
— High-Fidelity

u(x,t)
u(x,ty

L L
-05 0
X X

©t=12 d)t=15

Figure 7. POD ROM solutions to the Allen-Cahn equation wiith= 15 modesg = 0.01, 11 = 1> = —10 (no
interpolation)

dimensionless activation enerdy,is the Damkohler numbeB is the dimensionless heat of reaction,
and Pey and Pey are the Péclet numbers for mass and heat transfer resplgctivhe boundary
conditions enforced are of a mixed form: Neumann at the rightindaryx = 1 (51) and Robin at
the left boundaryx = 0 (50).

It is convenient to write (49)—(52) in vector form, as follsw

W _ply U _B(u+te—ug)-CAH(u), xe(0,1), te(0,T],

IZ[??_L;‘X:O - u|x:0’ te (O’T] (53)
WX:lZ07 tE(OaT]a
u(x,0) = Uin, x € (0,1),
where, foryp € R,
_(Y _( Yo _f Yin
_(6)’ u0—<60)7 uln—<6|n)7 (54)
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18 I. KALASHNIKOVA AND M.F. BARONE

1
=(% rer) e=(08) e=( %) ==(1)

A (u) = (y+ 1)e9y+% eR. (56)

The fixed points of (49) are the zeros of the non-linear furc(b6). By inspection, it is straightforward
to see thaty*, 6*) = (—1,k), for anyk € R is a family of fixed points.

Let

and

f(y,0) = ( —D(y+1)evrt o ) = —Bu—C.#(u). (57)
—BO6+BD(y+1)evs1
The Jacobian of (57) is given by
_ ot ([ -D —Dyh(u)
TW=50= < BD —B-+BDyh(u) > 9(0). (°8)
where yi1 .
h(u) = CEsiE g(0) = ee+t. (59)

The eigenvalues af(u) are:

Ma2= @ (BDyh(u) DB+ \/DZ—ZDB — 2D2yh(u)B + B2 — 2BBDyh(u) +BZD2y2h2(u)> . (60)

Itis apparentsinceJ(—1,k) is lower triangulaj thatA {J(—1,k)} = _Deit , —Bekﬁil, both of which
are necessarily negative, meaniyg, 6*) = (—1,k), for k € R defines a region of stable solutions.

As it turns out, the dynamics of the non-linear problem (4@)raore complex than those of the Allen-
Cahn equation considered above. These behaviors arectusligy numerical bifurcation techniques
[17], which reveal periodic solutions possessing Hopf twiéitions, and multiplicity patterns exhibiting
from one to seven steady states. The existence of stablBatmgi solutions as a function of the
Damkohler numbeb whenPgy = Pey =5, B = 0.50,y = 25,3 = 2.5 and6y = 1 can be shown.
In particular, there is a stable orbit that bifurcates intorat cycle at the lower Hopf point) = 0.165
(Fig. 13).

4.1. Stability-Preserving Penalty Formulation of Bounglg€onditions for the Tubular Reactor
Problem

The penalty formulation of (49) with boundary condition§)and (51) is
u_ 0% ou
ot 9x2  0x

for some penalty parameters, 1> € R (to be determined).

ou ou
_ B(u + 6 — UO) — CJV(U) —n (u’x—O o PELQ) N TZE ‘x:l’ (61)

As with the Allen-Cahn equation, linear stability of the pég-formulation of the boundary conditions
for the CDR tubular reactor problem (61) is studied follog/mlinearization of the non-linear function
that appears in this system. Suppose tH{&¥) has been linearized about some stable siate

f(u) ~ f(uo) + J(uo) (u — Uo) = J(Uo)u +c, (62)
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for some constant vectare R? depending omig. Introducing the shorthanth = J(up), it follows that
the linearized variant of (61), written in vector form is

Ut = Puxx— Ux+ Jou 4 ¢ — 71 [u(0,t) — Puy(0,t)] — Toux(1,t), (63)
whereP is given by (55).

An energy stability analysis applied to (63) gives boundgtenpenalty parametenrg and 1, such
that the Galerkin projection of these equations inlthénner product is asymptotically stable about a
stable stateip (Theorem 4.1.1).

Theorem 4.1.1. Let ug = ( Yo, 6o ) € R? be a stable point for the convection-diffusion-reaction
tubular reactor systenf49), so thatZ{A (J(up))} < 0. Then the Galerkin projection of the IBVP with
a penalty-enforcement of the boundary conditions is asytigplly stable aboutig if

_m?%({o, 2Pe+1— \/4Pe2 +2Pe— 4Pe)\(i)} << 1inz {2Pe+ 1+ \/4Pe2 +2Pe— 4Pe/\(‘)} ., (64)
i=1, i=1,

1— y/2Pe—4PeA) 1+ ,/2Pe—4Pe))
< T2 < min (65)

i
i=1,2 Pe i=12 Pe ’

whereA, i = 1,2 are the eigenvalues db = J(uo) (58), and Pe= min{Peu, Pa }.

Proof.Let Pe= min{Pey,Pe4} and assumPey = Pe4 > 0,171 > 0. Then
Ug < Pe Mg — Ux+Jou + € — Ty [u(0,t) — Pe tug(0,t)] — Toux(1,t), (66)

The two equations in (66) are coupled by the Jacobian majriXhese equations can be decoupled by
diagonalizinglo:
Jo=SoMoS, (67)

Moo
Aoz(é) Ag)’ (68)

is a diagonal matrix containing the eigenvalues@fandSy is a matrix with columns spanned by the
normalized eigenvectors dp. Let

where

v=Stu. (69)
In these variables, (66) becomes
Vi < Peilvxx_ Vx+ AOV + Salc ! [V(Oat) - Peilvx(oat)} - TZVX(lat)v (70)

or, equivalently,

Vit < Pelvpug—vix+Adv — 11 [vi(0,t) — Pelvy «(0,1)] — Tovax(1,1), (71)
Vor < PeﬁJ'Vz,XX —Vox+ /\02V2 -1 Vz(o,t) — Pefj'Vz,x(O,t) — T2V2,X(1,t),

INote that the range for, (65) is necessarily defined, a§ < 0 andPe> 0.
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20 I. KALASHNIKOVA AND M.F. BARONE

wherevl = ((vi, v ).

Each of the components in (71) is considered one at a timéin§et= 0 and using the identity
(Vix,V) = 3 [o(V?)xdxas well as (41):

3atval? < Pe (Vi Vi) = (VixVa) +Ag (Ve va) = Ta(va(0,t) — Pe Vi (0,t)va(O,t)
_T2V1,X(1vt)vl(1vt)
= —Pe|viy 2+ Pe vy (1, t)v(1,t) — Pe lvy «(0,t)v(0,t) — 2v2(1,t)
+3v2(0,t) + Ad{|va|[2 — T1v2(0,t) + T1Pe vy 4 (0,t)v1 (0,) — Tova (1, t)va(L,t)
< —Pe v (0,t) — Pe Vi (1,t) + Pe tvy x (L, t)v(1,t) — Pe tvy (0,t)v1(0,t)
—1(1,0) + 2v3(0,1) + AdV3(0,1) + AdVE(L,1) — T1v3(0,1) + T1Pe vy (0, t)v1 (0, 1)
_T2V1,X(1vt)vl(1vt)
= (3+A5— 1) VE(O,t) + (T1Pe ! — Pe ) vi 4(0,t)v1(0,t) — Pe V2, (0,)
+(=3+23)VE(L 1) + (Pt — 1) vy (L t)va(1,t) —Pe ™2 (11)
=V Hy vy +VigH1rviR,

(72)
where
_ 1 ([ Pel+223-211) 111 _ 1 ([ Pe(—1+2A}) 1—Per,
Hu = 2Pe( -1 2 )0 PR=5me\ 1-Pen 2 ) 3
e o Ly
v1(0,t vi(1,t
vy = , VIR= . 74
w=(uion ) ve=( o) ()
The eigenvalues dfiy are:
1,, 1 1 1 1
A{HlL}—é/\o-l‘Z—ETl—z—PeiAr—Pe\/AlL, (75)
where
ML = 4PE(A})? +4APENS — 8PENS T, 4 8PeAG + PE — APETy + 4Pe - 4PET?
—  8Per; 48— 811+ 412, (76)
Some algebra reveals that these eigenvalues are nonvpasiti
2Pet 1 /4P + 2Pe— 4PeA} < T, < 2Pet 1+ /4Pe + 2Pe— 4Pe\l. (77)
Similarly, the eigenvalues df 1 are:
1., 1 1 1 ,—
/\{HlR}— EAO—Z—Z—PGZETPG A]_R7 (78)
where
MR = P& — 4A}PE — 4Pe+ APE(A3)? + 8Pe\d + 8 — 8ToPe+ 4T2P€. (79)

It is straightforward to show that (78) is non-positive for
1—,/2Pe—4Per} 1+ ,/2Pe—4PeA}
<1< ) 80
Pe == Pe (80)
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The equation fov, is the same as the equation far but with/\o1 replaced by\oz. The stability analysis,
therefore, is the same as well. It follows that the bound$ él (65) ont; and 1, respectively are
sufficient conditions for ensuring asymptotic stabilitytb& Galerkin projection of the tubular reactor
equations with a penalty-enforcement of the boundary ¢t (61).

O
4.2. Implementation of the Tubular Reactor CDR ROM
A scalar POD basis is built for each of the unknOV\mand 6:
y(xt) = ym(xt) Z an(t) (81)
0(x,t) ~ Z ad(t) (82)

The POD modeg are constructed from snapshots of the concentratamiy; the POD modeg?, are
constructed from snapshots of the temperafuomly. Note that one could, as an alternative, construct

a vector basig € R? from snapshots of the vecttéry, 6 )T € R?. Numerical experiments reveal
that employing scalar bases for each of the variables (81§&R) yields a slightly more accurate ROM
for a fixed number of dofs for this problem.

The ROM is constructed by projecting tigeequation in (63) ontquy and the@ equation in (63) onto

qoje in the L2 inner product, forj = 1,...,M. Projecting the concentration equation onto jHePOD
mode, the following expression is obtained, after perfogran integration by parts on the diffusion
term and substituting the modal representation of the aunaon:

& ——Z&"—lai{pw <ﬁa(?<¥vaa(f<y> (ax ’¢y)+Pa¢| [T(f 140}/(1)_% 0
—Tl(@’(o) Par ax |x 0) @' (0 )—T2W|x:1<l’,y(1)}—D(«/V(UM),<P,y)7

where.#"(uwm) is defined in (56). Similarly, for the temperature equation:

. 0 a¢?
st (5.50) + (5F.00) 40 (.of)

90

(83)

+% [‘2& L A@-5|_0]-n(@0- & Eho )0 @

AL - |X_1q0J ( )}+B(1—60,(pj9)+BD (JV(UM),QOje).

In total, there are @I unknowns:{a’j',af :j =1,..,M}. To estimate a desirable range mfand 1,
a stable pointyo, 6p) in the vicinity of the limit cycle is selected and the resultlhheorem 4.1.1 is
applied (Section 4.3).

Both systems (83) and (84) contain the following non-liitgar

M 0 0
VY m-1am(t) @3 (x)
N (um), @) = () @h(x) +1 exp{ o |, (85)
@ ((W;am( L S a @0 +1S "
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which clearly cannot be precomputed prior to time-inteigrabf the ROM, and hence must be re-
computed at each time step of the time-integration schenpéogned with the “direct” treatment of the
non-linearity (85). This approach is extremely costly. Hwer, the interpolation outlined in Section
2.2 can be employed to recover efficiency of the ROM he interpolation points computed for the
scalar function4 (u) (56) withM = 5 are plotted in Fig. 8 along with this non-linear functiohpsn
for different timegt.

14

f(y0)

Figure 8..4°(u) (56) (solid lines) and interpolation points (circles) foettubular reactor CDR system (POD basis,
M =5)

4.3. Numerical Results for the Tubular Reactor CDR System

The high-fidelity solution to the tubular reactor CDR systems obtained using a Fourier spectral
Galerkin method in space, and a fourth order Runge-Kutt@-fimegration scheme. The domain
Q = (0,1) was discretized byN = 101 spatial discretization points, so th&t = 0.01. The initial
conditionsyin and 6, plotted in Fig. 9, were calculated using an implicit redatischeme for the
steady state solution. The values of the parameters foradhgien from which the snapshots were
taken are summarized in Table I. For a value of the Damkhilerber in the range.065< D < 0.17,
the solution is known to exhibit a stable limit cycle (Fig.)13A total of 100 snapshots were taken
from this simulation, for whiclD = 0.17. These snapshots were saved e¥¥y,,= 0.25, up to time

T = 25. From these snapshots, the POD modes to be used in the R@\taraputed. The first four
POD modes for the concentration and temperature are pliotteid. 10.

In the first test performed, a POD ROM with five concentratiod éive temperature modes (so that
2M = 10) and withD = 0.17 is evaluated. The ROM is run until tinfe= 100. Note that this is a much
longer time horizon than the time horizon used in the higlelfig simulation from which the POD
basis was generated, and well into the stable limit cyclemwedFig. 11). The objective here is to test
the predictive capability of the ROM for long time simulat® Fig. 11 shows the limit cycles in the

**Note that the current model is a variant of the CDR tubulact@amodel developed in [18], but is more efficient, as theN8PI
is employed to handle the highly non-linear term appeannthé equation. In [18], the terms involving the projecti®3) are
treated directly.
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Table I. Fluid properties used in the high-fidelity numer&alution of (49)—(52) from which snapshots were taken

Property Symbol | Value
Péclet number for heat transfer Peyq 5.00
Péclet number for mass transfer Pev 5.00
Dimensionless heat of reaction B 0.50
Dimensionless activation energy y 25.0
Dimensionless heat transfer coefficignt [ 2.50
Damkohler number D 0.17

_ 6 1

Figure 9. Initial concentration and temperature profijgsand 6, for the tubular reactor CDR system

concentration and temperature (the solutig(lst) and6(1,t) as a function of time) compared with
the limit cycles produced by the high-fidelity simulatiorr favo reduced order models: a ROM built
using a ten mode (five concentration and five temperature g)d@D basis with a direct treatment
of the non-linear terms (plotted in blue), and a ROM builtngsa ten mode (five concentration and
five temperature modes) POD basis with interpolation of the-lnear terms (plotted in red). The
boundary conditions in both ROMs are imposed via the peffiaitgulation outlined in Section 4.1 with
71 = T = 105. These values are within the stability range derivediadrem 4.1.1 for a linearization
point(yo, 6o) with yp &~ —1 andfy > 0.45, which is in the vicinity of the stable limit cycle. Boththeced
order models capture the oscillatory behavior exhibitedhgysolution (the limit cycle). The red and
blue curves in Fig. 11 are indistinguishable, which sugg#sit the amount of error introduced into
the approximation from the interpolation of the non-linéamims is not significant. This observation
is confirmed by Fig. 12, which shows the pointwise, time agerarrors (48) in the concentration
y and temperaturé relative to the high-fidelity solution as a function of spad¢h 11 = 17, = 105
and 2V = 10 (five concentration and five temperature) modes. The &roraximal near the right
boundaryx = 1, where a Neumann boundary condition is imposed. Fig. 1ivshioat the limit cycle
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Temperature Modes

Figure 10. Concentration and temperature POD modes fouthddr reactor CDR system

Concentration limit cycle with M = 5
T T

1 1 1 1 1 1 1
] 10 20 30 40 50 60 70

—— POD ROM without interpolation (2M = 10)
—&— POD ROM with interpolation (2M = 10)
High-Fidelity

Figure 11. lllustration of limit cyclesyand @ atx = 1 as a function of time) for different ROMs for the tubular
reactor CDR system withN = 10 (five concentration and five temperature) modes; 7, = 105 (without and
with interpolation)

behavior of the solution is nonetheless captured quite lyethe ROMs even at this point of maximal
error. The ROM solution with interpolation is slightly leascurate than the ROM solution computed
via the direct approach, but only by a very small margin.

In the second test performed, the predictive capabilityhef ROM with respect to changes in the
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Figure 12. Time-average errors (48) in the ROM solution Far tubular reactor CDR system witivi2= 10 (five
concentration and five temperature) modass 7o = 105

Damkholer number is assessed. It is of particular intevaséther the ROM can reproduce the
bifurcation diagram for this problem. Using the same tene(fioncentration and five temperature)
mode POD basis described above, computed from snapshets tak to timeT = 25 and with

D = 0.17, solutions to (49) with the boundary conditions (50) abt)) @re computed using the ROM
for different values oD. Again the ROMs are run for a longer time, urifil= 100. Fig. 13 compares
the bifurcation diagrams obtained for this problem using ltfigh-fidelity model, the ROM without
interpolation, and the ROM with interpolation, respediyvé@he reader can observe that both ROMs
predict correctly the existence of stable oscillatory sohs as a function of the Damkholer number,
and identify the lower Hopf bifurcation poird = 0.165. The error in the maximum temperature
computed by the ROM relative to the maximum temperature adetpby the high-fidelity model
is in general less than 5% for each valudXfit is interesting to observe that a ROM computed from
snapshots taken in an oscillatory regime can still captwek mon-oscillatory solutions in the steady
regime. Plots of the ROM solutions fér=# 0.17 are not shown here for the sake of brevity.

5. CONCLUSIONS

A technique for building efficient Proper Orthogonal Decarsijpion (POD)/Galerkin reduced order
models (ROMs) for non-linear initial boundary value prohke (IBVPs) whose solutions exhibit
inherently non-linear behaviors such as metastability padodic regimes (limit cycles) has been
developed. Since the ROM is built by projecting the contumigoverning equations onto a set of
basis modes, rather than their discretized analogs, esfuent of the boundary conditions by the
ROM solution is not automatic. It is observed that the POD esodo not in general satisfy the
boundary conditions, particularly if the boundary conatis are of the inhomogeneous, mixed and/or
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High-Fidelity

- High-Fidelity

x  POD ROM without interpolation (2M = 10)
O _POD ROM with (2M=10)

Limit Cycle ®
Ve

@

Maximum Temperature

Steady Solution

0.15 0.155 0.16 0.17 0.175 018

0.165
Damkohler Number

Figure 13. Bifurcation diagram showing the existence dblstascillatory solutions to the tubular reactor CDR
system whePgy =Py =5,B=0.5,y=25,=25,6=1

Robin kind. A formulation in which the boundary conditions &nforced weakly via the penalty
method is derived. To determine appropriate values of timalpeparameters, an asymptotic stability
analysis of the Galerkin scheme with penalty-enforced dawconditions is performed, following
a linearization and localization of the equations abouthlststeady state, similar to the technique
employed in [26]. This analysis, borrowed from the spectnathod community and performed at
the level of the governing (continuous) equations, is maasible by the fact that theontinuous
projection approach is employed in building the ROM. It isprasized that the sanagoriori stability
may not be guaranteed in general for a ROM constructed u$iegliscrete projection approach
[14, 4]. As stability is an essential mathematical propatyany discretization, including a ROM,
and the continuous projection approach can guarantee tees#isa priori, ROMs based on this
proposed approach are recommended by the authors despiéelditional programming required in
implementing such a ROM. Asymptotically stable ROMs withlslity-preserving penalty boundary
treatment are developed for the Allen-Cahn (or “bistabéjyiation as well as a convection-diffusion-
reaction (CDR) system representing a tubular reactor. iEffcy of these non-linear reduced order
models is maintained by using the “best points” interpolatnethod (BPIM) to handle the projection
of the non-linear terms that are present in these equatidms.reduced order models, both without
as well as with interpolation, are stable and capture theecbnon-linear dynamics of the solutions,
namely the phenomenon of metastability for the Allen-Cafymation and a stable limit cycle for the
CDR system.

It is emphasized that the model reduction approach andlisgadmalysis technique proposed herein
and illustrated specifically on the two model problems coestd can be used to build stable, efficient
and accurate ROMs for other non-linear equations in a pitatbbapplications, following the approach
outlined in Section 2.4. The reader is referred to [3] forscdssion of the application of the approach
to the compressible Navier-Stokes equations (and otheserwation laws), and to [1] for a discussion
of a stability-preserving discrete implementation of a R@dstructed using the continuous projection
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approach in two and three spatial dimensions.
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