
Parallel Many{Body SimulationsWithout All{to{All CommunicationBruce Hendrickson and Steve PlimptonSandia National LaboratoriesAlbuquerque, NM 87185

This work was supported by the Applied Mathematical Sciences program, U.S. Department of Energy, O�ce ofEnergy Research, and was performed at Sandia National Laboratories, operated for the U.S. Department of Energyunder contract No. DE{AC04{76DP00789. 1

Proposed Running Head: Parallel Many{Body SimulationsContact Author:Bruce HendricksonDept. 1422, MS 1110Sandia National LabsAlbuquerque, NM 87185-1110 AbstractSimulations of interacting particles are common in science and engineering, appearing insuch diverse disciplines as astrophysics,
uid dynamics, molecular physics, and materials science.These simulations are often computationally intensive and so natural candidates for massivelyparallel computing. Many{body simulations that directly compute interactions between pairsof particles, be they short{range or long{range interactions, have been parallelized in severalstandard ways. The simplest approaches require all{to{all communication, an expensive com-munication step. The fastest methods assign a group of nearby particles to a processor, whichcan lead to load imbalance and be di�cult to implement e�ciently. We present a new ap-proach, suitable for direct simulations, that avoids all{to{all communication without requiringany geometric clustering. For some computations we �nd the new method to be the fastestparallel algorithm available; we demonstrate its utility in several parallel molecular dynamicssimulations.Key words. Many{body problem, parallel computation, hypercube.AMS(MOS) subject classi�cation. 68Q22, 70{08, 70F10
2

1 IntroductionSimulations of interacting particles, also called many{body or N{body calculations, are common in science and engi-neering, occurring in such diverse settings as galaxy simulations, molecular dynamics calculations in solid{state andbiological physics, and vortex methods in
uid dynamics. A particle in the simulation may represent a cluster of stars,an atom or molecule, or a
uid vortex. These applications share a common computational kernel in which the forceacting on each particle is computed as a sum of interactions with some or all of the other particles. Simulations thatcompute each interaction explicitly use what are known as /em direct methods. Conversely, if the simulation approxi-mates some (usually distant) interactions, it employs approximate methods. In either case, realistic simulations ofteninvolve large numbers of particles being followed for many timesteps. The consequent computational requirements,combined with the fact that force calculations for di�erent particles can be done independently, make many{bodysimulations natural candidates for implementation on massively parallel machines.In this paper, we present a new parallel algorithm for performing many{body computations. It is a directmethod which has a di�erent communication complexity than existing direct methods. We call our technique aforce{decomposition algorithm because, unlike techniques that divide the particles or partition the simulation domainamong the processors, we allocate an equal portion of the inter-particle force computations to each processor. Thisapproach was motivated by the block{decomposition and torus{wrap methods now commonly used in parallel linearalgebra algorithms [1, 4, 13], and the resulting algorithm has a close analogue in parallel matrix{vector multiplication[12].In the next section we classify the di�erent kinds of many{body simulations, indicating the kinds of problems forwhich the force{decomposition algorithm is particularly well{suited. In x3 the algorithm and its scaling propertiesare detailed, and in x4 various re�nements to the basic approach are presented for speci�c parallel architectures anddi�ering types of many{body problems. In x5, we demonstrate the utility of the algorithm in parallel moleculardynamics simulations, followed by conclusions in x6.2 Many{body simulationsMany{body simulations can be characterized by the range of the forces being modeled. If the forces are long{range,like gravitational or Coulombic forces, then each particle is a�ected by all others in the simulation. If the forces areshort{range, then each particle is only in
uenced at each timestep by a limited number of neighboring particles. Forcesmay be short{range by construction (e.g. van der Waals energies which fall o� as the inverse 6th power of distancebetween two particles) or because longer{range forces are truncated at a cuto� distance to reduce the computationale�ort in a particular simulation.As indicated in the introduction, many{body simulations can also be classi�ed by whether they use direct orapproximate methods to compute forces. In a long{range force simulation, the computational e�ort required tocompute all the pairwise interactions directly is proportional to N2, where N is the number of particles. In practicethis makes long{range direct simulations unfeasible for large values of N . Various approximate methods have beendevised that reduce this computational e�ort, including particle{mesh algorithms [14] which scale as f(M)N whereM is the number of mesh points, hierarchical algorithms [2] which scale as N log(N), and fast multipole methods [9]3

which scale as N . For long{range force systems, these approximate methods are the fastest choice for large N , thoughthey are much more complex to implement than direct methods, particularly in parallel. Because of this complexity,approximate methods are typically not faster than direct methods until N reaches a certain threshold value which canbe large. In parallel, the performance of approximate methods can su�er further from the fact that the work load canbe di�cult to balance among processors when the particle density is spatially and/or temporally non{uniform.For short{range forces systems, the computational e�ort scales linearly with N , since every particle interacts withonly a limited number of nearby particles (assuming no density singularities). For this reason, short{range simulationsalways use direct methods and compute interactions explicitly. There are two basic methods researchers have used toparallelize such computations. The simplest method is by a particle{decomposition of the workload [20]. Each of theP processors is assigned a �xed set of N=P particles and computes all of the forces acting on them for the durationof the simulation. To accomplish this, each processor must know the locations of potentially all the other particles,since the set of nearby particles changes rapidly as the simulation progresses. This requires all{to{all communicationwhere each processor shares its updated particle coordinates with all the other processors at every timestep. Varioustechniques for performing this communication operation on parallel machines have been developed [1, 3, 24, 25], butthe fastest can scale no better than N= log(P). If, as is commonly the case, only single port communication is availableor the number of architectural neighbors of each processor is bounded, this is reduced to N , independent of P .A second method for parallelizing short{range direct simulations is to exploit the geometric locality of the forcesby dividing the computational domain into P pieces, one for each processor [20]. Using such a spatial{decompositionapproach, each processor computes only the forces on particles in its sub{domain. Assuming an equal number ofparticles per processor, the computation scales as N=P . Communication of particle information is only necessaryamong processors owning nearby sub-domains. When the cuto� distance is much smaller than each processor's sub{domain this communication cost scales roughly as the surface{to{volume ratio of the sub{domain, namely (N=P)(d�1)=dwhere d is the geometric dimensionality of the problem.Because of their scalability, spatial{decomposition methods are the optimal choice for parallelization of short{range direct simulations of large systems. In practice, however, spatial{decomposition methods can su�er from thesame di�culties as do the approximate methods in the long{range case. They can be di�cult to implement e�cientlyif, for example, the forces involved are not limited to simple pair{wise interactions (e.g., three{body and four{bodyforces in the simulation of molecular bonds). And they can be di�cult to dynamically load balance if particles aremoving rapidly, are non{uniformly dense, or do not �ll a simple geometric volume. In addition, if many processors areused so that the sub{domain diameter is not large relative to the extent of the short{range force, then the volume ofinformation that must be communicated across sub{domain boundaries can be large.For these reasons, particle{decomposition methods can be a faster method for parallelizing short{range directsimulations, at least until some threshold value of N is reached [20]. However, since the communication cost of theall{to{all communication step scales at best as N= log(P), after some point, adding processors to a �xed{size problemdoes little to speed{up the simulation. An example of this is in the biological molecular dynamics (MD) communitywhere many{body calculations are used to atomistically simulate bonded molecular systems such as polymers andproteins. Several recent parallel implementations of state{of{the{art MD codes [6, 7, 11, 18, 23] have all used somekind of particle{decomposition technique because of the limitations of spatial{decomposition methods discussed above.Unfortunately, these parallel implementations all exhibit poor scaling when P becomes large due to the cost of the4

all{to{all communication step.In this paper, we present a new parallel method for short{range direct simulationswhich we call a force{decompositionalgorithm. By dividing the work among processors in a new way, we obtain an algorithm that avoids the all{to{allcommunication bottleneck of particle{decomposition techniques, without requiring geometric clustering or incurringthe load imbalance problems associated with spatial{decomposition methods. The communication requirements of thenew algorithm scale as N=pP , independent of the nature of the forces or the geometric complexity of the domain,without requiring any redundant computation.The new method is a good replacement for particle{decomposition techniques in any short{range direct many{body simulation in which the communication cost is signi�cant. In these cases, it allows many more processors to beused e�ectively on a problem. The new method is also a good alternative to spatial{decomposition techniques whencommunication costs are high or load balancing is di�cult. Aside from the advantage of simplicity, if these complexitiesseriously impact the spatial{decomposition algorithm's performance, the force{decomposition approach can in fact befaster, despite its non{optimal scaling. We return to this point in x5.The force{decomposition algorithm we propose can also be used in long{range direct simulations. If a directmethod is used instead of an approximate method in a long{range simulation (e.g. for a simulation of moderate{sized N), it is typically parallelized by some form of particle{decomposition algorithm since there is no advantageto a spatial{decomposition approach for direct computation of long{range forces. Our new algorithm will reduce theparticle{decomposition method's communication cost in such a simulation by a pP factor as in the short{range case.However, since the N2 computational cost in long{range direct simulations is so high, the communication cost may notbe a signi�cant concern. For this reason, it is the short{range class of problems to which we think our new algorithmis most applicable.3 The force{decomposition algorithmWe begin by considering a generic N{body simulation where force interactions between pairs of particles must becomputed at every timestep. We de�ne a position vector x of length N , whose elements denote the location of aparticle. These elements consists of d values for a simulation in a d{dimensional geometry. We will consider the setof pairwise forces as an N � N array F , in which entry Fij denotes the force on particle i due to particle j. If theforces are long{range then F will be dense; if they are short{range it will be sparse. Because of Newton's third lawFij = �Fji. The total force on particle i can be expressed as Pj Fij. This expression is similar to the computationrequired in forming the product of a matrix with a vector, but there are several important di�erences. First, whenrepeatedly forming matrix{vector products the matrix usually stays the same, while in many|body calculations themotion of the particles continually change the values of the force array. This is particularly important in the short{rangecase where the zero/nonzero structure of the force array changes over time. Second, the skew{symmetric structureimposed by Newton's third law allows for some additional e�ciency, as we will see below. And third, knowledge of thelocations of two particles is necessary to compute an element of the force array, while only one element of the vector isneeded in matrix{vector multiplication. Many{body calculations thus require some additional communication. Despitethese di�erences, an algorithm for matrix{vector multiplication is described in [12] which has a similar
avor to the5

many{body algorithm we present below.In particle{decomposition methods, a processor computes all the forces on a subset of particles, which correspondsto assigning entire rows of F to a single processor. We propose instead to assign each processor a square block of F toform a force{decomposition as depicted in Fig. 1. We assume for ease of exposition that P is an even power of 2 andthat N is a multiple of P , although it is fairly straightforward to relax these constraints. The block owned by eachprocessor is thus square and of size (N=pP) � (N=pP). We will use the Greek subscripts � and � to index the rowand column blocks of F running from 0 to pP � 1. A block of F is denoted as F��, and the processor owning thisblock is P��. We note that � and � also index sub{vectors of x of length N=pP . We will assume for now that theforce between two particles depends only upon their locations and some invariant values like charge or mass, althoughthis assumption will be removed in x4.4. In this case, to compute the array elements in its block, a processor mustknow the x� and x� pieces of the position vector x. We will denote the vector of length N=pP consisting of the netforce on particles in the � block due to those in the � block as f�� , and note that it is computed by processor P��.F��x� x�
Figure 1. Decomposing the force array among 16 processors.In addition to generating its block of array elements and computing f�� , each processor will be responsible forupdating the positions of N=P particles, as in the particle{decomposition algorithm. These particles are a sub{vectorof x�; that is, the pP processors in row � divide x� among them, so each is responsible for a contiguous piece oflength N=P . Numbering these pieces with the column index � of the processor, we denote each processor's piece asx��. Which of these pieces is owned by which processor depends on the ordering of the loops in the communicationoperations discussed below. We denote the vector of total forces acting on the particles in x�� by f�� , elements of whichconsist of the sum of corresponding values of the f�� vectors owned by the processors in a row of the array.In the force{decomposition algorithm, we will make repeated use of two well{known communication primitives.The �rst of these is a form of all{to{all communication among all the processors in the same row or column of F .Each processor in a row will share its N=P positions with all the pP processors in the row, so that at the end of theoperation, each processor in row � will know all N=pP positions in x�. This contrasts with the particle{decomposition6

algorithm, in which all P processors end up with all N positions.All{to{all communication has been studied extensively and a number of algorithms proposed for di�erent parallelarchitectures [3, 16, 24, 25]. We use a well known algorithm that runs well on most parallel machines, scales optimally,and requires a minimum number of messages be sent and received. This expand algorithm is outlined below in Fig. 2.At each step of the expand operation, a processor sends the piece of the vector it currently knows, denoted by y, toanother processor in its row and receives a new piece z. It concatenates z with y, denoted by \j" in the �gure, doublingthe size of the piece it knows, so in a logarithmic number of steps each processor accumulates the entire vector. Thetotal volume of information sent and received by each processor is N=pP �N=P . The loop in Fig. 2 selects neighboringprocessors in increasing bit order, but on a hypercube any order is equivalent. However, on a mesh it is advantageousto send the most voluminous messages the shortest distance, and the ordering in Fig. 2 accomplishes this.y := x��For k = log2(pP)� 1; : : : ; 0P 0 := P�� with kth bit of �
ippedSend y to processor P 0Receive z from processor P 0If bit k of � is 0 Theny := yjzElse y := zjyx� := yFigure 2. The expand operation within a row for processor P��.The second communication primitive is essentially the inverse of the expand operation. Processor P�� has computedf�� , its contribution to the forces on all N=pP particles in block �, and these contributions need to be summed overall the processors comprising row block � to generate the total forces. After the summation, processor P�� needs toknow the summed results for only the N=P particles it is responsible for updating, namely those in x��. These N=Pvalues are the sum of the corresponding elements across all the processors in row block �. This can be accomplishedwith a fold operation [8], as outlined in Fig. 3.The communication pattern of the fold operation is precisely the reverse of that in the expand operation. At eachfold step, a processor sends half of the y vector (y1 or y2) to another processor in its row and receives a new half{piecez. It sums z element by element with the half{piece it did not send to create a new y for the next iteration. Like theexpand operation, this algorithm is completed in a logarithmic number of steps with y halving in size at every step(instead of doubling as in the expand). The total volume of messages sent and received by each processor is againN=pP � N=P and each processor performs N=pP � N=P
oating point operations. We note that both the expandand fold operations require only nearest neighbor communication on hypercubes, and they can also be implementede�ciently on meshes [25]. 7

y := f��For k = 0; : : : ; log2(pp)� 1y1 := top half of y vectory2 := bottom half of y vectorP 0 := P�� with kth bit of �
ippedIf bit k of � is 0 ThenSend y2 to processor P 0Receive z from processor P 0y := y1 + zElse Send y1 to processor P 0Receive z from processor P 0y := y2 + zf�� := yFigure 3. The fold operation within a row for processor P��.Using the expand and fold primitives as building blocks, we can now describe our force{decomposition algorithm formany{body simulations. Fig. 4 outlines a single timestep of the algorithm for processor P��, assuming each processorowns current copies of x� and x� at the beginning of the timestep. In step (1) the processor computes all the pairwiseforces within its F�� block of the force array, summing these values into the f�� vector so that there is no need to storeF�� explicitly. In step (2), a fold operation is performed within rows of processors so that processor P�� obtains thetotal forces on its particles f�� . These total forces are used to update the positions of the corresponding N=P particlesin step (3). To prepare for the next timestep, these positions must be made known to all processors that share a rowor column with P��, which is accomplished in steps (4){(6). First, the positions are shared across each row with anexpand in step (4). Then in step (5) each processor exchanges its updated N=P positions with P��, the processor inthe transpose position in the force array. Finally, vector x� is acquired via a column expand in step (6). The processorsnow have all the information they need to begin the next timestep. We will refer to this algorithm as A1.3.1 Exploiting Newton's third lawAlgorithm A1 fails to exploit the skew{symmetric nature of the force array, so each pairwise force calculation is donetwice, once for particle i and once for particle j. An algorithm to avoid this duplication can be devised by constructinga modi�ed force array G, de�ned as follows.Gij = 8>><>>: Fij if i + j even and i > j;Fij if i + j odd and i < j;0 otherwise: (1)8

(1) Compute F�� elements storing results in f��(2) Fold f�� within row, yielding f��(3) Update particle positions in x�� using f��(4) Expand x�� within row, result is x�(5a) Send x�� to P��(5b) Receive x�� from P��(6) Expand x�� within column, yielding x�Figure 4. Single timestep of force{decomposition algorithm A1 for processor P��.If we imagine the array F to be colored like a checkerboard, G is identical to F except that red squares above thediagonal are set to zero, as are black squares below the diagonal. In this way, each pairwise force is only computed once.Other constructions that achieve this property are possible; this particular one was chosen to preserve load balance, anissue we consider further in x4.1. We can adapt algorithm A1 to take advantage of Newton's third law by observingthat the total force on particle i is the sum of the elements in row i of G minus the sum of the elements in column iof G. This modi�ed algorithmA2 is depicted in Fig. 5. We denote by g�� the vector of length N=pP that consists ofthe sum within rows of all the elements of block G��, and by g�� the vector of length N=pP that consists of the sumwithin columns of all the elements of block G��. As before, we also need the vectors g�� and g�� of length N=P thatconsist of elements of g�� and g�� summed within rows and columns of G respectively.(1) Compute G��, summing results into g�� and g��(2a) Fold g�� within column, yielding g��(2b) Send g�� to P��(2c) Receive g�� from P��(2d) Fold g�� within row, yielding g��(2e) f�� := g�� � g��(3) Update particle positions in x�� using f��(4) Expand x�� within row, result is x�(5a) Send x�� to P��(5b) Receive x�� from P��(6) Expand x�� within column, result is x�Figure 5. Single timestep of force{decomposition algorithm A2 for processor P��. Thisalgorithm exploits Newton's third law.We again assume that processor P�� knows x� and x� at the beginning of the timestep. The �rst step of A2 is9

similar to the �rst step of A1, except that the elements of G are summed within both rows and columns, yieldingg�� and g��. Steps (2a){(2e) replace step (2) of A1. First, in step (2a), the partial forces g�� are folded within eachcolumn resulting in g�� being known by P��. In steps (2b) and (2c), each processor exchanges this component with theprocessor in the transpose position, storing the received vector as g��. A fold of g�� is then performed across the rowsin step (2d) to generate g��. Now in step (2e) the total forces on the particles owned by processor P�� are computedby subtracting g�� from g��. Since processor P�� now knows f�� it can update the locations of its particles, and steps(3){(6) are identical to those of A1.3.2 ScalabilityThe communication stages of the algorithms A1 and A2 occur in steps (2) and (4){(6). Algorithm A1 requiresone fold, two expands and one exchange with the transpose processor. These operations require each processor tosend and receive 32 log2(P) + 1 messages. The total volume of fold and expand messages sent and received by eachprocessor is 3(N=pP �N=P), and the volume of the transpose message is N=P . Algorithm A2 includes two fold, twoexpand and two transpose communications, implying a total of 2 log2(P)+2 sends and receives for each processor. Thecorresponding fold and expand volume for each processor is 4(N=pP�N=P), and that for the transpose communicationis 2N=P .The fold and expand operations require only nearest neighbor communication on hypercubes, and they can alsobe e�ciently implemented on mesh architectures [25]. The transpose operation may involve communication betweendistant pairs of processors, but this is unlikely to a�ect the overall scaling of the algorithm. Since the message volumein the transpose operation is about pP smaller than that for the folds and expands, the transposes can tolerate a delayof O(pP) before they dominate the communication time. In x4.2 we will address this issue further, and show how toimplement a contention{free transpose on hypercubes.Assuming the transmission time dominates the log(P) message startup time, the overall communication cost ofthe force{decomposition algorithms scales as N=pP , which compares favorably to the N= log(P) communication costrequired for particle{decomposition methods.The computation portion of the algorithms occurs in steps (1){(3). We will charge the additions in the foldoperation to the communication cost, in which case all computations are in steps (1) and (3). The updates of particlelocations in step (3) are perfectly balanced across processors, so all potential load imbalance occurs in step (1), wherethe load on processor P�� is proportional to the number of nonzero entries in F�� (or G��). If forces are long{range,then F�� will be dense, and the load will be perfectly balanced. If the forces are short{range, some load imbalance ispossible; we propose a method for minimizing it in x4.1.Algorithm A2 exploits the skew{symmetry in the force matrix, computing a minimal number of pairwise interac-tions, so it requires the minimal number of
oating point operations. By contrast, step (1) of A1 involves computingeach pairwise interaction twice, so it is not optimally e�cient. For this reason, we have found in practice that algo-rithm A2 is generally faster than A1, despite the extra communication in A2. Assuming the load is balanced, thecomputational time for both algorithms is O(N2=P) for long{range forces and O(N=P) for short{range forces.Algorithm A1 requires each processor to store two position vectors and one force vector of length N=pP , whilealgorithm A2 needs an additional force vector. An additional work vector of half this length is probably needed for10

the fold operation, depending on precisely how the parallel machine handles communication. With current generationparallel machines, very large problems can be run within these memory constraints.4 Algorithmic details and special casesIn this section we discuss re�nements to the algorithms presented in x3 to improve their performance. In order, theissues discussed in each subsection are reducing load imbalance, implementing the transpose communication e�ciently,overlapping computation with communication, and extending the force{decomposition algorithms to handle non{pairwise forces.4.1 Short{range forces and load imbalanceIf the forces being modeled are long{range then the force array will be dense, and load balance is assured. However, inthe short{range case the array will be sparse. If the density of nonzeros is nonuniform, some processors may have moreinteractions to compute than others, resulting in load imbalance and longer run times. For example, in the commonsituation where particles are numbered according to their geometric locations, then the diagonal blocks of the forcearray will have a larger number of nonzeros than the o�-diagonal blocks.This problem can be avoided by randomly permuting the ordering of the particles at the beginning of the simulation.This produces a random sparsity pattern in F or G so that each processor has roughly equal amounts work to do. Arandom permutation has the advantage that the balance is likely to persist as the particles move during the simulation.Since it need only be generated once, the cost of the permutation is not critical; we have implemented a simple randompermutation generator due to Knuth [17] for the molecular dynamics simulations discussed in x5. A detailed analysisof the load balance implications of random matrix permutations for the related problem of multiplying a vector by asparse matrix is presented in [19].4.2 Transposition on parallel computersThe expand and fold primitives used in the force{decomposition algorithm are most e�cient on a parallel computer ifrows and columns of the force array can be mapped to subsets of processors that allow for fast communication. On ahypercube a natural subset is a subcube, while on a 2{D mesh rows, columns or submeshes are possible. Unfortunately,such a mapping can make the transpose operation ine�cient since it requires communication between processors thatare architecturally distant. Even though all modern parallel computers use cut{through routing so that a single messagecan be transmitted between non{adjacent processors at nearly the same speed as between adjacent ones, if multiplemessages are simultaneously trying to use the same wire, one of them will be delayed. The potential occurrence ofsuch congestion depends on the message routing algorithm employed by the machine.The routing strategy used in a parallel machine is often rigidly determined by the operating system. On a hypercubethe scheme for routing a message is usually to compare the bit addresses of the sending and receiving processors and
ip the bits in a �xed order until the two addresses agree. On the nCUBE 2 and Intel iPSC/860 hypercubes the orderof comparisons is from lowest bit to highest, a procedure known as dimension order routing. Thus a message from11

processor 1001 to processor 0100 will route from 1001 to 1000 to 1100 to 0100. Now consider what occurs duringthe transpose if the processors in the hypercube are assigned to the force array in a calendar ordering as in the leftdiagram of Fig. 6, where the low{order bits of the processor address are its column number and the high{order areits row number. For the transpose operation each of the processors in row � will pair with a processor in column� to exchange messages. But with the routing scheme just described, all of column bits will be
ipped �rst, so allthese messages will route through the diagonal processor P��, producing congestion on its wires. The same congestionoccurs on mesh machines which typically route a message �rst along a row (or column) of processors followed by routingwithin a column (or row) to arrive at the destination processor.0 1 2 34 5 6 78 9 10 1112 13 14 15 0 1 4 52 3 6 78 9 12 1310 13 14 15Figure 6. Left: Calendar mapping of processors to force array.Right: Interleaved mapping to eliminate transpose contention.We know of no solution to this congestion problem on a mesh, but using a calendar ordering, the maximumcongestion that can occur during the transpose operation is a factor of pP , the number of processors in a row orcolumn. Anticipating this, algorithms A1 and A2 exchange a minimum amount of data in their transpose, so asdiscussed in x3.2, even with a worst case pP slow{down, the overall scaling of the communication operations is nota�ected.On a hypercube, a di�erent mapping of processors to the force array can avoid transpose congestion altogether.Consider a d{dimensional hypercube where the address of each processor is a d{bit string, where for simplicity weassume that d is even. The row block number � of the force array is a d=2{bit string as is the column block number�. For fast fold and expand operations, we require that the processors in each row and column form a subcube, whichis assured if any set of d=2 bits in the d{bit processor address encode the row number and the other d=2 bits encodethe column number. The ordering in the left diagram of Fig. 6 has this property, but as shown above it producescongestion.Now consider a mapping where the bits of the row and column indices of the force array are interleaved in theprocessor address. For a 64{processor hypercube (with 3{bit row and column addresses for the 8�8 blocks of the forcearray) this means the 6{bit processor address could look like r2c2r1c1r0c0 where the three bits r2r1r0 encode the rowindex and c2c1c0 encodes the column index. An assignment of processors to the force array using this mapping for a16{node hypercube is shown in the right diagram of Fig. 6.Note that in this mapping each row and column of the force array is still a sub{cube of the hypercube, so that the12

expand and fold operations can be performed optimally. However, the transpose operation is now contention{free asdemonstrated by the following theorem. Although the proof assumes a routing scheme where bits are
ipped in orderfrom lowest to highest, a similar contention{free mapping is possible for any �xed routing scheme as long as row andcolumn bits are forced to change alternately. This result was discovered independently by Johnsson and Ho [15], andgeneralized by Boppana and Raghavendra [5].Theorem 4.1 Consider a hypercube using dimension order routing, and map processors to elements of an array insuch a way that the bit{representations of a processor's row number and column number are interleaved in the processor'sbit{address id. Then the wires used when each processor sends a message to the processor in the transpose location inthe array are disjoint.Proof: Consider a processor P with bit{address rbcbrb�1cb�1 � � � r0c0, where the row number is encoded withrb � � �r0, and the column number with cb � � �c0. The processor P T in the transpose array location will have withbit{address cbrbcb�1rb�1 � � �c0r0. Under dimension order routing, a message is transmitted in as many stages as thereare bits,
ipping bits in order from right to left to generate a sequence of intermediate patterns. After each stage,the message will have been routed to the intermediate processor denoted by the current intermediate bit pattern.The wires used in routing the message from P to P T are those that connect two processors whose patterns occurconsecutively in the sequence of intermediate patterns. After 2k stages, the intermediate processor will have thepattern rbcb � � � rkckck�1rk�1 � � �c0r0. The bits of this intermediate processor are a simple permutation of the originalbits of P in which the lowest k pairs of bits have been swapped. Also, after 2k�1 stages, the values in the bit positions2k and 2k � 1 are equal.Now consider another processor P 0 6= P , and assume that the message being routed from P 0 to P 0T uses the samewire employed in step i of the transmission from P to P T . Denote the two processors connected by this wire by P1and P2. Since they di�er in bit position i, P1 and P2 can only be encountered consecutively in the transition betweenstages i� 1 and i of the routing algorithm. Either i� 1 or i is even, so a simple permutation of pairs of bits of P mustgenerate either P1 or P2; say P�. Similarly, the same permutation applied to P 0 must also yield either P1 or P2; sayP 0�. If P� = P 0� then P = P 0 which is a contradiction. Otherwise, both P1 and P2 must appear after an odd number ofstages in one of the routing sequences. If i is odd then bits i and i+ 1 of P must be equal, and if i is even then bits iand i� 1 of P are equal. In either case, P1 = P2 which again implies the contradiction that P = P 0.If a contention{free transpose can be implemented by this, or any other mapping on a particular machine, then amodi�ed version of algorithms A1 and A2 is slightly faster. Each occurrence of an N=P{volume transpose followedby an expand or fold can be replaced by an N=pP{volume transpose which eliminates the need for the expand or fold.In particular, steps (5) and (6) of A1 and A2 can be replaced by:(5a) Send x� to P��(5b) Receive x� from P��.A similar change is possible for steps (2a){(2c) of A2. Although these modi�cations do not change the overall messagevolume, they reduce the number of messages and the corresponding startup costs.13

4.3 Overlapping computation and communicationIf a processor is able to both compute and communicate simultaneously, then algorithms A1 and A2 have the short-coming that a processor has nothing to do after sending a message while waiting for its neighbor's message to arrive.This can be alleviated in the �rst fold operation by interspersing the computation of step (1) with the logarithmic loopof the fold. For instance, in A1, instead of computing all the elements of f�� before beginning the fold operation, ateach step in the fold loop P�� can compute only those elements of f�� that are about to be sent. The elements to besent in the next step can be generated before issuing a receive for the current step, e�ectively reducing or eliminatingthe time spent waiting for the current step's message to arrive. In this way, the total run time is reduced on each passthrough the fold loop by the minimum of the transmission time for the message and the time to compute the next setof elements of f��.4.4 Non{pairwise forcesThe discussion in the preceding sections assumed that the forces involved pairs of particles and that they could becomputed using only particle positions. In some simulations, computing forces requires additional information likevelocities or vorticities which change at each timestep. Updated values for these quantities can be communicated asneeded in a force{decomposition algorithm by mimicking the expand of position vectors in A1 and A2. Quantitiessuch as electric charge or mass that are needed to compute forces but do not change over time can be shared once atthe beginning of the simulation and stored by each processor in vectors of size N=pP .In addition, forces are sometimes computed in many{body simulations which require information about more thantwo particles. These are computable within the force{decomposition framework without extra communication if there isa processor that knows the positions within its x� and/or x� vectors of all the particles needed to compute a particularforce. For example, a three{body force, like the angular force in a molecule, can be computed if there is a processorthat knows the positions of all 3 particles. This is guaranteed if the particles are ordered (a pre{processing step) so thatat least two of the particles are in the same sub{vector x�. The third particle will then be in some x� so that processorP�� knows all three. As this simple example indicates, many{body force computations require additional care in theordering of particles. Unfortunately, these restrictions can con
ict with the desire to balance the computational load.We have addressed these issues in [22] for bonded molecular dynamics simulations where three{ and four{body forcesare used.5 ResultsIn this section we demonstrate the utility of the force{decomposition algorithmA2 in several short{range force molec-ular dynamics (MD) simulations. Where available, we compare it to particle{ and spatial{decomposition algorithmson the same benchmark calculations. Implementation details for all three parallel algorithms as used in MD simu-lations and more speci�cs on the benchmarks are given elsewhere [20, 22]; here we highlight the performance of theforce{decomposition algorithm. Our implementation of A2 included a random ordering of the atoms as discussed inx4.1, but no e�ort to overlap communication with computation as in x4.3.14

The �rst benchmark is a simulation of N atoms in three dimensions interacting via a Lennard{Jones potential.The density and temperature are chosen so that a liquid is modeled. The force interaction is truncated in range sothat, on average, each atom interacts with about 55 others at every timestep; this is typical of cuto� lengths used instatistical and solid{state physics simulations. The benchmark has periodic boundary conditions and the particles �lla 3{D parallelepiped, which makes it particularly well suited for a spatial{decomposition algorithm. Neighbor listsare used in all three algorithms for e�cient computation of the inter{particle forces. This is a data structure whichminimizes the number of nearby particles that must be checked at every timestep to see if they are close enough tointeract with a given particle. The computational cost of building the neighbor lists every few timesteps is included inthe timing results presented.The machines used in this study were a 1024{processor nCUBE 2 (MIMD hypercube with 4 Gbytes of memory)and a 1024{processor Intel Paragon (MIMD 2{D mesh with 16 Gbytes of memory). We believe our algorithms areappropriate for any parallel machine which supports a MIMD message{passing protocol.In Fig. 7, the number of CPU seconds required per simulation timestep for the �rst benchmark problem is shownfor all three parallel algorithms running on the 1024{processor nCUBE for several hundred timesteps. For comparisonpurposes, single processor Cray Y-MP timings are also shown for our implementation of the fastest serial algorithm inthe literature [10]. The Cray algorithm vectorizes fully; these results are the fastest Y-MP/1 timings for this benchmarkthat have been reported. Fig. 7 shows the linear scaling of all four algorithms with large N , as expected for short{rangeforce MD simulations. It also shows that the force{decomposition algorithm is faster than the particle{decompositionapproach for all problem sizes. The spatial{decomposition algorithm is fastest once N reaches several thousands ofatoms, but is more ine�cient on this many processors for smaller sizes. We note that this benchmark is actually abest{case scenario for a spatial{decomposition algorithm because the particles are of uniform density and completely�ll a rectangular 3{D volume which eliminates potential load imbalance. Notwithstanding, the threshold size wherea spatial{decomposition method becomes the fastest has been increased from a few hundred atoms for the particle{decomposition case to several thousand. Even for very large N , the force{decomposition timings are within a factor of3 of the spatial{decomposition results. The particle{decomposition code and Cray code were unable to run the largestproblems due to memory limitations.In Fig. 8, timing results are shown for the same benchmark problem where the number of atoms is kept �xed at10976 while varying the number of processors on the nCUBE 2. Two sets of simulations were run with each of thethree decomposition algorithms. The solid symbols represent calculations with the same cuto� used in Fig. 7, whilethe open symbols are for a longer cuto� encompassing around 400 neighbors. The latter case is more typical of asimulation, for example, of organic molecules whose individual atoms are charged and so require a longer cuto� toaccurately capture longer{range Coulombic e�ects. For both sets of results one{processor timings and perfect speed{uplines are shown, representing the best performance a parallel algorithm could potentially achieve. For the shorter cuto�all three algorithms perform similarly on small numbers of processors. As P increases, the parallel e�ciency of theparticle{decomposition algorithm degrades markedly due to the O(N) scaling of its all{to{all communication step. Theloss of e�ciency in the force{decomposition algorithm is not so severe due to its pP factor reduction in communicationcost. Although the spatial{decomposition algorithm outperforms it for all P , it is by only a small amount for thisproblem size.The timing data represented by the open symbols tell a di�erent story. The communication cost in the particle{15

103 104 105 106

10-2

10-1

100

101

Number of Atoms

C
P

U
 T

im
e

(s
ec

/ti
m

es
te

p)
Cray Y-MP/1
Particle-Decomposition
Force-Decomposition
Spatial-Decomposition

Figure 7. Performance of the three parallel algorithms on a 1024{processor nCUBE 2 fora molecular dynamics benchmark as a function of problem size. Single processorCray Y{MP performance is also shown for a fully vectorized algorithm.and force{decomposition algorithms is una�ected by the cuto� length. However the longer cuto� induces signi�cantextra communication for the spatial{decomposition algorithm. Now the force{decomposition algorithm o�ers the bestperformance for all P from 16 to 1024. The fall o� in its and the particle{decomposition algorithm's performance asP increases is now less dramatic as compared to the shorter{cuto� case since communication now requires a smallerfraction of the total run time.If N were increased in the benchmark of Fig. 8, eventually spatial decomposition would become faster due to itssuperior large N scalability. However, in other MD simulations the performance of the spatial{decomposition algorithmcould be further degraded by particle density non{uniformities. We illustrate this point with timing results from adi�erent kind of MD calculation, using a parallel code we have written for simulating organic systems [21, 22]. Thechief di�erence in such a code is that bonded forces within the topology of the molecules must now be computed inaddition to non{bonded pairwise forces. In our code both a particle{ and force{decomposition are implemented. Timingresults for simulations of a 6750{atom ensemble of liquid{crystal molecules are shown in Fig. 9 on varying numbers16

1 2 4 8 16 32 64 128 256 512 1024

10-2

10-1

100

101

102

Number of processors

C
P

U
 T

im
e

(s
ec

/ti
m

es
te

p)
Particle-Decomposition

Force-Decomposition

Spatial-Decomposition

Perfect
Speed-Up

--> ------------>

Figure 8. Performance of the three parallel algorithms on a molecular dynamics simula-tion of 10976 atoms for varying numbers of nCUBE 2 processors. The solidsymbols are for a shorter cuto� distance; the open symbols are for a longer cut-o�. Perfect speed{ups extrapolated from single{processor timings are shownby the dashed lines.of processors of both the nCUBE 2 and Intel Paragon. On both machines the force{decomposition algorithm runsabout 1.7 times faster on 256 processors and 3{3.5 times faster on 1024 processors than does the particle{decompositionalgorithm. As mentioned in x2, the dramatic roll{o� in the particle{decomposition timings is typical of the performancedegradation seen in other parallel implementations of this kind of MD simulation [6, 7, 11, 18, 23] as P increases andthe communication portion of the algorithm begins to dominate. The loss of e�ciency in both algorithms is morepronounced on the Intel Paragon because of its 2{D mesh architecture.As discussed in x2, systems like the liquid{crystal simulation presented here are di�cult to parallelize with aspatial{decomposition approach. The simulation is run with a long force cuto� so that each atom interacts withhundreds of neighbors. And the atoms form a roughly spherical cluster in vacuum, typical of molecular problems thatdo not have a natural crystalline periodicity. Both of these characteristics would create serious e�ciency problems for17

a spatial{decomposition algorithm running with 6 or 7 atoms per processor on a 1024{processor parallel machine. Infact, no spatial{decomposition timings are included in Fig. 9 because we do not have (nor to our knowledge has anyonewritten) a general{purpose parallel organic MD code using spatial{decomposition techniques that will run e�ectivelyon hundreds to thousands of processors for such a problem. It is a good example of a simulation for which we believethe force{decomposition algorithm is currently the fastest choice available. In our case, the new algorithm has madea signi�cant di�erence in the speed at which we can perform several hundred thousand timestep simulations of thesystem to study the individual molecule's conformational properties.

1 2 4 8 16 32 64 128 256 512 1024

10-2

10-1

100

101

Number of Processors

C
P

U
 T

im
e

(s
ec

/ti
m

es
te

p)

nCUBE Results

One-Processor Timing

Particle-Decomposition

Force-Decomposition

Paragon Results

One-Processor Timing

Particle-Decomposition

Force-Decomposition

Perfect
Speed-Up

--> ------------>

Figure 9. Performance of two parallel algorithms on two machines in a molecular dynam-ics simulation of a 6750{atom liquid{crystal system.6 ConclusionsWe have presented a parallel force{decomposition algorithm for many{body calculations that avoids the cost of all{to{all communication. It is most appropriate for short{range direct simulations though it could also be useful in long{rangesimulations that employ direct methods. The communication cost of our algorithm scales as O(N=pP) instead of the18

O(N= log(P)) required by particle{decomposition algorithms. In molecular dynamics benchmark calculations, theforce{decomposition algorithm proved faster than a particle{decomposition scheme for all problem sizes considered.For large problems, a spatial{decomposition algorithm is faster, but for small and intermediate sized problems thenew algorithm is best. The crossover size is a function of load{balance and cuto� length but can easily be in thetens{of{thousands of particles. Additionally, because the force{decomposition algorithm does not need to exploit anygeometric structure present in the physical domain, it is much simpler to implement and load balance on a wider classof problems than spatial{decomposition methods.The mapping of array elements to processors we describe for hypercubes is likely to be of independent interest.This mapping ensures that rows and columns of the array are owned by subcubes, and that a transpose operation canbe performed without any message contention on machines with cut{through routing. This mapping has already beenapplied to matrix{vector multiplication [12] and could be useful in other linear algebra algorithms.Finally, we note that considerable e�ort has been expended to develop clever algorithms for all{to{all commu-nication on various machine topologies [3, 16, 24, 25]. The examples most commonly cited as needing this form ofcommunication are dense linear algebra calculations and many{body problems. Recent work has shown that the fastestdense linear algebra algorithms can avoid all{to{all communication [1, 4, 13]. It is our contention that the currentwork does the same for many{body problems.AcknowledgementsWe are indebted to David Greenberg for assistance in developing the hypercube transposition algorithm in x4.2, andgeneral discussions about routing algorithms on parallel architectures.References[1] E. Anderson, A. Dongarra, J. Moulton, S. Ostrouchov, B. Tourancheau, and R. van de Geijn. LAPACK fordistributed memory architectures: progress report. In Proc. 5th SIAM Conf. Parallel Processing for Scienti�cComputing, Houston, March 1991.[2] J. E. Barnes and P. Hut. A hierarchical O(N logN) force{calculation algorithm. Nature, 324:446{449, 1986.[3] D. P. Bertsekas, C. �Ozveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis. Optimal communication algorithmsfor hypercubes. J. Parallel Distributed Comp., 11:263{274, 1991.[4] R. H. Bisseling and J. G. G. van de Vorst. Parallel LU decomposition on a transputer network. In G. A. van Zeeand J. G. G. van de Vorst, editors, Lecture Notes in Computer Science, Number 384, pages 61{77. Springer-Verlag,1989.[5] Rajendra Boppana and C. S. Raghavendra. Optimal self{routing of linear{complement permutations in hyper-cubes. In Proc. Fifth Distributed Memory Computing Conf., pages 800{808. IEEE, 1990.[6] R. R. Brooks and M. Hodoscek. Parallelization of CHARM for MIMD machines. Chem. Des. Auto. News, 7:16,December 992. 19

[7] T. W. Clark, J. A. McCammon, and L. R. Scott. Parallel molecular dynamics. In Proc. 5th SIAM Conf. onParallel Processing for Scienti�c Computing, pages 338{344. SIAM, 1992.[8] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker. Solving problems onconcurrent processors: Volume 1. Prentice Hall, Englewood Cli�s, NJ, 1988.[9] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325{348, 1987.[10] G. S. Grest, B. Dunweg, and K. Kremer. Vectorized link cell Fortran code for molecular dynamics simulations fora large number of particles. Comp. Phys. Comm., 55:269{285, 1989.[11] H. Heller, H. Grubmuller, and K. Schulten. Molecular dynamics simulation on a parallel computer. Molec. Simul.,5:133{165, 1990.[12] B. Hendrickson, R. Leland, and S. Plimpton. A parallel algorithm for matrix{vector multiplication. Intl. J. HighSpeed Comput. To appear.[13] B. Hendrickson and D. Womble. The torus{wrap mapping for dense matrix calculations on massively parallelcomputers. SIAM J. Sci. Stat. Comput. To appear.[14] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Adam Hilger, New York, NY, 1988.[15] S. Lennart Johnsson and Ching-Tien Ho. Matrix transposition on Boolean n{cube con�gured ensemble architec-tures. SIAM J. Matrix Anal. Appl., 9(3):419{454, July 1988.[16] S. Lennart Johnsson and Ching-Tien Ho. Optimum broadcasting and personalized communication in hypercubes.IEEE Trans. Computing, 38(9):1249{1268, September 1989.[17] D. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching. Addison{Wesley, Reading, MA,1973.[18] S. L. Lin, J. Mellor-Crummey, B. M. Pettit, and G. N. Phillips Jr. Molecular dynamics on a distributed{memorymultiprocessor. J. Comp. Chem., 13:1022{1035, 1992.[19] A. T. Ogielski and W. Aiello. Sparse matrix computations on parallel processor arrays. SIAM J. Sci. Stat.Comput., 14(3):519{530, May 1993.[20] S. J. Plimpton. Fast parallel algorithms for short{range molecular dynamics. Technical Report SAND 91{1144,Sandia National Laboratories, Albuquerque, NM, 1993.[21] S. J. Plimpton and B. Hendrickson. Parallel molecular dynamics simulations of organic materials. J. of ModernPhysics C. To appear.[22] S. J. Plimpton, B. Hendrickson, and G. S. He�el�nger. A new decomposition strategy for parallel bonded moleculardynamics. In Proc. 6th SIAM Conf. on Parallel Processing for Scienti�c Computing, pages 178{182. SIAM, 1993.[23] H. Sato, Y. Tanaka, H. Iwama, S. Kawakika, M. Saito, K. Morikami, T. Yao, and S. Tsutsumi. Paralleliza-tion of AMBER molecular dynamics program for the AP1000 highly parallel computer. In Proc. Scalable HighPerformance Computing Conf., pages 113{120. IEEE, 1992.20

[24] Donald M. Topkis. All{to{all broadcast by
ooding in communication networks. IEEE Trans. Computing,38(9):1330{1333, September 1989.[25] R. van de Geijn. E�cient global combine operations. In Proc. 6th Distributed Memory Computing Conf., pages291{294. IEEE Computer Society Press, 1991.

21

Bruce Hendrickson received a BS in Mathematics and an MS in Physics from Brown University in 1982, followedby a PhD in Computer Science from Cornell University in 1990. He is a Senior Member of the Technical Sta� in theApplied and Numerical Mathematics Department at Sandia National Laboratories in Albuquerque, New Mexico. Hisinterests include scienti�c computation, parallel algorithms and combinatorics.Steve Plimpton received a BS in Physics from Brigham Young University in 1982, and a Ph.D. in applied andengineering physics from Cornell University in 1989. He is a Senior Member of the Technical Sta� in the ParallelComputational Sciences Department at Sandia National Laboratories in Albuquerque, NM, where he has worked ona variety of computational physics problems using parallel computers. His chief interests are in using parallel particlemethods for materials modeling (molecular dynamics, Monte Carlo) and for simulating low-density
uid
ows.

22

