Parallel Many-Body Simulations
Without All-to—-All Communication

Bruce Hendrickson and Steve Plimpton
Sandia National Laboratories

Albuquerque, NM 87185

This work was supported by the Applied Mathematical Sciences program, U.S. Department of Energy, Office of
Energy Research, and was performed at Sandia National Laboratories, operated for the U.S. Department of Energy
under contract No. DE-AC04-76DP00789.

Proposed Running Head: Parallel Many-Body Simulations

Contact Author:
Bruce Hendrickson
Dept. 1422, MS 1110
Sandia National Labs
Albuquerque, NM 87185-1110

Abstract

Simulations of interacting particles are common in science and engineering, appearing in
such diverse disciplines as astrophysics, fluid dynamics, molecular physics, and materials science.
These simulations are often computationally intensive and so natural candidates for massively
parallel computing. Many—body simulations that directly compute interactions between pairs
of particles, be they short-range or long-range interactions, have been parallelized in several
standard ways. The simplest approaches require all-to—all communication, an expensive com-
munication step. The fastest methods assign a group of nearby particles to a processor, which
can lead to load imbalance and be difficult to implement efficiently. We present a new ap-
proach, suitable for direct simulations, that avoids all-to—all communication without requiring
any geometric clustering. For some computations we find the new method to be the fastest
parallel algorithm available; we demonstrate its utility in several parallel molecular dynamics
simulations.

Key words. Many—body problem, parallel computation, hypercube.

AMS(MOS) subject classification. 68Q22, 70-08, 70F10

1 Introduction

Simulations of interacting particles, also called many-body or N-body calculations, are common in science and engi-
neering, occurring in such diverse settings as galaxy simulations, molecular dynamics calculations in solid-state and
biological physics, and vortex methods in fluid dynamics. A particle in the simulation may represent a cluster of stars,
an atom or molecule, or a fluid vortex. These applications share a common computational kernel in which the force
acting on each particle is computed as a sum of interactions with some or all of the other particles. Simulations that
compute each interaction explicitly use what are known as /em direct methods. Conversely, if the simulation approxi-
mates some (usually distant) interactions, it employs approzimate methods. In either case, realistic simulations often
involve large numbers of particles being followed for many timesteps. The consequent computational requirements,
combined with the fact that force calculations for different particles can be done independently, make many—body
simulations natural candidates for implementation on massively parallel machines.

In this paper, we present a new parallel algorithm for performing many-body computations. It is a direct
method which has a different communication complexity than existing direct methods. We call our technique a
force—decomposition algorithm because, unlike techniques that divide the particles or partition the simulation domain
among the processors, we allocate an equal portion of the inter-particle force computations to each processor. This
approach was motivated by the block—decomposition and torus—wrap methods now commonly used in parallel linear
algebra algorithms [1, 4, 13], and the resulting algorithm has a close analogue in parallel matrix—vector multiplication
[12].

In the next section we classify the different kinds of many-body simulations, indicating the kinds of problems for
which the force-decomposition algorithm is particularly well-suited. In §3 the algorithm and its scaling properties
are detailed, and in §4 various refinements to the basic approach are presented for specific parallel architectures and
differing types of many-body problems. In §5, we demonstrate the utility of the algorithm in parallel molecular

dynamics simulations, followed by conclusions in §6.

2 Many—-body simulations

Many-body simulations can be characterized by the range of the forces being modeled. If the forces are long-range,
like gravitational or Coulombic forces, then each particle is affected by all others in the simulation. If the forces are
short-range, then each particle is only influenced at each timestep by a limited number of neighboring particles. Forces
may be short-range by construction (e.g. van der Waals energies which fall off as the inverse 6th power of distance
between two particles) or because longer-range forces are truncated at a cutoff distance to reduce the computational
effort in a particular simulation.

As indicated in the introduction, many—body simulations can also be classified by whether they use direct or
approximate methods to compute forces. In a long-range force simulation, the computational effort required to
compute all the pairwise interactions directly is proportional to N2, where N is the number of particles. In practice
this makes long-range direct simulations unfeasible for large values of N. Various approximate methods have been
devised that reduce this computational effort, including particle-mesh algorithms [14] which scale as f(M)N where
M is the number of mesh points, hierarchical algorithms [2] which scale as N log(N), and fast multipole methods [9]

which scale as N. For long-range force systems, these approximate methods are the fastest choice for large NV, though
they are much more complex to implement than direct methods, particularly in parallel. Because of this complexity,
approximate methods are typically not faster than direct methods until N reaches a certain threshold value which can
be large. In parallel, the performance of approximate methods can suffer further from the fact that the work load can
be difficult to balance among processors when the particle density is spatially and/or temporally non—uniform.

For short-range forces systems, the computational effort scales linearly with N, since every particle interacts with
only a limited number of nearby particles (assuming no density singularities). For this reason, short-range simulations
always use direct methods and compute interactions explicitly. There are two basic methods researchers have used to
parallelize such computations. The simplest method is by a particle-decomposition of the workload [20]. Each of the
P processors is assigned a fixed set of N/P particles and computes all of the forces acting on them for the duration
of the simulation. To accomplish this, each processor must know the locations of potentially all the other particles,
since the set of nearby particles changes rapidly as the simulation progresses. This requires all-to—all communication
where each processor shares its updated particle coordinates with all the other processors at every timestep. Various
techniques for performing this communication operation on parallel machines have been developed [1, 3, 24, 25], but
the fastest can scale no better than N/log(P). If, as is commonly the case, only single port communication is available
or the number of architectural neighbors of each processor is bounded, this is reduced to N, independent of P.

A second method for parallelizing short-range direct simulations is to exploit the geometric locality of the forces
by dividing the computational domain into P pieces, one for each processor [20]. Using such a spatial-decomposition
approach, each processor computes only the forces on particles in its sub-domain. Assuming an equal number of
particles per processor, the computation scales as N/P. Communication of particle information is only necessary
among processors owning nearby sub-domains. When the cutoff distance is much smaller than each processor’s sub—
domain this communication cost scales roughly as the surface—to—volume ratio of the sub-domain, namely (N/P)(d_l)/d
where d 1s the geometric dimensionality of the problem.

Because of their scalability, spatial-decomposition methods are the optimal choice for parallelization of short—
range direct simulations of large systems. In practice, however, spatial-decomposition methods can suffer from the
same difficulties as do the approximate methods in the long-range case. They can be difficult to implement efficiently
if, for example, the forces involved are not limited to simple pair-wise interactions (e.g., three-body and four-body
forces in the simulation of molecular bonds). And they can be difficult to dynamically load balance if particles are
moving rapidly, are non—uniformly dense, or do not fill a simple geometric volume. In addition, if many processors are
used so that the sub-domain diameter is not large relative to the extent of the short-range force, then the volume of
information that must be communicated across sub-domain boundaries can be large.

For these reasons, particle-decomposition methods can be a faster method for parallelizing short-range direct
simulations, at least until some threshold value of N is reached [20]. However, since the communication cost of the
all-to-all communication step scales at best as N/log(P), after some point, adding processors to a fixed-size problem
does little to speed—up the simulation. An example of this is in the biological molecular dynamics (MD) community
where many—body calculations are used to atomistically simulate bonded molecular systems such as polymers and
proteins. Several recent parallel implementations of state—of—the—art MD codes [6, 7, 11, 18, 23] have all used some
kind of particle-decomposition technique because of the limitations of spatial-decomposition methods discussed above.

Unfortunately, these parallel implementations all exhibit poor scaling when P becomes large due to the cost of the

4

all-to—all communication step.

In this paper, we present a new parallel method for short-range direct simulations which we call a force-decomposition
algorithm. By dividing the work among processors in a new way, we obtain an algorithm that avoids the all-to-all
communication bottleneck of particle-decomposition techniques, without requiring geometric clustering or incurring
the load imbalance problems associated with spatial-decomposition methods. The communication requirements of the
new algorithm scale as N/\/F, independent of the nature of the forces or the geometric complexity of the domain,
without requiring any redundant computation.

The new method 1s a good replacement for particle-decomposition techniques in any short-range direct many-—
body simulation in which the communication cost is significant. In these cases; it allows many more processors to be
used effectively on a problem. The new method is also a good alternative to spatial-decomposition techniques when
communication costs are high or load balancing is difficult. Aside from the advantage of simplicity, if these complexities
seriously impact the spatial-decomposition algorithm’s performance, the force-decomposition approach can in fact be
faster, despite its non—optimal scaling. We return to this point in §5.

The force-decomposition algorithm we propose can also be used in long-range direct simulations. If a direct
method is used instead of an approximate method in a long-range simulation (e.g. for a simulation of moderate-
sized N), it is typically parallelized by some form of particle-decomposition algorithm since there is no advantage
to a spatial-decomposition approach for direct computation of long-range forces. Our new algorithm will reduce the
particle-decomposition method’s communication cost in such a simulation by a /P factor as in the short-range case.
However, since the N2 computational cost in long-range direct simulations is so high, the communication cost may not
be a significant concern. For this reason, it is the short-range class of problems to which we think our new algorithm

1s most applicable.

3 The force-decomposition algorithm

We begin by considering a generic N-body simulation where force interactions between pairs of particles must be
computed at every timestep. We define a position vector z of length N, whose elements denote the location of a
particle. These elements consists of d values for a simulation in a d-dimensional geometry. We will consider the set
of pairwise forces as an N x N array [, in which entry F;; denotes the force on particle ¢ due to particle j. If the
forces are long-range then F' will be dense; if they are short-range it will be sparse. Because of Newton’s third law
Fi; = —Fj;. The total force on particle ¢ can be expressed as Zj Fi;. This expression is similar to the computation
required in forming the product of a matrix with a vector, but there are several important differences. First, when
repeatedly forming matrix—vector products the matrix usually stays the same, while in many—body calculations the
motion of the particles continually change the values of the force array. This is particularly important in the short-range
case where the zero/nonzero structure of the force array changes over time. Second, the skew—symmetric structure
imposed by Newton’s third law allows for some additional efficiency, as we will see below. And third, knowledge of the
locations of two particles is necessary to compute an element of the force array, while only one element of the vector 1s
needed in matrix—vector multiplication. Many—body calculations thus require some additional communication. Despite

these differences, an algorithm for matrix—vector multiplication is described in [12] which has a similar flavor to the

many-body algorithm we present below.

In particle-decomposition methods, a processor computes all the forces on a subset of particles, which corresponds
to assigning entire rows of F' to a single processor. We propose instead to assign each processor a square block of F' to
form a force—decomposition as depicted in Fig. 1. We assume for ease of exposition that P is an even power of 2 and
that NV is a multiple of P, although it is fairly straightforward to relax these constraints. The block owned by each
processor is thus square and of size (N//P) x (N/v/P). We will use the Greek subscripts a and 3 to index the row
and column blocks of F' running from 0 to /P — 1. A block of F' is denoted as Fop, and the processor owning this
block is P,3. We note that o and 3 also index sub-vectors of x of length N/\/f We will assume for now that the
force between two particles depends only upon their locations and some invariant values like charge or mass, although
this assumption will be removed in §4.4. In this case, to compute the array elements in its block, a processor must
know the z, and xg pieces of the position vector z. We will denote the vector of length N/+/P consisting of the net
force on particles in the o block due to those in the § block as f.s, and note that it is computed by processor P.g.

Lp

Lo Focﬁ

Figure 1. Decomposing the force array among 16 processors.

In addition to generating its block of array elements and computing f.s, each processor will be responsible for
updating the positions of N/P particles, as in the particle-decomposition algorithm. These particles are a sub—vector
of z4; that is, the \/P processors in row « divide x, among them, so each is responsible for a contiguous piece of
length N/P. Numbering these pieces with the column index § of the processor, we denote each processor’s piece as
zf. Which of these pieces is owned by which processor depends on the ordering of the loops in the communication
operations discussed below. We denote the vector of total forces acting on the particles in #2 by f? elements of which
consist of the sum of corresponding values of the f,3 vectors owned by the processors in a row of the array.

In the force-decomposition algorithm, we will make repeated use of two well-known communication primitives.
The first of these is a form of all-to—all communication among all the processors in the same row or column of F.
Each processor in a row will share its N/P positions with all the /P processors in the row, so that at the end of the

operation, each processor in row «a will know all N/\/F positions in . This contrasts with the particle~decomposition

algorithm, in which all P processors end up with all N positions.

All-to—all communication has been studied extensively and a number of algorithms proposed for different parallel
architectures [3, 16, 24, 25]. We use a well known algorithm that runs well on most parallel machines, scales optimally,
and requires a minimum number of messages be sent and received. This ezpand algorithm is outlined below in Fig. 2.
At each step of the expand operation, a processor sends the piece of the vector it currently knows, denoted by y, to
another processor in its row and receives a new piece z. It concatenates z with y, denoted by “|” in the figure, doubling
the size of the piece 1t knows, so in a logarithmic number of steps each processor accumulates the entire vector. The
total volume of information sent and received by each processor is N/v/P —N/P. The loop in Fig. 2 selects neighboring
processors in increasing bit order, but on a hypercube any order is equivalent. However, on a mesh it 1s advantageous

to send the most voluminous messages the shortest distance, and the ordering in Fig. 2 accomplishes this.

y =],
For k = log,(vVP)—1,...,0
P’ := Pug with k' bit of 3 flipped
Send y to processor P’
Receive z from processor P’
If bit & of 7 is 0 Then
y =yl
Else
y:=zly

Ty =Y

Figure 2. The expand operation within a row for processor P,g.

The second communication primitive is essentially the inverse of the expand operation. Processor F,g has computed
fap, its contribution to the forces on all N/\/f particles in block «, and these contributions need to be summed over
all the processors comprising row block a to generate the total forces. After the summation, processor FP,s needs to
know the summed results for only the N/P particles it is responsible for updating, namely those in 2. These N/P
values are the sum of the corresponding elements across all the processors in row block «. This can be accomplished
with a fold operation [8], as outlined in Fig. 3.

The communication pattern of the fold operation 1s precisely the reverse of that in the expand operation. At each
fold step, a processor sends half of the y vector (y* or y?) to another processor in its row and receives a new half-piece
z. It sums z element by element with the half—piece it did not send to create a new y for the next iteration. Like the
expand operation, this algorithm is completed in a logarithmic number of steps with y halving in size at every step
(instead of doubling as in the expand). The total volume of messages sent and received by each processor is again
N/V/P — N/P and each processor performs N/v/P — N/P floating point operations. We note that both the expand
and fold operations require only nearest neighbor communication on hypercubes, and they can also be implemented

efficiently on meshes [25].

Yy = fap
For k=0,...,1log,(\/p) — 1
y* := top half of y vector
y® := bottom half of y vector
P’ := P,5 with k™ bit of 3 flipped
If bit & of 7 is 0 Then
Send y? to processor P’
Receive z from processor P’
yo=y +z
Else
Send y' to processor P’
Receive z from processor P’

yo=y+z

Figure 3. The fold operation within a row for processor P, .

Using the expand and fold primitives as building blocks, we can now describe our force-decomposition algorithm for
many-body simulations. Fig. 4 outlines a single timestep of the algorithm for processor P,z, assuming each processor
owns current copies of z, and zp at the beginning of the timestep. In step (1) the processor computes all the pairwise
forces within its /.5 block of the force array, summing these values into the f,3 vector so that there is no need to store
Fop explicitly. In step (2), a fold operation is performed within rows of processors so that processor P, obtains the
total forces on its particles f2. These total forces are used to update the positions of the corresponding N/P particles
in step (3). To prepare for the next timestep, these positions must be made known to all processors that share a row
or column with P,s, which is accomplished in steps (4)—(6). First, the positions are shared across each row with an
expand in step (4). Then in step (5) each processor exchanges its updated N/P positions with Pg,, the processor in
the transpose position in the force array. Finally, vector 2 is acquired via a column expand in step (6). The processors

now have all the information they need to begin the next timestep. We will refer to this algorithm as A1.

3.1 Exploiting Newton’s third law

Algorithm A1 fails to exploit the skew—symmetric nature of the force array, so each pairwise force calculation is done
twice, once for particle ¢ and once for particle j. An algorithm to avoid this duplication can be devised by constructing

a modified force array G, defined as follows.

Fy; if i+ jeven and i > j,
Gij=13 F;; ifi+joddandi< j (1)

0 otherwise.

) Compute F,5 elements storing results in fug
) Fold f,s within row, yielding f?

3) Update particle positions in 7 using f?
)

Expand z? within row, result is z,

ba) Send z” to Pgo
5b) Receive xg from Pga
6) Expand TG within column, yielding x5

Figure 4. Single timestep of force-decomposition algorithm A1 for processor P,z.

If we imagine the array F' to be colored like a checkerboard, G is identical to F' except that red squares above the
diagonal are set to zero, as are black squares below the diagonal. In this way, each pairwise force is only computed once.
Other constructions that achieve this property are possible; this particular one was chosen to preserve load balance, an
issue we consider further in §4.1. We can adapt algorithm A1 to take advantage of Newton’s third law by observing
that the total force on particle ¢ is the sum of the elements in row ¢ of G minus the sum of the elements in column ¢
of G. This modified algorithm A2 is depicted in Fig. 5. We denote by 7,4 the vector of length N/+/P that consists of
the sum within rows of all the elements of block G5, and by 9os the vector of length N/\/F that consists of the sum
within columns of all the elements of block Ga5. As before, we also need the vectors go and gi of length N/P that

consist of elements of 7,45 and 90s summed within rows and columns of (G respectively.

(1) Compute (o, summing results into 7,5 and 9op
(2a) Fold 9op within column, yielding gg

(2b) Send gg to Pga

(2¢) Receive gi from Pga

(2d) Fold g, within row, yielding 7’

(2e) =9.-4

(3) Update particle positions in = using 7
(4) Expand z within row, result is z,

(5a) Send z% to Pgo

(5b) Receive xg from Pga

(6) Expand z§ within column, result is z

Figure 5. Single timestep of force-decomposition algorithm A2 for processor F,s. This

algorithm exploits Newton’s third law.

We again assume that processor F,s knows z, and xg at the beginning of the timestep. The first step of A2 is

similar to the first step of A1, except that the elements of G are summed within both rows and columns, yielding
Gop and 9op Steps (2a)—(2e) replace step (2) of AL. First, in step (2a), the partial forces 9,5 AT folded within each
column resulting in gg being known by P,s. In steps (2b) and (2¢), each processor exchanges this component with the
processor in the transpose position, storing the received vector as Qi' A fold of g, 4 is then performed across the rows
in step (2d) to generate g°. Now in step (2e) the total forces on the particles owned by processor P, are computed
by subtracting QZ from §7. Since processor P.3 now knows f2 it can update the locations of its particles, and steps

(3)—(6) are identical to those of A1.

3.2 Scalability

The communication stages of the algorithms A1 and A2 occur in steps (2) and (4)—(6). Algorithm A1 requires
one fold, two expands and one exchange with the transpose processor. These operations require each processor to
send and receive %logz(P) + 1 messages. The total volume of fold and expand messages sent and received by each
processor is 3(N/v/P — N/P), and the volume of the transpose message is N/P. Algorithm A2 includes two fold, two
expand and two transpose communications, implying a total of 2 log, (P)+ 2 sends and receives for each processor. The
corresponding fold and expand volume for each processor is 4(N/\/F—N/P), and that for the transpose communication
is 2N/ P.

The fold and expand operations require only nearest neighbor communication on hypercubes; and they can also
be efficiently implemented on mesh architectures [25]. The transpose operation may involve communication between
distant pairs of processors, but this is unlikely to affect the overall scaling of the algorithm. Since the message volume
in the transpose operation is about v/P smaller than that for the folds and expands, the transposes can tolerate a delay
of O(\/F) before they dominate the communication time. In §4.2 we will address this issue further, and show how to
implement a contention—free transpose on hypercubes.

Assuming the transmission time dominates the log(P) message startup time, the overall communication cost of
the force-decomposition algorithms scales as N/\/F, which compares favorably to the N/ log(P) communication cost
required for particle-decomposition methods.

The computation portion of the algorithms occurs in steps (1)-(3). We will charge the additions in the fold
operation to the communication cost, in which case all computations are in steps (1) and (3). The updates of particle
locations in step (3) are perfectly balanced across processors, so all potential load imbalance occurs in step (1), where
the load on processor P,p is proportional to the number of nonzero entries in Fop (or Gap). If forces are long-range,
then F,s will be dense, and the load will be perfectly balanced. If the forces are short-range, some load imbalance is
possible; we propose a method for minimizing it in §4.1.

Algorithm A2 exploits the skew—symmetry in the force matrix, computing a minimal number of pairwise interac-
tions, so it requires the minimal number of floating point operations. By contrast, step (1) of A1 involves computing
each pairwise interaction twice,; so it is not optimally efficient. For this reason, we have found in practice that algo-
rithm A2 is generally faster than A1, despite the extra communication in A2. Assuming the load is balanced, the
computational time for both algorithms is O(N?/P) for long-range forces and O(N/P) for short-range forces.

Algorithm A1 requires each processor to store two position vectors and one force vector of length N/\/F, while

algorithm A2 needs an additional force vector. An additional work vector of half this length is probably needed for

10

the fold operation, depending on precisely how the parallel machine handles communication. With current generation

parallel machines, very large problems can be run within these memory constraints.

4 Algorithmic details and special cases

In this section we discuss refinements to the algorithms presented in §3 to improve their performance. In order, the
issues discussed in each subsection are reducing load imbalance, implementing the transpose communication efficiently,
overlapping computation with communication, and extending the force-decomposition algorithms to handle non-—

pairwise forces.

4.1 Short-range forces and load imbalance

If the forces being modeled are long-range then the force array will be dense, and load balance is assured. However, in
the short-range case the array will be sparse. If the density of nonzeros is nonuniform, some processors may have more
interactions to compute than others, resulting in load imbalance and longer run times. For example, in the common
situation where particles are numbered according to their geometric locations, then the diagonal blocks of the force
array will have a larger number of nonzeros than the off-diagonal blocks.

This problem can be avoided by randomly permuting the ordering of the particles at the beginning of the simulation.
This produces a random sparsity pattern in F' or (G so that each processor has roughly equal amounts work to do. A
random permutation has the advantage that the balance is likely to persist as the particles move during the simulation.
Since 1t need only be generated once, the cost of the permutation is not critical; we have implemented a simple random
permutation generator due to Knuth [17] for the molecular dynamics simulations discussed in §5. A detailed analysis
of the load balance implications of random matrix permutations for the related problem of multiplying a vector by a

sparse matrix is presented in [19].

4.2 Transposition on parallel computers

The expand and fold primitives used in the force-decomposition algorithm are most efficient on a parallel computer if
rows and columns of the force array can be mapped to subsets of processors that allow for fast communication. On a
hypercube a natural subset is a subcube, while on a 2-D mesh rows, columns or submeshes are possible. Unfortunately,
such a mapping can make the transpose operation inefficient since it requires communication between processors that
are architecturally distant. Even though all modern parallel computers use cut-through routing so that a single message
can be transmitted between non—adjacent processors at nearly the same speed as between adjacent ones, if multiple
messages are simultaneously trying to use the same wire, one of them will be delayed. The potential occurrence of
such congestion depends on the message routing algorithm employed by the machine.

The routing strategy used in a parallel machine is often rigidly determined by the operating system. On a hypercube
the scheme for routing a message is usually to compare the bit addresses of the sending and receiving processors and
flip the bits in a fixed order until the two addresses agree. On the nCUBE 2 and Intel iPSC/860 hypercubes the order

of comparisons is from lowest bit to highest, a procedure known as dimension order routing. Thus a message from

11

processor 1001 to processor 0100 will route from 1001 to 1000 to 1100 to 0100. Now consider what occurs during
the transpose if the processors in the hypercube are assigned to the force array in a calendar ordering as in the left
diagram of Fig. 6, where the low—order bits of the processor address are its column number and the high—order are
its row number. For the transpose operation each of the processors in row o will pair with a processor in column
a to exchange messages. But with the routing scheme just described, all of column bits will be flipped first, so all
these messages will route through the diagonal processor P,,, producing congestion on its wires. The same congestion
occurs on mesh machines which typically route a message first along a row (or column) of processors followed by routing

within a column (or row) to arrive at the destination processor.

0 1 2 3 0 1 4 5
4 5 6 7 2 3 6 7
8 9 10 | 11 8 9 12 | 13
12 | 13 | 14 | 15 10 | 13 | 14 | 15

Figure 6. Left: Calendar mapping of processors to force array.

Right: Interleaved mapping to eliminate transpose contention.

We know of no solution to this congestion problem on a mesh, but using a calendar ordering, the maximum
congestion that can occur during the transpose operation is a factor of v/P, the number of processors in a row or
column. Anticipating this, algorithms A1 and A2 exchange a minimum amount of data in their transpose, so as
discussed in §3.2, even with a worst case /P slow-down, the overall scaling of the communication operations is not
affected.

On a hypercube, a different mapping of processors to the force array can avoid transpose congestion altogether.
Consider a d-dimensional hypercube where the address of each processor is a d-bit string, where for simplicity we
assume that d is even. The row block number « of the force array is a d/2-bit string as is the column block number
(3. For fast fold and expand operations, we require that the processors in each row and column form a subcube, which
is assured if any set of d/2 bits in the d-bit processor address encode the row number and the other d/2 bits encode
the column number. The ordering in the left diagram of Fig. 6 has this property, but as shown above it produces
congestion.

Now consider a mapping where the bits of the row and column indices of the force array are interleaved in the
processor address. For a 64—processor hypercube (with 3-bit row and column addresses for the 8 x 8 blocks of the force
array) this means the 6-bit processor address could look like rocaricirgeq where the three bits rorirg encode the row
index and cscyeg encodes the column index. An assignment of processors to the force array using this mapping for a
16-node hypercube is shown in the right diagram of Fig. 6.

Note that in this mapping each row and column of the force array is still a sub—cube of the hypercube, so that the

12

expand and fold operations can be performed optimally. However, the transpose operation is now contention—free as
demonstrated by the following theorem. Although the proof assumes a routing scheme where bits are flipped in order
from lowest to highest, a similar contention—free mapping is possible for any fixed routing scheme as long as row and
column bits are forced to change alternately. This result was discovered independently by Johnsson and Ho [15], and

generalized by Boppana and Raghavendra [5].

Theorem 4.1 Consider a hypercube using dimension order routing, and map processors to elements of an array in
such a way that the bit—representations of a processor’s row number and column number are interleaved in the processor’s
bit—address 1d. Then the wires used when each processor sends a message to the processor in the transpose location in

the array are disjoint.

Proof: Consider a processor P with bit—address rycprp_1cp_1 - - - 79co, Where the row number is encoded with
7y -+ -7, and the column number with ¢, ---¢o. The processor PT in the transpose array location will have with
bit—address ¢cprpcp—17—1 - - - corg. Under dimension order routing, a message is transmitted in as many stages as there
are bits, flipping bits in order from right to left to generate a sequence of intermediate patterns. After each stage,
the message will have been routed to the intermediate processor denoted by the current intermediate bit pattern.
The wires used in routing the message from P to PT are those that connect two processors whose patterns occur
consecutively in the sequence of intermediate patterns. After 2k stages, the intermediate processor will have the
pattern ryey - - - rpcgCr—_17p—1 - - - coro. The bits of this intermediate processor are a simple permutation of the original
bits of P in which the lowest & pairs of bits have been swapped. Also, after 2k — 1 stages, the values in the bit positions
2k and 2k — 1 are equal.

Now consider another processor P’ # P, and assume that the message being routed from P’ to P’ uses the same
wire employed in step ¢ of the transmission from P to PT. Denote the two processors connected by this wire by P;
and P,. Since they differ in bit position ¢, P; and P> can only be encountered consecutively in the transition between
stages ¢ — 1 and 7 of the routing algorithm. Either ¢ — 1 or ¢ is even, so a simple permutation of pairs of bits of P must
generate either Py or Ps; say P.. Similarly, the same permutation applied to P’ must also yield either P; or Ps; say
P.. If P, = P/ then P = P’ which is a contradiction. Otherwise, both P; and P, must appear after an odd number of
stages in one of the routing sequences. If 7 is odd then bits ¢ and i + 1 of P must be equal, and if ¢ 1s even then bits ¢

and ¢ — 1 of P are equal. In either case, P; = P> which again implies the contradiction that P = P’. |

If a contention—free transpose can be implemented by this, or any other mapping on a particular machine, then a
modified version of algorithms A1 and A2 is slightly faster. Each occurrence of an N/P-volume transpose followed
by an expand or fold can be replaced by an N/\/ﬁfvolume transpose which eliminates the need for the expand or fold.
In particular, steps (5) and (6) of A1 and A2 can be replaced by:

(ha) Send z, to Ps,

(bb) Receive x5 from Pg,.

A similar change is possible for steps (2a)—(2c) of A2. Although these modifications do not change the overall message

volume, they reduce the number of messages and the corresponding startup costs.

13

4.3 Overlapping computation and communication

If a processor 1s able to both compute and communicate simultaneously, then algorithms A1 and A2 have the short-
coming that a processor has nothing to do after sending a message while waiting for its neighbor’s message to arrive.
This can be alleviated in the first fold operation by interspersing the computation of step (1) with the logarithmic loop
of the fold. For instance, in A1, instead of computing all the elements of f,3 before beginning the fold operation, at
each step in the fold loop P,g can compute only those elements of f,s that are about to be sent. The elements to be
sent in the next step can be generated before issuing a receive for the current step, effectively reducing or eliminating
the time spent waiting for the current step’s message to arrive. In this way, the total run time is reduced on each pass
through the fold loop by the minimum of the transmission time for the message and the time to compute the next set

of elements of fus.

4.4 Non—pairwise forces

The discussion in the preceding sections assumed that the forces involved pairs of particles and that they could be
computed using only particle positions. In some simulations, computing forces requires additional information like
velocities or vorticities which change at each timestep. Updated values for these quantities can be communicated as
needed in a force-decomposition algorithm by mimicking the expand of position vectors in A1 and A2. Quantities
such as electric charge or mass that are needed to compute forces but do not change over time can be shared once at
the beginning of the simulation and stored by each processor in vectors of size N/+/P.

In addition, forces are sometimes computed in many—body simulations which require information about more than
two particles. These are computable within the force—decomposition framework without extra communication if there 1s
a processor that knows the positions within its z, and/or zz vectors of all the particles needed to compute a particular
force. For example, a three-body force, like the angular force in a molecule, can be computed if there is a processor
that knows the positions of all 3 particles. This is guaranteed if the particles are ordered (a pre—processing step) so that
at least two of the particles are in the same sub-vector z,. The third particle will then be in some x5 so that processor
Pop knows all three. As this simple example indicates, many—body force computations require additional care in the
ordering of particles. Unfortunately, these restrictions can conflict with the desire to balance the computational load.
We have addressed these issues in [22] for bonded molecular dynamics simulations where three— and four—body forces

are used.

5 Results

In this section we demonstrate the utility of the force-decomposition algorithm A2 in several short-range force molec-
ular dynamics (MD) simulations. Where available, we compare it to particle- and spatial-decomposition algorithms
on the same benchmark calculations. Implementation details for all three parallel algorithms as used in MD simu-
lations and more specifics on the benchmarks are given elsewhere [20, 22]; here we highlight the performance of the
force~decomposition algorithm. Our implementation of A2 included a random ordering of the atoms as discussed in

§4.1, but no effort to overlap communication with computation as in §4.3.

14

The first benchmark is a simulation of N atoms in three dimensions interacting via a Lennard—Jones potential.
The density and temperature are chosen so that a liquid is modeled. The force interaction is truncated in range so
that, on average, each atom interacts with about 55 others at every timestep; this is typical of cutoff lengths used in
statistical and solid—state physics simulations. The benchmark has periodic boundary conditions and the particles fill
a 3-D parallelepiped, which makes it particularly well suited for a spatial-decomposition algorithm. Neighbor lists
are used in all three algorithms for efficient computation of the inter—particle forces. This is a data structure which
minimizes the number of nearby particles that must be checked at every timestep to see if they are close enough to
interact with a given particle. The computational cost of building the neighbor lists every few timesteps is included in
the timing results presented.

The machines used in this study were a 1024—processor nCUBE 2 (MIMD hypercube with 4 Gbytes of memory)
and a 1024-processor Intel Paragon (MIMD 2-D mesh with 16 Gbytes of memory). We believe our algorithms are
appropriate for any parallel machine which supports a MIMD message—passing protocol.

In Fig. 7, the number of CPU seconds required per simulation timestep for the first benchmark problem is shown
for all three parallel algorithms running on the 1024-processor nCUBE for several hundred timesteps. For comparison
purposes, single processor Cray Y-MP timings are also shown for our implementation of the fastest serial algorithm in
the literature [10]. The Cray algorithm vectorizes fully; these results are the fastest Y-MP/1 timings for this benchmark
that have been reported. Fig. 7 shows the linear scaling of all four algorithms with large N, as expected for short-range
force MD simulations. It also shows that the force-decomposition algorithm is faster than the particle-decomposition
approach for all problem sizes. The spatial-decomposition algorithm is fastest once N reaches several thousands of
atoms, but is more inefficient on this many processors for smaller sizes. We note that this benchmark is actually a
best—case scenario for a spatial-decomposition algorithm because the particles are of uniform density and completely
fill a rectangular 3—D volume which eliminates potential load imbalance. Notwithstanding, the threshold size where
a spatial-decomposition method becomes the fastest has been increased from a few hundred atoms for the particle—
decomposition case to several thousand. Even for very large NV, the force-decomposition timings are within a factor of
3 of the spatial-decomposition results. The particle-decomposition code and Cray code were unable to run the largest
problems due to memory limitations.

In Fig. 8, timing results are shown for the same benchmark problem where the number of atoms is kept fixed at
10976 while varying the number of processors on the nCUBE 2. Two sets of simulations were run with each of the
three decomposition algorithms. The solid symbols represent calculations with the same cutoff used in Fig. 7, while
the open symbols are for a longer cutoff encompassing around 400 neighbors. The latter case is more typical of a
simulation, for example, of organic molecules whose individual atoms are charged and so require a longer cutoff to
accurately capture longer-range Coulombic effects. For both sets of results one—processor timings and perfect speed—up
lines are shown, representing the best performance a parallel algorithm could potentially achieve. For the shorter cutoff
all three algorithms perform similarly on small numbers of processors. As P increases, the parallel efficiency of the
particle-decomposition algorithm degrades markedly due to the O(N) scaling of its all-to—all communication step. The
loss of efficiency in the force-decomposition algorithm is not so severe due to its /P factor reduction in communication
cost. Although the spatial-decomposition algorithm outperforms it for all P, it is by only a small amount for this
problem size.

The timing data represented by the open symbols tell a different story. The communication cost in the particle—

15

10"
r & — Cray Y-MP/1
[H—M Particle-Decomposition
r @ —®@ Force-Decomposition
r A——A Spatial-Decomposition
2 0
§ 10°¢
Q L
E [
= L
o
O L
L5
-1
e 10" f
[= :
D .
D_ L
) L
-2
10°
L ool L ol L ool L ol

3 4 5

10 10
Number of Atoms

10

Figure 7. Performance of the three parallel algorithms on a 1024—processor nCUBE 2 for
a molecular dynamics benchmark as a function of problem size. Single processor

Cray Y-MP performance is also shown for a fully vectorized algorithm.

and force-decomposition algorithms is unaffected by the cutoff length. However the longer cutoff induces significant
extra communication for the spatial-decomposition algorithm. Now the force-decomposition algorithm offers the best
performance for all P from 16 to 1024. The fall off in 1ts and the particle-decomposition algorithm’s performance as
P increases is now less dramatic as compared to the shorter—cutoff case since communication now requires a smaller
fraction of the total run time.

If N were increased in the benchmark of Fig. 8, eventually spatial decomposition would become faster due to its
superior large N scalability. However, in other MD simulations the performance of the spatial-decomposition algorithm
could be further degraded by particle density non—uniformities. We illustrate this point with timing results from a
different kind of MD calculation, using a parallel code we have written for simulating organic systems [21, 22]. The
chief difference in such a code is that bonded forces within the topology of the molecules must now be computed in
addition to non—bonded pairwise forces. In our code both a particle- and force-decomposition are implemented. Timing

results for simulations of a 6750-atom ensemble of liquid—crystal molecules are shown in Fig. 9 on varying numbers

16

10"
et W[Particle-Decomposition
[. N ® O Force-Decomposition
I N R A A\ Spatial-Decomposition
1

CPU Time (sec/timestep)
|_\
o

L | LR |

T T T

T

=
o
a

| | | | | | | |
1 2 4 8 16 32 64 128 256 512 1024

Number of processors

Figure 8. Performance of the three parallel algorithms on a molecular dynamics simula-
tion of 10976 atoms for varying numbers of nCUBE 2 processors. The solid
symbols are for a shorter cutoff distance; the open symbols are for a longer cut-
off. Perfect speed—ups extrapolated from single—processor timings are shown

by the dashed lines.

of processors of both the nCUBE 2 and Intel Paragon. On both machines the force-decomposition algorithm runs
about 1.7 times faster on 256 processors and 3-3.5 times faster on 1024 processors than does the particle-decomposition
algorithm. As mentioned in §2, the dramatic roll-off in the particle-decomposition timings is typical of the performance
degradation seen in other parallel implementations of this kind of MD simulation [6, 7, 11, 18, 23] as P increases and
the communication portion of the algorithm begins to dominate. The loss of efficiency in both algorithms is more
pronounced on the Intel Paragon because of its 2-D mesh architecture.

As discussed in §2, systems like the liquid—crystal simulation presented here are difficult to parallelize with a
spatial-decomposition approach. The simulation is run with a long force cutoff so that each atom interacts with
hundreds of neighbors. And the atoms form a roughly spherical cluster in vacuum, typical of molecular problems that

do not have a natural crystalline periodicity. Both of these characteristics would create serious efficiency problems for

17

a spatial-decomposition algorithm running with 6 or 7 atoms per processor on a 1024-processor parallel machine. In
fact, no spatial-decomposition timings are included in Fig. 9 because we do not have (nor to our knowledge has anyone
written) a general-purpose parallel organic MD code using spatial-decomposition techniques that will run effectively
on hundreds to thousands of processors for such a problem. It is a good example of a simulation for which we believe
the force—decomposition algorithm is currently the fastest choice available. In our case, the new algorithm has made
a significant difference in the speed at which we can perform several hundred thousand timestep simulations of the

system to study the individual molecule’s conformational properties.

I AL NCUBE Results
L N A One-Processor Timing
10 RN . G——-=1 Particle-Decomposition
= [A N . 6—=o© Force-Decomposition
49 [) > N h ~ ~ e
w0 - N ~ \
Q Perfect -->>. ----eemeee- >
€ 10°F speed-Up °
= - Speed-Up N
o F S
D [N
A i N
N—r
© L
E 1
= 10° F
E [Paragon Results
©) I 4 One-Processor Timing .
5 &—# Particle-Decomposition RN
10" F e——e Force-Decomposition N R
C 1 1 1 1 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 256 512 1024

Number of Processors

Figure 9. Performance of two parallel algorithms on two machines in a molecular dynam-

ics simulation of a 6750-atom liquid—crystal system.

6 Conclusions

We have presented a parallel force-decomposition algorithm for many—body calculations that avoids the cost of all-to—
all communication. It is most appropriate for short-range direct simulations though it could also be useful in long-range

simulations that employ direct methods. The communication cost of our algorithm scales as O(N/\/f) instead of the

18

O(N/log(P)) required by particle-decomposition algorithms. In molecular dynamics benchmark calculations, the
force-decomposition algorithm proved faster than a particle-decomposition scheme for all problem sizes considered.
For large problems, a spatial-decomposition algorithm is faster, but for small and intermediate sized problems the
new algorithm is best. The crossover size is a function of load—balance and cutoff length but can easily be in the
tens—of-thousands of particles. Additionally, because the force—decomposition algorithm does not need to exploit any
geometric structure present in the physical domain, it is much simpler to implement and load balance on a wider class
of problems than spatial-decomposition methods.

The mapping of array elements to processors we describe for hypercubes is likely to be of independent interest.
This mapping ensures that rows and columns of the array are owned by subcubes, and that a transpose operation can
be performed without any message contention on machines with cut—through routing. This mapping has already been
applied to matrix—vector multiplication [12] and could be useful in other linear algebra algorithms.

Finally, we note that considerable effort has been expended to develop clever algorithms for all-to—all commu-
nication on various machine topologies [3, 16, 24, 25]. The examples most commonly cited as needing this form of
communication are dense linear algebra calculations and many—body problems. Recent work has shown that the fastest
dense linear algebra algorithms can avoid all-to-all communication [1, 4, 13]. Tt is our contention that the current

work does the same for many—body problems.

Acknowledgements

We are indebted to David Greenberg for assistance in developing the hypercube transposition algorithm in §4.2, and

general discussions about routing algorithms on parallel architectures.

References

[1] E. Anderson, A. Dongarra, J. Moulton, S. Ostrouchov, B. Tourancheau, and R. van de Geijn. LAPACK for
distributed memory architectures: progress report. In Proc. 5th SIAM Conf. Parallel Processing for Scientific
Computing, Houston, March 1991.

[2] J. E. Barnes and P. Hut. A hierarchical O(N log N) force—calculation algorithm. Nature, 324:446-449, 1986.

[3] D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis. Optimal communication algorithms
for hypercubes. J. Parallel Distributed Comp., 11:263-274, 1991.

[4] R. H. Bisseling and J. G. G. van de Vorst. Parallel LU decomposition on a transputer network. In G. A. van Zee
and J. G. G. van de Vorst, editors, Lecture Notes in Computer Science, Number 384, pages 61-77. Springer-Verlag,
1989.

[6] Rajendra Boppana and C. S. Raghavendra. Optimal self-routing of linear—complement permutations in hyper-

cubes. In Proc. Fifth Distributed Memory Computing Conf., pages 800-808. IEEE, 1990.

[6] R. R. Brooks and M. Hodoscek. Parallelization of CHARM for MIMD machines. Chem. Des. Auto. News, 7:16,
December 992.

19

[7]

T. W. Clark, J. A. McCammon, and L. R. Scott. Parallel molecular dynamics. In Proc. 5th SIAM Conf. on
Parallel Processing for Scientific Computing, pages 338-344. STAM, 1992.

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker. Solving problems on

concurrent processors: Volume 1. Prentice Hall, Englewood Cliffs, NJ, 1988.
L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325-348, 1987.

G. S. Grest, B. Dunweg, and K. Kremer. Vectorized link cell Fortran code for molecular dynamics simulations for

a large number of particles. Comp. Phys. Comm., 55:269-285, 1989.

H. Heller, H. Grubmuller, and K. Schulten. Molecular dynamics simulation on a parallel computer. Molec. Simul.,

5:133-165, 1990.

B. Hendrickson, R. Leland, and S. Plimpton. A parallel algorithm for matrix—vector multiplication. Intl. J. High
Speed Comput. To appear.

B. Hendrickson and D. Womble. The torus—wrap mapping for dense matrix calculations on massively parallel

computers. SIAM J. Sci. Stat. Comput. To appear.
R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Adam Hilger, New York, NY, 1988.

S. Lennart Johnsson and Ching-Tien Ho. Matrix transposition on Boolean n—cube configured ensemble architec-

tures. SIAM J. Matriz Anal. Appl., 9(3):419-454, July 1988.

S. Lennart Johnsson and Ching-Tien Ho. Optimum broadcasting and personalized communication in hypercubes.

IEEE Trans. Computing, 38(9):1249-1268, September 1989.

D. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching. Addison—Wesley, Reading, MA,
1973.

S. L. Lin, J. Mellor-Crummey, B. M. Pettit, and G. N. Phillips Jr. Molecular dynamics on a distributed—-memory
multiprocessor. J. Comp. Chem., 13:1022-1035, 1992.

A. T. Ogielski and W. Aiello. Sparse matrix computations on parallel processor arrays. SIAM J. Sci. Stat.
Comput., 14(3):519-530, May 1993.

S. J. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Technical Report SAND 91-1144,
Sandia National Laboratories, Albuquerque, NM, 1993.

S. J. Plimpton and B. Hendrickson. Parallel molecular dynamics simulations of organic materials. J. of Modern

Physics C. To appear.

S. J. Plimpton, B. Hendrickson, and G. S. Heffelfinger. A new decomposition strategy for parallel bonded molecular
dynamics. In Proc. 6th SIAM Conf. on Parallel Processing for Scientific Computing, pages 178-182. STAM, 1993.

H. Sato, Y. Tanaka, H. Iwama, S. Kawakika, M. Saito, K. Morikami, T. Yao, and S. Tsutsumi. Paralleliza-
tion of AMBER molecular dynamics program for the AP1000 highly parallel computer. In Proc. Scalable High
Performance Computing Conf., pages 113-120. IEEE, 1992.

20

[24] Donald M. Topkis. All-to—all broadcast by flooding in communication networks. IEEE Trans. Computing,
38(9):1330-1333, September 1989.

[25] R. van de Geijn. Efficient global combine operations. In Proc. 6th Distributed Memory Computing Conf., pages
291-294. IEEE Computer Society Press, 1991.

21

Bruce Hendrickson received a BS in Mathematics and an MS in Physics from Brown University in 1982, followed
by a PhD in Computer Science from Cornell University in 1990. He is a Senior Member of the Technical Staff in the
Applied and Numerical Mathematics Department at Sandia National Laboratories in Albuquerque, New Mexico. His

interests include scientific computation, parallel algorithms and combinatorics.

Steve Plimpton received a BS in Physics from Brigham Young University in 1982, and a Ph.D. in applied and
engineering physics from Cornell University in 1989. He i1s a Senior Member of the Technical Staff in the Parallel
Computational Sciences Department at Sandia National Laboratories in Albuquerque, NM, where he has worked on
a variety of computational physics problems using parallel computers. His chief interests are in using parallel particle

methods for materials modeling (molecular dynamics, Monte Carlo) and for simulating low-density fluid flows.

22

