
Load balancing ®ctions, falsehoods and fallacies q

Bruce Hendrickson

Parallel Computing Sciences Department, Sandia National Labs, Albuquerque, NM 87185-1110, USA

Received 1 June 2000; accepted 1 August 2000

Abstract

E�ective use of a parallel computer requires that a calculation be carefully divided among the processors. This load

balancing problem appears in many guises and has been a fervent area of research for the past decade or more. Al-

though great progress has been made, and useful software tools developed, a number of challenges remain. It is the

conviction of the author that these challenges will be easier to address if we ®rst come to terms with some signi®cant

shortcomings in our current perspectives. This paper tries to identify several areas in which the prevailing point of view

is either mistaken or insu�cient. The goal is to motivate new ideas and directions for this important ®eld. Ó 2000

Elsevier Science Inc. All rights reserved.

Keywords: Load balancing; Graph partitioning; Parallel computer

1. Introduction

Among the factors contributing to the success of parallel computing in the 90s, algorithms and
software for load balancing have played a prominent role. E�cient use of a parallel computer
requires that the workload be evenly distributed among processors while the amount of inter-
processor communication is kept small. This basic challenge presents itself di�erently in di�erent
applications, but the underlying issues are the same. It is quite common to recast this load bal-
ancing problem in terms of graphs. Vertices of the graph represent indivisible computations, while
edges encode data dependencies between computations. Load balancing is then commonly
phrased as a graph partitioning problem ± divide the vertices into sets of equal work while cutting
as few dependencies (edges) as possible.

Graph partitioning software targeted at parallel computing began to appear in the early 90s
and has since become a cottage industry. Among the currently available alternatives are Chaco
[1], METIS [2], Jostle [3], PARTY [4] and SCOTCH [5]. Around the same time, complex scienti®c
computing applications began to exhibit excellent performance on parallel machines. A clear
conclusion is that the partitioning tools enabled the successful parallelizations.

Although there is some truth in this assertion, there is also a signi®cant degree of falsehood.
As we will detail below in Section 2, the standard graph partitioning approach has serious

www.elsevier.nl/locate/apm

Applied Mathematical Modelling 25 (2000) 99±108

q This work was supported by the Applied Mathematical Sciences program, US DOE, O�ce of Energy Research, and was

performed at Sandia National Labs, operated for the US DOE under contract No. DE-AC04-94AL85000.

E-mail address: bahendr@cs.sandia.gov (B. Hendrickson).

0307-904X/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S 0 3 0 7 - 9 0 4 X (0 0) 0 0 0 4 2 - 1

shortcomings. In fact, it is only due to the relative simplicity of computational meshes that graph
partitioners have been successful at all. More generally, it is our contention that the load bal-
ancing research community (including the author) has pursued a set of objectives which are in-
complete and sometimes even ill advised. We present these concerns below as a set of load
balancing ®ctions. In so doing, we hope to contribute to a broadening of perspective and to
encourage and identify new and important research questions.

2. Fiction I: the edge-cut deceit

As mentioned above, graph partitioning is an important conceptual and practical tool for load
balancing. As a prototypical example, consider a calculation performed on a mesh, where at every
step each mesh point updates its value by some function of its neighbors' values. Each mesh point
can be considered as a vertex in a graph, and two vertices are connected by an edge if they need
each other's values. Graph partitioning can be used to divide the vertices into sets with nearly
identical numbers of vertices such that few edges cross between sets. If each set is assigned to a
processor, then the workload will be balanced while the communication requirements are kept
modest. A useful generalization of this model allows for weights on vertices and edges to encode
heterogeneous computation and communication requirements, respectively. This correspondence
between load balancing and graph partitioning has motivated much algorithmic and software
development.

Unfortunately, as discussed in detail in [6], the correspondence is less close than it appears for
two reasons that we elaborate upon below. First, although it is widely believed to be the case, the
volume of communication required by an application is not proportional to the number of graph
edges cut by the partition. Second, the volume of communication is at best a weak predictor of
communication cost. Consider the mesh example depicted in Fig. 1. In this example, the curve
represents the partition between two sets. Each mesh point with neighbors in the other set needs
to send its value to the other processor. Thus, the communication volume from the left set to the
right set is 8, while that from the right to the left is 7. This contrasts with the value of 10 edges cut.

The problem with the edge cut metric is that several edges can describe the same need for data
transfer. Since a datum need only be communicated once, no matter how many vertices on the

Fig. 1. Edge cuts versus communication volume.

100 B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108

other side may need it, edge cuts tend to over-estimate the true volume of communication. A
simple corollary is that reducing edge cuts might not reduce the true communication volume. This
behavior was observed in [7]. But unfortunately, the graph partitioning software in wide use today
fails to minimize a correct metric of communication volume.

Two alternative approaches are possible. One is to keep the same graph description, but to
explicitly try to minimize the true communication volume. For an unweighted graph, this would
merely be the number of vertices which have neighbors in another partition. This approach has
been adopted in recent versions of METIS [8]. Unfortunately, this approach is not well suited to
problems in which the amount of data associated with the di�erent edges varies. In this case, a
more accurate and elegant approach is the hypergraph model of Cßataly�urek and Aykanat [9,10].
In this model, the set of vertices which generate and consume a particular value are all connected
by a single hyperedge. If that hyperedge is split between two processors then a single communi-
cation cost is incurred. Each hyperedge can be assigned a di�erent weight if the communication
costs are non-uniform. In this way the total number (or weight) of cut hyperedges exactly equals
the volume of communication.

Not only have the graph partitioning tools been minimizing an inaccurate measure of com-
munication volume, the true cost of a communication operation is not well modeled by volume.
For a distributed memory, message passing computer, the cost of a single message is usually well
modeled by two terms: a startup or latency cost which is independent of message size and a
bandwidth term which is proportional to the size of the message. Although graph partitioning
models try to minimize the latter term, they do nothing for the former. If messages are of only
modest size, the latency cost can dominate.

A second e�ect which is not well captured by standard graph partitioning approaches is the
e�ect of communication congestion. Typically in scienti®c computations, many messages are si-
multaneously competing for network resources. Messages which use independent paths through
the network can proceed at the same time, but those that compete for paths must take turns.
Thus, the pattern of collective communication can have a signi®cant impact on the communi-
cation cost. Current graph partitioners fail to accurately deal with this issue.

Even if latency and congestion considerations are included, graph partitioning models in-
variably try to minimize some version of the total communication cost. But the determining factor
in parallel performance is the slowest processor. Graph partitioning generally produces sets with
widely varying communication loads. A better objective would be to minimize the maximum
communication load, or perhaps to reduce the communication on the most computationally
burdened processors. Current partitioning formulations and implementations are not well suited
for these objectives.

In summary, current partitioning tools try to optimize an objective that is far removed from the
true cost incurred by a parallel computation. An obvious question is why they have proved so
successful at enabling large calculations. The reason is that the vast majority of the applications
using graph partitioners come from di�erential equations and so the underlying graph is a mesh. This
has several implications. First, the geometric properties of meshes ensure that good partitions exist.
If a mesh in d dimensions has n vertices it will have separators of size n�dÿ1�=d [11]. This ensures that for
su�ciently large problems, the ratio of communication to computation will be small, so any rea-
sonable partition should lead to good parallel performance. Second, the vertices associated with
computational meshes typically have a bounded number of neighbors. This limits the harm caused
by the edge cut approximation. Finally, meshes are generally fairly homogeneous, so the various sets
are similar. This limits the communication inhomogeneity possible in these applications.

Unfortunately, other applications are less forgiving. Matrices arising from interior point
methods, the singular value decomposition for latent semantic indexing, and other applications

B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108 101

are generally much less structured than mesh matrices. In particular, the variation in the number
of edges associated with a vertex can be quite large. Cßataly�urek and Aykanat ®nd that for such
matrices the hypergraph model can reduce communication by 30±40% [10]. The corresponding
percentage improvement for meshes is only in the single digits [12]. But without the guarantee of
good partitions, these highly unstructured matrices are liable to require more communication
than meshes, and so the partition quality will more directly translate into increased runtime. So
although our ¯awed models have been su�cient for parallelizing the solution of di�erential
equations, future applications will require much more careful models and approaches.

3. Fiction II: simple graphs are su�cient

As described above, the standard manner in which graph partitioning is applied to load bal-
ancing involves an undirected graph with weighted vertices and edges. In addition to the problems
discussed in Section 2 with accurately representing communication cost in this model, these simple
graphs also su�er from a lack of expressibility. Many important classes of computations cannot
be accurately described by this model. Examples include the following.

Multi-stage calculations. Many applications consist of a sequence of di�erent, time-consuming
calculations. One important example is multi-physics simulations which consist of interleaved
computations of, for example, ¯uids and structures. More mundane examples include the appli-
cation of a matrix and a preconditioner during an iterative solver, or the di�erent grid calculations
in a multi-grid scheme. Although each individual stage of such calculations might be describable by
a simple graph, the union of stages often cannot be. This is particularly true if there is a barrier
between the di�erent stages, so that overall load balance is only achieved if each individual stage is
balanced. When a single stage dominates the runtime, a standard graph may be su�cient, but the
need to balance several stages is an objective which cannot be described this way.

Complex constraints. When calculations consist of multiple stages, there are often complicated
couplings between them. For instance, the di�erent grids comprising a multigrid solver are re-
lated. In some (but not all) cases, the coarse-grid vertices are a subset of the ®ne-grid vertices.
Mechanisms to express these relationships to the partitioner are needed. Another important ex-
ample arises in ®nite element calculations where some computations occur on the nodes and
others on the elements. A partition which balances each of these computations would be desir-
able, and the intimate ties between nodes and elements needs to be encoded. For mesh-based
applications, the DRAMA interface provides a uniquely rich model for this problem [13]. Un-
fortunately, current graph partitioning tools are not yet up to this complexity.

Unsymmetric dependencies. In the standard graph model, if a vertex i needs data from a vertex
j, then j also needs data from i. Not all dependencies exhibit this symmetry. For instance, matrix±
vector multiplication leads to symmetric dependencies only if the matrix is structurally symmetric.
Although many methodologies for solving di�erential equations lead to structurally symmetric
matrices, other applications do not. Important examples include latent semantic indexing, least
squares problems for data analysis and interior point methods for optimization. The standard
graph model does not describe these kinds of problems well.

Di�ering inputs and outputs. When the set of dependencies is symmetric, then the set of inputs
to a calculation is equivalent to the set of outputs. But when the dependencies are non-symmetric
the inputs and outputs can di�er. For instance, consider the problem of matrix±vector multi-
plication for non-square matrices. In this case, the set of inputs is of di�erent size than the set of
outputs. For such examples, a model is needed which allows the inputs and outputs to be handled
separately. The standard graph model is not able to do this.

102 B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108

To address these de®ciencies, several alternative partitioning models have been proposed in
recent years. One of these is the hypergraph model of Cßataly�urek and Aykanat introduced in
Section 2. In addition to correctly accounting for communication volume, this model can encode
unsymmetric dependencies and, to a certain extent, di�ering inputs and outputs.

Closely related is the bipartite graph model of Hendrickson and Kolda [14,15]. In this model,
inputs are designated as one set of vertices and outputs as a distinct set of vertices. An edge
connects an input to an output that depends upon it. This model was devised speci®cally to handle
the problems of unsymmetric dependencies and di�ering inputs and outputs. It can also encode
certain limited classes of multi-stage calculations like two matrices acting on a vector. But it still
minimizes the non-optimal metric of edge cuts.

A more general approach than the bipartite model is the multi-constraint, multi-objective
partitioning approach of Karypis et al. [16,17]. This model was designed to partition multi-stage
calculations, but its generality allows for other applications. It begins with a standard graph
model, but augments it in two ways. First, instead of having a single weight for each vertex,
vertices are given a vector of weights. A partition is only considered balanced if each of the
components of the weight vector is balanced. For instance, value k in the weight vector could
re¯ect the computational cost associated with stage k of the computation. The partitioner would
then try to ®nd a single decomposition that partitions each stage evenly. The second augmen-
tation involves edge weights. As with vertices, each edge is allowed to have several weights, re-
¯ecting the communication cost associated with di�erent stages.

The generality of this model is appealing, but it leads to very challenging partitioning prob-
lems. In many cases, a more focused model may be easier to work with. However, in many ways
even the multi-objective, multi-constraint model is not general enough. It cannot, for instance,
address the problem of minimizing both the volume of communication and the number of
messages. And the model still su�ers from all the shortcomings of the edge-cut metric.

Despite the recent activity in alternative partitioning models, much work remains to be done.
New approaches which address some of the remaining de®ciencies are urgently needed.

4. Fiction III: partition quality is paramount

When advocating a new partitioning algorithm, researchers invariably argue their case by
comparing their partition quality and (sometimes) runtime against existing tools. While these two
criteria are important, they are far from comprehensive. As discussed in more detail in [18], de-
sirable properties of a partitioner include the following.

Balance the load. This requirement may seem obvious, but it is not always simple. For example,
the challenge of balancing multi-stage calculations was discussed in Section 3. More generally,
how should the work load be measured? How important is precise balance?

Minimize communication cost. As argued in Section 2, communication cost is a somewhat
elusive quantity. The most appropriate metric certainly depends upon the properties of the
parallel computer, and probably on those of the application as well.

Run fast in parallel. When static partitioning can be performed as a serial preprocessing step,
e�ciency is not crucial. But when the partitioning is being performed on an expensive parallel
machine instead of a cheap workstation, runtime can be critical. Time spent partitioning is time
lost to the application, and can only be justi®ed by a resulting improvement in application per-
formance. This is particularly true for dynamic or adaptive calculations which need to be re-
partitioned repeatedly.

B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108 103

Be incremental. The issue of incrementality is critical for dynamic problems, but has no
counterpart in static partitioning. When an adaptive or dynamic calculation becomes unbalanced
and invokes a repartitioner, the data is already distributed across processors. If the partitioner
dictates a new decomposition which is quite di�erent from the current one, then signi®cant
quantities of data will need to be transferred between processors. Thus, partitioners which adjust
the decomposition in an incremental way are desirable. As an example of the importance of this
issue, Touheed et al. [19] report results of several di�erent partitioning algorithms for an adaptive
¯ow calculation on 32 processors of an SGI Origin. In their experiments, the time for data mi-
gration was signi®cantly larger than the time spent determining the new partition. Obviously, the
relative importance of partition quality, runtime and incrementality depends upon the applica-
tion. But it may be worthwhile to sacri®ce partition quality to improve incrementality.

Be frugal with memory. As with runtime, the partitioner is competing with the application for
®nite space on the parallel machine. A partitioner which requires only modest memory will allow
larger calculations to be performed. Again, the importance of this issue varies enormously be-
tween applications.

Support determination of communication pattern. Once a new decomposition has been deter-
mined and the data redistributed, the application still needs to ®gure out how to work with the
new partition. Speci®cally, each processor needs to know what data to exchange with which other
processors. In its most general form, this determination can be expensive. Some partitioners,
generally those based upon geometric properties of the data, can greatly simplify this task.

Be easy to use. Although di�cult to quantify, ease of use is a critical aspect of a good tool.
Many, if not most, application developers would gladly trade some performance for simplicity.
For static partitioners with their ®le interfaces, this is not a big issue. But for dynamic partitioners
which are invoked via parallel subroutine calls, the design of the interface is very important.

The importance of these di�erent issues varies between applications. But it is insu�cient to
focus our attention solely on only one or two criteria.

5. Fiction IV: existing tools solve the problem

A number of good partitioning and load balancing tools have been developed in recent years,
and new packages continue to appear. Developers of such software (including the author) like to
believe that their tools meet the needs of a wide range of parallel applications. Clearly, the usage
of these tools supports this belief. But application developers have no choice but to use the
available tools. In fact, the existing tools are far from ideal. Two shortcomings in particular are
worth mentioning.

The ®rst shortcoming is the inadequacy of the graph partitioning model which was discussed in
Section 2. Although it has been a useful abstraction, load balancing is not identical to graph
partitioning.

The second shortcoming is in the nature of the software engineering. Here, it is worth di�er-
entiating between static and dynamic tools. Most load balancing packages address the static
partitioning problem, and run on a serial computer. They are designed to work as part of a
preprocessing step in which a large computation is prepared for a parallel machine. The tools are
generally invoked as stand-alone codes with ®le interfaces. This approach is fairly mature, and
su�cient for many applications.

However, a growing number of applications are ill-suited to this approach and would bene®t
from more sophisticated software engineering. Parallel load balancing tools are clearly needed for
adaptive calculations, but they are necessary in several other settings as well. For instance, if the

104 B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108

computational problem is generated on a parallel machine (e.g. by a parallel mesh generator) then
the load balancing needs to be done in parallel too. Also, if the target parallel computer is het-
erogeneous, then the partitioning cannot easily be done in advance. Only at runtime will an
application know what resources are available to it, and without this information it cannot
properly balance the load.

Unfortunately, parallel or dynamic partitioning software is much less mature than its static
counterpart. To a large degree this is merely a consequence of the added complexity associated
with developing parallel algorithms and software. But several algorithmic and software issues
make dynamic load balancing libraries inherently more di�cult. First, as discussed in Section 4,
the dynamic partitioning problem has to contend with the issue of incrementality. For the static
problem, there are only two principle metrics: quality and runtime. And multilevel methods seem
to cover this two-dimensional space quite well, providing high quality solutions in modest time.
But the need for incrementality adds a third key metric to the dynamic problem. It seems unlikely
that a single algorithm will be able to cover this full three-dimensional space adequately. So a
good tool will need to provide a suite of partitioners, some with greater incrementality, some with
higher quality, etc. It requires more work to build such a toolkit than to implement a single al-
gorithm.

Another important di�erence between the static and the dynamic cases is that dynamic par-
titioners cannot be stand-alone codes with ®le interfaces. Instead, they will be invoked as sub-
routine libraries, which raises new challenges in software design. The input arguments to most
existing parallel partitioners (e.g. [3,13,20]) include a graph in some format. The burden of
constructing the graph in the speci®ed format is placed upon the application developer. The
exception to this rule is Zoltan [21], in which functions are passed across the interface instead of
data. In our view, this object-oriented design has several advantages. It reduces memory re-
quirements, allows for the partitioner to only extract the information it needs, and the tool can be
modi®ed without changing the interface. But must importantly, we believe it is easier to use.

In summary, the load balancing community has yet to embrace the software engineering
techniques which have simpli®ed the inter-operability of commercial software. We believe that
new tools developed with this mindset will signi®cantly improve the utility of load balancing
software. This is particularly true for dynamic load balancing tools.

6. Fiction V: load balancing means ®nding the right partition

A good distribution of work among processors is the key to obtaining high performance on a
parallel computer. Each processor should have useful work to do for the duration of the com-
putation, and the overhead of interprocessor communication must be minimized. A natural, but
¯awed, conclusion is that the best way to parallelize an application is to ®nd a good partitioning.

This conclusion is ¯awed for two reasons. First, as discussed in Section 4, dynamic and
adaptive calculations require the partition to be adjusted on the ¯y. No single partition is ade-
quate for the duration of the computation. The second, and more interesting, reason arises in the
context of multi-stage calculations which were introduced in Section 3. The di�erent stages in
these calculations can have con¯icting partitioning objectives. An optimal partition for one stage
may be far from optimal for another.

As discussed in Section 3, several alternative partitioning models are able to combine two or
more stages into a single partitioning problem. However, this may not be the best answer. Perhaps
no single decomposition exists which enables good performance from all the stages. An alter-
native is to support multiple decompositions so that each stage can be performed e�ciently,

B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108 105

independent of the partitioning demands of the other stages. The disadvantage of this approach is
that data must be moved between the decompositions, incurring a cost in both time and memory.
But in some applications, this approach enables complex calculations to run e�ciently on many
more processors than a single decomposition would allow. One such application is the crash
simulation work of Plimpton et al. [22].

Low speed impacts (e.g. car crashes) are usually simulated with Lagrangian techniques. A mesh
is constructed of the car in its native geometry. As the simulation proceeds and the car hits, for
example, a telephone pole, the mesh distorts to follow the deformation of the bumper. As the
bumper deforms, it eventually strikes the radiator. In the simulation, this is revealed when the
mesh of the bumper contacts the mesh of the radiator. At this point, new forces need to be in-
cluded in the simulation.

There are two dominant stages in these calculations. The ®rst is a ®nite element analysis of the
impacting bodies to reveal how they deform under stress. The second is the geometric search for
contacts in the mesh. Unfortunately, these two stages have quite di�erent decomposition needs.
The ®nite element analysis is a prototypical example for which graph partitioning works well. The
pattern of data dependencies is static and determined by the topological structure of the mesh.
The contact detection stage changes every timestep, and data dependencies re¯ect geometric
proximity. In the work by Plimpton et al., graph partitioning is used for the ®nite element stage
and a geometric partitioner is used for contact detection. The resulting crash code was the ®rst to
scale well to hundreds and even thousands of processors and has enabled simulations of un-
precedented scale and ®delity [23].

Several aspects of crash simulations make them good candidates for the multiple-decompo-
sition approach. These applications are generally not memory intensive, so the duplication of data
associated with the multiple decompositions is not a problem. Also, each stage of the computation
is expensive, so the cost of the data transfer can be tolerated. And ®nally, the partitioning needs of
the two stages are quite di�erent, so single-decomposition approaches have exhibited only limited
scalability. For multi-stage applications with these features, multiple decompositions should be
considered.

7. Fiction VI: all the problems are solved

Within the load balancing community, there is a sense of satisfaction with the status quo. The
complacency that this engenders makes this the biggest and most damaging ®ction of all. As
discussed above, there is a compelling need for more accurate and expressive models, new par-
titioning algorithms to address these models and better designed software tools and interfaces. In
addition to these general needs, a number of interesting and important problems have not yet
been adequately addressed. Among them are the following.

Partitioning for sparse solve on each subdomain. Some preconditioners based on domain de-
composition involve a sparse, direct solver on each subdomain. An important example is the
FETI class of preconditioners [24]. The work and memory required by each subdomain for such a
calculation is quite di�cult to predict in advance. It requires a much more detailed analysis than
can be provided by merely summing vertex weights. Current graph partitioning models are unable
to balance the work or memory required on each subdomain. New models and partitioning ideas
would be very helpful here, and would also be applicable to the parallelization of sparse direct
methods.

Partitioning for good aspect ratios. Another property of FETI preconditioners is that they work
best when the individual subdomains have small aspect ratios (i.e. not be long and skinny) [25].

106 B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108

Recent work by Diekmann et al. [26,27] has shown an elegant method for encoding this objective
into the standard graph model. Further work in this area would be welcome.

Partitioning for heterogeneous parallel architectures. Most new and emerging parallel archi-
tectures have heterogeneous networks. For instance, many machines are clusters of symmetric
multi-processors. The communication properties within an SMP are di�erent than those for
communication between SMPs. The growth of commodity cluster computing is also leading to
parallel machines with heterogeneity among the processors. Existing partitioning and load bal-
ancing tools fail to incorporate this information. Several important questions arise including how
to model the architecture and how to adapt partitioning algorithms for them. Some interesting
early work on these questions has been pursued by Teresco et al. [28], but much remains to be
done.

Partitioning to minimize congestion. As discussed in Section 2, the true cost of a collective
communication operation can be di�cult to predict. In the not-too-distant past, vendors provided
specialized high performance networks that e�ciently routed complex sets of messages. But for
the large number of current machines with commodity networking, network performance is less
robust. In particular, if many messages are all competing to use a single wire, then performance
will su�er. Methods for generating partitions in which this contention is avoided are needed.
Some ideas along this line can be found in the work of Pellegrini [29] or Hendrickson et al. [30],
but new insights are needed.

Despite the general feeling that load balancing is a mature area, there is a great need for new
ideas and insights. The wide range of open or only imperfectly solved problems provides many
opportunities for new research.

Acknowledgements

The ideas in this paper have been in¯uenced by my collaborations with Rob Leland, Tammy
Kolda and Karen Devine. I have also bene®ted from conversations with Alex Pothen, Steve
Plimpton and George Karypis. In addition, I am indebted to Guy Lonsdale and the organizers of
the Third DRAMA Workshop for an invitation to speak, which motivated the organization of
this paper.

References

[1] B. Hendrickson, R. Leland, The Chaco user's guide, version 2.0. Technical Report SAND95-2344, Sandia

National Labs, Albuquerque, NM, 1995.

[2] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, Technical

Report 95-035, Department of Computer Science, University of Minnesota, Minneapolis, MN, 1995.

[3] C. Walshaw, M. Cross, M. Everett, Mesh partitioning and load-balancing for distributed memory parallel

systems, in: Proceedings of the Parallel and Distributed Computing for Computational Mechanics: Systems and

Tools, Saxe-Coburg Publications, 1998.

[4] R. Preis, R. Diekmann, The PARTY partitioning-library, user guide ± version 1.1, Technical Report tr-rsfb-96-

024, Department of Computer Science, University of Paderborn, Paderborn, Germany, 1996.

[5] F. Pellegrini, SCOTCH 3.1 user's guide, Technical Report 1137-96, LaBRI, Universit�e Bordeaux I, France,

August 1996.

[6] B. Hendrickson, Graph partitioning and parallelsolvers: Has the emperor no clothes? in: Solving Irregularly

Structured Problems in Parallel, Irregular '98, Lecture Notes in Computer Science, vol. 1457, Springer, Berlin,

1998, pp. 218±225.

[7] B. Hendrickson, T. Kolda, Graph partitioning models for parallel computing, Parallel Comput. 26 (12) (2000)

1519±1534.

B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108 107

[8] G. Karypis, personal communication, 1998.

[9] �U.V. Cßataly�urek, C. Aykanat, Decomposing irregularly sparse matrices for parallel matrix±vector multiplication,

in: Parallel Algorithms for Irregularly Structured Problems, Irregular '96, Lecture Notes in Computer Science, vol.

1117, Springer, Berlin, 1996, pp. 75±86.

[10] �U. Cßataly�urek, C. Aykanat, Hypergraph-partitioning based decomposition for parallel sparse-matrix vector

multiplication, IEEE Trans. Parallel Distrib. Syst. 10 (7) (1999) 673±693.

[11] S.-H. Teng, Points, spheres and separators: a uni®ed geometric approach to graph partitioning, Ph.D. Thesis,

Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1991.

[12] C. Aykanat, personal communication, 1998.

[13] http://www.ccrl-nece.de/DRAMA.

[14] T.G. Kolda, Partitioning sparse rectangular matrices for parallel processing, in: Solving Irregularly Structured

Problems in Parallel, Irregular '98, Lecture Notes in Computer Science, vol. 1457, Springer, Berlin, 1998, pp. 68±

79.

[15] B. Hendrickson, T. Kolda, Partitioning rectangular and structurally nonsymmetric sparse matrices for parallel

processing, SIAM J. Sci. Comput. 21 (6) (2000) 2048±2072.

[16] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph partitioning, Technical Report 98-019,

Department of Computer Science, University of Minnesota, Minneapolis, MN, 1998.

[17] K. Schloegel, G. Karypis, V. Kumar, A new algorithm for multi-objective graph partitioning, in: Proceedings of

the EuroPar '99, Lecture Notes in Computer Science, Springer, Berlin, 1999.

[18] B. Hendrickson, K. Devine, Dynamic load balancing in computational mechanics, Comput. Meth. Appl. Mech.

Engrg. 184 (2±4) (2000) 485±500.

[19] N. Touheed, P. Selwood, P.K. Jimack, M. Berzins, A comparison of some dynamic load-balancing algorithms for

a parallel adaptive ¯ow solver application, Parallel Comput. 26 (12) (2000) 1535±1554.

[20] G. Karypis, V. Kumar, Parallel multilevel graph partitioning, Technical Report 95-036, Department of Computer

Science, University of Minnesota, Minneapolis, MN, 1995.

[21] E. Boman, K. Devine, B. Hendrickson, W. Mitchell, M. St. John, C. Vaughan, http://www.cs.sandia.gov/Zoltan.

[22] S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, D. Gardner, Transient dynamics simulations:

parallel algorithms for contact detection and smoothed particle hydrodynamics, J. Parallel Distrib. Comput. 50

(1998) 104±122 (previous version appeared in Proc. Supercomputing '96).

[23] K. Brown, S. Attaway, S. Plimpton, B. Hendrickson, Parallel strategies for crash and impact simulations, Comput.

Meth. Appl. Mech. Engrg. 184 (2±4) (2000) 375±390 (invited paper).

[24] C. Farhat, F.X. Roux, An unconventional domain decomposition method for an e�cient parallel solution of

large-scale ®nite element systems, SIAM J. Sci. Stat. Comp. 13 (1992) 379±396.

[25] C. Farhat, N. Maman, G. Brown, Mesh partitioning for implicit computation via domain decomposition: impact

and optimization of the subdomain aspect ratio, Int. J. Numer. Meth. Engrg. 38 (1995) 989±1000.

[26] R. Diekmann, R. Preis, F. Schlimbach, C. Walshaw, Aspect-ratio for mesh partitioning, in: D. Pritchard, J. Reeve

(Eds.), Proceedings of the Euro-Par '98, LNCS 1470, Springer, Berlin, 1998, pp. 347±351.

[27] R. Diekmann, R. Preis, F. Schlimbach, C. Walshaw, Shape-optimized mesh partitioning and load balancing for

adaptive FEM, Parallel Comput. 184 (2000) 269±285.

[28] J.D. Teresco, M.W. Beall, J.E. Flaherty, M.S. Shephard, A hierarchical partition model for adaptive ®nite element

computation, Technical Report, Rensselaer Polytechnic Institute, Troy, NY, 1998, Comput. Meth. Appl. Mech.

Eng. 184 (2000) 269±285.

[29] F. Pellegrini, Static mapping by dual recursive bipartitioning of process and architecture graphs, in: Proceedings of

the Scalable High Performance Computational Conference, IEEE Press, New York, 1994, pp. 486±493.

[30] B. Hendrickson, R. Leland, R. Van Driessche, Skewed graph partitioning, in: Proceedings of the Eighth SIAM

Conference on Parallel Processing for Scienti®c Computing, SIAM, Philadelphia, PA, 1997.

108 B. Hendrickson / Appl. Math. Modelling 25 (2000) 99±108

