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The classical artificial viscosity method [1] often suffers from too much numerical
viscosity away from the shock where the method is absolutely necessary. The
viscosity used to capture the shock is applied to flow structures that are not shocked
resulting in needless error. A common approach to defeat this issue is to modify the
viscosity with a “limiter”[2]. The construction of such limiters is a cottage industry
of sorts and a number of approaches can be used. We elucidate some of the
techniques we have employed to this end. A secondary impact of the approach is
the use of more optimal coefficients for the viscosity itself. The coefficients can be
derived through analysis of the Rankine-Hugoniot relations [3]. We repeat these
analyses, but include the relative positions of the variables in the analysis producing
a modification of the standard analysis results. We provide results that lend
credence to the quality of our results.

The limiter is defined by the nonlinear hybridization technique developed in [4]. A
function is defined as the normalized ratio of second-to-first derivatives, or a
function of this ratio. The original method was used to define a method that merged
low-order monotonic methods with high-order (non-monotonic) methods to
produce non-oscillatory results near shocks (discontinuities), and high-order results
away from them. The standard form is the following as applied to a flux,
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where ¢ is the limiter and the update is applied in conservation form. In the case of

artificial viscosity, the limiter is applied to allow the viscosity to be modified and the
usual “Q” takes the place of the low-order monotonic method,

Qj = (Pij (2)
and the high-order method is the integration method without any viscosity at all.
Earlier in the effort we examined the use of flux-corrected transport [5] with similar
success, but the nonlinear hybridization was deemed more flexible and extensible to
unstructured meshes. Moreover, the properties of the limiter could be made more

mesh independent and abiding to important symmetry and invariance
characteristics.

The limiter allows the use of analytically derived properties. The analysis generally
proceeds from the Rankine-Hugoniot relations,
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This analysis does not take the position of the variables into account. In a staggered
mesh, the pressure and velocity are not in the same positions. We can consider that

each variable is piecewise constant for the purposes of analysis. This gives us to
separate formulations to consider, for either the element,
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or the edge. This element is what we want because the artificial viscosity is found
by solving the equations for the shocked pressure,
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This analysis can then be carried forward to define analytic linear and quadratic
viscosity coefficients linear and quadratic,
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At this point we can refine these ideas with two enhancements: the limiter can be
mollified to allow better smoothness and general mathematical properties, and the
use of hyperviscous diffusion. The limiter can be replaced by a smoother function,
g(¢) ,with several specific properties, i.e., g(0)=0, g(1)=1 and vanishing derivatives
with respect to ¢ at zero. Power functions such as ¢’and Gaussians or hyperbolic
tangents can meet these criteria. The hyperviscosity can help to more effectively
control small-scale oscillation that invariably pollutes solutions. The hyperviscosity
can be defined by applying a symmetric filter (average) to the viscosity,

QM =0,-0,, (7)
this operation can be applied recursively to produce higher order viscosities. This
viscosity can be combined with the original limiter to produce a final form,

Qj :¢jéj+(1_¢j)éj,4 (8)
The combination of the limiter with the hyperviscosity produces sharp shock
transitions while effectively reducing the amount of high frequency noise emitted by

the shock. Unfortunately, it is somewhat less effective with stronger shocks. These
characteristics will be demonstrated computationally.
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