Mesh Cutting: Fitting Simple All-hexahedral Meshes
to Complex Geometric Features'

Michael J. Borden!
Steven E. Benzley?

Department of Civil and Environment Engineering
Brigham Young University

Provo, UT 84604

'bordmic@et.byu.edu

2seb@byu.edu

Jason Shepherd

Sandia National Laboratories
Albuquerque, NM 87185
jfsheph@sandia.gov

Abstract

This paper introduces a new meshing algorithm that makes it possible to
create a valid, all-hexahedral mesh for models where this was previously
very difficult to accomplish. This algorithm—called mesh cutting—first
creates a simple mesh for a model that excludes complex features. The
algorithm then modifies the simple mesh to fit the geometry of the complex
features by moving existing nodes. Elements that are not inside the final
geometry are cut away, and a boundary layer is added to improve quality.
The result is a fully conformal, all-hexahedral mesh.

KEYWORDS: Mesh generation, mesh cutting, all-hexahedral

Introduction

Three-dimensional finite element analysis is becoming a vital tool for scien-
tists and engineers in modeling physical phenomena. As the performance
of computers increases, so to does the size and complexity of the problems
that are being modeled with the finite element method. Although the com-
plexity of models that can be meshed by current all-hexahedral algorithms

fThis work was partially funded by Sandia National Laboratories, operated for the
U.S. DOE under contract No. DE-AL04-94AL8500. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE.

is increasing there still exist geometries with features that are difficult to
mesh. For large assembly problems a great deal of the time invested in
creating a mesh for an analysis may be spent on a relatively small number
of geometries with these complex features[l]. Because of this bottleneck,
there is a need for algorithms that can simplify the meshing of difficult
models.

The current method of choice for meshing three-dimensional geometries
with all-hexahedral elements is sweeping. Recent advancements have made
sweeping algorithms versatile tools for solving numerous meshing problems.
Sweeping algorithms can handle multiple source and target surfaces[2][3],
as well as non-planar, non-parallel source and target surfaces[4]. A major
disadvantage to this method, however, is that the mesh must be swept along
some axis of the model. Often, this means the model must be decomposed
into multiple sweepable bodies. Although the development of the Cooper
Tool[5] and grafting algorithm|[6] have eased this constraint it has not been
eliminated.

Other algorithms have been developed with the objective of creating an
arbitrary three-dimensional all-hexahedral mesh. One example is whisker
weaving[7]. The whisker weaving algorithm can create meshes on complex,
non-sweepable geometries. But, whisker weaving does not guarantee mesh
quality and often produces initial meshes that are unsuitable for analysis
due to inverted elements. Such meshes can be very difficult to untangle[8].

Mesh modification is another approach to create meshes for complex geome-
tries. With this approach, a simple mesh is first created using an algorithm
such as sweeping. Elements of this simple mesh are then removed or cut
away to fit a more complex geometry. Dhondt has introduced a method that
uses this approach to produce a 20-node brick element mesh for arbitrary
geometries[9]. Dhondt’s method creates a master mesh that encompasses
the geometry that is being meshed and then cuts the elements that are
intersected by the geometry. These cut elements are then remeshed based
on a set of cutting topologies and predetermined meshing schemes.

This paper introduces a new mesh cutting algorithm that makes it possible
to create a valid, all-hexahedral, and fully conformal mesh for complex
geometries. The mesh cutting algorithm presented here starts with a simple
mesh that encompasses the geometry of interest. Nodes of the original mesh
are then moved to the geometries surface and cutting is performed along
faces shared by hexahedral elements. This method differs from Dhondt’s in
that no elements of the mesh are cut. Also, the final step of the mesh cutting
algorithm inserts a layer of elements along the boundary of the cutting
surface to improve the quality of the final mesh. These differences make the

algorithm more general because it does not need to rely on predetermined
meshing schemes.

The Algorithm

The steps of mesh cutting are: 1) create a mesh of a simplified geometry;
2) introduce or define the complex geometric features that the mesh should
capture; 3) move the nodes of the hexahedral elements that are intersected
by the surfaces of the new geometry to these new surfaces; and 4) add
a buffer layer of hexahedral elements around the new surfaces to improve
mesh quality.

The first step to mesh cutting is to create a simple mesh. Meshing a simple
geometry as a starting point allows existing meshing algorithms to perform
this step. A mapped or swept mesh can be quickly and efficiently created
for this simple geometry. Although this approach may cause the poorest
quality elements to be close to the boundary the model can be orientated to
the simple mesh so that it closely follows the boundaries of the final model.
This gives the mesh cutting algorithm some orientation insensitivity but it
is not fully independent of the geometry placement. The mesh in Figure 1
is of a simple model that will be used to graphically show the steps of the
mesh cutting algorithm.

Figure 1. A mesh of a simplified geometry.

The second step to mesh cutting is introducing or defining the complex
geometric features that the mesh should capture. This can be done by
using geometry that is defined in the underlying geometry-modeling engine
of the mesh generation package or by some other means. The introduced
geometric features must intersect at least two different hexahedral elements.
Figure 2 shows a cylinder that has been introduced to intersect the mesh of
the block from Figure 1. This cylinder will be used to define the complex
geometry—a hole through the mesh in Figure 1 in this case—that will be

captured in the final mesh.

Figure 2. A cylinder has been inserted into the original simple
mesh. The cylinder will be used to create a hole through the
original mesh.

The third step to mesh cutting is moving the nodes of the intersected hex-
ahedral elements to the new geometry. Each element that is intersected by
the surfaces of the new geometry is first identified. It is then determined
which nodes of the element lie outside or inside the surface. The outside
of the surface is defined by the dot product of the vector from the clos-
est point on the surface to the node in question with the surface normal
vector at the closest point on the surface. If the dot product of these two
vectors is greater than or equal to zero the node is said to be outside the
surface. Once a node has been determined to be inside or outside, a check
is made to see if more nodes lie outside or inside the surface. To minimize
the number of nodes that are moved, the nodes on the side with the fewest
nodes are moved to the surface. In either case, elements on both sides of
the surface will be modified but the deformation caused by moving nodes
will be minimized. In this way the mesh is molded to the new geometry.

When the nodes of the original mesh are moved to the new surface the
result can be poor quality elements. This usually happens when nodes of
a hexahedral element are moved in such a way that the element ends up
with two faces sharing two edges, thus creating a doublet. Thus the fourth
step of the mesh cutting algorithm is to add a buffer layer of hexahedral
elements to both sides of the complex features of the true geometry. Adding
a layer of hexahedral elements along the surfaces will remove these doublets
as shown by Mitchell and Tautges[10]. Figure 3 shows the mesh from Figure
1 after the nodes of the intersected elements have been moved to the true
geometry and the buffer layer of elements have been added.

Figure 4 shows how the final geometry has been capture in the original
mesh. Elements can now be removed from the mesh to show the mesh of

Figure 3. Nodes of the original mesh have been moved to the
cylinder’s surfaces and new elements have been added to the
mesh.

the true geometry as shown in Figure 5. Although the final geometry in
this example could have been meshed with existing algorithms it illustrates
the step of the mesh cutting algorithm.

Figure 4. The geometry of the cylinder has been captured in the
mesh.

Examples

The following figures show three examples of the mesh cutting algorithm.
Figure 6 shows a mesh of a block with two intersecting cylinders cut out.
This mesh is an example of a very simple looking geometry that was pre-
viously very difficult to mesh with an all-hexahedral mesh. Table 1 shows
the quality of this mesh. The acceptable range for shape is 0.3 to 1 with
the ideal being 1[11] and the acceptable range for scaled Jacobian between
0.5 and 1 with the ideal being 1[12].

Figures 7, 8, and 9 show a mesh of a block with a wire looping through

Figure 5. The original geometry has been modified to fit the true
geometry.

Figure 6. Two views of a block mesh with intersecting cylinders
cut out of it. The view on the right is a close up of the inside of
the cylinders

Avg. Std. Dev. Min. Max.
Shape 0.8611 0.1144 0.5034 0.9994
Scaled Jac. 0.8997 0.1286 0.4131 0.9997

Table 1. Mesh quality of block mesh with intersecting holes.

it. This model is an example of an all-hexahedral mesh that would be very
difficult to create without mesh cutting. It may be possible to mesh this
model with whisker weaving but the resulting mesh would be low quality
and very unstructured. Mesh cutting resulted in a valid mesh with decent
quality. Table 2 shows the quality of the final mesh.

Avg. Std. Dev. Min. Max.
Shape 0.9810 0.06453 0.3890 1.000
Scaled Jac. 0.9840 0.06208 0.2929 1.000

Table 2. Quality of mesh of block with wire.

Figure 7. Block with a looping wire through it.

Figure 8. Block mesh with a loop cut out of it.

Figure 10 shows a mesh of an assembly model. A mesh, not shown here, was
created for this model before the mesh cutting algorithm was developed.
The original model was decomposed into 56 volumes and contained about
57,000 elements; it took about one week to create. The model was meshed
again with the mesh cutting algorithm. The new mesh contained about
18,000 elements with the model decomposed into 18 volumes. Using mesh
cutting, the mesh took only about 2% days to create. Table 3 shows a
comparison of the quality of both meshes. Not only was the time to mesh
reduced but the quality was also improved.

Figure 9. Cross-section view of mesh in Figure 8.

Figure 10. An assembly mesh.

Shape Scaled Jacobian

56 volume 18 volume 56 volume 18 volume

mesh mesh mesh mesh
Average 0.8660 0.8279 0.8938 0.8652
Std. Dev. 0.1389 0.1440 0.1378 0.1388
Min. 0.1095 0.2276 0.05153 0.2020
Max. 0.9996 0.9993 1.0000 0.9998

Table 3. Assembly mesh quality.
Conclusion

All-hexahedral meshing algorithms have matured over the last several years.
Coupled with geometry decomposition methods, current algorithms are able

to handle increasing complex geometries. However, there still exist geome-
tries that are difficult or impossible for existing algorithms to handle. With
mesh cutting, it is now possible to get high quality all-hexahedral meshes
on these difficult geometries. The mesh cutting algorithm starts with a
simple mesh and then fits this mesh to a more complex geometry. This in-
volves moving nodes to the surface of the complex geometry and inserting
layers of hexahedral elements along these surfaces to improve the quality
of the mesh. This algorithm reduces the time to mesh and can improve the
quality of the mesh.

References

[1] Personal communication with Jason Shepherd, Sandia National Labo-
ratories.

[2] L. Mingwu and S.E. Benzley. A multiple source and target sweeping
method for generating all hexahedral finite element meshes. In Pro-
ceedings, 5" International Meshing Roundtable ‘96, pages 217-225.
Sandia National Laboratories, 1996.

[3] J. Shepherd, S.A. Mitchell, P. Knupp, and D. White. Methods for
multisweep automation. In Proceedings, 9" International Meshing
Roundtable ‘00, pages 77-87. Sandia National Laboratories, 2000.

[4] M.L. Staten, S.A. Cannan, and S.J. Owen. Bmsweep: locating inte-
rior nodes during sweeping. In Proceedings, 7*" International Meshing
Roundtable ‘98, pages 7-18. Sandia National Laboratories, 1998.

[5] T. Blacker. The cooper tool. In Proceedings, 5" International Meshing
Roundtable ‘96, pages 13-29. Sandia National Laboratories, 1996.

[6] S.R. Jankovich, S.E. Benzley, J.F. Shepherd, and S.A. Mithcell. The
graft tool: an all-hexahedral transition algorithm for creating a mult-
directional swept volume mesh. In Proceedings, 8" International
Meshing Roundtable ‘99, pages 387-392. Sandia National Laborato-
ries, 1999.

[7] T. Tautges, T. Blacker, and S. Mitchell. The whisker weaving algo-
rithm: a connectivity-based method for all-hexahedral finite element

meshes. International Journal for Numerical Methods in Engineering,
39:3327-3349, 1996.

[8] P.M. Knupp. Hexahedral mesh untangling and algebraic mesh quality
metrics. In Proceedings, 9" International Meshing Roundtable ‘00,
pages 173-183. Sandia National Laboratories, 2000.

[9]

[10]

[11]

[12]

G. Dhondt. A new automatic hexahedral mesher based on cutting.
International Journal for Numerical Methods in Engineering, 50:2109—
2126, 2001.

S.A. Mitchell and T.J. Tautges. Pillowing doublets: refining a mesh
to ensure that faces share at most one edge. In Proceedings, 4" Inter-
national Meshing Roundtable, pages 231-240. Sandia National Labo-
ratories, 1995.

P.M. Knupp. Algebraic mesh quality metrics for unstructured initial
meshes. To appear in Finite Elements in Design and Analysis.

P. Knupp. Achieving finite element mesh quality via optimization of
the jacobian matrix norm and associated quantities. part ii—a frame-
work for volume mesh optimization and the condition number of the
jacobain matrix. International Journal for Numerical Methods in En-
gineering, 48:1165-1185, 2000.

