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Abstract. With the rise in popularity of compatible finite element, finite difference and finite
volume discretizations for the time domain eddy current equations, there has been a corresponding
need for fast solvers of the resulting linear algebraic systems. However, the traits that make compat-
ible discretizations a preferred choice for the Maxwell’s equations also render these linear systems
essentially intractable by truly black-box techniques. We propose a new algebraic reformulation
of the discrete eddy current equations along with a new algebraic multigrid technique (AMG) for
this reformulated problem. The reformulation process takes advantage of a discrete Hodge decom-
position on co-chains to replace the discrete eddy current equations by an equivalent 2 × 2 block
linear system whose diagonal blocks are discrete Hodge Laplace operators acting on 1-cochains and
0-cochains, respectively. While this new AMG technique requires somewhat specialized treatment
on the finest mesh, the coarser meshes can be handled using standard methods for Laplace-type
problems. Our new AMG method is applicable to a wide range of compatible methods on structured
and unstructured grids, including edge finite elements, mimetic finite differences, co-volume meth-
ods and Yee-like schemes. We illustrate the new technique, using edge elements in the context of
smoothed aggregation AMG, and present computational results for problems in both two and three
dimensions.
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1. Introduction. Due to the pioneering work of Bossavit [9], it is now well-
known that stable and accurate numerical solution of Maxwell’s equations can be
achieved by using discrete spaces from a finite-dimensional analogue of the differential
De Rham complex. Numerical methods that are based on such discretizations are now
commonly referred to as compatible, or mimetic methods [6].

However, the same traits that make compatible methods a natural choice for
Maxwell’s equations also render the ensuing linear system essentially intractable by
truly general purpose black-box multigrid solvers. For example, a compatible dis-
cretization of the curl-curl operator gives rise to a symmetric, semi-definite linear
system whose null-space is of approximately the same size as the number of nodes
in the computational grid. Multilevel solution of such systems often utilizes special
smoothing, prolongation and restriction operators that separate error components in
the null-space and its complement and satisfy a commuting diagram property. Formu-
lation of such operators is well-understood in geometric multigrid settings [22], where

∗Received by the editors Month ??, 2007; accepted for publication (in revised form) Month ??,
2007; published electronically Month ??, 2007. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94-AL85000. The U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others to do so, for
U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/sisc/????/?????.html
†Sandia National Laboratories, Computational Math/Algorithms, P.O. Box 5800, MS 1320,

Albuquerque, NM 87185-1320 (pbboche@sandia.gov, csiefer@sandia.gov).
‡Sandia National Laboratories, Computational Math/Algorithms, P.O. Box 969, MS 9159,

Livermore, CA 94551-0969 (jhu@sandia.gov, rstumin@sandia.gov).

1



2 BOCHEV, HU, SIEFERT, AND TUMINARO

availability of nested grids greatly simplifies the characterization of the null-space at
all grid levels. In the algebraic multigrid setting, however, a proper characterization of
the null-space at the coarser levels is not immediately obvious. As a result, algebraic
multigrid (AMG) for Maxwell’s equations, that is comparable with AMG methods for
the Poisson equation, has been elusive.

In this paper we propose a new algebraic reformulation of the discrete eddy cur-
rent equations along with a new AMG technique for this reformulated problem. The
reformulation process takes advantage of a discrete Hodge decomposition on co-chains
to replace the discrete eddy current equations by an equivalent 2× 2 block linear sys-
tem whose diagonal blocks are discrete Hodge Laplace operators acting on 1-cochains
and 0-cochains, respectively. While this new AMG technique requires somewhat spe-
cialized treatment on the fine mesh, the coarser meshes can be handled using standard
methods for Laplace-type problems. An attractive computational feature of our new
AMG method is its applicability to a wide range of compatible methods on structured
and unstructured grids, including edge finite elements [9], mimetic finite differences
[40], co-volume methods [33] and staggered grid (Yee) schemes [44].

There are two basic approaches to reformulation of Maxwell’s equations that
differ in the order in which the discretization and reformulation steps are applied.
The methods in [3, 10, 19, 20] are examples of the reformulate and then discretize
approach in which the differential equations are first transformed to an equivalent
form and then discretized. Typically, methods of this kind have been restricted to
staggered grids because of the need to effectively discretize a vector Laplacian operator
acting on fields that are only tangentially or normally continuous.

Our approach belongs to the category of discretize and then reformulate methods
in which reformulation is applied after the discretization step. This approach offers
greater flexibility in the choice of the discretization because it relies on a discrete
Hodge decomposition to derive the reformulated equations. Therefore, it is applicable
to any discretization setting that offers such a discrete decomposition, including mixed
finite elements, mimetic finite differences and co-volume methods. Other examples of
this approach can be found in [11, 16, 21], however, these papers are focused solely on
the reformulation and do not address solvers. Of special note are the recent papers
[23, 28, 29, 30] which uses the idea of auxiliary space preconditioners and nodal vector
Laplacians. The approach in this paper bears some similarity to our proposed method;
however, it is based on a discrete version of a non-orthogonal “regular decomposition”
[34] of H(curl), as opposed to a discrete Hodge decomposition in our case.

Some reformulation techniques can also be viewed as gauging approaches, al-
though in a different sense from standard gauges [10, 12, 13, 14]. Our proposed
technique is rightfully called a compatible gauge, but it differs from standard gauges
in three ways. First, our compatible gauge is applied after the discretization, rather
than at the PDE level. Second, it applies to compatible discretizations rather than
nodal discretizations. Third, the addition of our gauge does not change the discrete
solution. Standard gauges are often applied to massage the problem into a form that
can be discretized using nodal elements1. Our gauge is applied to shorten the solu-

1The use of nodal elements to discretize the vector Laplacian (∇×∇−∇∇·)E often overlooks the
fact that the space H1 may have infinite co-dimension in H(div)∩H(curl), i.e., a nodal discretization
of this operator may fail to produce convergent approximations. On the other hand, on a single
mesh, discretization of a field in H(div)∩H(curl) must be simultaneously tangentially and normally
continuous, i.e., it has to be of class C0. This explains why reformulate and then discretize approaches
have been so far limited to staggered grids - such grids provide discretizations of H(div) ∩ H(curl)
that are not necessarily C0 and can handle material discontinuities that lead to fields that are only
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tion time for a compatibly discretized problem. Like our proposed method, algebraic
reformulations can also be considered compatible gauges in this sense [11, 16, 21].

Previous work on AMG techniques for Maxwell’s equations has focused on spe-
cialized techniques for the curl-curl operator. These methods usually require special
aggregation [35], coarsening [32], interpolation [8] or smoothing techniques [2, 4, 22].
These techniques can be enhanced in a number of ways, such as by smoothed pro-
longation [5] and higher-order interpolation [5, 24] to yield effective solvers for fairly
difficult problems. However, these techniques are specialized for curl-curl problems
and are limited in terms of the benefit they can derive from advances in standard
AMG techniques.

The paper is organized as follows. §2 introduces some notation and the eddy cur-
rent Maxwell’s equations. §3 reviews basic facts about the discretization framework
used in the paper. In §4 we apply this framework to obtain a compatible discretiza-
tion of the eddy current equations and its equivalent reformulation. AMG solvers
for the reformulated system are developed in §5. In §6 we present computational
results in two and three dimensions that illustrate the new technique in the context
of smoothed aggregation AMG. In all experiments we use finite element discretiza-
tions based on the lowest order edge elements on both structured and unstructured
triangular, quadrilateral and hexahedral elements.

2. The model equations. Let Ω denote a bounded, simply connected, con-
tractible domain in R

d, d = 2, 3 with Lipschitz continuous boundary ∂Ω. We assume
that ∂Ω consists of two disjoint parts Γ and Γ∗, i.e., ∂Ω = Γ ∪ Γ∗ and Γ ∩ Γ∗ = ∅.
The eddy current equations in terms of the electric field E are given by





σ
∂E

∂t
+∇×

1

µ
∇×E = 0 in Ω

n×E = 0 on Γ

n×
1

µ
∇×E = 0 on Γ∗

, (2.1)

augmented with the initial condition

E(x, 0) = E0(x) in Ω . (2.2)

In (2.1) E is the electric field, σ is the electrical conductivity and µ is the magnetic
permeability. We assume that σ and µ are positive throughout the computational
domain.

The boundary condition on Γ is called a tangential induction condition and repre-
sents a Dirichlet (essential) boundary condition. The boundary condition prescribed
on Γ∗ is the normal field condition; see [9], and it is of the Neumann type (natural
boundary condition). Note that the boundary conditions in (2.1) imply that

∇ · σE = 0 on Γ and n · σE = 0 on Γ∗ . (2.3)

We assume that the initial data satisfies the compatibility condition ∇ · σE0 = 0.
Then, from the first equation in (2.1) it is easy to see that the eddy current problem
has the involution ∇ · σE = 0 for all t > 0.

tangentially or normally continuous.
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3. Compatible discretization framework. To approximate the eddy current
equations (2.1) we use a general framework for compatible discretizations developed in
[6]. This framework is based on algebraic topology and includes certain finite element
[7, 41], finite volume [33], and finite difference [40] schemes as particular cases. As a
result, the AMG algorithm developed in this paper is readily applicable to discrete
problems generated by any of these schemes.

3.1. Computational grid. We will consider computational grids Ωh consisting
of 0-cells (nodes), 1-cells (edges), 2-cells (faces), and 3-cells (volumes). Formal linear
combinations of k-cells are called k-chains [17]. The sets of k-chains forming Ωh are
denoted by Ck. We will assume that Ωh is such that the collection {C0, C1, C2, C3}
is a complex, i.e., for any c ∈ Ck, ∂kc ∈ Ck−1, where ∂k : Ck 7→ Ck−1 is the boundary
operator on k-chains [15]. Together with the identity ∂k∂k+1 = 0 this gives rise to the
exact sequence

0←− C0
∂1←− C1

∂2←− C2
∂3←− C3 ←− 0 . (3.1)

The dual of Ck is denoted by Ck and its members are called k-cochains [17]. While Ck

and Ck are isomorphic, they have different meanings in our discretization framework.
The sets Ck represent the physical objects that form the grid, while Ck are collections
of real numbers associated with the grid objects. For example, c1 ∈ C1 is a formal sum
of (oriented) grid edges, while its isomorphic image c1 ∈ C1 is a set of real numbers2

assigned to the edges of c1.
Therefore, the elements of C0 provide values associated with the 0-cells (grid

nodes); the elements of C1 are values associated with the 1-cells (grid edges); C2

contains values assigned to the 2-cells (grid faces) of the grid, and C3 are the values
assigned to the 3-cells (grid volumes). We will use C0 and C3 to approximate scalar
functions and C1 and C2 - to approximate vector functions. In particular, the electric
field E in (2.1) will be approximated by 1-cochains.

The symbols Ck
Γ will denote the subspaces of Ck constrained by zero on the

Dirichlet boundary Γ for k = 0, 1, 2. Such spaces are needed to approximate scalar
and vector functions subject to appropriate boundary conditions3.

3.2. Natural operators. Let 〈·, ·〉 denote the duality pairing of Ck and Ck.
The adjoint of ∂k, defined by 〈a, ∂kc〉 = 〈δka, c〉, induces an operator δk : Ck

Γ 7→ Ck+1
Γ

called coboundary. This operator satisfies δk+1δk = 0 and gives rise to the exact
sequence

R −→ C0
Γ

δ0−→ C1
Γ

δ1−→ C2
Γ

δ2−→ C3 −→ 0 . (3.2)

It is not hard to see that the matrix representation Dk of δk is the signed incidence
matrix between Ck and Ck+1. Following [26] we call D0, D1, and D2 natural approxi-
mations of the gradient, curl and divergence operators. Note that from δk+1δk = 0 it
follows that

Dk+1Dk = 0; k = 0, 1, 2 , (3.3)

2Clearly, Ck are isomorphic to Rk̃, where k̃ = dimCk. For simplicity, the isomorphic image of

the cochain ck ∈ Ck in Rk̃ will be denoted by the same symbol.
3For example, C0

Γ
approximates scalar functions such that φ = 0 on Γ; C1

Γ
can be used to

approximate vector fields E such that n×E = 0 on Γ. The space C2

Γ
is appropriate for vector fields

B that have a vanishing normal component on Γ.
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and so our natural operators mimic the well-known vector calculus identities ∇×∇ =
0, and ∇·∇× = 0. In [25], it is pointed out that natural operations are not enough to
provide compatible discretizations of the basic second order operators because their
ranges and domains do not match. For example, we cannot approximate ∇×∇× by
D1D1 because D1 is in general a rectangular matrix. The number of its columns and
rows equals the number of 1-cells and 2-cells in the grid, which are not the same.

3.3. Metric structures and derived operators. Let Mk : Ck
Γ 7→ Ck

Γ; k =
0, 1, 2, 3 denote symmetric positive definite matrices. The matrix Mk endows Ck

Γ with
an inner product structure,

(ak, bk)Ck = (ak)T
Mk(bk) . (3.4)

The matrices M0 and M3 approximate weighted L2 inner products of scalar functions:

M0 −→

∫

Ω

γpp̂ dΩ ; M3 −→

∫

Ω

λφφ̂ dΩ ,

while M1 and M2 approximate the weighted L2 inner products of vector functions

M1 −→

∫

Ω

σEÊ dΩ ; M2 −→

∫

Ω

µ−1BB̂ dΩ ,

that are needed in the formulation of the discrete eddy current equations.
We define the derived operator D

∗

k : Ck+1
Γ 7→ Ck

Γ as the adjoint of Dk with respect
to the inner product (3.4):

(D∗

kak+1, bk)Ck = (ak+1, Dkbk)Ck+1 . (3.5)

From (3.5) it is easy to see that for k = 0, 1, 2

D
∗

k = M
−1
k D

T
k Mk+1 . (3.6)

The matrices D
∗

2, D
∗

1 and D
∗

0 provide a second set of discrete differential operators.
Specifically, they are approximations of scaled gradient, curl and divergence operators

D
∗

2 → −µ∇λ ; D
∗

1 → σ−1∇× µ−1 ; D
∗

0 → −γ−1∇ · σ ,

augmented with the boundary conditions

λφ = 0 ; n× µ−1B = 0 ; and n · σE = 0 on Γ∗ ,

respectively. Using (3.6) and (3.3)

D
∗

kD
∗

k+1 = M
−1

k D
T
k Mk+1M

−1

k+1
D

T
k+1Mk+2 = M

−1

k D
T
k D

T
k+1Mk+2 = 0 ,

and so, the basic vector calculus identities hold for the derived operators as well.
Because the range of Dk is contained in the domain of D

∗

k and vice versa we can use
the natural and the derived operators to define discrete versions of the basic second
order differential operators, including a discrete Hodge Laplace operator. Specifically,
we have the second order operators

D
∗

kDk : Ck
Γ 7→ Ck

Γ ; D
∗

kDk = M
−1
k D

T
k Mk+1Dk ; k = 0, 1, 2 (3.7)
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DkD
∗

k : Ck+1
Γ 7→ Ck+1

Γ ; DkD
∗

k = DkM
−1
k D

T
k Mk+1 ; k = 1, 2, 3 (3.8)

and the discrete Hodge Laplacian

Lk : Ck
Γ 7→ Ck

Γ ; Lk = D
∗

kDk + Dk−1D
∗

k−1 ; k = 0, 1, 2, 3 (3.9)

with the understanding that D3 = 0 and D
∗

−1 = 0.
The discrete operators in (3.7)-(3.9) approximate basic second order elliptic dif-

ferential operators. For example, D
∗

1D1 is a compatible discretization of σ−1∇ ×
µ−1∇× E, augmented with the essential boundary conditions from (2.1). The oper-
ator L1 = D

∗

1D1 + D0D
∗

0 is a compatible discretization of the Hodge Laplacian

σ−1∇× µ−1∇×E−∇γ−1∇ · σE , (3.10)

augmented with the boundary conditions

n×E = 0 on Γ and n · σE = 0 on Γ∗ . (3.11)

In §4.1 we will use this operator to motivate and explain our reformulation strategy.
A key ingredient in this strategy will be to endow C1

Γ with a second inner product

defined by a matrix M̃1 that uses a unit weight, i.e.,

M̃1 −→

∫

Ω

EÊ dΩ .

The reasons to consider this inner product will be also explained in §4.1. There we
will see that by using M̃1, instead of M1, in the discrete Hodge decomposition of the
electric field, the scaling of the reformulated system can be significantly improved for
materials with widely varying conductivities σ.

The second inner product on C1
Γ gives rise to a second set of derived operators

D̃
∗

0 : C1
Γ 7→ C0

Γ and D̃
∗

1 : C2
Γ 7→ C2

Γ, given by

D̃
∗

0 = M
−1
0 D

T
0 M̃1 and D̃

∗

1 = M̃
−1
1 D

T
1 M2 ,

respectively, and such that D̃
∗

0D̃
∗

1 = 0 and D̃
∗

1D
∗

2 = 0. These operators give rise to the
discrete Hodge Laplace operators

L̃0 : C0
Γ 7→ C0

Γ ; L̃0 = D̃
∗

0D0 ;

and

L̃1 : C1
Γ 7→ C1

Γ ; L̃1 = D̃
∗

1D1 + D0D̃
∗

0 ;

that are different versions of L0 and L1, respectively.
The following general result from [6] provides the results needed for the reformu-

lation of the discrete eddy current equations.

Theorem 3.1. The size of the kernel of the analytic and discrete Hodge Lapla-
cians is the same.

Theorem 3.1 reveals that the null-space of the discrete Hodge Laplacian and, by
extension the structure of the discrete Hodge decomposition of discrete functions in
Ck

Γ, are topological invariants that are independent of the particular choice of metric,
i.e., the matrices Mk. As a result, the assertion of this theorem is valid for both L0, L1
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and L̃0, L̃1. The properties of these operators, relevant to the reformulation process,
are summarized in the following corollary.

Corollary 3.2. Assume that Ω is contractible. Then, every e1 ∈ C1
Γ has the

discrete Hodge decomposition

e1 = D0p
0 + D̃

∗

1b
2 (3.12)

where p0 ∈ C0
Γ and b2 ∈ C2

Γ solve the equations

D̃
∗

0D0p
0 = D̃

∗

0e
1 and D1D̃

∗

1b
2 = D1e

1 , (3.13)

respectively. The equation

D̃
∗

0D0q
0 = 0 (3.14)

has only the trivial solution q0 = 0.
Proof. If Ω is contractible, then the analytic vector Laplacian (3.10) with the

boundary conditions (3.11) has a trivial null-space and Theorem 3.1 implies that

ker L̃1 = {0}. As a result, the decomposition of any e1 ∈ C1
Γ does not include discrete

harmonics, i.e., it has the form (3.12) where p0 and b2 solve the equations in (3.13);

see [6]. The second assertion is simply the statement that ker L̃0 = {0}. It follows
from Theorem 3.1 and the fact that the corresponding analytic Laplacian γ−1∇ · σ∇
with a Dirichlet boundary condition has a trivial null-space.

4. Compatible discretization of the eddy current equations. To obtain
the fully discrete eddy-current equations we proceed to apply Rothe’s method (semi-
discretization in time). For simplicity we consider the Backward Euler scheme and
use E and Eo to denote the unknown value of the electric field at the new time step
and the value computed at the previous time step. The discretized in time equations
are

E + ∆t σ−1∇× µ−1∇×E = Eo .

Using the discrete operators defined in the last section, a compatible discretization
of the semi-discrete in time equation is straightforward. Specifically, we approximate
E by a 1-cochain e1 ∈ C1

Γ, i.e., by values associated with the 1-cells (the edges) of
the mesh that are not in Γ. Then, the compatible discrete version of the curl-curl
operator is provided by the second order discrete operator D

∗

1D1. As a result, the
compatible, fully discrete eddy current model is given by

e1 + ∆tD∗

1D1e
1 = e1

o , (4.1)

where e1
o is the approximate electric field at the old time step. Because the actual

value of the time step is irrelevant for the subsequent developments, we set ∆t = 1 for
simplicity. An equivalent “weak” form of (4.1) is given by the variational equation:
seek e1 ∈ C1

Γ such that

(
e1, ê1

)
C1 +

(
D1e

1, D1ê
1
)
C2 =

(
e1

o, ê
1
)
∀ê1 ∈ C1

Γ . (4.2)

The following theorem shows that the discrete equations (4.1) or (4.2) inherit the
involution of the continuous problem.

Theorem 4.1. The discrete problem (4.1) has the involution D
∗

0e
1 = 0.
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Proof. Clearly, it suffices to prove that D
∗

0e
1 = 0 provided D

∗

0e
1
o = 0. Assuming

that the latter is true, we proceed to rewrite (4.1) by using the definitions of the
natural and derived operations as follows:

e1 + M
−1
1 D

T
1 M2D1e

1 = e1
o ,

or, which is the same:

M1e
1 = −D

T
1 M2D1e

1 + M1e
1
o .

We left-multiply this equation by M
−1
0 D

T
0 and use that D

∗
0 = M

−1
0 D

T
0 M1, D

T
0 D

T
1 = 0

(from (3.3)), and D
∗

0e
1
o = 0 (by assumption) to find that

D
∗

0e
1 = −M

−1
0 D

T
0 D

T
1 M2D1 + D

∗

0e
1
o = 0 ,

Therefore, the discrete solutions stays discretely divergence free at all time steps.

4.1. Reformulation. If D
∗

0e
1
o = 0, then from Theorem 4.1 we know that D

∗

0e
1 =

0 and so, it is easy to see that the reformulated problem

e1 + (D∗

1D1 + D0D
∗

0) e1 = e1
o , (4.3)

is completely equivalent to (4.1). Compared to this problem, (4.3) has the advantage
of using the operator D

∗

1D1 + D0D
∗

0 = L1. We remind that L1 was a compatible
approximation of the Hodge Laplacian (3.10) with the boundary conditions (3.11)
and that, according to Theorem 3.1, it has trivial null-space.

Notice that when σ = µ = γ = 1, the operator (3.10) corresponds to an unscaled
vector Laplacian. Since AMG methods typically work well for such Laplacians, this
suggests an approach wherein AMG is applied to the reformulated equation (4.3)
rather than to the original problem (4.1). Then, we would be able to devise AMG
solvers for (4.1) by leveraging proven and efficient techniques developed for Laplace-
like equations.

Unfortunately, the straight-forward application of AMG to L1 for arbitrary σ, µ
and γ is likely to be problematic due to scaling issues associated with the material
properties. One example of particular interest to us is the Z-pinch model, where the
magnitude of σ can range from 1 to 107; see [7] for an example. In this case, in the
regions where σ is much smaller than µ−1 and γ−1 the term σ−1∇ × µ−1∇× will
completely dominate (3.10). Translated to L1, this means that D

∗
1D1 will completely

dominate the discrete Hodge Laplacian and the beneficial effect from the gauge term
D0D

∗

0 will be lost, i.e., the system (4.3) effectively behaves similar to the original eddy
current equations (4.1).

In this section we propose an alternative reformulation of (4.1) that retains the
null-space property of (4.3) but offers a much better scaling for the resulting discrete
Laplace-like operator acting on e1. The key idea is to consider an orthogonal decom-
position of e1 with respect to the inner product defined by the matrix M̃1, instead of
the more obvious choice of decomposition with respect to M1. This leads to a system
with the Laplace-like operator D

∗

1D1 + M
−1
1 M̃1D0D̃

∗

0. This operator can be thought
of as a compatible discretization of the second order differential operator

σ−1
(
∇× µ−1∇×−∇γ−1∇·

)
. (4.4)

Furthermore, if D
∗
1D1 + M

−1
1 M̃1D0D̃

∗
0 is multiplied on the left by M1, the resulting

operator D
T
1 M2D1 + M̃1D0M

−1
0 D

T
0 M̃1 is a compatible discretization of

(
∇× µ−1∇×−∇γ−1∇·

)
. (4.5)
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By choosing γ = µ and defining M0 accordingly, we can make the terms in (4.5)
and its compatible discretization perfectly balanced. As a result, one can expect that
AMG will perform well for the matrix D

T
1 M2D1 + M̃1D0M

−1
0 D

T
0 M̃1.

There are two formal complications arising from this approach. First, even if
D

∗

0e
1
o = 0 we are not guaranteed that D̃

∗

0e
1 = 0 and so, the decomposition (3.12) of

e1 will necessarily include a function p0 ∈ C0
Γ. As a result, in contrast with (4.3),

the alternative reformulated problem will have a 2× 2 block structure. However, in
practice it often happens that D

∗

0e
1
o 6= 0, and so it is desirable to have algorithms that

work in this general case as well. A second, seemingly more serious complication, is
that using (3.12) to reformulate (4.1) leads to a problem with a Laplace-like operator

that combines the term D
∗

1D1 from L1 and the term D0D̃
∗

0 from L̃1, premultiplied by

M
−1
1 M̃1, i.e., this operator is neither L1, nor L̃1. As a result, Theorem 3.1 cannot

be applied directly to show that this “mismatched” Laplacian will have a trivial null-
space. Fortunately, using the results from Corollary 3.2 we show that this is indeed
true.

Theorem 4.2. Assume that e1 is a solution of (4.1) and let

e1 = D0p
0 + D̃

∗

1b
2

denote its discrete Hodge decomposition with respect to the inner product induced by
M̃1. The pair (a1, p0), where a1 = D̃

∗
1b

2, solves the linear system



M1 + D
T
1 M2D1 + M̃1D0M

−1
0 D

T
0 M̃1 M1D0

D
T
0 M1 D

T
0 M1D0




[
a1

p0

]
=

[
M1e

1
o

D
T
0 M1e

1
o

]
. (4.6)

Proof. To make the proof more transparent we eschew for a moment the matrix
form (4.1) and work with the “weak” equation (4.2). Using the ansatz e1 = D0p

0 +a1

in (4.2) together with the property of the natural operators that D1D0 ≡ 0 gives the
identity

(
a1, ê1

)
C1 +

(
D1a

1, D1ê
1
)
C2 +

(
D0p

0, ê1
)
C1 =

(
e1

o, ê
1
)
C1 ∀ê1 ∈ C1

Γ .

Because a1 = D̃
∗

1b
2 and D̃

∗

0D̃
∗

1 ≡ 0, it follows that D0D̃
∗

0a
1 = 0, or, using weak forms:

(
D̃

∗

0a
1, D̃∗

0ê
1
)

C0
= 0 ∀ê1 ∈ C1

Γ . (4.7)

As a result, this term can be added to the last equation without changing it
(
a1, ê1

)
C1

+
(
D1a

1, D1ê
1
)

C2
+

(
D̃

∗

0a
1, D̃∗

0ê
1
)

C0
+

(
D0p

0, ê1
)

C1
=

(
e1

o, ê
1
)

C1
∀ê1 ∈ C1

Γ .

To complete the proof we now switch back to matrix notation. Using the definition of
the inner product (3.4) and the matrix representation (3.6) of the derived operators,
it is easy to see that the above weak equation is equivalent to the matrix equation

M1a
1 +

(
D

T
1 M2D1 + M̃1D0M

−1
0 D

T
0 M̃1

)
a1 + M1D0p

0 = M1e
1
o

which is the first equation in (4.6). To obtain the second equation we left-multiply
(4.1) by D

∗

0, use that D
∗

0D
∗

1 ≡ 0, and replace e1 by its Hodge decomposition:

D
∗

0e
1
o = D

∗

0(D
∗

1D1e
1 + e1) = D

∗e1 = D
∗

0(D0p
0 + a1) = D

∗

0a
1 + D

∗

0D0p
0 .
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Using (3.6) to expand the matrices gives the equation

M
−1
0 D

T
0 M1a

1 + M
−1
0 D

T
0 M1D0p

0 = M
−1
0 D

T
0 M1e

1
o .

After left-multiplying by M0 we obtain the second equation in (4.6). It is clear that
(4.6) and the discrete eddy current equation (4.1) are equivalent in the sense that if
(a1, p0) is a solution of (4.6), then e1 = D0p

0 + a1 is a solution of (4.1).

Remark 4.3. Let [ra, rp]
T denote the residual vector of (4.6) and re - the residual

vector of (4.1). From the proof of Theorem 4.2 it follows that

[
ra

rp

]
=

[
I

D
T
0

]
[re] (4.8)

Remark 4.4. By left multiplying the first and second equations in (4.6) by M
−1
1

and M
−1
0 , respectively we obtain the equivalent problem




I + D
∗
1D1 + M

−1
1 M̃1D0D̃

∗
0 D0

D
∗

0 D
∗

0D0




[
a1

p0

]
=

[
e1

o

D
∗

0e
1
o

]
. (4.9)

The second diagonal block in (4.9) is the operator L0 which, according to Theorem
3.1, has trivial null-space. However, the first diagonal block of (4.9) contains the

Laplace-like operator D
∗
1D1 + M

−1
1 M̃1D0D̃

∗
0 which is neither L1 nor L̃1, and at this

point we cannot describe its null-space.

Remark 4.5. If we set M̃1 = M1, the term D
∗

1D1 + M
−1
1 M̃1D0D̃

∗

0 reduces to L1

and the reformulated system becomes

[
I + L1 D0

D
∗

0 L0

] [
a1

p0

]
=

[
e1

o

D
∗

0e
1
o

]
. (4.10)

Moreover, if D
∗
0e

1 = 0 the right hand side of the equation for p0 in (3.13) equals to
zero, and so p0 = 0. Therefore, e1 = D

∗

1b
2 = a1 and (4.10) reduces to (4.3).

The following theorem shows that the Laplace-like operator in (4.9) has the same

null-space as the proper Laplacians L1 and L̃0.

Theorem 4.6. Assume that Ω is contractible and let K1 = D
∗

1D1 +M
−1
1 M̃1D0D̃

∗

0.
Then kerK1 = {0}.

Proof. The assertion of the theorem is equivalent4 to the statement that the
variational equation: seek z1 ∈ C1

Γ such that

(
D1z

1, D1ẑ
1
)
C2 +

(
D̃

∗

0z
1, D̃∗

0ẑ
1
)

C0
= 0 ∀ẑ1 ∈ C1

Γ, (4.11)

has only the trivial solution z1 = 0.

4This follows from ker K1 = ker M1K1 and

(z1)T
M1K1z1 = (z1)T

“
D

T

1 M2D1 + ( eM1D0M
−1

0
)M0(M

−1

0
D

T

0
eM1)

”
z1 .
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Let z1 = D0p
0 + D̃

∗

1b
2 denote the discrete Hodge decomposition of z1 with respect

to the inner product induced by M̃1. We set ẑ1 = D0p
0 in (4.11), substitute z1 by its

decomposition and use the identities D1D0 = 0 and D̃
∗
0D̃

∗
1 = 0 to find that

0 =
(
D̃

∗

0D0p
0, D̃∗

0D0p
0
)

C0
= ‖L̃0p

0‖2C0 .

From Corollary 3.2 we know that ker L̃0 = {0} and so, it follows that p0 = 0. As a
result, (4.11) reduces to

(
D1D̃

∗

1b
2, D1ẑ

1
)

C2
= 0 ∀ẑ1 ∈ C1 .

After setting ẑ1 = D̃
∗

1b
2 in this equation we find that

0 =
(
D1D̃

∗

1b
2, D1D̃

∗

1b
2
)

C2
= ‖D1D̃

∗

1b
2‖2C2 .

Therefore, D1D̃
∗

1b
2 = 0 and because the complex (3.2) is exact, it follows that D̃

∗

1b
2 =

D0r
0 for some r0 ∈ C0

Γ. On the other hand, using that D̃
∗

0D̃
∗

1 = 0 gives the identity

D̃
∗

0D0r
0 = D̃

∗

0D̃
∗

1b
2 = 0 .

Another application of (3.14) from Corollary 3.2 yields that r0 = 0, and so, D̃
∗

1b
2 =

D0r
0 = 0. Therefore, z1 = D0p

0 + D̃
∗

1b
2 = 0.

Let us examine more closely the reformulated linear system (4.9). From the proofs
of Theorem 4.2 and Theorem 4.6 it is clear that their assertions remain valid for any
symmetric and positive definite matrices M0 and M̃1, i.e., regardless of their choice,
(4.6) is always equivalent to (4.1) and kerK1 = {0} on any contractible domain Ω.

Therefore, we can pick M0 and M̃1 that offer the most benefits for the AMG algorithm
without compromising the null-space properties and the accuracy of the reformulated
system. For instance, in the context of finite element analysis, this means that instead
of the consistent nodal mass matrix, which is sparse but has a dense inverse, we can
use a diagonal, lumped mass nodal matrix M0,l. This significantly decreases the cost
of applying the reformulated system. Furthermore, to improve the scaling of the
reformulated equations we choose to define M̃1 using a unit weight and M0 using
γ = µ. We recall that with this choice the terms in K1 and the associated Hodge
Laplacian (4.5) are well-balanced.

In §5.1 we will construct a specialized prolongator for the reformulated system
by using the near null-space of K1. This construction will take advantage of the fact
that not only does K1 have the same null-space as a proper Laplacian, but it also has
a near null-space defined by

φ1 = D0Nx φ2 = D0Ny φ3 = D0Nz, (4.12)

where Nx, Ny and Nz are vectors corresponding to the x, y and z nodal coordinates,
respectively. A near null-space vector, φk, has the property that (K1)I,.φk = 0 where
the subscript I, . takes all matrix rows that are a graph distance of four or more
from the boundary. This follows from the fact that D1D0 = 0 and that D̃

∗

0D0 is a
linear nodal finite element approximation to uxx + uyy + uzz. The simple form of
this Laplacian (without varying PDE coefficients) is due to the unit weight matrix

associated with M̃1. Since the approximation is linear, it must annihilate all linear



12 BOCHEV, HU, SIEFERT, AND TUMINARO

functions away from the boundary. Analogous to a standard vector Laplacian, this
near null-space corresponds to constants in each of the component directions. In
particular, a gradient operator is applied to the functions x, y, and z. Further, this
near null-space does not rely on the properties of M0 and so a diagonal lumped mass
matrix can be used.

The use of a different inner product in the reformulation step is a key feature
of our approach that distinguishes it from other proposed techniques. For instance,
Bossavit [11] considers a transformation which, assuming that the initial data satisfies
D

∗
0e

1
o = 0 , yields the system

(DT
1 M2D1 + M1D0M0(1/µσ2)DT

0 M1 + M1)e
1 = M1e

1
o ,

where M0(1/µσ2) is a diagonal matrix defined by M0(1/µσ2)nn =
∫

ĉ0
1/µσ2. In this

formula, ĉ0 is the dual volume of the 0-cell c0 and n is the global number of that cell.
This problem is essentially the same as (4.3) which, according to Remark 4.5 can be

obtained from our reformulation approach, by setting M̃1 = M1.

However, this Laplacian reformulation, discounting the mass term, is affected by
changes (especially jumps) in the conductivity, σ. By using M̃1, independent of σ,
our approach avoids these difficulties. Moreover, our analysis shows that it is not
necessary to use dual volumes in the definition of M0. Virtually any mass lumping
procedure, in a consistent mass matrix will generate M

−1

0,l with the desired properties.

It is also instructive to compare our approach with the reformulate and then dis-
cretize method of [19]. Their reformulation begins with the Hodge decomposition of
the original electric field E = A+∇φ. Substitution into Maxwell’s equations leads to
a gauged system of equations that involves the operator ∇×µ−1∇×A−∇µ−1∇·A.
A weak formulation of this operator is well-posed on the space H(div)∩H(curl). This,
however, constitutes a problem if the discretization of this operator has to be accom-
plished on a single grid. Indeed, a finite dimensional subspace of H(div) ∩ H(curl)
must contain fields that are both tangentially and normally continuous. On a sin-
gle grid the only possible realization of such a field by, e.g., finite elements, is given
by nodal C0 elements. Such elements are clearly inappropriate for problems with
material discontinuities because their solutions may have only tangential of normal
continuity. As a result, the method of [19] relies on a staggered grid Yee-like scheme
[44]. Effectively, a staggered grid method is equivalent to a primal-dual grid dis-
cretization in which the divergence and the curl operators are discretized by stencils
on the primal and the dual grids, respectively.

In contrast, our approach starts with a curl-compatible discretization and then
builds a discrete Laplacian that is consistent with the chosen discrete field represen-
tation. In this way, the problem of dealing with discretization of H(div) ∩ H(curl)
is avoided, and the reformulation can be carried for any discrete problem that fits in
the framework of [6].

5. Multigrid solvers. We now combine reformulation and preconditioning to
develop a linear solver for the compatible discretization of the eddy current equations.
Specifically, consider the linear system

(DT
1 M2D1 + M1)e = b (5.1)
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arising from (4.1). Once again, ∆t = 1 to simplify the presentation and b is some
given right hand side. As discussed in §4.1, an equivalent 2× 2 block system




M1 + D
T
1 M2D1 + M̃1D0M

−1
0,l D

T
0 M̃1 M1D0

D
T
0 M1 D

T
0 M1D0




[
a1

p0

]
=

[
b

D
T
0 b

]
(5.2)

could alternatively be solved. While (5.1) is a smaller system, its nontrivial kernel
makes preconditioning difficult. Therefore, we use (5.2) within the preconditioner.

There are several possible block preconditioning strategies to approximate the
solution to (5.2). The approach considered in this paper focuses on developing AMG
methods for the (1,1) and (2,2) blocks separately. The diagonal blocks (K1 and
L0) are compatible discretizations of second order differential operators, and the off-
diagonal blocks are first order, so (5.2) is dominated by the diagonal blocks. The key
is that these diagonal blocks are Laplace-like. The (2,2) block of (5.2) is, in fact,
amenable to any number of standard AMG techniques for variable nodal Laplace
operators. Once constructed these AMG solvers can be combined in different ways
to precondition (5.2). For example, a Jacobi-like preconditioner would ignore off-
diagonal blocks and apply one AMG V-cycle to approximately invert the (1,1) block
and another to approximately invert the (2,2) block. Other preconditioners could be
based on methods like symmetric block Gauss-Seidel. One intriguing variant combines
prolongators for the (1,1) and (2,2) blocks into a composite prolongator. In this way
a V-cycle could be developed for the entire 2× 2 system where coupling between a1

and p0 is maintained on all levels.
Unfortunately, while applying AMG to the (2,2) block is trivial, it is somewhat

more complicated for the (1,1) block even though it is Laplace-like in nature. There
are two difficulties associated with AMG and the (1,1) block of (5.2). The first
is connected to the directionality of 1-cochain representations. In particular, each
degree of freedom (DOF) in C1 essentially corresponds to the tangent component
of the electric field along the edges in C1. When restricting or prolongating, this
directionality must somehow be taken into account. As a simple example, consider
a standard orthogonal mesh in two dimensions. Horizontal edges have information
about the field in the x direction while vertical edges have only information in the
y direction. Thus, interpolation to a horizontal (or vertical) edge should only use
information from coarse horizontal (or vertical) edges. Things are obviously more
complex on unstructured meshes where tangent components of the electric field are
not in general aligned with the coordinate axes. Unfortunately, such orientation issues
are not generally considered in most standard AMG methods.

A second difficulty associated with the (1,1) block is the term M̃1D0M
−1
0,l D

T
0 M̃1.

For a general unstructured mesh, this term has a sparsity pattern similar to A3 where
A represents the original curl-curl operator. Simply forming this operator is expensive.
As an example, consider a point disturbance at a single edge. The rightmost M̃1

transfers this disturbance to all adjacent edges (distance-1 edges). D
T
0 sends the

disturbance to nodes. Since it is lumped, M
−1

0,l has no effect, but D0 transfers the
disturbance pattern to edges adjacent to the nodes. This includes edges that are a
distance-2 from the original edge. Finally, the leftmost M̃1 sends the disturbance as
far as edges which are a distance of three from the initial edge. For a two-dimensional
orthogonal mesh, the reformulated operator has the 31 edge stencil pattern shown in
Figure 5.1. In 3D, or on non-orthogonal meshes, the stencil is larger.

Of course a primary goal of the reformulation is that it should be possible to
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Fig. 5.1. The 31 edge stencil of (1,1) block of (5.2) for a 2D orthogonal mesh. The thick black
edge is the original edge and other solid edges represent the stencil.

leverage standard AMG solvers for Laplace-like operators. To address these concerns,
we propose an AMG technique for the (1,1) block which employs a somewhat special-
ized method at the finest level (i.e. for the first grid transfer), but allows subsequent
levels and transfers to be handled with any standard AMG method. To do this, the
edge element version of the (1,1) block must be converted to a more standard nodal
form on the coarse mesh5. This is accomplished by a special prolongator that not only
transfers solutions from a coarse to a fine resolution but also transfers solutions from a
nodal to an edge representation. The net effect of this special prolongator is that the
corresponding Galerkin projection of the (1,1) block will, in fact, yield a coarse op-
erator resembling a vector nodal Laplacian which is amenable to any standard AMG
method for further coarsening.

5.1. The specialized prolongator. For the specialized prolongator, we fol-
low a smoothed aggregation philosophy. Smoothed aggregation is a successful AMG
technique for solving second order elliptic systems. It is now available within several
solver packages (both open source and commercial) and is described in [42, 43]. The
basic idea is that a tentative (or simple) prolongator is first constructed and then
later improved. The tentative prolongator is typically defined using a basis for a near
null-space of dimension d. The near null-space corresponds to the true null-space
of the PDE operator, ignoring boundary conditions. That is, one can consider the
null-space of a modified PDE operator which usually consists of natural boundary
conditions. For a nodal vector Laplace operator the near null-space is of dimension
three, corresponding to a constant in each of the three coordinate directions.

In addition to a near null-space basis, the tentative prolongator requires a set of
aggregates. These aggregates must be disjoint and must cover all DOFs. Ideally, an
aggregate would include a root DOF and all of its neighbors, leading to aggregate
widths of three in each dimension in the orthogonal mesh case. Each vector in the
near null-space basis is then partitioned between aggregates to produce the tentative
prolongator, P̂ . For each aggregate, P̂ normally has d columns which are only nonzero
for DOFs within the aggregate. These d columns are often just the restriction of the
near null-space basis to the aggregates (though orthogonalization is sometimes used).

5It is important to recall that the (1,1) block is a Laplace-like operator compatible with 1-cochains
and so, concerns associated with nodal representations and the eddy current equations do not apply.
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By construction the tentative prolongator perfectly interpolates the near null-space.
While P̂ could be used in the AMG V-cycle, it is typically improved by applying
a single Jacobi iteration to the tentative prolongator. This improves the quality
of the interpolant, P , and creates overlap between some columns associated with
different aggregates. In a multilevel setting (e.g. O(log n) levels), the improvement of
the tentative prolongator is usually necessary to obtain convergence rates which are
independent of the number of mesh points, n.

To apply the smoothed aggregation idea to the (1,1) block, the near null-space
defined by (4.12) is used. We recall that this near null-space effectively corresponds to
a constant electric field in the three coordinate directions. As in standard smoothed
aggregation, aggregates must also be chosen. These aggregates are based on nodes
as nodal quantities are employed on coarse levels. There are several ways to obtain
aggregates corresponding to nodes. One possibility involves applying standard ag-
gregation techniques to a nodal matrix Anodal = D

T
0 M1(1/µ)D0, where M1(µ) uses

µ as the weight. This matrix captures the magnetic permeability in the (1,1) block.

Notice that because of the special mass matrix, M̃1, σ only appears in the lowest
order term of the (1,1) block and need not be considered when forming aggregates.
Once the aggregates are formed, the near null-space must be partitioned to construct
the tentative prolongator, denoted by P̂11, to emphasize that it is applied to the
(1,1) block. It is important to notice that the near null-space is defined over edges
while the aggregates are defined over nodes. Two cases must be considered when
partitioning the near null-space: edges where endpoints lie within the same aggregate
and edges where endpoints lie within different aggregates. In the former case, near
null-space components are assigned to the corresponding aggregate columns. In the
later case, there is some choice. In this paper we split equally the near null-space
components between columns of the two different aggregates. Large variations in
permeability may warrant a more careful choice of the near null-space partitioning.
The detailed construction of the special prolongator for the (1,1) block is given in
Algorithm 1, where N = {ni} is the set of nodes and E = {ei} is the set of edges with

ej = (nl, nm) for some pair of nodes nl and nm. Notice that the net effect of P̂11 is to
interpolate coarse nodal quantities to fine edge-oriented quantities. Specifically, each
aggregate corresponds to a coarse node and each DOF associated with a coarse node
corresponds to a different near null-space component (or different coordinate direc-
tion). Figure 5.2(a) illustrates the support of three prolongator basis functions for

Algorithm 1: P̂11=Coarse Node to Edge Prolongator(N, E, Anodal, {φi})

{Ai} ←Aggregate(Anodal).1:

Let d = |{φi}|, the number of near null-space vectors.2:

For k = 1, ..., d define3:

P̂11(i, (j − 1)d + k) =





φk(i) if nl ∈ Aj , nm ∈ Aj with ei = (nl, nm)
1

2
φk(i) if nl ∈ Aj , nm /∈ Aj with ei = (nl, nm)

1

2
φk(i) if nl /∈ Aj , nm ∈ Aj with ei = (nl, nm)

0 otherwise.

Aj is the jth aggregate and φk(i) is the ith component of the kth near
null-space vector defined by (4.12).



16 BOCHEV, HU, SIEFERT, AND TUMINARO

2

4

6

8

12345678

0

0.2

0.4

0.6

0.8

1

yx

Fu
nc

tio
n 

Va
lu

e

(a) The x-components of three coarse basis
functions as generated by prolongator from
Algorithm 1.
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Fig. 5.2. 2D model problem with orthogonal structured mesh.

a two-dimensional structured mesh with 3× 3 nodal aggregates. Figure 5.2(b) gives

an interior coarse stencil corresponding to the projection of the (1,1) block using P̂11.
For the figure, a two-dimensional structured mesh is used in conjunction with 3 × 3
nodal aggregates, σ = 0 and µ = 1. Inspecting the coarse stencil, it is clear that this
resembles a standard 9-point discretization of a slightly anisotropic Poisson operator.
This anisotropy is due to the slightly anisotropic nature of the coarse basis functions.
Other more complex choices for aggregates and near null-space partitioning would
avoid this anisotropy.

P̂11 has several important features that merit discussion. The first is that the
number of nonzeros in the resulting coarse discretization stencil is quite reasonable.
For example, 9-point stencils (as in Figure 5.2(b)) arise when a logically rectangu-
lar two-dimensional mesh is covered by 3 × 3 aggregates. This is in contrast with
M̃1D0M

−1

0,l D
T
0 M̃1 which has significantly more nonzeros per matrix row. For this rea-

son we omit the standard prolongator smoothing step normally used to improve the
prolongator. That is, we take P11 = P̂11 to limit the size of the coarse stencil. It is
important to note that this step is only omitted for the special prolongator used to
transfer between the first coarse mesh and the finest mesh. A completely standard
AMG method is applied to the resulting coarse operator. If, for example, the standard
AMG method is smoothed aggregation, then it would apply the standard prolongator
smoothing step to construct the coarser level prolongators. The significance of this
is that while prolongator smoothing is important in a multilevel setting, it is not es-
sential in a two-level setting. In particular, it is well-known that mesh independent
convergence rates can be obtained when the tentative prolongator is used on elliptic
problems within two-level domain decomposition schemes (see [27, 31, 37, 38, 39]).
Thus, it is reasonable to expect that omitting the prolongator smoothing for only
one grid transfer in the hierarchy will also give mesh independent convergence rates.
Additionally, it is important to keep in mind that our prolongator has a degree of
smoothness and overlapping support that is not present in the standard smoothed
aggregation tentative prolongator. This gives a further expectation that mesh inde-
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pendent convergence rates can be obtained. Numerical results will be presented which
support this expectation. Finally, it should be noted that omitting the prolongator
smoothing step avoids the need to explicitly form M̃1D0M

−1
0,l D

T
0 M̃1 in the coarsening

process. Specifically, the Galerkin coarse discretization is given by

AH = P T
11A11P11

where A11 is the (1,1) block of (5.2) and AH refers to its projection on a coarse

mesh. Projection of the M̃1D0M
−1

0,l D
T
0 M̃1 term can be done efficiently by first forming

Z = M̃1P11 followed by the computation ZT
M

−1

0,l Z. Notice that if µ does not vary

over time, then ZT
M

−1
0,l Z needs to be done only once over the entire time sequence.

Further, computation of Z only needs to be done once if µ varies but the aggregation
is held fixed (e.g. the variation in µ does not warrant changing aggregates).

Remark 5.1. Algorithm 1 has similarities to methods in [4, 23] which are used to
interpolate scalar edge quantities to vector nodal quantities. The primary difference is
that their interpolation, Π, translates between nodal and edge spaces on the fine mesh.
In fact, our approach can be viewed as a composition of Π with a nodal prolongator.
The nodal prolongator transfers coarse nodal quantities to fine nodal quantities which
are then converted to edge quantities via Π. What is interesting is that depending on
boundary conditions, it is possible that the dimension of Π’s domain is larger than
the dimension of its range. In this case ΠT AfΠ would be singular. Fortunately,
this singularity does not arise with P11 as the nodal coarsening guarantees that the
dimension of P11’s domain is smaller than its range.

5.2. Relaxation. While M̃1D0M
−1
0,l D

T
0 M̃1 is not explicitly needed during coars-

ening, the AMG relaxation must also avoid forming M̃1D0M
−1
0,l D

T
0 M̃1. One possibility

is to use Chebyshev relaxation methods for the (1,1) block [36, Algorithm 2.1]. These
techniques make effective smoothers, work well on parallel computers, and are quite
competitive with Gauss-Seidel methods even on traditional single CPU machines [1].
More importantly, they can be completely implemented using matrix-vector products
and thus avoid the explicit formation of M̃1D0M

−1

0,l D
T
0 M̃1. Of course, the matrix-

vector product is costly due to the individual matrix-vector products (e.g. with M̃1

and D
T
0 ) that now must be carried out.

An alternative idea that we advocate is to completely omit the M̃1D0M
−1
0,l D

T
0 M̃1

term during the fine grid (1,1) relaxation! To understand this, consider the following
hybrid scheme. Suppose that the conjugate gradient iteration is actually applied to
(5.1) and that (5.2) is only used within the preconditioner. To do this, it is necessary to
convert residuals of (5.1) to right hand sides of (5.2) within the preconditioner. This is
done by applying [I D0]

T to the residual (see Remark 4.3). Approximate solutions
to (5.2) are then converted back to a form suitable for (5.1) via D0p

0 + a1. While it
might seem that there is no advantage, we have noticed that convergence rates are in
fact better for the hybrid scheme as opposed to applying conjugate gradient directly
to (5.2). This may be due to the fact that (5.1) is a smaller linear system (though we
have not studied this issue). Further, when conjugate gradient is applied to (5.1), the

matrix-vector product needed by conjugate gradient does not involve M̃1D0M
−1

0,l D
T
0 M̃1

and so it is less expensive. That is, utilization of (5.1) within conjugate gradient avoids
one application of the (1,1) block.

Let us take the above idea one step further by considering the following hybrid
preconditioner:
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ũ ← FineRelaxation(DT
1 M2D1 + M1, D0, 0, r)

r2×2 ← [I D0]
T (r − (DT

1 M2D1 + M1)ũ)

(a, p) ← Solve(A2×2, r2×2)

ũ ← ũ + a + D0p

ũ ← FineRelaxation(DT
1 M2D1 + M1, D0ũ, r)

where A2×2 is the matrix in (5.2), Solve() represents a single block AMG applica-
tion to A2×2, and FineRelaxation() is a method that smooths errors (including those
within the curl-curl null-space) associated with solving (5.1). Algorithm 2 illustrates
such a smoother proposed by Hiptmair that combines standard smoothing of the
original equations with standard smoothing of the equations projected to the near
null-space [22]. The key is that the error is smooth after this initial relaxation. Since

Algorithm 2: ũ = FineRelaxation(A, D0, ũ, b)

ũ← StandardRelaxation(A, ũ, b)1:

c← StandardRelaxation(DT
0 AD0, 0, DT

0 (b−Aũ)2:

ũ← ũ + D0c3:

ũ← StandardRelaxation(A, ũ, b)4:

the error is smooth, fine grid relaxation may be omitted from the AMG V-cycles
in Solve(), as (5.1) and (5.2) are equivalent. This implies that M̃1D0M

−1
0,l D

T
0 M̃1 is

completely avoided during fine grid relaxation. It is important to understand that
M̃1D0M

−1

0,l D
T
0 M̃1 cannot be omitted during the Galerkin coarsening process. This

term avoids the large null-space associated with the curl-curl operator on coarse grids.
If not retained, the approximate inversion of the coarse operator would amplify modes
in this large null-space. It is also important to realize that the somewhat specialized
smoother is only needed on the finest level. A standard smoother can be used on
coarse levels within the AMG procedures for the (1,1) and (2,2) blocks. Finally, it
is interesting to note that an additive version of the Hiptmair smoother may also be
considered for FineRelaxation(). In this case, the hybrid method is almost identical to
the non-hybrid method where standard smoothing is used on the fine grid (1,1) and

(2,2) blocks with the exception that M̃1D0M
−1
0,l D

T
0 M̃1 is omitted during the (1,1) fine

grid relaxation.

5.3. AMG algorithm preconditioner. We now give the entire AMG-based
preconditioner for the block Jacobi version in Algorithm 3. PreFineRelaxation() is
identical to Algorithm 2 except step one is omitted. This also avoids the resid-
ual calculation in step two as the initial guess to a preconditioner is always zero.
PostFineRelaxation() is identical to Algorithm 2 except step four is omitted to keep
the preconditioner symmetric when StandardRelaxation() employs a symmetric algo-
rithm. Of course, residual calculations can also be avoided using additive forms of
this smoother. It is important to notice that the only non-standard component in
this AMG procedure is an algorithm to build the special interpolation operator, P11.
As already noted, this operator can be constructed using a standard AMG nodal ag-
gregation method. The only new capabilities are the near null-space formation and a
scheme for partitioning the near null-space over the aggregates. Constructing the near
null-space amounts to applying D0 to the nodal coordinates; see (4.12) Partitioning
the near null-space over aggregates is accomplished by Algorithm 1.
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Algorithm 3: ũ =Block Preconditioner(r)

% Setup Phase

P11 = Coarse Node to Edge Interpolant(N, E, Anodal, {φi})

Form AH ← P T
11(D

T
1 M2D1 + M1 + M̃1D0M

−1

0,l D
T
0 M̃1)P11 efficiently

Standard AMG Setup(AH)
Standard AMG Setup(DT

0 M1D0)
——————————————————————————————

% Solve Phase

ũ← PreFineRelaxation(DT
1 M2D1 + M1, D0, 0, r)

r̃ ← r − (DT
1 M2D1 + M1)ũ

% Perform V-cycles skipping fine grid smoothing

a← Standard AMG Vcycle(AH , 0, P T
11r̃) % Skip fine smoothing

p← Standard AMG Vcycle(DT
0 M1D0, 0, DT

0 r̃) % Skip fine smoothing

ũ ← ũ + P11a + D0p
ũ ← PostFineRelaxation(DT

1 M2D1 + M1, D0, ũ, r)

It is interesting to notice that this procedure shares characteristics with the the
multigrid methods given in [4, 23]. These methods essentially involve two AMG
solves: one corresponding to the (2,2) block and the other corresponding to a nodal
vector Laplacian. In addition, some relaxation must be performed on the original fine
mesh system. The primary difference between these methods and Algorithm 3 is that
the inversion of a vector Laplacian is replaced with the inversion of AH which is a
vector Laplace-like operator defined on a nodal coarse mesh (though our Laplace-like
operator does not reside in a product of C0 spaces). The advantage of our scheme is
that it is completely algebraic and so there is no need to form a vector Laplacian on
the fine mesh. There is also an exact relationship between the Laplace-like operator
and the original eddy current system (as opposed to an asymptotic relationship).
This exact relationship ensures that proper boundary conditions are associated with
the Laplace-like operator. It is interesting to note that when µ is highly variable,
the underlying PDE associated with our (1,1) block is slightly different from that in
[4, 23]. Their schemes, however, do have an advantage in that they do not need to
create a special prolongator operator. Additionally, the theoretical justification for
the two methods is completely different.

6. Experiments and results. The proposed solver was implemented using CG
in MATLAB. The first level and the first grid transfer of Algorithm 3 is also imple-
mented in MATLAB. The coarse solver for the (1,1) and the solver for the (2,2) block
use ML’s smoothed aggregation solver, through the mlmex MATLAB interface [18].
A single V-cycle of AMG is used for both the (1,1) and (2,2) block, using the efficient
variant of Algorithm 2 (smoother) described in §5.3. Unless otherwise stated, we use
two steps of symmetric Gauss-Seidel sub-smoothing on both edges and nodes. The
relatively small size of our examples is due to the MATLAB implementation, not any
inherent limits in the solver.

For all experiments the CG tolerance is 1×10−10. For each CG run, the iteration
count, estimated overall convergence rate and the multigrid operator complexity of
the preconditioner for the (1,1) block are reported. Specifically, this complexity is
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2 SGS Steps 3 SGS Steps 4 SGS Steps
Refinement cmplx Its. CR Its. CR Its. CR

5.00e-01 1.23 14 0.20 13 0.18 12 0.16
2.50e-01 1.25 16 0.25 15 0.23 14 0.21
1.25e-01 1.24 17 0.28 16 0.25 15 0.23
6.25e-02 1.26 19 0.31 17 0.27 16 0.26

Table 6.1

Operator complexity (cmplx), number of iterations (Its) and convergence rate (CR) for CG-
accelerated AMG on the 2D trianglular mesh problem with constant σ, using Algorithm 3. The size
of the problem and the number of SGS smoothing steps are varied.

σ2

Grid cmplx 100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

92 1.07 7 7 7 7 7 7 7 7 7
272 1.20 12 12 12 12 12 12 12 12 12
812 1.25 15 16 16 16 16 16 16 16 16

2432 1.27 17 18 18 18 18 18 18 18 18

Table 6.2

Operator complexity (cmplx) and iteration counts for CG-accelerated AMG on the 2D quad
mesh problem, using Algorithm 3. The size of the problem and the internal square conductivity σ2

are varied. The conductivity of the external region is σ1 = 1.

defined as

cmplx =

∑NLevels

i=1
nnz(Ai)

nnz(A1)

where nnz(Ai) gives the number of nonzeros for the discretization matrix associated
with the ith level in the AMG method for the (1,1) block. For the finest mesh, i = 1,

and nnz(A1) does not include nonzeros that are caused solely by the M̃1D0M
−1

0,l D
T
0 M̃1

term. The zero initial guess is used, and the right hand side is chosen to be the vector
of ones times the matrix. Unless otherwise stated, µ = 1.

6.1. 2D triangular mesh. A two-dimensional unit square domain is considered
with Neumann boundary conditions on the top and left and Dirichlet boundary con-
ditions on the bottom and right. The domain is meshed using non-uniform triangles
of approximately equal size. Four problems are considered corresponding to a mesh
refinement of .5 (with 1,354 edges), .25 (with 5,021 edges), .125 (with 20,116 edges)
and .0625 (with 79,874 edges). Table 6.1 reports the convergence results. We note
that the convergence rates remain small over a range of mesh sizes though there is
some mild deterioration as the mesh is refined. The multigrid operator complexity of
the (1,1) block is also acceptable and seems relatively insensitive to mesh refinement.

6.2. 2D quads with variable conductivity. A two-dimensional unit square
domain with homogeneous Neumann boundaries conditions is considered. The con-
ductivity is varied from σ1 = 1 to σ1 = 10−8 within an inner square of size 1/3× 1/3
centered around the domain center. Outside of this inner square the conductivity is
σ = 1. Table 6.2 reports iteration counts for this system. Note that the iteration
counts are practically insensitive to jumps in the conductivity of up to eight orders of
magnitude.
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µ2

Grid cmplx 100 10−1 10−2 10−3 101 102 103

92 1.07 7 7 7 7 7 8 9
272 1.34 12 12 13 12 12 13 13
812 1.24 15 18 19 20 19 21 21

2432 1.27 17 22 25 26 24 29 31

Table 6.3

Operator complexity (cmplx) and iteration counts for CG-accelerated AMG on the 2D quad
mesh problem, using Algorithm 3. The size of the problem and the internal square permeability µ2

are varied. The permeability of the external region is µ1 = 1.

2 SGS Steps 3 SGS Steps 4 SGS Steps
Refinement cmplx Its. CR Its. CR Its. CR

50x10x10 1.11 11 0.14 10 0.10 9 0.08
100x20x20 1.09 14 0.21 13 0.18 12 0.16

Table 6.4

Operator complexity (cmplx), number of iterations (Its) and convergence rate (CR) for CG-
accelerated AMG on the 3D bar problem with varying σ, using Algorithm 3. The size of the problem
and the number of SGS smoothing steps are varied.

6.3. 2D quads with variable permeability. We now consider the same do-
main as in §6.2, but we vary the permeability rather than the conductivity. The
permeability ranges from µ1 = 10−3 to µ1 = 103 within the inner square. Outside of
this inner square we have µ = 1. We set σ = 1 everywhere. Table 6.3 reports itera-
tion counts for this system. Note that the iteration counts are moderately sensitive
to jumps in the permeability. As noted earlier, a simple aggregtation algorithm and
a simple near null-space partitioning scheme is used on the finest mesh. This leads
to prolongator stencils that cross between the two regions and probably causes this
mild growth in iterations.

6.4. 3D bar. We consider an axially-aligned three dimensional bar-shaped re-
gion defined by 0 ≤ x ≤ 5, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1. Dirichlet boundary conditions
are applied to the y = 0 plane and Neumann boundary conditions are applied on all
other faces. Conductivity is defined as

σ(x, y, z) =





1. 0 ≤ x < 1

.5 1 ≤ x < 2

.1 2 ≤ x < 3

.05 3 ≤ x < 4

.01 4 ≤ x ≤ 5

The bar is meshed uniformly with either 50×10×10 elements or 100×20×20 elements,
yielding a system with 17,270 or 128,940 edge unknowns, respectively. Table 6.4
reports the convergence results. We note that convergence deteriorates modestly
with respect to grid refinement, and that the operator complexities of the (1,1) block
are reasonable.

7. Conclusions. We have proposed an algebraic reformulation of the eddy cur-
rent Maxwell’s equations and an AMG technique for solving the reformulated problem.
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The reformulation, which uses a discrete Hodge decomposition, replaces the discrete
eddy current equations by an equivalent 2 × 2 block linear system whose diagonal
blocks are discrete Hodge Laplace operators acting on 1-cochains and 0-cochains, re-
spectively. This reformulation preserves the discrete solution and is applicable to
a wide range of compatible methods on structured and unstructured grids, includ-
ing edge finite elements, mimetic finite differences, co-volume methods and Yee-like
schemes.

While our new AMG technique requires a specialized solver on the fine mesh, the
coarser meshes can be handled using standard methods. This enables us to capitalize
on existing technology for vector nodal Laplace-type solvers on the coarse levels. We
have also presented numerical results in both two and three dimension showing very
little sensitivity to jumps in the conductivity σ, moderate sensitivity to jumps in the
permeability µ, good scaling with increasing mesh size and good operator complexity.
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[42] P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed
aggregation, Numer. Math., 88 (2001), pp. 559–579.
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