
An E�cient Parallel Algorithmfor Matrix{Vector MultiplicationBruce Hendrickson 1, Robert Leland 2 and Steve Plimpton 3Sandia National LaboratoriesAlbuquerque, NM 87185Abstract.The multiplication of a vector by a matrix is the kernel operation in many algorithms used in scien-ti�c computation. A fast and e�cient parallel algorithm for this calculation is therefore desirable. Thispaper describes a parallel matrix{vector multiplication algorithm which is particularly well suited todense matrices or matrices with an irregular sparsity pattern. Such matrices can arise from discretizingpartial di�erential equations on irregular grids or from problems exhibiting nearly random connectiv-ity between data structures. The communication cost of the algorithm is independent of the matrixsparsity pattern and is shown to scale as O(n=pp+ log(p)) for an n� n matrix on p processors. Thealgorithm's performance is demonstrated by using it within the well known NAS conjugate gradientbenchmark. This resulted in the fastest run times achieved to date on both the 1024 node nCUBE 2and the 128 node Intel iPSC/860. Additional improvements to the algorithm which are possible whenintegrating it with the conjugate gradient algorithm are also discussed.Key words. matrix{vector multiplication, parallel computing, hypercube, conjugate gradientmethodAMS(MOS) subject classi�cation. 65Y05, 65F10Abbreviated title. Parallel Matrix{Vector Multiplication.This work was supported by the Applied Mathematical and Computer Sciences program, U.S.Department of Energy, O�ce of Energy Research, and was performed at Sandia National Laboratories,operated for the U.S. Department of Energy under contract No. DE-AC04-76DP00789.Appeared in Int. J. High Speed Comput. 7(1):73{88, 1995.1 Department 1422, email: bahendr@cs.sandia.gov2 Department 1424, email: rwlelan@cs.sandia.gov3 Department 1421, email: sjplimp@cs.sandia.gov1

1. Introduction. The multiplication of a vector by a matrix is the kernel computation in manylinear algebra algorithms, including, for example, the popular Krylov methods for solving linear andeigen systems. Recent improvements in these iterative methods and the increasing use of massivelyparallel computers motivate the development of fast and e�cient parallel algorithms for matrix{vectormultiplication. This paper describes one such algorithm. Sub{blocks of an order n matrix are assignedto each of p processors arranged logically in a 2{dimensional grid, and communication is performedwithin rows and columns of the grid among sub{groups of pp processors. The main advantage ofthis mapping is that the communication cost induced scales as O(n=pp + log(p)), independent of thesparsity pattern of the matrix.The algorithm we describe was developed in connection with research on e�cient methods oforganizing parallel many{body calculations [8]). We subsequently learned our matrix{vector multiplyor matvec algorithm is very similar to an algorithm described in [6]. We have, nevertheless, chosen topresent our algorithm here for two reasons. First, we improve upon the algorithm in [6] in several ways.Speci�cally, we discuss how to overlap communication and computation and thereby reduce the overallrun time. We also show how to map the sub{blocks of the matrix to processors in a novel way whichreduces the cost of the communication on parallel machines with hypercube architectures. Finally, weconsider the use of the algorithmwithin the iterative conjugate gradient solution method and show howa small amount of redundant computation can be used to further reduce the overall communicationcosts. The second reason for presenting our algorithm is that we believe its basic features are not wellappreciated by the parallel processing community, particularly its appropriateness for matrices withirregular sparsity. Our evidence for this is that even without the enhancements listed above our runtimes for the NAS conjugate gradient benchmark are faster than previously reported implementationsof the problem on several popular massively parallel machines [2].To put our algorithm in context, we note that it is an appropriate choice for any matvec applicationwhere the p sub{blocks of the matrix have a (nearly) equal number of non{zero elements. This isobviously true for dense matrices and in this case the computation cost of the algorithm scales as n2=p(which is optimal) and its communication costs are relatively small. For sparse matrix problems, theutility of our algorithm depends on whether or not the sparse matrix has structure. Typically suchstructure arises from the physical problem being modeled by the matrix equation. It manifests itself asthe ability to order the rows and columns to obtain a banded or nearly block{diagonalmatrix, where thediagonal blocks are about equally sized and the number of matrix elements not in the blocks is small.This structure can also be expressed in terms of the size of the separator of the graph describing thenon{zero structure of the matrix. On a parallel machine a structured sparse matrix can be partitionedamong processors so that communication costs in the matvec operation are minimized [7]; in practicethey often scale as O(n=p). For these matrices our algorithm is clearly not optimal. However, there areproblems (such as the NAS conjugate gradient benchmark) where the sparsity pattern is irregular, orrandom, or where the e�ort required to identify structure is not justi�ed. In these cases our algorithm isa practical alternative. The communication cost of the algorithm scales moderately well with increasingnumbers of processors and the matrix can be ordered easily so that each processor has roughly equal2

work of order m=p to perform, where m is the number of non{zeroes in the matrix.This remainder of the paper is structured as follows. In the next section we describe the matvecalgorithm and its communication primitives. We also discuss several enhancements to the basic al-gorithm and develop a performance model. In x3 we review the conjugate gradient algorithm, anddescribe an e�cient parallel implementation. In x4 we apply the resulting algorithm to the NAS con-jugate gradient benchmark to demonstrate its usefulness and present timings for the benchmark onseveral parallel machines. Finally, conclusions are drawn in x5.2. A parallel matrix{vector multiplication algorithm. Consider the parallel matrix{vectorproduct y = Ax where A is an n � n matrix and x and y are vectors of length n. The number ofprocessors in the parallel machine is denoted by p, and we assume for ease of exposition that n isevenly divisible by p and that p is an even power of 2. It is straightforward to relax these restrictions.Let A be decomposed into square blocks of size (n=pp)� (n=pp), each of which is assigned to oneof the p processors, as illustrated by Figure 1. We de�ne the Greek subscripts � and � running from 0to pp�1 to index the row and column ordering of the blocks. The (�; �) block of A is denoted by A��and owned by processor P��. The input vector x and product vector y are also conceptually dividedinto pp pieces, each of length n=pp, indexed by � and � respectively. With this block decomposition,processor P�� must know x� in order to compute its contribution to y�. This contribution is a vectorof length n=pp which we denote by z��. Thus z�� = A��x� , and y� =P� z�� where the sum is overall the processors sharing row � of the matrix.y� = A�� x�Fig. 1. Matrix decomposition to processors for matrix product y = Ax.2.1. Communication primitives. We now present two important communication primitivesused in the matvec algorithm. The �rst is an e�cient method for summing elements of a vector acrossmultiple processors. In general, if p processors each own a copy of a vector of length n, this primitivewill sum the vector copies so that each processor �nishes with n=p elements. Each element is the sum3

of the corresponding elements across all p processors. This operation is called a a recursive halving [12]or a fold [6].In the matvec algorithm we use this communication operation to sum contributions to y that arecomputed by the processors that share a given row � of A. In this case, the fold operation occursbetween a group of pp processors (see Fig. 2). Each processor begins the operation with a vector z��of length n=pp. The operation requires log2(pp) stages, halving the length of the vectors involved ateach stage. Within each stage, a processor �rst divides its vector z into two equal sized subvectors,z1 and z2, as indicated by the notation (z1jz2). One of these subvectors is sent to another processorP , which also sends back a subvector w. The received subvector is summed element{by{element withthe retained subvector to �nish the stage. At the conclusion of the fold, each processor has a unique,n=p-length portion of the fully summed vector. We denote this subvector with Greek superscripts,hence P�� owns portion y��. The fold operation requires no redundant
oating point operations, andthe total number of values sent and received by each processor is n=pp� n=p.Processor P�� knows z�� 2 IRn=ppz := z��For i = 0; : : : ; log2(pp) � 1(z1jz2) = zP := P�� with ith bit of �
ippedIf bit i of � is 1 ThenSend z1 to processor PReceive w from processor Pz := z2 +wElseSend z2 to processor PReceive w from processor Pz := z1 +wy�� := zProcessor P�� now owns y�� 2 IRn=pFig. 2. The fold operation for processor P��.The second communication primitive is essentially the inverse of the fold operation. If each of pprocessors knows n=p values, the �nal result of the operation is that all p processors know all n values.This is called a recursive doubling [12] or expand [6]. In the matvec algorithm we use this primitiveto exchange information among the pp processors sharing each column of the A matrix. The expandoperation is outlined in Figure 3 for communication between processors with the same column index �.Each processor in the column begins with a subvector y�� of length n=p. At each step in the operationthe processor sends all the values it knows to another processor P and receives that processor's values.These two subvectors are concatenated in the correct order, as indicated by the \j" notation. As with4

the fold operation, only a logarithmic number of stages are required, and the total number of valuessent and received by each processor is n=pp � n=p.Processor P�� knows y�� 2 IRn=pz := y��For i = log2(pp) � 1; : : : ; 0P := P�� with ith bit of �
ippedSend z to processor PReceive w from processor PIf bit i of � is 1 Thenz := wjzElsez := zjwy� := zProcessor P�� now knows y� 2 IRn=ppFig. 3. The expand operation for processor P��.The optimal implementation of the fold and expand operations depends on the machine topologyand various hardware considerations, e.g. the availability of multiport communication. There are,however, e�cient implementations on most architectures. On hypercubes, for example, these operationscan be implemented using only nearest neighbor communication if the blocks in each row and columnof the matrix are owned by a subcube with pp processors. On meshes, if the blocks of the matrix aremapped in the natural way to a square grid of processors, then all the fold and expand communicationis within rows or columns of the grid and the operations can be implemented e�ciently [14].2.2. Basic Algorithm. With the communication primitives of Figures 2 and 3 and the matrixdecomposition to processors of Figure 1 we can now describe the basic algorithm for performing y = Ax.We note that most applications using matvec operations involve repeated matrix{vector products ofthe form yi = Axi where the the new iterate, xi+1, is generally some simple function of the productvector yi. To sustain the iteration on a parallel computer, xi+1 should therefore be distributed amongprocessors in the same fashion as the previous iterate xi. Hence, a good matvec routine will return a yiwith the same distribution as xi so that xi+1 can be constructed with a minimum of data movement.Our algorithm respects this distribution requirement.The matvec algorithm is outlined in Figure 4 and begins with each processor knowing its matrixblock A�� and the subvector x� corresponding to its column position. In step (1), each processorperforms a local matrix{vector multiplication using this data. In step (2) the resulting values aresummed across each row of processors using the fold operation, after which each processor owns n=pof the values of y. Unfortunately, the values owned by processor P�� are a subvector of y�, whereas toperform the next matvec, P�� must know all the values of y� . This is accomplished in steps (3) and(4). In step (3), each processor exchanges its n=p values of y with the processor owning the transpose5

block of the matrix. After the transposition, each of the processors in column � owns the subvectory�� of length n=p which is a subvector of y� . In step (4), the pp processors in column � perform anexpand to share these values; the result is that each processor knows all n=pp values of y� as requiredto create the new iterate xi+1. We note that at this level of detail, our matvec algorithm is identicalto the one described in [6] for dense matrices. In the next three subsections, we discuss the speci�csof steps (1), (2), and (3) which result in a more e�cient overall algorithm.Processor P�� owns A�� and x�(1) Compute z�� = A��x�(2) Fold z�� within rows to form y��(3) Transpose the y��, i.e.a) Send y�� to P��b) Receive y�� from P��(4) Expand y�� within columns to form y�Fig. 4. Parallel matrix{vector multiplication algorithm for processor P��.2.3. Transposition on parallel computers. As discussed in subsection 2.1, the expand andfold primitives used in the matvec algorithm are most e�cient on a parallel computer if rows andcolumns of the matrix are mapped to subsets of processors that allow for fast communication. On ahypercube a natural subset is a subcube; on a 2{D mesh it is rows or columns. Unfortunately, such amapping can make the transpose operation in the matvec algorithm (step 3) ine�cient since it requirescommunication between processors that are architecturally distant. Modern parallel computers usecut{through, routing so that a single message can be transmitted between non{adjacent processors innearly the same time as if it were sent between adjacent processors. Nevertheless, if multiple messagesare simultaneously trying to use the same wire, all but one of them must be delayed. Hence machineswith cut{through routing can still su�er from serious message congestion.On a hypercube, the scheme for routing a message is usually to compare the bit addresses of thesending and receiving processors and
ip the bits in a �xed order (transmitting along the correspondingchannel) until the two addresses agree. On the nCUBE 2 and Intel iPSC/860 hypercubes, the orderof comparisons is from lowest bit to highest, a procedure known as dimension order routing. Thus amessage from processor 1001 to processor 0100 will route from 1001 to 1000 to 1100 to 0100. The usualscheme of assigning matrix blocks to processors uses low order bits to encode the column number andthe high order bits to encode the row number. Unfortunately, dimension order routing on this mappinginduces congestion during the transpose operation since messages from all the pp processors in a rowroute through the diagonal processor. A similar bottleneck occurs with mesh architectures wherethe usual routing scheme is to move within a row before moving within a column. Fortunately, themessages being transposed in our algorithm are shorter than those in the fold and expand operationsby a factor of pp. So even if congestion delays the transpose messages by a factor of pp, the overallcommunication scaling of the algorithm will not be a�ected.6

On a hypercube, a di�erent mapping of matrix blocks to processors can avoid transpose congestionaltogether. With this mapping we still have optimal nearest{neighbor communication in the fold andexpand operations, but now the transpose operation is as fast as sending and receiving a single messageof length n=p. Consider a d{dimensional hypercube where the address of each processor is a d{bitstring. For simplicity we assume that d is even. The row block number � is a d=2{bit string, as is thecolumn block number �. For fast fold and expand operations, we require that the processors in eachrow and column form a subcube. This is assured if any set of d=2 bits in the d{bit processor addressencode the block row number and the other d=2 bits encode the block column number. Now considera mapping where the bits of the block row and block column indices of the matrix are interleaved inthe processor address. For a 64{processor hypercube (with 3{bit row and column addresses for the 8x8blocks of the matrix) this means the 6{bit processor address would be r2c2r1c1r0c0 where the threebits r2r1r0 encode the block row index and c2c1c0 encodes the block column index. In this mappingeach row of blocks and column of blocks of the matrix still resides on a subcube of the hypercube, sothe expand and fold operations can be performed optimally. However, the transpose operation is nowcontention{free as demonstrated by the following theorem. This result was discovered independentlyby Johnsson and Ho [9], and generalized by Boppana and Raghavendra [5].Theorem 2.1.Consider a hypercube using dimension order routing. If we map processors to elements of anarray in such a way that the bit{representations of a processor's row number and column number areinterleaved in the processor's bit{address, the wires used when each processor sends a message to theprocessor in the transpose location in the array are disjoint.Proof.Consider a processor P with bit{address rbcbrb�1cb�1 � � �r0c0, where the row number is encodedwith rb � � �r0, and the column number with cb � � �c0. The processor P T in the transpose array lo-cation will have with bit{address cbrbcb�1rb�1 � � �c0r0. Under dimension order routing, a message istransmitted in as many stages as there are bits,
ipping bits in order from right to left to generatea sequence of intermediate patterns. After each stage, the message will have been routed to the in-termediate processor denoted by the current intermediate bit pattern. The wires used in routing themessage from P to P T are those that connect two processors whose patterns occur consecutively in thesequence of intermediate patterns. After 2k stages, the intermediate processor will have the patternrbcb � � �rkckck�1rk�1 � � � c0r0. The bits of this intermediate processor are a simple permutation of theoriginal bits of P in which the lowest k pairs of bits have been swapped. Also, after 2k� 1 stages, thevalues in the bit positions 2k and 2k � 1 are equal.Now consider another processor P 0 6= P , and assume that the message being routed from P 0 toP 0T uses the same wire employed in step i of the transmission from P to P T . Denote the two processorsconnected by this wire P1 and P2. Since they di�er in bit position i, P1 and P2 can only be encounteredconsecutively in the transition between stages i� 1 and i of the routing algorithm. Either i� 1 or i iseven, so a simple permutation of pairs of bits of P must generate either P1 or P2; say P�. Similarly,the same permutation applied to P 0 must also yield either P1 or P2; say P 0�. If P� = P 0� then P = P 07

which is a contradiction. Otherwise, both P1 and P2 must appear after an odd number of stages in oneof the routing sequences. If i is odd then bits i and i+ 1 of P must be equal, and if i is even then bitsi and i� 1 of P are equal. In either case, P1 = P2 which again implies the contradiction that P = P 0.We note as a corollary that although the proof assumes a routing scheme where bits are
ippedin order from lowest to highest, a similar contention{free mapping is possible for any �xed routingscheme as long as row and column bits are changed alternately.2.4. Overlapping computation and communication. The algorithm in Figure 4 has theshortcoming that once a processor has sent a message in the fold or expand operations, it is idle untilthe message from its neighbor arrives. This can be alleviated in the fold operation in step (2) of thealgorithm by interleaving communication with computation from step (1). Rather than computing allthe elements of z�� before beginning the fold operation, we should compute just those that are aboutto be sent. Then whichever values will be sent in the next pass through the fold loop get computedbetween the send and receive operations in the current pass. In the �nal pass, the values that theprocessor will keep are computed. In this way, the total run time is reduced on each pass through thefold loop by the minimum of the message transmission time and the time to compute the next set ofelements of z��.2.5. Balancing the computational load. The discussion above has concentrated on the com-munication requirements of our algorithm, but an e�cient algorithm must also ensure that the com-putational load is well balanced across the processors. For our algorithm, this requires balancing thecomputations within each local matvec. If the region of the matrix owned by a processor has m0 nonze-ros, the number of
oating point operations (
ops) required for the local matvec is 2m0�n=pp. Thesewill be balanced if m0 � m=p for each processor, where m is the total number of nonzero elements inthe matrix. For dense matrices or random matrices in which m� n, the load is likely to be balanced.However, as discussed in the introduction, for matrices with some structure it may not be. For theseproblems, Ogielski and Aiello have shown that randomly permuting the rows and columns gives goodbalance with high probability [13]. A random permutation has the additional advantage that zerovalues encountered when summing vectors in the fold operation are likely to be distributed randomlyamong the processors.Most matrices used in real applications have nonzero diagonal elements. We have found that whenthis is the case, it may be advantageous to force an even distribution of these among processors and torandomlymap the remaining elements. This can be accomplished by �rst applying a random symmetricpermutation to the matrix. This preserves the diagonal while moving the o�-diagonal elements. Thediagonal can now be mapped to processors to match the distribution of the y�� subsegment that eachprocessor owns. The contribution of the diagonal elements can then be computed in between the sendand receive operations in the transpose communication, saving either the transpose transmission timeor the diagonal computation time, whichever is smaller.8

2.6. Complexity model. The matvec algorithmwith the enhancements described above can beimplemented to require the minimal 2m�n
ops to perform a matrix{vector multiplication, where m isthe number of nonzeros in the matrix. Some of these
ops will occur in step (1) during the calculationof the local matvecs, and the rest in step (2) during the fold summations. We make no assumptionsabout the data structure used on each processor to compute its local matrix{vector product. Thisallows for a local matvec optimized for a particular machine. If we assume the computational load isbalanced by using the techniques described in x2.5, the time to execute these
oating point operationsshould be very nearly (2m � n)T
op=p, where T
op is the time required for a single
oating pointoperation.In steps (2), (3), and (4), the algorithm requires log2(p) + 1 read/write pairs for each processor,and a total communication volume of n(2pp� 1)
oating point numbers. Accounting for the naturalparallelism in the communication operations, the e�ective communication volume is n(2pp � 1)=p.Unless the matrix is very sparse, the computational time required to form the local matvec will besu�cient to hide the transmission time in the fold operation, as discussed in x2.4. We will assumethat this is the case. Furthermore, we will assume that the transpose transmission time can be hiddenwith computations involving the matrix diagonal, as described in x2.5. The e�ective communicationvolume therefore reduces to n(pp� 1)=p. The total run time, Ttotal can now be expressed asTtotal = 2m� np T
op + (log2(p) + 1)(Tsend + Treceive) + n(pp� 1)p Ttransmit;(1)where T
op is the time to execute a
oating point operation, Tsend and Treceive are the times to initiate asend and receive operation respectively, and Ttransmit is the transmission time per
oating point value.This model will be most accurate if message contention is insigni�cant, as it is with the mapping forhypercubes described in x2.3.3. The Conjugate Gradient algorithm. To examine the e�ciency of our parallel matrix{vector multiplication algorithm, we used it as the kernel of a conjugate gradient (CG) solver. Aversion of the CG algorithm for solving the linear system Ax = b is depicted in Figure 5. There area number of variants of the basic CG method; the one presented here is a slightly modi�ed version ofthe algorithm given in the NAS benchmark [1, 3] discussed below. In addition to the matrix{vectormultiplication, the inner loop of the CG algorithm requires three vector updates of x, r and p, as wellas two inner products to form
 and �0.An e�cient parallel implementation of the CG algorithm should divide the workload evenly amongprocessors while keeping the cost of communication small. Unfortunately, these goals are in con
ictbecause when the vector updates are distributed, the inner product calculations require communicationamong all the processors. In addition, if the algorithm in Figure 5 is implemented in parallel, eachprocessor must know the value of � before it can update r to compute �0 and hence �. The calculationof
 = pT y, the distribution of
, and the calculation of �0 = rT r can actually be condensed into twoglobal operations because the �rst two operations can be accomplished simultaneously with a binaryexchange algorithm. However these global operations are still very costly. One way to reduce the9

x := 0r := bp := b� := rT rFor i=1,: : :y := Ap
 := pTy� := �=
x := x+ �pr := r � �y�0 := rT r� := �0=�� := �0p := r + �pFig. 5. A conjugate gradient algorithm.communication load of the algorithm is to use an algebraically equivalent formulation suggested butVan Rosendale [15]. Instead of updating r and then calculating rT r, the modi�ed algorithm exploitsthe identity rTi+1ri+1 = (ri � �y)T (ri � �y) = rTi ri � 2�yT ri + �2yT y. The values of
, � and canbe summed with a single global communication, essentially halving the communication time requiredoutside the matvec routine. In exchange for this communication reduction, there is a net increase ofone inner product calculation since � = yT r and = yT y must now be computed, but �0 = rT r neednot be calculated explicitly. Since the vectors are distributed across all the processors, this requires anadditional 2n=p
oating point operations by each processor in order to avoid a global communication.Whether this is a net gain depends upon the relative sizes of n and p, as well as the cost of
ops andcommunication on a particular machine, but since communication is typically much more expensiveper unit than computation, the modi�ed algorithm should generally be faster. For the nCUBE 2, oneof the machines used in this study, we estimate that this recasting of the algorithm is worthwhile whenn � 5� 105.This restructuring of the CG algorithm can in principle be carried further to hide more of thecommunication cost of the linear solve. That is, by repeatedly substituting for the residual and searchvectors r and p we can express the current values of these vectors in terms of their values k stepspreviously. (General formulas for this process are given in [11].) By proper choice of k it is possible tocompletely hide the global communication in the CG algorithm. Unfortunately this leads to a seriousloss of stability in the CG process which is expensive to correct [10]. We therefore recommend onlylimited application of this restructuring idea and have not implemented it beyond a single loop for theresults discussed below.The vector and scalar operations associated with CG �t conveniently between steps (3) and (4)10

of the matrix{vector multiplication algorithm outlined in Figure 4. At the end of step (3) the productvector y is distributed across all p processors, and it is trivial to achieve the identical distribution for x,r and p. Now all the vector updates can proceed concurrently. At the end of the CG loop, the vectorp can be shared through an expand operation within columns and hence the processors will be readyfor the next matvec. The resulting integration of the parallel matvec and CG algorithms is sketchedin Figure 6. Processor P�� owns A��x; r; p; b; y 2 IRn=p, z�; p� 2 IRn=ppx := 0r := bp := b�� := rT rSum �� over all processors to form �Expand p within columns to form p�For i = 1; : : :Compute z� = A��p�Fold z� within rows to form y��Transpose y�� , i.e.Send y�� to P��Receive y := y�� from P���
 := pTy�� := yT r� := yT ySum �
, �� and � over all processors to form
, � and � := �=
�0 := � � 2��+ �2 � := �0=�� := �0x := x+ �pr := r � �yp := r + �pExpand p within columns to form p�Fig. 6. A parallel CG algorithm for processor P�� .4. Results. We have implemented a double precision version of the CG algorithm from x3, usingthe matrix-vector multiplication algorithm discussed in x2. The resulting C code was tested on thewell known NAS parallel benchmark problem proposed by researchers at NASA Ames [1, 3]. Thebenchmark uses a conjugate gradient iteration to approximate the smallest eigenvalue of a random,11

symmetric matrix of size 14,000, with an average of just over 132 nonzeros in each row. The benchmarkrequires 15 calls to the conjugate gradient routine, each of which involves 25 passes through the inner-most loop containing the matvec.This benchmark problem has been addressed by a number of di�erent researchers on several dif-ferent machines [2]. A common theme in this previous work has been the search for some exploitablestructure within the benchmark matrix. Since restructuring of the matrix is permitted by the bench-mark rules as a pre-processing step, the computational e�ort expended in this search for structure isnot counted in the benchmark timings. In contrast, our algorithm is completely generic and does notrequire any special structure in the matrix. The communication operations are independent of thezero/nonzero pattern of the matrix, and the only advantage of reordering would be to lessen the loadon the processor with the most non{zero elements. Because the benchmark matrix diagonal is dense,we did partition the diagonal across all processors, as described in x2.5. Otherwise, we accepted thematrix as given, and made no e�ort to exploit structure.We ran the benchmark problem on two massively parallel machines: the 1024{processor nCUBE 2at Sandia and the 128{node processor Intel iPSC/860 at NASA/Ames. The timing results for thebenchmark calculation are shown in Table 1. Five timings are given for each machine. First is theunmodi�ed CG algorithm of Figure 5 with the matvec algorithm of Figure 4. This is without thematvec enhancements discussed in subsections 2.3, 2.4, and 2.5. The next three timings are the timedi�erences resulting from the three improvements: (1) the Van Rosendale formulation of the CGalgorithm as listed in Figure 6, (2) the mapping of processors to matrix blocks that optimizes thetranspose operation as discussed in 2.3, and (3) the overlapping of communication and computationand distribution of diagonal elements discused in sections 2.4 and 2.5. The �nal column of the table isthe overall best timing for the CG benchmark with all enhancements for each machine. 1Table 1. Timings (in seconds) for the NAS CG benchmark on 3 parallelmachines.Parallel Number of Baseline Improvements FinalMachine Processors Algorithm (1) (2) (3) AlgorithmnCUBE 2 1024 7.78 .81 .27 .64 6.05Intel iPSC/860 128 8.94 .24 .45 1.28 6.96The variance in importance of the Van Rosendale recasting of the CG algorithm is due to thevarying number of processors. As remarked in x3, this scheme replaces a global summation with aninner product. If the number of processors is small, the cost of the global sum is reduced and the innerproduct calculation requires more work by each processor. Hence, this reformulation becomes moresigni�cant as the number of processors increases, as suggested by the experimental data.1 The implementation on the Intel machine used asynchronous message passing routines and forcedmessages. This allows for the overlapping of computation with communication and improves perfor-mance substantially. Switching to unforced messages reduced the performance by at least 20%.12

The times required to solve the benchmark using our algorithm compare favorably with otherpublished results on massively parallel machines [3]. For example, recently published times for 128{processor iPSC/860 and 32K CM-2 (which are same generation machines) are 8.61 and 8.8 secondsrespectively, which is substantially longer than our result. Although this problem is highly unstruc-tured, our C code averages (including communication costs) nearly 250 M
ops on the nCUBE 2processor, which is about 12% of the peak speed achievable running pure assembly language BLAS oneach processor without communication. Similarly the code achieves about 215 M
ops on the iPSC/860.With a di�erent data mapping it is possible to avoid the transpose operation used in our al-gorithm [4, 12]. To simulate the performance of this transpose-free algorithm, we turned o� thetransposition communication and observed only a small di�erence in speed (< 3%).5. Conclusions. We have presented a parallel algorithm for matrix{vector multiplication, andshown how it can be integrated e�ectively into the conjugate gradient algorithm. We have tested theideas in this paper on the NAS conjugate gradient benchmark where we obtained the fastest reportedtimings on the nCUBE 2 and iPSC/860 machines. More generally, the communication cost of thematvec algorithm we propose is independent of the zero/nonzero structure of the matrix and scalesas n=pp. Consequently, the algorithm is most appropriate for matrices in which structure is eitherdi�cult or impossible to exploit. This is the case for dense and randommatrices, and it is also true moregenerally for sparse matrices in some contexts. For example, our algorithm could serve as an e�cientblack{box routine for prototyping sparse matrix linear algebra algorithms or could be embedded in asparse matrix library where few assumptions about matrix structure can be made.Finally, the particular mapping of processors to matrix blocks we suggest for hypercubes is likelyto be of independent interest. This mapping ensures that rows and columns of the matrix are ownedentirely by subcubes, and that with cut{through routing the transpose operation can be performedwithout message contention. This mapping has already proved useful for parallel many{body calcula-tions [8], and is probably applicable to other linear algebra algorithms as well.Acknowledgements. We would like to thank David Greenberg for his assistance in developingthe hypercube transposition algorithm discussed in x2.3. We are also very appreciative of John Lewisand Robert van de Geijn for helpful discussion, and to our colleagues at NASA Ames for use of theiriPSC/860. REFERENCES[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, , H. D. Simon,V. Venkatakrishnan, and S. K. Weeratunga, The NAS parallel benchmarks, Intl. J.Supercomputing Applications, 5 (1991), pp. 63{73.[2] D. H. Bailey, E. Barszcz, L. Dagum, and H. D. Simon, NAS parallel benchmark results, inProc. Supercomputing '92, IEEE Computer Society Press, 1992, pp. 386{393.13

[3] D. H. Bailey, J. T. Barton, T. A. Lasinski, and H. D. Simon, Editors, The NAS parallelbenchmarks, Tech. Rep. RNR-91-02, NASA Ames Research Center, Mo�ett Field, CA, January1991.[4] R. H. Bisseling, Parallel iterative solution of sparse linear systems on a transputer network, inProc. IMA Conf. Parallel Computing, Oxford, UK, 1991, Oxford University Press.[5] R. Boppana and C. S. Raghavendra, Optimal self{routing of linear{complement permutationsin hypercubes, in Proc. Fifth Distributed Memory Computing Conf., IEEE, 1990, pp. 800{808.[6] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.Walker, Solving problems on concurrent processors: Volume 1, Prentice Hall, EnglewoodCli�s, NJ, 1988.[7] B. Hendrickson and R. Leland, An improved spectral graph partitioning algorithm for map-ping parallel computations, Tech. Rep. SAND 92-1460, Sandia National Laboratories, Albu-querque, NM, September 1992.[8] B. Hendrickson and S. Plimpton, Parallel many{body calculations without all{to{all com-munication, Tech. Rep. SAND 92-2766, Sandia National Laboratories, Albuquerque, NM,December 1992.[9] S. L. Johnsson and C.-T. Ho, Matrix transposition on Boolean n{cube con�gured ensemblearchitectures, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 419{454.[10] R. W. Leland, The E�ectiveness of Parallel Iterative Algorithms for Solution of Large SparseLinear Systems, PhD thesis, University of Oxford, Oxford, England, October 1989.[11] R. W. Leland and J. S. Rollett, Evaluation of a parallel conjugate gradient algorithm, inNumerical methods in
uid dynamics III, K. W. Morton and M. J. Baines, eds., OxfordUniversity Press, 1988, pp. 478{483.[12] J. G. Lewis and R. A. van de Geijn, Distributed memory matrix{vector multiplication andconjugate gradient algorithms, in Proc. Supercomputing '93, IEEE Computer Society Press,1993.[13] A. T. Ogielski and W. Aiello, Sparse matrix computations on parallel processor arrays, SIAMJ. Sci. Stat. Comput., 14 (1993), pp. 519{530.[14] R. A. van de Geijn, E�cient global combine operations, in Proc. 6th Distributed MemoryComputing Conf., IEEE Computer Society Press, 1991, pp. 291{294.[15] J. Van Rosendale, Minimizing inner product data dependencies in conjugate gradient iteration,in 1983 International conference on parallel processing, H. J. Siegel et al., eds., IEEE, 1983,pp. 44{46. 14

