An Efficient Parallel Algorithm
for MatrixVector Multiplication

Bruce Hendrickson !, Robert Leland ? and Steve Plimpton
Sandia National Laboratories

Albuquerque, NM 87185

Abstract.

The multiplication of a vector by a matrix is the kernel operation in many algorithms used in scien-
tific computation. A fast and efficient parallel algorithm for this calculation is therefore desirable. This
paper describes a parallel matrix—vector multiplication algorithm which is particularly well suited to
dense matrices or matrices with an irregular sparsity pattern. Such matrices can arise from discretizing
partial differential equations on irregular grids or from problems exhibiting nearly random connectiv-
ity between data structures. The communication cost of the algorithm is independent of the matrix
sparsity pattern and is shown to scale as O(n/,/p + log(p)) for an n x n matrix on p processors. The
algorithm’s performance is demonstrated by using it within the well known NAS conjugate gradient
benchmark. This resulted in the fastest run times achieved to date on both the 1024 node nCUBE 2
and the 128 node Intel iPSC/860. Additional improvements to the algorithm which are possible when
integrating it with the conjugate gradient algorithm are also discussed.

Key words. matrix—vector multiplication, parallel computing, hypercube, conjugate gradient
method

AMS(MOS) subject classification. 65Y05, 65F10

Abbreviated title. Parallel Matrix—Vector Multiplication.

~ This work was supported by the Applied Mathematical and Computer Sciences program, U.S.
Department of Energy, Office of Energy Research, and was performed at Sandia National Laboratories,
operated for the U.S. Department of Energy under contract No. DE-AC04-76DP00789.

Appeared in Int. J. High Speed Comput. 7(1):73-88, 1995.

! Department 1422, email: bahendr@cs.sandia.gov
? Department 1424, email: rwlelan@cs.sandia.gov
3 Department 1421, email: sjplimp@cs.sandia.gov

1

1. Introduction. The multiplication of a vector by a matrix is the kernel computation in many
linear algebra algorithms, including, for example, the popular Krylov methods for solving linear and
eigen systems. Recent improvements in these iterative methods and the increasing use of massively
parallel computers motivate the development of fast and efficient parallel algorithms for matrix—vector
multiplication. This paper describes one such algorithm. Sub-blocks of an order n matrix are assigned
to each of p processors arranged logically in a 2-dimensional grid, and communication is performed
within rows and columns of the grid among sub—groups of ,/p processors. The main advantage of
this mapping is that the communication cost induced scales as O(n/,/p + log(p)), independent of the
sparsity pattern of the matrix.

The algorithm we describe was developed in connection with research on efficient methods of
organizing parallel many—body calculations [8]). We subsequently learned our matrix—vector multiply
or matvec algorithm is very similar to an algorithm described in [6]. We have, nevertheless, chosen to
present our algorithm here for two reasons. First, we improve upon the algorithm in [6] in several ways.
Specifically, we discuss how to overlap communication and computation and thereby reduce the overall
run time. We also show how to map the sub—blocks of the matrix to processors in a novel way which
reduces the cost of the communication on parallel machines with hypercube architectures. Finally, we
consider the use of the algorithm within the iterative conjugate gradient solution method and show how
a small amount of redundant computation can be used to further reduce the overall communication
costs. The second reason for presenting our algorithm is that we believe its basic features are not well
appreciated by the parallel processing community, particularly its appropriateness for matrices with
irregular sparsity. Our evidence for this is that even without the enhancements listed above our run
times for the NAS conjugate gradient benchmark are faster than previously reported implementations
of the problem on several popular massively parallel machines [2].

To put our algorithm in context, we note that it is an appropriate choice for any matvec application
where the p sub-blocks of the matrix have a (nearly) equal number of non—zero elements. This is
obviously true for dense matrices and in this case the computation cost of the algorithm scales as n?/p
(which is optimal) and its communication costs are relatively small. For sparse matrix problems, the
utility of our algorithm depends on whether or not the sparse matrix has structure. Typically such
structure arises from the physical problem being modeled by the matrix equation. It manifests itself as
the ability to order the rows and columns to obtain a banded or nearly block—diagonal matrix, where the
diagonal blocks are about equally sized and the number of matrix elements not in the blocks is small.
This structure can also be expressed in terms of the size of the separator of the graph describing the
non-zero structure of the matrix. On a parallel machine a structured sparse matrix can be partitioned
among processors so that communication costs in the matvec operation are minimized [7]; in practice
they often scale as O(n/p). For these matrices our algorithm is clearly not optimal. However, there are
problems (such as the NAS conjugate gradient benchmark) where the sparsity pattern is irregular, or
random, or where the effort required to identify structure is not justified. In these cases our algorithm is
a practical alternative. The communication cost of the algorithm scales moderately well with increasing

numbers of processors and the matrix can be ordered easily so that each processor has roughly equal

2

work of order m/p to perform, where m is the number of non—zeroes in the matrix.

This remainder of the paper is structured as follows. In the next section we describe the matvec
algorithm and its communication primitives. We also discuss several enhancements to the basic al-
gorithm and develop a performance model. In §3 we review the conjugate gradient algorithm, and
describe an efficient parallel implementation. In §4 we apply the resulting algorithm to the NAS con-
jugate gradient benchmark to demonstrate its usefulness and present timings for the benchmark on

several parallel machines. Finally, conclusions are drawn in §5.

2. A parallel matrix—vector multiplication algorithm. Consider the parallel matrix—vector
product y = Az where A is an n X n matrix and z and y are vectors of length n. The number of
processors in the parallel machine is denoted by p, and we assume for ease of exposition that n is
evenly divisible by p and that p 1s an even power of 2. It is straightforward to relax these restrictions.

Let A be decomposed into square blocks of size (n/,/p) x (n/./p), each of which is assigned to one
of the p processors, as illustrated by Figure 1. We define the Greek subscripts @ and running from 0
to /p—1 to index the row and column ordering of the blocks. The (o, §) block of A is denoted by Aqp
and owned by processor F,s. The input vector & and product vector y are also conceptually divided
into /p pieces, each of length n/,/p, indexed by § and « respectively. With this block decomposition,
processor P, must know zg in order to compute its contribution to y,. This contribution is a vector
of length n/\/ﬁ which we denote by zq.5. Thus 2,5 = Aapzs, and yo = Zﬁ 23 Where the sum is over

all the processors sharing row « of the matrix.

Yo Aozﬁ

Zp

Fig. 1. Matrix decomposition to processors for matrix product y = Ax.

2.1. Communication primitives. We now present two important communication primitives
used in the matvec algorithm. The first is an efficient method for summing elements of a vector across
multiple processors. In general, if p processors each own a copy of a vector of length n, this primitive

will sum the vector copies so that each processor finishes with n/p elements. Each element is the sum

of the corresponding elements across all p processors. This operation is called a a recursive halving [12]
or a fold [6].

In the matvec algorithm we use this communication operation to sum contributions to y that are
computed by the processors that share a given row « of A. In this case, the fold operation occurs
between a group of /p processors (see Fig. 2). Each processor begins the operation with a vector zqp
of length n/,/p. The operation requires log,(,/p) stages, halving the length of the vectors involved at
each stage. Within each stage, a processor first divides its vector z into two equal sized subvectors,
z1 and zz, as indicated by the notation (z1|z2). One of these subvectors is sent to another processor
P, which also sends back a subvector w. The received subvector is summed element—by—element with
the retained subvector to finish the stage. At the conclusion of the fold, each processor has a unique,
n/p-length portion of the fully summed vector. We denote this subvector with Greek superscripts,
hence FP,s owns portion y*?. The fold operation requires no redundant floating point operations, and

the total number of values sent and received by each processor is n/\/p — n/p.

Processor P,g knows z.3 € IR/ VP

Z = Zag
For i =0,...,log,(/p) — 1
(z1]22) = =

P = P,s with i*? bit of § flipped

If bit 7 of 3 1s 1 Then
Send z; to processor P
Receive w from processor P
Zi=zZsF+w

Else
Send 2z, to processor P
Receive w from processor P
2=z F+w

y*P =z

Processor P,3 now owns y“ﬁ € R™?

Fig. 2. The fold operation for processor P,g.

The second communication primitive is essentially the inverse of the fold operation. If each of p
processors knows n/p values, the final result of the operation is that all p processors know all n values.
This is called a recursive doubling [12] or expand [6]. In the matvec algorithm we use this primitive
to exchange information among the /p processors sharing each column of the A matrix. The expand
operation is outlined in Figure 3 for communication between processors with the same column index 3.
Each processor in the column begins with a subvector y?® of length n/p. At each step in the operation
the processor sends all the values it knows to another processor P and receives that processor’s values.

These two subvectors are concatenated in the correct order, as indicated by the notation. As with

4

((|77

the fold operation, only a logarithmic number of stages are required, and the total number of values

sent and received by each processor is n/\/p —n/p.

Processor P, knows y°® € R™/?

z =y’

For i =log,(\/p) —1,...,0
P = P,s with i*? bit of « flipped
Send z to processor P

Receive w from processor P

If bit ¢ of @ 1s 1 Then

z = wlz
Else
z = z|w

Yo ‘= 2

Processor P, now knows y, € IR*/VP

Fig. 3. The expand operation for processor P,g.

The optimal implementation of the fold and expand operations depends on the machine topology
and various hardware considerations, e.g. the availability of multiport communication. There are,
however, efficient implementationson most architectures. On hypercubes, for example, these operations
can be implemented using only nearest neighbor communication if the blocks in each row and column
of the matrix are owned by a subcube with ,/p processors. On meshes, if the blocks of the matrix are
mapped in the natural way to a square grid of processors, then all the fold and expand communication

is within rows or columns of the grid and the operations can be implemented efficiently [14].

2.2. Basic Algorithm. With the communication primitives of Figures 2 and 3 and the matrix
decomposition to processors of Figure 1 we can now describe the basic algorithm for performing y = Ax.
We note that most applications using matvec operations involve repeated matrix—vector products of
the form y; = Ax; where the the new iterate, z;11, is generally some simple function of the product
vector y;. To sustain the iteration on a parallel computer, x;41 should therefore be distributed among
processors in the same fashion as the previous iterate z;. Hence, a good matvec routine will return a y;
with the same distribution as x; so that x;41 can be constructed with a minimum of data movement.
Our algorithm respects this distribution requirement.

The matvec algorithm is outlined in Figure 4 and begins with each processor knowing its matrix
block A,s and the subvector zg corresponding to its column position. In step (1), each processor
performs a local matrix—vector multiplication using this data. In step (2) the resulting values are
summed across each row of processors using the fold operation, after which each processor owns n/p
of the values of y. Unfortunately, the values owned by processor P,z are a subvector of y,, whereas to
perform the next matvec, Pog must know all the values of yz. This is accomplished in steps (3) and

(4). In step (3), each processor exchanges its n/p values of y with the processor owning the transpose

5

block of the matrix. After the transposition, each of the processors in column 3 owns the subvector
y?® of length n/p which is a subvector of ys. In step (4), the \/p processors in column 3 perform an
expand to share these values; the result is that each processor knows all n/,/p values of ys as required
to create the new iterate x;41. We note that at this level of detail, our matvec algorithm is identical
to the one described in [6] for dense matrices. In the next three subsections, we discuss the specifics

of steps (1), (2), and (3) which result in a more efficient overall algorithm.

Processor P, owns Ays and zg
(1) Compute z43 = Anpis
(2) Fold z,p within rows to form y*#
(3) Transpose the y*° i.e.
a) Send y°? to Pg,
b) Receive y’“ from Pg,
(4) Expand y°® within columns to form yg

Fig. 4. Parallel matrix—vector multiplication algorithm for processor P,s.

2.3. Transposition on parallel computers. As discussed in subsection 2.1, the expand and
fold primitives used in the matvec algorithm are most efficient on a parallel computer if rows and
columns of the matrix are mapped to subsets of processors that allow for fast communication. On a
hypercube a natural subset is a subcube; on a 2-D mesh it is rows or columns. Unfortunately, such a
mapping can make the transpose operation in the matvec algorithm (step 3) inefficient since it requires
communication between processors that are architecturally distant. Modern parallel computers use
cut—through, routing so that a single message can be transmitted between non—adjacent processors in
nearly the same time as if it were sent between adjacent processors. Nevertheless, if multiple messages
are simultaneously trying to use the same wire, all but one of them must be delayed. Hence machines
with cut—through routing can still suffer from serious message congestion.

On a hypercube, the scheme for routing a message 1s usually to compare the bit addresses of the
sending and receiving processors and flip the bits in a fixed order (transmitting along the corresponding
channel) until the two addresses agree. On the nCUBE 2 and Intel iPSC/860 hypercubes, the order
of comparisons 1s from lowest bit to highest, a procedure known as dimension order routing. Thus a
message from processor 1001 to processor 0100 will route from 1001 to 1000 to 1100 to 0100. The usual
scheme of assigning matrix blocks to processors uses low order bits to encode the column number and
the high order bits to encode the row number. Unfortunately, dimension order routing on this mapping
induces congestion during the transpose operation since messages from all the /p processors in a row
route through the diagonal processor. A similar bottleneck occurs with mesh architectures where
the usual routing scheme is to move within a row before moving within a column. Fortunately, the
messages being transposed in our algorithm are shorter than those in the fold and expand operations
by a factor of \/p. So even if congestion delays the transpose messages by a factor of /p, the overall

communication scaling of the algorithm will not be affected.

6

On a hypercube, a different mapping of matrix blocks to processors can avoid transpose congestion
altogether. With this mapping we still have optimal nearest—neighbor communication in the fold and
expand operations, but now the transpose operation is as fast as sending and receiving a single message
of length n/p. Consider a d—dimensional hypercube where the address of each processor is a d-bit
string. For simplicity we assume that d is even. The row block number « is a d/2-bit string, as is the
column block number 5. For fast fold and expand operations, we require that the processors in each
row and column form a subcube. This is assured if any set of d/2 bits in the d-bit processor address
encode the block row number and the other d/2 bits encode the block column number. Now consider
a mapping where the bits of the block row and block column indices of the matrix are interleaved in
the processor address. For a 64-processor hypercube (with 3-bit row and column addresses for the 8x8
blocks of the matrix) this means the 6-bit processor address would be rocarieirgeg where the three
bits rarirg encode the block row index and cocicg encodes the block column index. In this mapping
each row of blocks and column of blocks of the matrix still resides on a subcube of the hypercube, so
the expand and fold operations can be performed optimally. However, the transpose operation is now
contention—free as demonstrated by the following theorem. This result was discovered independently
by Johnsson and Ho [9], and generalized by Boppana and Raghavendra [5].

THEOREM 2.1.

Consider a hypercube using dimension order routing. If we map processors to elements of an
array in such a way that the bit—representations of a processor’s row number and column number are
interleaved in the processor’s bit—address, the wires used when each processor sends a message to the
processor in the transpose location in the array are disjoint.

Proof.

Consider a processor P with bit—address rycpry_1c5_1 - - - 7oco, where the row number is encoded
with ry - --7ro, and the column number with ¢; ---¢y. The processor PT in the transpose array lo-
cation will have with bit—address ¢yryep—17p—1 - -corp. Under dimension order routing, a message is
transmitted in as many stages as there are bits, flipping bits in order from right to left to generate
a sequence of intermediate patterns. After each stage, the message will have been routed to the in-
termediate processor denoted by the current intermediate bit pattern. The wires used in routing the
message from P to PT are those that connect two processors whose patterns occur consecutively in the
sequence of intermediate patterns. After 2k stages, the intermediate processor will have the pattern
TpCp - TECECE_1Tk_1 - - - coTg. The bits of this intermediate processor are a simple permutation of the
original bits of P in which the lowest & pairs of bits have been swapped. Also, after 2k — 1 stages, the
values in the bit positions 2k and 2k — 1 are equal.

Now consider another processor P’ # P, and assume that the message being routed from P’ to
P'T uses the same wire employed in step 4 of the transmission from P to PT. Denote the two processors
connected by this wire P; and Ps. Since they differ in bit position ¢, P; and Ps can only be encountered
consecutively in the transition between stages ¢ — 1 and ¢ of the routing algorithm. Either i — 1 or ¢ is
even, so a simple permutation of pairs of bits of P must generate either P, or Ps; say P,.. Similarly,
the same permutation applied to P’ must also yield either Py or Ps; say P.. If P, = P/ then P = P’

7

which is a contradiction. Otherwise, both P; and P, must appear after an odd number of stages in one
of the routing sequences. If ¢ is odd then bits ¢ and ¢ + 1 of P must be equal, and if 7 is even then bits
i and i — 1 of P are equal. In either case, P = P, which again implies the contradiction that P = P’.
0

We note as a corollary that although the proof assumes a routing scheme where bits are flipped
in order from lowest to highest, a similar contention—free mapping is possible for any fixed routing

scheme as long as row and column bits are changed alternately.

2.4. Overlapping computation and communication. The algorithm in Figure 4 has the
shortcoming that once a processor has sent a message in the fold or expand operations, it is idle until
the message from its neighbor arrives. This can be alleviated in the fold operation in step (2) of the
algorithm by interleaving communication with computation from step (1). Rather than computing all
the elements of z,5 before beginning the fold operation, we should compute just those that are about
to be sent. Then whichever values will be sent in the next pass through the fold loop get computed
between the send and receive operations in the current pass. In the final pass, the values that the
processor will keep are computed. In this way, the total run time is reduced on each pass through the
fold loop by the minimum of the message transmission time and the time to compute the next set of

elements of z,5.

2.5. Balancing the computational load. The discussion above has concentrated on the com-
munication requirements of our algorithm, but an efficient algorithm must also ensure that the com-
putational load is well balanced across the processors. For our algorithm, this requires balancing the
computations within each local matvec. If the region of the matrix owned by a processor has m’ nonze-
ros, the number of floating point operations (flops) required for the local matvec is 2m’ —n/,/p. These
will be balanced if m’ = m/p for each processor, where m is the total number of nonzero elements in
the matrix. For dense matrices or random maftrices in which m > n, the load is likely to be balanced.
However, as discussed in the introduction, for matrices with some structure it may not be. For these
problems, Ogielski and Aiello have shown that randomly permuting the rows and columns gives good
balance with high probability [13]. A random permutation has the additional advantage that zero
values encountered when summing vectors in the fold operation are likely to be distributed randomly
among the processors.

Most matrices used in real applications have nonzero diagonal elements. We have found that when
this is the case, it may be advantageous to force an even distribution of these among processors and to
randomly map the remaining elements. This can be accomplished by first applying a random symmetric
permutation to the matrix. This preserves the diagonal while moving the off-diagonal elements. The
diagonal can now be mapped to processors to match the distribution of the y®? subsegment that each
processor owns. The contribution of the diagonal elements can then be computed in between the send
and receive operations in the transpose communication, saving either the transpose transmission time

or the diagonal computation time, whichever is smaller.

2.6. Complexity model. The matvec algorithm with the enhancements described above can be
implemented to require the minimal 2m —n flops to perform a matrix—vector multiplication, where m is
the number of nonzeros in the matrix. Some of these flops will occur in step (1) during the calculation
of the local matvecs, and the rest in step (2) during the fold summations. We make no assumptions
about the data structure used on each processor to compute its local matrix—vector product. This
allows for a local matvec optimized for a particular machine. If we assume the computational load is
balanced by using the techniques described in §2.5, the time to execute these floating point operations
should be very nearly (2m — n)Tqep/p, where Thop is the time required for a single floating point
operation.

In steps (2), (3), and (4), the algorithm requires log,(p) + 1 read/write pairs for each processor,
and a total communication volume of n(2,/p — 1) floating point numbers. Accounting for the natural
parallelism in the communication operations, the effective communication volume is n(2,/p — 1)/p.
Unless the matrix is very sparse, the computational time required to form the local matvec will be
sufficient to hide the transmission time in the fold operation, as discussed in §2.4. We will assume
that this is the case. Furthermore, we will assume that the transpose transmission time can be hidden
with computations involving the matrix diagonal, as described in §2.5. The effective communication
volume therefore reduces to n(\/ﬁ — 1)/p. The total run time, Tiota) can now be expressed as

2m—n n(Jp— 1
TﬂOp + (10g2 (p) + 1)(Tsend + Treceive) + %

(1) 71total =

ﬂransmit ’

where Thop is the time to execute a floating point operation, Tsend and Treceive are the times to initiate a
send and receive operation respectively, and Tipansmit 18 the transmission time per floating point value.
This model will be most accurate if message contention is insignificant, as it i1s with the mapping for

hypercubes described in §2.3.

3. The Conjugate Gradient algorithm. To examine the efficiency of our parallel matrix—
vector multiplication algorithm, we used it as the kernel of a conjugate gradient (CG) solver. A
version of the CG algorithm for solving the linear system Axz = b is depicted in Figure 5. There are
a number of variants of the basic CG method; the one presented here is a slightly modified version of
the algorithm given in the NAS benchmark [1, 3] discussed below. In addition to the matrix—vector
multiplication, the inner loop of the CG algorithm requires three vector updates of x, r and p, as well
as two inner products to form v and p'.

An efficient parallel implementation of the CG algorithm should divide the workload evenly among
processors while keeping the cost of communication small. Unfortunately, these goals are in conflict
because when the vector updates are distributed, the inner product calculations require communication
among all the processors. In addition, if the algorithm in Figure 5 is implemented in parallel, each
processor must know the value of o before it can update r to compute p’ and hence 3. The calculation

Ty can actually be condensed into two

of v = pTy, the distribution of v, and the calculation of p' = r
global operations because the first two operations can be accomplished simultaneously with a binary

exchange algorithm. However these global operations are still very costly. One way to reduce the

9

xr =

7=
p:=>b
pi=rlr
For i=1,...
y = Ap
v =ply
a:=p/y
ri=x+ap

riI=r—ay

pi=rr
B:=p/p
p=y
pi=r+0p

Fig. 5. A conjugate gradient algorithm.

communication load of the algorithm is to use an algebraically equivalent formulation suggested but
Van Rosendale [15]. Instead of updating » and then calculating #%r, the modified algorithm exploits
the identity riT+17”i+1 = (ri —ay)l (r; — ay) = rl'ri — 2ay’r; + a®yTy. The values of v, ¢ and ¢ can
be summed with a single global communication, essentially halving the communication time required
outside the matvec routine. In exchange for this communication reduction, there i1s a net increase of

Ty need

one inner product calculation since ¢ = y”r and ¥ = y” y must now be computed, but p’ = r
not be calculated explicitly. Since the vectors are distributed across all the processors, this requires an
additional 2n/p floating point operations by each processor in order to avoid a global communication.
Whether this is a net gain depends upon the relative sizes of n and p, as well as the cost of flops and
communication on a particular machine, but since communication is typically much more expensive
per unit than computation, the modified algorithm should generally be faster. For the nCUBE 2, one
of the machines used in this study, we estimate that this recasting of the algorithm is worthwhile when
n <5 x 10°.

This restructuring of the CG algorithm can in principle be carried further to hide more of the
communication cost of the linear solve. That is, by repeatedly substituting for the residual and search
vectors r and p we can express the current values of these vectors in terms of their values & steps
previously. (General formulas for this process are given in [11].) By proper choice of k it is possible to
completely hide the global communication in the CG algorithm. Unfortunately this leads to a serious
loss of stability in the CG process which is expensive to correct [10]. We therefore recommend only
limited application of this restructuring idea and have not implemented it beyond a single loop for the
results discussed below.

The vector and scalar operations associated with CG fit conveniently between steps (3) and (4)

10

of the matrix—vector multiplication algorithm outlined in Figure 4. At the end of step (3) the product
vector y 1s distributed across all p processors, and it is trivial to achieve the identical distribution for x,
r and p. Now all the vector updates can proceed concurrently. At the end of the CG loop, the vector
p can be shared through an expand operation within columns and hence the processors will be ready
for the next matvec. The resulting integration of the parallel matvec and CG algorithms is sketched

in Figure 6.

Processor P,, owns A,,

$a rapa ba y E IRn/p’ ZN’pV E IRH/\/Z_)

x:=0
r:==5%
p:="b
ﬁ::rTr

Sum p over all processors to form p
Expand p within columns to form p,
Fori=1,...
Compute z, = A, p,
Fold 2z, within rows to form y*”
Transpose y*”, i.e.
Send y*” to P,,

Receive y := y"# from P,,

7=ply

¢ =y'r

bi=y"y

Sum 7, ¢ and v over all processors to form 7, ¢ and
ai=ply

p=p =20+ a*P

B=p'/p

p=y

ri=xr+ap

riI=r—ay

pi=r+0p

Expand p within columns to form p,

Fig. 6. A parallel CG algorithm for processor P, .

4. Results. We have implemented a double precision version of the CG algorithm from §3, using
the matrix-vector multiplication algorithm discussed in §2. The resulting C code was tested on the
well known NAS parallel benchmark problem proposed by researchers at NASA Ames [1, 3]. The

benchmark uses a conjugate gradient iteration to approximate the smallest eigenvalue of a random,

11

symmetric matrix of size 14,000, with an average of just over 132 nonzeros in each row. The benchmark
requires 15 calls to the conjugate gradient routine, each of which involves 25 passes through the inner-
most loop containing the matvec.

This benchmark problem has been addressed by a number of different researchers on several dif-
ferent machines [2]. A common theme in this previous work has been the search for some exploitable
structure within the benchmark matrix. Since restructuring of the matrix is permitted by the bench-
mark rules as a pre-processing step, the computational effort expended in this search for structure is
not counted in the benchmark timings. In contrast, our algorithm is completely generic and does not
require any special structure in the matrix. The communication operations are independent of the
zero/nonzero pattern of the matrix, and the only advantage of reordering would be to lessen the load
on the processor with the most non-zero elements. Because the benchmark matrix diagonal is dense,
we did partition the diagonal across all processors, as described in §2.5. Otherwise, we accepted the
matrix as given, and made no effort to exploit structure.

We ran the benchmark problem on two massively parallel machines: the 1024-processor nCUBE 2
at Sandia and the 128-node processor Intel iPSC/860 at NASA/Ames. The timing results for the
benchmark calculation are shown in Table 1. Five timings are given for each machine. First is the
unmodified CG algorithm of Figure 5 with the matvec algorithm of Figure 4. This is without the
matvec enhancements discussed in subsections 2.3, 2.4, and 2.5. The next three timings are the time
differences resulting from the three improvements: (1) the Van Rosendale formulation of the CG
algorithm as listed in Figure 6, (2) the mapping of processors to matrix blocks that optimizes the
transpose operation as discussed in 2.3, and (3) the overlapping of communication and computation
and distribution of diagonal elements discused in sections 2.4 and 2.5. The final column of the table is

the overall best timing for the CG benchmark with all enhancements for each machine. *

Table 1. Timings (in seconds) for the NAS CG benchmark on 3 parallel

machines.
Parallel Number of | Baseline Improvements Final
Machine Processors | Algorithm | (1) ‘ (2) ‘ (3) | Algorithm
nCUBE 2 1024 7.78 81| .27 | .64 6.05
Intel iPSC/860 128 8.94 24| 45| 1.28 6.96

The variance in importance of the Van Rosendale recasting of the CG algorithm is due to the
varying number of processors. As remarked in §3, this scheme replaces a global summation with an
inner product. If the number of processors is small, the cost of the global sum is reduced and the inner
product calculation requires more work by each processor. Hence, this reformulation becomes more

significant as the number of processors increases, as suggested by the experimental data.

! The implementation on the Intel machine used asynchronous message passing routines and forced
messages. This allows for the overlapping of computation with communication and improves perfor-

mance substantially. Switching to unforced messages reduced the performance by at least 20%.

12

The times required to solve the benchmark using our algorithm compare favorably with other
published results on massively parallel machines [3]. For example, recently published times for 128-
processor iPSC/860 and 32K CM-2 (which are same generation machines) are 8.61 and 8.8 seconds
respectively, which is substantially longer than our result. Although this problem is highly unstruc-
tured, our C code averages (including communication costs) nearly 250 Mflops on the nCUBE 2
processor, which is about 12% of the peak speed achievable running pure assembly language BLAS on
each processor without communication. Similarly the code achieves about 215 Mflops on the iPSC/860.

With a different data mapping it is possible to avoid the transpose operation used in our al-
gorithm [4, 12]. To simulate the performance of this transpose-free algorithm, we turned off the

transposition communication and observed only a small difference in speed (< 3%).

5. Conclusions. We have presented a parallel algorithm for matrix—vector multiplication, and
shown how it can be integrated effectively into the conjugate gradient algorithm. We have tested the
ideas in this paper on the NAS conjugate gradient benchmark where we obtained the fastest reported
timings on the nCUBE 2 and iPSC/860 machines. More generally, the communication cost of the
matvec algorithm we propose is independent of the zero/nonzero structure of the matrix and scales
as n/\/p. Consequently, the algorithm is most appropriate for matrices in which structure is either
difficult or impossible to exploit. This is the case for dense and random matrices, and it is also true more
generally for sparse matrices in some contexts. For example, our algorithm could serve as an efficient
black—box routine for prototyping sparse matrix linear algebra algorithms or could be embedded in a
sparse matrix library where few assumptions about matrix structure can be made.

Finally, the particular mapping of processors to matrix blocks we suggest for hypercubes is likely
to be of independent interest. This mapping ensures that rows and columns of the matrix are owned
entirely by subcubes, and that with cut—through routing the transpose operation can be performed
without message contention. This mapping has already proved useful for parallel many-body calcula-

tions [8], and is probably applicable to other linear algebra algorithms as well.

Acknowledgements. We would like to thank David Greenberg for his assistance in developing
the hypercube transposition algorithm discussed in §2.3. We are also very appreciative of John Lewis
and Robert van de Geijn for helpful discussion, and to our colleagues at NASA Ames for use of their

iPSC/860.

REFERENCES

[1] D. H. BaiLey, E. Barszcz, J. T. BarTon, D. S. BRowNING, R. L. CARTER, L. Dacum,
R. A. FatooHl, P. O. FREDERICKSON, T. A. LASINSKI, R. S. SCHREIBER, , H. D. SIMON,
V. VENKATAKRISHNAN, AND S. K. WEERATUNGA, The NAS parallel benchmarks, Intl. J.
Supercomputing Applications, 5 (1991), pp. 63-73.

[2] D. H. BaiLey, E. Barszcz, L. Dacum, aND H. D. SiMON, NAS parallel benchmark results, in
Proc. Supercomputing ’92, IEEE Computer Society Press, 1992, pp. 386-393.

13

[3] D. H. BaiLey, J. T. BarTon, T. A. LasiNski, AND H. D. SiMoN, EDiTORS, The NAS parallel
benchmarks, Tech. Rep. RNR-91-02, NASA Ames Research Center, Moffett Field, CA, January
1991.

[4] R. H. BISSELING, Parallel iterative solution of sparse linear systems on a transputer network, in
Proc. IMA Conf. Parallel Computing, Oxford, UK, 1991, Oxford University Press.

[5] R. BoppaNa AND C. S. RAGHAVENDRA, Optimal self-routing of linear—complement permutations
i hypercubes, in Proc. Fifth Distributed Memory Computing Conf., IEEE, 1990, pp. 800-808.

[6] G. C. Fox, M. A. JounsoN, G. A. LyzenGga, S. W. OrTo, J. K. SALMON, AND D. W.
WALKER, Solving problems on concurrent processors: Volume I, Prentice Hall, Englewood
Chiffs, NJ, 1988.

[7] B. HENDRICKSON AND R. LELAND, An improved spectral graph partitioning algorithm for map-
ping parallel computations, Tech. Rep. SAND 92-1460, Sandia National Laboratories, Albu-
querque, NM, September 1992.

[8] B. HENDRICKSON AND S. PLIMPTON, Parallel many—body calculations without all-to-all com-
munication, Tech. Rep. SAND 92-2766, Sandia National Laboratories, Albuquerque, NM,
December 1992.

[9] S. L. JounssoN aND C.-T. Ho, Matriz transposilion on Boolean n—cube configured ensemble
architectures, STAM J. Matrix Anal. Appl., 9 (1988), pp. 419-454.

[10] R. W. LELAND, The Effectiveness of Parallel Iterative Algorithms for Solulion of Large Sparse
Linear Systems, PhD thesis, University of Oxford, Oxford, England, October 1989.

[11] R. W. LELAND AND J. S. ROLLETT, Evaluation of a parallel conjugate gradient algorithm, in
Numerical methods in fluid dynamics ITI, K. W. Morton and M. J. Baines, eds., Oxford
University Press, 1988, pp. 478-483.

[12] J. G. LEwis AND R. A. vaN DE GEUN, Distributed memory matriz—vector multiplication and
conjugate gradient algorithms, in Proc. Supercomputing ’93, IEEE Computer Society Press,
1993.

[13] A. T. OGIELSKI AND W. AIELLO, Sparse matriz computations on parallel processor arrays, STAM
J. Sci. Stat. Comput., 14 (1993), pp. 519-530.

[14] R. A. vaN DE GEWN, Efficient global combine operations, in Proc. 6th Distributed Memory
Computing Conf., IEEE Computer Society Press, 1991, pp. 291-294.

[15] J. VAN ROSENDALE, Minimizing inner product data dependencies in conjugatle gradient iteration,
in 1983 International conference on parallel processing, H. J. Siegel et al.; eds., IEEE, 1983,
pp- 44-46.

14

