
Memory System Design for Ultra Low Power, Computationally Error Resilient
Processor Microarchitectures

Sriseshan Srikanth∗, Paul G. Rabbat†, Eric R. Hein∗, Bobin Deng∗, Thomas M. Conte∗,
Erik DeBenedictis‡, Jeanine Cook‡ and Michael P. Frank‡

∗Georgia Institute of Technology. Email: {seshan}{heine}{bdeng}{tom}@gatech.edu
†Intel Corporation. Email: paul.g.rabbat@intel.com

‡Sandia National Laboratories. Email: {epdeben}{jeacook}{mpfrank}@sandia.gov

Abstract—Dennard scaling ended a decade ago. Energy
reduction by lowering supply voltage has been limited because
of guard bands and a subthreshold slope of over 60mV/decade
in MOSFETs. On the other hand, newly-proposed logic devices
maintain a high on/off ratio for drain currents even at
significantly lower operating voltages. However, such ultra low
power technology would eventually suffer from intermittent
errors in logic as a result of operating close to the thermal
noise floor. Computational error correction mitigates this issue
by efficiently correcting stochastic bit errors that may occur in
computational logic operating at low signal energies, thereby
allowing for energy reduction by lowering supply voltage to
tens of millivolts.

Cores based on a Redundant Residual Number System
(RRNS), which represents a number using a tuple of smaller
numbers, are a promising candidate for implementing energy-
efficient computational error correction. However, prior RRNS
core microarchitectures abstract away the memory hierarchy
and do not consider the power-performance impact of RNS-
based memory addressing. When compared with a non-error-
correcting core addressing memory in binary, naive RNS-
based memory addressing schemes cause a slowdown of over
3x/2x for inorder/out-of-order cores respectively. In this paper,
we analyze RNS-based memory access pattern behavior and
provide solutions in the form of novel schemes and the resulting
design space exploration, thereby, extending and enabling a
tangible, ultra low power RRNS based architecture.

I. INTRODUCTION

We hit the power wall in 2005, which meant that
increasing clock frequency was no longer a technique to
improve performance. Single core performance plateaued as
a result of the power wall although there is more instruction
level parallelism (ILP) inherent in programs, waiting to
be exploited [11], [35], [58]. The community has since
then adopted multiple cores and specialized accelerators
to make better use of Moore’s law, albeit at the cost of
programmability. The phenomenon of transistors retaining
their power density as they scaled down (known as Dennard
Scaling [22]) ended a decade ago [69], meaning that adding
more and more transistors no longer improved performance
without also significantly increasing energy consumption. A
sure-shot mitigation technique is to strive to improve the
fundamental single core power-performance profile from the
ground up.

Dynamic power scales proportionately with frequency
and with the square of operating voltage, therefore, lower-
ing Vdd is more beneficial. Although the theoretical lower
limit for Vdd for inverter functionality is 2 kT

q (or about
36mV) [49], [96], [110], there are challenges to operating
at this level [13]. With conventional MOSFETs, reducing
supply voltage below ˜0.7V results in increased switching

This work was funded under Sandia National Laboratories project
SAND2017-12733.

delay, irrespective of channel length. Coupled with their
gentle subthreshold slope (> 60mV/decade), the upshot is
that Vdd reduction actually causes higher leakage energy,
negating the benefits of the reduction in the first place and
furthermore forcing a significantly slower clock rate.

Theis and Solomon [105] suggest that new device con-
cepts [76] within the purview of two-dimensional lithogra-
phy technology, such as tunneling FETs, enable reduction of
the 1

2CV 2 energy to small multiples of kT , without resulting
in a significantly low switching speed [104] when compared
to MOSFETs. Similarly, research on ferroelectric transistors,
aka negative capacitance FETs (NCFETs) demonstrates a
sub-60mV/dec slope as well as a higher drive current [50]–
[52], [87], both of which are necessary in rendering Vdd
reduction beneficial to energy reduction without significantly
sacrificing performance, when compared to MOSFETs.

These next generation devices are fast switching even at
few tens of millivolts, but as a result, are vulnerable to
thermal noise perturbations. This translates into intermittent,
stochastic bit errors in logic. With signal energies approach-
ing the kT noise floor, future architectures will need to treat
reliability as a first class citizen, by employing efficient
computational error correction.

A. Computational Error Correction
Standard error correcting codes (ECC) [66] have already

been adopted into modern memory systems. These codes
accommodate errors occurring in storage and communica-
tion/network traffic, but are not able to protect computational
logic. The naive approach to computational error correction
is triple modular redundancy (TMR) [109], requiring over
a 200% overhead in area and energy for single error cor-
recting/double error detecting (SECDED) capability. Several
techniques in the form of arithmetic codes such as AN
codes [9], [28], [29], [62], [88], [111], self-checking [45],
[48], [67], [73]–[75], [107] and self-correcting [25], [32],
[41], [55], [68], [79], [83], [84], [95], [106] adders and
multipliers have since been devised. Orthogonally, there have
been proposals that employ redundancy at a higher granular-
ity, such as timing speculation (wherein error correction ca-
pability is limited to circuit timing violations) [26], [37], par-
tial pipeline replication [1] or checkpoint-rollback-recovery
such as those in IBM POWER6/7/8 and z10/196 [8], [16],
[44], [61] processors, and various Intel Corporation [90] and
Sun Microsystems mainframes [43]. While these are more
efficient than naive TMR, they come with limitations on their
error model, their area overheads are still over 100% and/or
they incur a significant performance penalty [91] (e.g., owing
to the fact that they leverage temporal redundancy in an
effort to minimize area overhead).

There exists a class of computationally error resilient
codes based on the residue number system (RNS) [31], that

Table I: A (4, 2)-RRNS example with the simplified base set (3,
5, 2, 7, 11, 13). % is the mod operator. Range is 210, with 11 and
13 being the redundant bases. (Reproduced from [21].)

Decimal % 3 % 5 % 2 % 7 % 11 % 13
13 1 3 1 6 2 0
14 2 4 0 0 3 1

13+14=27 (1+2)% 3=0 2 1 6 5 1
All columns (residues) function independently

of one another.
An error in any one of these columns (residues)

can be corrected by the remaining columns.

are generally superior to the above techniques in terms of
area, energy and latency overheads. The premise of RNS
is that a number can be uniquely represented as a tuple
of residues, where the residues are the remainder when
the number is divided by a set of coprime bases/moduli.
Each residue itself may be represented in a weighted radix
representation in binary. An example is shown in Table I.
Assume the set of bases/moduli to be (3, 5, 2, 7); then, the
number 13 can be uniquely mapped to the tuple (1, 3, 1, 6)
as a result of the Chinese remainder theorem. Observe that
(13 mod 3 = 1), (13 mod 5 = 3) and so on. Now, suppose
we wish to add 13 (1, 3, 1, 6) to the number 14 (2, 4, 0, 0);
this can be achieved by simply (modulo) adding the residues
respectively to obtain 27 (0, 2, 1, 6). Observe that ((1 + 2)
mod 3 = 0), ((3 + 4) mod 5 = 2) and so on. Critically, the
computation occurs with no carries or interaction between
residues.

RNS is similarly closed under subtraction and multipli-
cation operations as well, and they too can operate without
interaction between residues. This important property has
several useful implications:
• As the residues operate with no carries between them,

they can operate in parallel. Furthermore, each residue
operation’s bit width is a fraction of that of the original
operation. This translates into improved computational
efficiency, which has been proven to be especially useful
in digital signal processing (DSP) [19], [24], [81].

• A very large number can be losslessly represented and
operated on via many smaller numbers (residues) in par-
allel. This property is used by the cryptography (RSA)
community [3], [42], [116].

• Any bit error caused by a faulty computational logic
element is guaranteed to be localized to within the cor-
responding residue, without impacting any of the other
residues.
The last implication is of particular interest because it

allows for a robust, efficient method for computational error
correction. When redundant bases/moduli are introduced
(Redundant RNS or RRNS) [112], the resulting redundant
residues form an error correcting code that transforms itself
automatically upon arithmetic operations, rather than having
to be recomputed afterwards. If a corrupt residue results
during an arithmetic operation, it is possible to infer its
value using the remaining correct residues in the result. To
continue our running example in Table I, the number 13,
being less than the product of the initial set of bases/moduli
(3, 5, 2, 7), (i.e, 210), it can be uniquely represented using
the 4-tuple (1, 3, 1, 6), via the Chinese remainder theorem.
As such, we refer to these bases/moduli and residues as non-
redundant. Upon adding two redundant bases/moduli, say
(11, 13), the resultant redundant residues are therefore (2,
0). These redundant residues, by definition, are not necessary
for representation, but provide a way to recover from errors.
Given the (4, 2)-tuples for 13 (1, 3, 1, 6, 2,0) and 14 (2, 4,
0, 0, 3,1), a storage/transmission/computation error arising

in any one of the residues of 13, 14 or their arithmetic
manipulation result, can be corrected using the remaining
residues. The running example is summarized in Table I.

The range for an RRNS representation is the product of
its non-redundant moduli. Therefore, by choosing a non-
redundant base/modulus set to be (199, 233, 194, 239) it
becomes possible to represent a 32-bit integer in general in
an RNS format, and extending it with a redundant set of
(251, 509) allows for an RRNS representation. Such a (4,
2)-RRNS has the following advantages, over and above what
RNS provides to us:
• Computational error correction can be achieved with a

little over 50% area overhead.
• The SECDED granularity is that of a residue; meaning that

such an RRNS is capable of correcting multi-bit errors as
long as they occur within a single residue, or alternately,
is capable of detecting multi-bit errors as long as they
occur within at most 2 residues.

• Being closed under arithmetic, the correct value is pre-
served across a chain of dependent operations. Therefore,
it is not necessary to incur the overhead of an RRNS error
correction/detection after every operation.

• Due to the above, RRNS lends us robust computational
error correction with relatively insignificant performance
penalty, as also evidenced by Deng et al. [21].
Furthermore, there has been a significant body of research

on RRNS that strives to make it more efficient algorith-
mically for error resilience [5], [6], [17], [23], [27], [33],
[34], [38], [47], [56], [57], [63], [77], [80], [82], [89],
[92]–[94], [97], [98], [101]–[103], [113]–[115], [117] and
division [4], [30], [39], [40], [42], [63], [64], [92], [99].
Although typically limited to detection, residue based logic
protection (including that for floating point units and vector-
ized units) has widespread used in several commercial high-
end server processors [8], [16], [43], [61], [90]. Clearly, the
RRNS approach of computational error correction is ranked
among the highest in terms of error correction capability and
efficiency.

An efficient RRNS-based architecture is a viable compiler
target for contemporary general-purpose as well as scientific
computing applications, in addition to being able to work
efficiently with novel devices that operate close to the kT
noise floor. We strongly believe that single-thread processor
performance scaling that has been stalled since the mid-
2000s can be restarted via RRNS.
B. The Problem

While RRNS is clearly attractive for designing ultra-low-
power, computationally error resilient microarchitectures,
prior work on RRNS has abstracted away the memory
hierarchy for simplicity. Thus, an RRNS microarchitecture
hits a performance bottleneck when connected to non-ideal,
real world memory systems. Memory is addressed in binary
in conventional processors, whereas an RRNS compute core
natively generates memory addresses as a tuple of residues.
There are two naive approaches to this memory interface
problem:

Binary. Convert the tuple-of-residues format to binary and
address memory in binary as usual. This approach imposes
a severe latency and energy penalty on every instruction
fetch, load and store operation. This overhead is due to the
multi-step nature of each RNS to binary conversion, which,
nominally costs 8 cycles in the form of add and table lookup
operations. According to our results, this slowdown is 3×
on average for in-order cores and 2× for out-of-order (OoO)
cores.

Rns concat. Another straightforward, although naive ap-
proach is to concatenate the native tuple-of-residues and
use the result as the memory address. Unfortunately, this
technique destroys spatial locality of sequential memory
accesses, rendering caches largely ineffective and causing
application slowdowns of over 3× on average for in-order
cores and 4× for OoO cores.

There are other overheads associated with RRNS, such as
non-trivial comparison and boolean operations. However, the
overheads due to memory addressing inefficiencies are sig-
nificantly higher. The memory hierarchy is accessed for each
instruction (PC) in addition to memory instructions (LD/ST).
In contrast, comparison and boolean op instructions are less
frequent, even if a targeted code generator does not minimize
such ops. Furthermore, even with a naive implementation,
the penalty for such ops is less than that of a cache miss.
In an independent study (that ignores memory addressing
inefficiencies), we found that the impact of slow compar-
ison, boolean operations as well as consistency checking
operations due to RRNS makes programs run just about
20% slower than a traditional core. Yet, due to RRNS, we
realize significant energy savings, rendering energy-delay-
product benefits of about 2× when compared to traditional
non-error-correcting cores, in spite of these overheads.

In spite of its strong potential to restart single thread
performance scaling, an RRNS processor is not competitive
with traditional designs due to memory addressing ineffi-
ciencies outlined above. The energy savings would be over-
shadowed by the decrease in memory system performance.
This paper is the first study of its kind to our knowledge to
focus on the RRNS memory access problem.

C. Contributions
This paper makes the following contributions:

1) Extends an RRNS microarchitecture - one that is capa-
ble of reliably functioning with ultra-low energy logic
devices that operate near the kT thermal noise floor at
tens of millivolts - to support efficient memory hierarchy
access.

2) Proposes and analyzes an efficient, novel translation
scheme (rns sub) with locality properties similar to that
of binary, but with a fraction of its performance/energy
overhead.

3) Reduces the performance impact of the naive binary
approach by using a TLB-like structure called the Con-
version Lookaside Buffer (CLB) to cache conversions.

4) Proposes a technique to improve spatial locality in the na-
tive, zero-overhead translation scheme (rns concat) via a
hybrid compiler approach and a modified programming
model.

5) Constructs a design space from the schemes proposed and
from the analysis of the resultant memory access pattern
behavior, along with a detailed cost-benefit analysis.

II. RRNS CORE MICROARCHITECTURE
Having already presented an overview of the general

workings of RNS and RRNS, we now provide a formal
description for completeness (proofs omitted for brevity).
We then describe an overview of a generic RRNS compute
core. Readers who are not interested in the formality can
safely skip ahead to Section II-C.
A. Residue Number System (RNS)

Let B = {mi ∈ N f or i = 1,2,3, ...,n} be a set of n co-
prime natural numbers, which we shall refer to as bases or
moduli. M = ∏

n
i=1 mi defines the range of natural numbers

that can be bijectively represented by an RNS system that
is defined by the set of bases B. Specifically, for x such that
x ∈ N, x < M, then, x can be represented as the following
tuple: (|x|m1 , |x|m2 , |x|m3 , ..., |x|mn), where |x|m = x mod m.
Each term in this n-tuple is referred to as a residue. If
necessary the value of x can be regenerated from the tuple
of residues using a series of addition and table lookup
operations via the Chinese remainder theorem, mixed-radix
conversion, or macro-coefficient extraction.

Addition, subtraction and multiplication are closed under
RNS, rendering the residues to be mutually independent
wrt arithmetic. In other words, given x,y ∈ N, x,y < M,
we have |x op y|m = ||x|m op |y|m|m, where op is any
add/subtract/multiply operation.

B. Redundant RNS
To augment RNS with fault tolerance, r redundant bases

are introduced. The set of moduli now contains n non-
redundant and r redundant moduli: B = {mi ∈ N for i =
1,2,3, ...,n,n + 1, ...,n + r}. The reason these extra bases
are redundant is because any natural number smaller than
M (= ∏

n
i=1 mi) can still be represented uniquely by its n

non-redundant residues. Recall that the introduction of r
redundant residues renders a computationally resilient error
code because of the fact that all residues are transformed
in an identical manner under arithmetic operations. For x
such that x ∈ N, x < M, its RRNS representation is as
follows: (|x|m1 , |x|m2 , |x|m3 , ..., |x|mn , |x|mn+1 , ..., |x|mn+r), i.e.,
containing n non-redundant residues as well as r redundant
residues.

We refer the interested reader to [112] for details of
the multi-bit error correction operation, which involves
addition, multiplication and table lookup operations. This
correction capability increases with r, tolerating upto r

2
errant residues [33]. There are proposals to perform frac-
tional multiplication [112] and to represent floating point
numbers [18] using RNS. The key idea to extend this to
RRNS is to protect the exponent and mantissa separately,
as they transform differently upon arithmetic operations. A
detailed treatment of these concepts is beyond the scope of
this paper.

For fault tolerance to work, certain conditions must be
satisfied by B [112]. Given these, published work suggests
that the most efficient conversion to binary algorithm (for
n= 4, independent of r) nominally costs 8 cycles and is pos-
sible via macro-coefficient extraction [112]. More efficient
conversion algorithms for RNS exist, such as those that use
Mersenne primes (or other specific structural properties) as
bases [14], [15], [71], but no known RRNS algorithms exist.

In this paper, (n,r) = (4,2) and moduli set used is
(199, 233, 194, 239, 251, 509), whose non-redundant repre-
sentable range is roughly that of a 32 bit unsigned integer.
A different set of bases may also be used for reasons such
as a higher representable range, more efficient arithmetic,
improved reliability characteristics etc., the details of which
are beyond the scope of this paper. We assume the aforemen-
tioned bases in our evaluation but are careful not to over-fit
our architectural suggestions and insights to this specific set.
C. Anatomy of an RRNS Core Microarchitecture

Figure 1 depicts a generic schematic of an RRNS core
with 4 non-redundant sub-cores and 2 redundant ones. This
schematic is similar to prior RRNS core microarchitecture
proposals [21], [112]. Each sub-core is associated with
exactly one base modulus and thereby operates on its own

Figure 1: Generic high level schematic of an RRNS error
correcting compute core with 4 non-redundant sub-cores and 2
redundant sub-cores.

residue, with the register file and highest level data cache
being distributed into the 6 subcores on a per-residue basis.

Error model. Recall that such a core operates entirely
on RRNS data and literals, meaning that there are no
unnecessary (and expensive) conversions to and from binary.
Therefore, all memory addresses (PC, LD/ST) are in RRNS
form, including any pointer arithmetic. Another upshot of
operating entirely on RRNS data is that control-path errors
manifest themselves as data errors, meaning that they can
be handled simply by handling the data error. For example,
if there is an error in bypass logic in a subcore, or, if a
faulty decoder in one of the subcores causes it to perform
a multiplication instead of an addition, the resultant residue
for that subcore would have an erroneous value, but can be
recovered from the remaining 5 residues that were a result
of the correct addition operation. Finally, as instructions
themselves don’t undergo modification, ECC is sufficient
to protect them [21]. The architecture proposed in [21]
is able to ensure reliable operation as long as at most
one subcore is in error (possibly multi-bit) between two
error correction operations. Circuit-hardening or using high
Vdd for the error correction logic is proposed to ensure
its reliable operation. Because of latching effects, SRAM
transistors have different (more prone to errors) reliability
characteristics when compared to logic, and as such, are
modeled with 100× the error probability of logic transistors.

Overheads. In terms of area, such an RRNS error cor-
recting core requires 2× the area of a traditional non-error-
resilient core. However, a large fraction of this overhead is
from LUTs necessary in the error correction operation; a
(4, 1)-RRNS core that simply detects errors is in fact 34%
smaller in area when compared to a traditional core. In an in-
dependent study that implements the error model above (but
ignores memory addressing inefficiencies), we found that
the overhead due to slow comparison operations, boolean
operations as well as RRNS error correction operations
resulted in an overhead of just about 20% in runtime when
compared to a traditional, non-error-correcting core over
general purpose (SPEC2006) as well as computationally
intensive workloads (such as FFT, matrix multiplication
etc.). However, RRNS enables lowering of signal energy to
few tens of millivolts, and results in about a 2× improvement
in energy-delay-product, in spite of these overheads. The
engineering details of this study are beyond the scope of
this paper and we omit them for space constraints.

Abstractions for the memory interface. The presence
of a Load/Store unit in the redundant sub-cores is imple-

Figure 2: An (R)RNS compute core natively generates memory
addresses in the 4-residue tuple format. This is depicted by MAR
% mi in the figure, where mi is the ith base modulus, % is the
modulo operator, and MAR could be one of Program Counter (PC),
Load or Store address.

mentation dependent. For the purposes of this paper, we
assume that the core is responsible for generating valid
memory requests in the Memory Address Register (MAR).
This is possible by either (a) inserting an RRNS consis-
tency check before a memory access, or (b) by enabling
a checkpointing mechanism for rollback/recovery in case a
memory request to an illegal location is generated. For the
latter, a segmentation scheme can be used to flag ”wrongly”
computed addresses as illegal, thereby triggering checkpoint
recovery. As we show in Section III-B, minor perturbations
in the native rns concat representation of a memory address
causes its value to fluctuate wildly, thereby allowing for such
segmentation to work. Note that the consistency check of
(a) or the segment check of (b) can be done in parallel
with a memory access, and are therefore not on the critical
path of the program. Therefore, we omit the Load/Store
units in the redundant subcores. Finally, the addressing
logic in the memory hierarchy (such as a decoder or an
address translator) is assumed to either utilize devices that
do not stochastically flip due to thermal noise, or employ
self checking logic [36], [86]. Relaxing either assumption
reveals a set of implementation dependent tradeoffs and
are left for future work. Without loss of generality, we
assume for the purposes of this paper that no explicit
error correction is required for such addressing logic in the
memory hierarchy. It follows that the redundant residues can
be dropped from the MAR, and that a 32-bit address can be
logically represented as a 4-tuple RNS number.

III. MEMORY ADDRESSING SCHEMES

As noted in Section II-C, the memory address generated
by an RRNS compute core in its native form is in a
tuple-of-residues format, where the address itself may be to
instructions or data. As depicted in Figure 2, such a 4-tuple
must be properly interpreted before the memory hierarchy
can be accessed. In this section, we present a basis set of
possible interpretations of an address.

A. Interpretation Schemes
Binary. The approach assumed by prior work was to con-

vert the 4-tuple of residues to its binary representation and
use this as a memory address. From this point on, the system
can access the memory hierarchy as conventional computers
do. However, this conversion from RNS to binary doesn’t
come for free, and the cost must be paid for each memory
access, both cache hits and cache misses. This overhead is a
multi-cycle access time increase and an associated increase
in energy consumption. This is because conversion from
RNS to binary is non-trivial: it is a multi-step operation,
involving addition and table-lookup operations, and costs
8 CPU cycles nominally. Our experiments indicate that
applications suffer from a slowdown of 3× on average for
inorder cores and 2× for OoO cores upon using such a naive
conversion approach.

(a) Delta between consecutive addresses:
binary scheme.

(b) Delta between consecutive addresses:
rns concat scheme.

(c) Delta between consecutive addresses:
rns sub scheme.

Figure 3: Spatial locality analysis via visual comparison of the 3 addressing schemes for a sequential stream of addresses by computing
the deltas of interpreted addresses of consecutive addresses of the sequential stream.

{r1,r2,r3,r4} =⇒ binary({r1,r2,r3,r4})
This conversion typically is not a one-time cost as ad-

dresses may repeat themselves (locality). As a solution,
we propose to cache the conversion itself in a Conversion
Lookaside Buffer (CLB), in a manner similar to how a TLB
caches translations.

Rns concat. On the other extreme, we have a lightweight
interpreter that merely concatenates the 4-tuple, with the
resulting 32bit number being treated as the address to the
memory hierarchy. More concretely, the 4-residue tuple {r1,
r2, r3, r4} is treated as the bitstream r1r2r3r4.

{r1,r2,r3,r4} =⇒ r1r2r3r4

Rns sub. We define another scheme similar to
rns concat, but the lowest residue is subtracted from
the 3 other residues in an attempt to preserve locality.
{r1,r2,r3,r4} =⇒ rns concat((r1− r4)%m1,

(r2− r4)%m2, (r3− r4)%m3, r4)

where, the RNS base moduli are given by mi. This scheme is
significantly less expensive than binary and is slightly more
expensive than rns concat.

B. Sequential Address Analysis Example
Figure 3 shows a comparison of how the 3 addressing

schemes discussed so far, binary, rns concat and rns sub,
remap a stream of sequential accesses into the memory ad-
dress space. On the X-axis is the input value to the Memory
Address Interpreter; on the Y-axis is the difference (delta)
between two consecutive interpreted memory addresses.

First, notice that the delta for binary is always exactly
1; converting the tuple-of-residues back to the binary num-
ber they represent results in sequential memory addresses.
However, rns concat remaps accesses according to the fol-
lowing function: if the address X ≡{r1, r2, r3, r4}, then
X + 1 ≡{r1 + 1, r2 + 1, r3 + 1, r4 + 1}, thereby resulting
in a delta of 0x01010101 as each residue is 8-bits wide.
This is the delta value that is seen in the figure as a
straight horizontal line slightly above 224. However, each
time a residue overflows, the above constancy claim for delta
breaks down, generating the discontinuities shown in the
plot.

Non-unit delta values will cause consecutive accesses to
touch different cache lines and memory pages, destroying
spatial locality in the access stream. To mitigate this constant

delta offset seen in rns concat, we define rns sub in an
effort to preserve locality. Applying rns sub to X and 1, we
observe the following pattern (ignoring modulo overflows):

X ≡ {r1− r4,r2− r4,r3− r4,r4}; 1≡ {0,0,0,1}
=⇒ X +1≡ {r1− r4,r2− r4,r3− r4,r4 +1}

Therefore, rns sub yields a delta value of exactly 1 in the
common case, similar to the binary scenario. In general, the
rns sub representation of any number n < m4 is {0,0,0,n},
meaning that difference between X +n and X in the rns sub
representation is exactly n in the common case. This means
that rns sub is capable of preserving the spatial locality
that cache and DRAM memory systems need to deliver
performance.

While the detailed evaluation of a prefetcher is beyond the
scope of this paper, intuitively, prefetchers that work well
with binary would work well with rns sub as well. With
rns concat, however, a stride of 1 must be re-interpreted
as a stride of 0x01010101, which is the delta between
consecutive addresses, significantly altering the operation of
most prefetchers.

Although our example analysis in this section is based
upon a sequential address stream, the insights are applica-
ble to arbitrary streams that exhibit spatial locality, as is
demonstrated via simulation results detailed below.

IV. DESIGN TRADEOFFS
Utilizing a basis set of address interpretation schemes

outlined in Section III, we now construct and analyze a de-
sign space consisting of memory access granularity, Memory
Address Interpreter (MAI) configuration and DRAM address
interleaving dimensions.
A. Memory Access Granularity

As discussed in Section III, with rns concat based
schemes, consecutive addresses do not map onto contiguous
memory locations. This causes spatial locality in caches
to suffer, prompting us to salvage sequential locality by
increasing the memory access granularity to that of a cache
line. Under this paradigm, each memory access now refers
to a 64-byte chunk of memory rather than a single byte.
Clearly, this requires support from the software stack, and we
propose an ISA extension, which we name as the SELECT
instruction, to help.

The SELECT instruction takes as arguments a base ad-
dress (represented as rns concat), and a separate offset rep-
resented in binary to perform a word lookup within a cache

line. This hybrid binary-rns concat representation renders
the best of binary on one hand, i.e., sequential locality as
intended by the programmer, and that of rns concat on the
other hand, i.e., no runtime conversion overhead. A detailed
example of how such a compiler transformation may be
effected is presented in Section VIII for a word size of 8
bytes, although other word sizes can also be supported.

Representing a portion of the address in binary may seem
counter-productive to the reliability of the system, but note
that this offset is static (set at compile time) and therefore
does not warrant computational error correction, meaning
that the ECC protection that comes naturally to instructions
(Section II-C) is sufficient to protect this offset as well.

Introducing such a representation comes with a set of
limitations in software. First, if each cache line access is
to be accompanied by a SELECT instruction, a static code
bloat of about 15% occurs. In practice, we expect this bloat
to decrease significantly due to spatial locality; once a cache
line is loaded, multiple SELECTs can be performed without
re-issuing the cache line access. Static code bloat can also
be reduced by designing compiler optimizations that further
leverage spatial/temporal locality in instruction layout and
scheduling. Second, an increased memory access granularity
renders arbitrary pointer arithmetic and branch targets tricky
to disambiguate at compile time, unless they become aligned
to cache-line boundaries. Finally, for general purpose system
integration, such a hybrid representation may be required to
be extended into the software runtime to avoid an explosion
of pages. Alternately, TLB and paging performance may
also be improved by employing super pages [72], [100],
especially in emerging storage class memories [10] (with
segmentation support for security).

The SELECT instruction requires tight integration with
the software stack, the detailed implementation of which is
beyond the scope of this paper.
B. Memory Address Interpreter (MAI)

Figure 2 presents a simplified view of the memory system.
With typical memory systems comprising of L1, L2, L3
caches and a DRAM, the Memory Address Interpreter does
not necessarily have to be a singleton unit at the highest
level of cache. With a non-inclusive cache hierarchy, the fol-
lowing exhaustive set of legal Memory Address Interpreter
configurations are explored:
1) Ideal

IBIN This is the ideal configuration where conversion to
binary is without any overhead, or equivalently, a non-
error-correcting core that uses a conventional weighted
binary representation.

2) Naive
NL1 This is a naive conversion approach where every mem-

ory access is converted to binary before accessing the
L1 cache, thereby incurring a conversion overhead of
8 cycles and its associated energy consumption (adders
and lookup tables).

NRNS This is a naive conversion approach where the tu-
ple of residues in the MAR is simply concatenated
(rns concat).

NMEM This is a naive conversion approach where rns concat
is used through the cache hierarchy and a conversion
to binary is effected at the memory controller, thereby
incurring an overhead of 24 core cycles (this is be-
cause the clock domain of the memory controller is
nominally about three times slower than that of the
core).

3) Compiler. These approaches require compiler support:
CRNS This uses compiler support to realize a memory access

granularity of 64 bytes (cache line) and simply con-
catenates the tuple of address residues before accessing
L1. In other words, this is NRNS when the SELECT
instruction is used.

CX X∈{L2, L3, MEM}. These are similar to CRNS,
except that a conversion to binary is effected before
accessing the L2/L3/main memory respectively.

4) Rns sub
SUB This employs the single cycle overhead conversion of

rns sub before the L1 cache is accessed.
SUBM This is similar to SUB except that a binary conversion

is effected before a main memory access.
5) CLB

CLBX X∈{L1 N, MEM N}. This is similar to NL1 or
NMEM, except that an N-entry CLB is used in
an attempt to hide the performance overhead of the
conversion to binary, although at a potentially higher
energy cost. Upon a CLB hit, a single cycle conversion
is rendered, however, a CLB miss renders an access
time equal to that of a binary conversion as usual.
Furthermore, CCLBMEM N is similar to CMEM but
with an N-entry CLB at the memory controller.

CLBY Y is of the form S N. This is similar to SUBM, except
that the conversion to binary at the memory controller
is augmented with an N-entry CLB.

Space of valid configurations. Those listed above are
deemed representative of an exhaustive brute force sweep.
For example, it doesn’t make sense to perform a conversion
to RNS once a binary conversion or an rns sub has already
been effected. Also, mixing rns sub at L1 and conversion
to binary at L2/L3 imposes constraints on possible cache
configurations1, hence, we exclude them from our evaluation
(although the careful reader may reason about these tradeoffs
from the analysis and evaluation presented in this paper).

Cache coherence. Cache coherence state is typically
maintained at the granularity of a cache line. With the
exception of NRNS, NMEM and CLBMEM N, all the
other configurations proposed preserve locality within a
cache line at the very least, when compared to IBIN. To
elaborate, Compiler approaches are specifically designed to
preserve sequential locality within a cache line. NL1 and
CLB based approaches that effectively convert an address
to binary prior to L1 trivially preserve locality within a
cache line. Rns sub based approaches preserve locality for
m4 consecutive bytes in general (Section III-B); since all
the moduli (and m4, in particular) are greater than 63,
therefore, Rns sub preserves cache line locality as well. We
conclude that all efficient and well performing configurations
proposed are also amenable to traditional, unmodified cache
coherence protocols.

Summary. Intuitively, we first observe that the Com-
piler approaches would benefit from the best of locality-
preserving properties of binary and the no-overhead nature
of rns concat, however, at the cost of requiring changes to
and tight integration with the software stack. Next, Rns sub
approaches would benefit from both its locality-preserving,
as well as memory level parallelism inducing properties,
at low cost. Finally, CLB based approaches would mimic

1For example, given the cache configuration in our evaluation, the addresses X
(0x4fab84d8) and Y (0x4fab84fc) when subject to rns sub at L1 and conversion to
binary at L2, map onto the same L1 index (36) but different L2 indices (165, 166).
This makes enforcing a generic non-inclusive property unnecessarily complex.

(a) L1 MPKI normalized to binary

(b) L3 MPKI normalized to binary

Figure 4: Misses Per Kilo Instructions (MPKI – lower is better) of representative RNS based schemes, normalized to a binary scheme.
SUB successfully retains spatial locality present in the lower order bits of IBIN. CRNS salvages sequential locality lost by NRNS, with
the help of compiler support.

IBIN, however, at a significant energy overhead. We will
demonstrate in detail in Section V that the relative per-
formance is Ideal > Compiler > CLB > Rns sub >>
Naive, with Rns sub rendering the most energy efficient
architecture along with the added advantage of requiring no
support from the software stack.

C. DRAM Address Interleaving
The MAI of Section IV-B directly impacts DRAM address

interleaving. While an industry standard memory controller
policy is typically undisclosed, we span the following inter-
leaving policies gathered from published research:
• Row: The LSB bits of the memory address decide the

Column index, followed by the Row index, Bank, Rank
and the MSB bits decide the Channel (ChRaBaRoCo).

• Channel: This address interleaving is devised with the
aim of boosting memory level parallelism when a binary
coded memory address is presented (RoBaRaCoCh).

• MinOp: This address interleaving splits the column in-
dices such that exactly 4 consecutive cache lines (assum-
ing a binary coded memory address) may map to a single
row, thereby striking a balance between row buffer hit rate
and memory level parallelism [46].

• XOR *: These apply a permutation-based interleaving
scheme (for reasons similar to the above) to each of the
interleavings presented above [85], [118]. The essence of
this is to set the bank index by XORing the bank bits with
a selection of higher order bits.

V. EXPERIMENTAL EVALUATION
A. Evaluation Methodology

We use pin [65] to generate a dynamic instruction trace
that records the program counter of each instruction, as
well as any load/store address. Our pintool instruments all
32 bit x86 gcc (-O2) optimized binaries from the SPEC
2006 [20] benchmark suite, with test inputs. These traces
drive a ramulator [54] based simulator, complete with an
L1, L2, L3 non-inclusive cache hierarchy and DRAM main
memory. The baseline configuration is presented in Table II.

Table II: Baseline Configuration
Parameter Dimensions

Core Inorder / OoO
OoO Fetch/Retire width/ROB size 4/4/128

L1 size/associativity 32kB/8-way
L2 size/associativity 256kB/8-way
L3 size/associativity 2MB/8-way

Load to use latency L1/L2/L3 4/4+12/4+12+31 cycles
MSHR per cache 16
Caching policy Non-inclusive/LRU

Core-Memory frequency ratio 3:1
DRAM JEDEC Standard DDR4 (1channel) / LPDDR4 (2ch)

DRAM address interleaving Section IV-C
DRAM policy FRFCFS prioritizeHit

Open page
Memory Address Interpreter Section IV-B

CLB size 128/1024 entries
CLB policy Fully associative/LRU

CLB hit / miss latency 1 cycle/binary conversion

We enhance the simulator to support the design space
presented in Section IV, and use McPat [59]/CACTI [60]
to model energy overheads due to the Memory Address
Interpreter. Recall from Section II-C that memory addressing
logic such as the MAI is assumed to be error-free and can
therefore be modeled with conventional MOSFET-based cir-
cuits. For the purposes of the power and area model for the
MAI, we assume a 32nm/300K/0.9V/2GHz configuration.

B. Cache
First, we demonstrate the intuition formed in the theo-

retical analysis of Section III regarding the impact RNS
addressing schemes have on locality. Figure 4 shows the
cache misses per kilo instructions (MPKI) of RNS schemes,
when normalized to binary. Binary, captured by IBIN, is the
normalizing baseline; rns concat is captured by NRNS, with
the effect of introducing the SELECT instruction captured
via CRNS, and SUB captures behavior of rns sub. The other
MAI configurations from Section IV-B do not introduce any
new addressing schemes.

As expected from Section III, NRNS suffers a significant
(18×/13× for L1/L3) loss in spatial locality, whereas CRNS
helps salvage this. SUB was designed to retain the spatial

Figure 5: DRAM row buffer hit rate (higher is better) of SUB,
normalized to IBIN, under two example address interleavings. Row
locality is completely lost in CRNS irrespective of interleaving,
and is therefore omitted from this plot. Row locality for SUB is
relatively less impacted, but prefers the first interleaving, by design.

(a) DRAM read latency normalized to binary: Row interleaving.

(b) DRAM read latency normalized to binary: Channel intlv.

Figure 6: DRAM read latency (lower is better) of representative
RNS based schemes, normalized to a binary scheme, under two
example address interleavings. RNS based schemes naturally ex-
tract more memory level parallelism. Together with row locality
characteristics (Figure 5), read latency of RNS based schemes are
about on-par with or better than binary based schemes.

locality that is present in the lower order bits of IBIN, and
successfully, is more or less on par with it. The interplay
of addressing and temporal locality is rendered responsible
for cases where RNS schemes show superior cache perfor-
mance to binary. Results from cache configuration sweeps
w.r.t. size/associativity/replacement policy are as expected.
Therefore, we omit them as it adds no new insight to the
architecture community.

C. DRAM
There are two aspects to DRAM performance: row buffer

hit rate and memory level parallelism exploited.
By design, we expect SUB to show somewhat similar row

buffer hit rate to IBIN for an interleaving policy that respects
the locality preserving design principle of SUB, such as
row interleaving. Figure 5 shows its hit rate, normalized to
that of binary, for two example interleaving policies. CRNS,
however, preserves spatial locality at a smaller granularity,
thereby exhibiting very low row buffer hit rate. For brevity,
we do not present detailed results for NRNS because of its
incredibly poor cache performance, and omit depiction of
CRNS from Figure 5 because of its near zero hit rate. The
interleaving policy has a significant impact on row buffer
locality.

Table III: Most favored DRAM interleaving policy for an MAI
configuration. In general, RNS based configurations (such as
NRNS) benefit from increased memory level parallelism especially
when linear address interleaving such as row interleaving are
used and binary based configurations (such as IBIN) benefit from
permuted and XOR interleavings. Favorable interleavings choice
is also affected by row buffer locality and memory pressure
differences (due to interplay between MAI configuration, cache
performance and processor configuration). If several equally per-
formant choices are available, an arbitrary selection is made.

MAI
Configuration

Inorder OoO

Ideal IBIN XOR MinOp XOR MinOp
Naive

NL1 XOR Channel
NRNS Row RowNMEM

Rns sub SUB XOR MinOp XOR MinOp
SUBM Row Row

Compiler
CRNS XOR MinOp XOR MinOp
CL2 Row Row
CL3

XOR MinOp XOR MinOp
CMEM

Compiler CCLBMEM 128
/ CLB CCLBMEM 1024

CLB
CLBL1 128
CLBL1 1024 XOR Channel
CLBMEM 128 Row RowCLBMEM 1024

Rns sub CLBS 128 XOR MinOp XOR MinOp/ CLB CLBS 1024

On the other hand, because RNS addressing naturally
permutes an address, a higher degree of memory level
parallelism is expected, especially for linear interleaving
policies such as row interleaving. Figure 6 demonstrates this,
as we observe that the average read latency is significantly
improved inspite of an inferior row buffer hit rate for RNS
based schemes. This is one of the reasons why several
interleaving policies (Section IV-C) are deployed for binary
based addressing systems, i.e., permuting the address bits
reduces bank conflicts and therefore boosts performance
(other reasons not related to performance improvement for
such permutation are to avoid row-hammer [2] and security
issues).

The results presented in this section are with an inorder
processor, but similar trends are seen for OoO as well. Also,
DRAM scheduling and paging policies have an insignificant
impact on performance when compared to the impact due
to address interleaving. Therefore we omit their results for
brevity.

D. Overall Runtime
For completeness, we simulate the exhaustive set of

18 MAI configurations from Section IV-B across all 6
DRAM address interleavings from Section IV-C, and for
presentation purposes summarize the performance for each
configuration with its most favored DRAM interleaving
policy (Table III) in Figure 7. In deriving the most favored
interleaving, no distinction is made between workloads, i.e.,
the interleaving policy is varied only with MAI configuration
and is workload independent.

We normalize their performances against a fixed baseline
(NL1 with row interleaving) to be able to compare across
configurations and interleavings, and present the resulting
speedups. We present only the harmonic mean across the
benchmark suite.

[Ideal] For example, a conventional non-error-correcting
binary core IBIN performs 2.84×/2.13× faster on av-
erage when compared to the baseline (for inorder/OoO
processor respectively, with a DDR4 DRAM), and favors
XOR MinOp as its preferred address interleaving.

[Naive] None of the alternate address interleavings make
a noticeable improvement to the performance of the baseline

Figure 7: Speedup (higher is better) when compared to a naive approach of converting to binary upon each L1 access (NL1 with row
interleaving). Inorder cores are understandably more sensitive to conversion latency than OoO cores. For both inorder/OoO cores, the
relative performance of each cluster is Ideal > Compiler > CLB > Rns sub >> Naive.

(a) Inorder processor (b) OoO processor

Figure 8: Overhead in conversion energy (mJ) vs runtime; lower is better for both axes (similar to a pareto chart). SUB is the most
efficient microarchitecture configuration that requires no support from the software stack.

NL1. The 8 cycle conversion latency on every access to the
memory hierarchy is left unhidden, allowing it to dominate
the performance trends. NRNS/NMEM incur significant
slowdowns because of their poor cache performance.

[Rns sub] SUB shows significantly improved perfor-
mance over the naive approaches. SUBM follows closely
behind, due to slight decrease in exploited memory level
parallelism, coupled with its conversion latency at the mem-
ory controller.

[Compiler] The approaches that leverage the SELECT
instruction effectively approach IBIN by combining the best
of binary (cache performance) and RNS (no conversion
overhead).

[CLB] Placing a 128 entry CLB before L1 allows for
performance superior to SUB, and a 1024 entry CLB seems
sufficient to approach the performance of IBIN. However,
placing a CLB at the memory controller is rendered useless
unless either the SELECT instruction is used or rns sub is
used to prevent an explosion of cache misses.

From an Amdahl’s law perspective, the amount of over-
head and variation in memory access patterns introduced
by various MAI configurations has more weight than just
the DRAM interleaving policy, which is to be expected.
If we were to choose an unfavorable DRAM interleaving
instead, the performance on average for each of the non-
naive configurations vary by less than 1%, although we omit
detailed results for brevity.

LPDDR4 is a likely candidate to be used in conjunction
with low power microarchitectures, but comes at a cost

of increased row activation latency. Nevertheless, we find
that the insights presented in this paper hold even when an
LPDDR4 DRAM is used.

E. Energy Overhead
Figure 8 presents the performance of each of the MAI

configurations, when put in perspective of how much addi-
tional energy they consume. For each MAI configuration,
their most favored DDR4-DRAM interleaving is chosen
(Table III) and the mean cycle count and conversion energy
overhead (mJ) across the benchmark suite are presented.

[Ideal] For example, at the bottom left is IBIN, taking the
least number of cycles and without any conversion overhead.

[Naive] NL1, as has been mentioned throughout this
paper, suffers from poor performance and high energy con-
sumption. NMEM/NRNS have little or no increase in energy
consumption due to conversion alone, but their performance
suffers greatly.

[Rns sub] SUB/SUBM are the most efficient microarchi-
tectures that do not require support from the software stack
for them to work.

[Compiler] While these approach IBIN, they are subject
to software compatibility and integration issues as discussed
in Section IV-A.

[CLB] While placing a CLB at the L1 is more performant
than SUB, it comes at a higher conversion energy overhead.
Placing a CLB at the memory controller must be accompa-
nied by either an rns sub addressed cache or a cache line
addressed (SELECT instruction) cache.

(a) Inorder processor

(b) OoO processor

Figure 9: Slowdown of hypothetically faster binary convertors (4
cycles and 2 cycles as opposed to the best known candidate: 8
cycles) when compared to IBIN. NL1 thats used everywhere in
this document is annotated as NL1 8 for clarity. Our most efficient
microarchitecture technique that uses SUB is still faster than these
hypothetically faster convertors. It is also more energy efficient
than these, however, a quantitative comparison is not possible in
the absence of concrete algorithms for faster binary conversion.

Deriving a CLB configuration is similar to that of a TLB-
or cache-like structure. For example, while increasing the
CLB size increases access power, it may reduce the number
of CLB misses, which also translates into energy savings
on CLB miss repairs (ex: CLBL1 128 vs CLBL1 1024).
For brevity, we limit a CLB configuration sweep to just these
two for demonstrative purposes; the reader should be able to
easily infer points of tradeoff for other CLB configurations.

MAI Area. Table IV presents the area requirements of
few key configurations. We conclude that the energy trends
discussed above apply to area as well.

Table IV: Area requirement in mm2.
NRNS SUB CLB 128 CLB 1024 NL1

0 0.075 0.091 0.104 0.160
F. Sensitivity to Conversion Latency

Throughout this paper, we have assumed an 8 cycle
algorithm for converting an RNS tuple to a binary number
(NL1), as it is the state of the art given that the bases
must be amenable to RRNS error correction (Section II-B).
Nevertheless, we also evaluate the relative performance of
hypothetical conversion algorithms that take half as many
or even a quarter of the cycles. For clarity, we differentiate
these via subscripts (NL1 8, NL1 4, NL1 2). Figure 9 puts
their performance in perspective of two representative MAI
configurations: IBIN and SUB. Recall that SUB presents the
most efficient microarchitecture that does not impose restric-
tions on software. Therefore, for this analysis, we choose
IBIN as the baseline and also present SUB and NL1 8 to
put the performance of these hypothetical convertors into
perspective. Relative performance of the remaining MAI
configurations can be easily inferred from the previous result
sections.

Not only are these hypothetical faster convertors less
performant than the schemes presented in this paper, but
would also be less energy efficient. While a quantitative
comparison is not possible in the absence of concrete faster
algorithms, we expect their energy overhead to be rather
close to NL1 8 (and certainly much more than SUB) from
a functional standpoint of the process of converting to binary.

(a) TLB hit rate normalized to binary (higher is better)

(b) Fraction of pages that do not cause a hard disk access, normal-
ized to binary (higher is better)

Figure 10: Virtual memory performance of CRNS and SUB when
compared to IBIN. CRNS has superior TLB hit rate owing to its
higher memory access granularity, however, an explosion is seen in
the number of physical pages it touches, owing to its limited spatial
locality granularity. As expected, both TLB and page pressure of
SUB approach that of IBIN.

G. Virtual Memory
Certain RRNS based architectures may find it necessary

to integrate with a virtual memory (VM) subsystem. There
are two aspects to VM performance: TLB hit rate and page
pressure. Under an idempotent virtual-to-physical transfor-
mation, we use the reuse distance [7], [12] mechanism
to estimate the TLB hit rate in a 512kB structure and to
estimate page pressure using an 8GB DRAM, assuming a
page size of 4kB (as is common on Linux systems). We
quantify page pressure by measuring the number of pages
that have already been brought into main memory as well as
the number of pages that need to access secondary memory
(such as a non-volatile disk), as they may either have not yet
been allocated a physical page frame or had been evicted to
make way for newer pages.

Figure 10 highlights these for representative RNS
schemes, when compared to binary. Given its 64 byte access
granularity, CRNS exhibits high TLB performance thanks to
sequential locality in programs. However, this granularity is
rather small at the page level, causing an explosion in the
number of pages it accesses. As described in Section IV-A,
CRNS would have to be extended into the runtime system
(or a different page granularity should be used) in order to
attain low page pressure.

SUB, on the other hand, performs very similar to IBIN
on both counts. The reason for its relatively higher page
pressure when compared to binary is that 4kB pages have
an offset of 12 bits, whereas the residues in this paper are (or
specifically the fourth residue) 8 bits wide, thereby leading
to a gap in locality between rns sub and binary. Choosing
a wider m4 would result in an interesting tradeoff as it may
change the power-performance-reliability characteristics of
the RRNS core, but from a memory systems point of view,
it would enhance the spatial locality properties of rns sub
which directly translates to improved cache performance,
DRAM row buffer hit rate and virtual memory performance.

RESO [78], REDWC [45], RETWV [41], SCCSA [108], SHA [79], DIVA [1],
SITR [70], Timing Speculation [26], [37]

Figure 11: First order comparison of area overhead and energy-
delay product (EDP) of various mechanisms for computational
error correction, depicting the superiority of RRNS. Computational
error correction techniques use a combination of spatial and tempo-
ral redundancy techniques. While temporal redundancy allows for
a low area overhead, they suffer from a significant performance
penalty. Timing speculation techniques seem more efficient than
RRNS, however, their error model assumes all bit errors manifest
as circuit timing errors, which is not sufficient to work with ultra
low energy logic devices.

VI. RELATED WORK
Computational error correction. Figure 11, Section I-A

summarize various techniques in comparison with RRNS.
We refer the interested reader to Srikanth et al. [91] for a
more detailed survey on some of these non-residue tech-
niques; RRNS is generally considered superior in terms of
capability and efficiency for computational error resilience.
State of the art adoption and research in the industry also
claim the superiority of residue based resilience [16], [61].

Approaches that employ timing speculation [26], [37] may
seem superior to RRNS at first glance. However, the error
model that can be supported by an RRNS error correcting
architecture is orthogonal to theirs, if not broader. For
example, razor [26] uses conventional transistors, therefore
lowering Vdd lowers MOSFET switching speed significantly,
resulting in a large frequency drop, which could cause
setup time violations that they handle via a delayed latch
mechanism. They assume that any error manifests itself as a
timing error. Similarly, decor [37] uses a delayed commit
approach (with rollback support) to handle violations in
timing margins. However, with emerging devices (Section I),
Vdd can be lowered to few tens of millivolts with a relatively
lower frequency loss, meaning that operating at the resultant
thermal noise floor leads to stochastic, intermittent bit flips,
which cannot always be captured as circuit timing errors.
Unlike such approaches, RRNS error correcting architectures
can not only tolerate such errors in the data path, but also
in the control path between memory accesses.

In terms of being able to tolerate control path errors, ap-
proaches such as DIVA [1] that replicate parts of the pipeline
are capable. Their design provides recovery by having a
simple core recalculate results of an out-of-order core. In
this approach, the simple core is assumed to be error-free.
This is similar to a ”double-modular-redundancy” approach
with a rad-hard node, implying a relatively high overhead.
Furthermore, if the rad-hard simple core is instead prone to
error, checkpoint and re-execute methods would need to be
employed, similar to the IBM POWER6/7/8 and z10/z196
processors [8], [16], [44], [61] and various Intel Corpora-
tion [90] and Sun Microsystems based mainframes [43].
On the other hand, RRNS is able to tolerate errors in its
redundant as well as non-redundant computations.

Finally, a vast majority of these related work are at the

circuit level and can be augmented into RRNS-based archi-
tectures for potentially enhanced reliability characteristics.

Prime number based indexing. Kharbutli et al. [53]
propose using prime numbers for cache indexing to reduce
conflict misses. However, such indexing introduces fragmen-
tation that can only be amortized by higher cache capacities.
They therefore recommend using their technique only for
larger caches (such as L2/L3). Furthermore, their technique
isn’t applicable to DRAM addressing.

VII. CONCLUSION

New logic devices enable reduction of the supply voltage
to few tens of millivolts, yet maintaining a switching speed
superior to MOSFETs under low power operation. However,
they are subject to intermittent, stochastic bit errors in logic
due to proximity of operation to the kT noise floor. Compu-
tational error correction using the RRNS representation is a
promising approach to using these devices. However, prior
RRNS based architecture studies assume a simple, unrealis-
tic memory hierarchy without considering issues with RNS-
based memory addressing. This research found that naive
approaches such as NL1 and NRNS incur an overhead of
2×-4× on average. We propose new conversion strategies
and architecture extensions to significantly improve on naive
memory system performance. In our classification of the
design space, the relative performance is Ideal > Compiler
> CLB > Rns sub >> Naive, with Rns sub rendering
the most energy efficient architecture along with the added
advantage of requiring no support from the software stack.

The careful analysis of RNS-based memory access pat-
tern behavior and the detailed cost benefit analysis of the
resulting design space presented in this paper enables and
extends RRNS-error-correcting core microarchitectures built
from ultra-low energy logic devices. Using such devices has
the potential to punch through the power wall to restart
single core performance scaling via architectural advances
abandoned at the end of Dennard scaling a decade ago.

VIII. APPENDIX: SELECT INSTRUCTION
Consider an implementation with a 64 byte cache line

size, a double of size 8 bytes such that the following struct
has a size of 16 bytes, and the following snippet of code,
where M < N are arbitrary natural numbers that are not
necessarily compile-time constants.
typedef struct { double x; double y; } Foo;
Foo foos[N];
double sum = 0;
for (i = 0; i < M; ++i) {

sum += foos[i].x;
sum += foos[i].y;

}

A pseudo-assembly code of the loop body in a binary
computer would be as follows:

LD X, (foos + i*16) // Read foos[i].x
LD Y, (foos + i*16 + 1*8) // Read foos[i].y
ADD S, S, X
ADD S, S, Y

When SELECT instruction is used, the code transforms to:

uint8_t nOffset = sizeof(CACHELINE)/sizeof(Foo); //
64/16=4

// ++i is in RRNS ; ++n is in binary
for (rns_t i = 0; i < M / nOffset; ++i) {

LD A64, RNS(foos + i*sizeof(CACHELINE))
for (int_t n = 0; n < nOffset; ++n) {

SELECT X, A64, sizeof(Foo)*n
SELECT Y, A64, sizeof(Foo)*n + 1*8
ADD S, S, X
ADD S, S, Y

}
}

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission labora-
tory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Admin-
istration under Contract DE-NA0003525.

REFERENCES

[1] T. M. Austin, “Diva: A reliable substrate for deep submi-
cron microarchitecture design,” in Microarchitecture, 1999.
MICRO-32. Proceedings. 32nd Annual International Sym-
posium on. IEEE, 1999, pp. 196–207.

[2] K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and
Z. Greenfield, “Row hammer refresh command,” Aug. 25
2015, uS Patent 9,117,544.

[3] J.-C. Bajard and L. Imbert, “A full rns implementation of
rsa,” IEEE Transactions on Computers, vol. 53, no. 6, pp.
769–774, 2004.

[4] J.-C. Bajard, L.-S. Didier, and J.-M. Muller, “A new eu-
clidean division algorithm for residue number systems,”
Journal of VLSI signal processing systems for signal, image
and video technology, vol. 19, no. 2, pp. 167–178, 1998.

[5] J.-C. Bajard, J. Eynard, and N. Merkiche, “Multi-fault attack
detection for rns cryptographic architecture,” in Computer
Arithmetic (ARITH), 2016 IEEE 23nd Symposium on. IEEE,
2016, pp. 16–23.

[6] F. Barsi and P. Maestrini, “Error detection and correction by
product codes in residue number systems,” IEEE Transac-
tions on Computers, vol. 100, no. 9, pp. 915–924, 1974.

[7] B. T. Bennett and V. J. Kruskal, “Lru stack processing,”
IBM Journal of Research and Development, vol. 19, no. 4,
pp. 353–357, 1975.

[8] M. J. Boersma and J. Haess, “Residue-based error detection
for a processor execution unit that supports vector opera-
tions,” Mar. 17 2015, uS Patent 8,984,039.

[9] D. T. Brown, “Error detecting and correcting binary codes
for arithmetic operations,” IRE Transactions on Electronic
Computers, no. 3, pp. 333–337, 1960.

[10] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam,
K. Gopalakrishnan, and R. S. Shenoy, “Overview of can-
didate device technologies for storage-class memory,” IBM
Journal of Research and Development, vol. 52, no. 4.5, pp.
449–464, 2008.

[11] M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and
M. Shebanow, “Single instruction stream parallelism is
greater than two,” in ACM SIGARCH Computer Architecture
News, vol. 19, no. 3. ACM, 1991, pp. 276–286.

[12] C. CaBcaval and D. A. Padua, “Estimating cache misses and
locality using stack distances,” in Proceedings of the 17th
annual international conference on Supercomputing. ACM,
2003, pp. 150–159.

[13] B. H. Calhoun, A. Wang, and A. Chandrakasan, “Modeling
and sizing for minimum energy operation in subthreshold
circuits,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9,
pp. 1778–1786, 2005.

[14] B. Cao, C.-H. Chang, and T. Srikanthan, “A residue-to-
binary converter for a new five-moduli set,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 54,
no. 5, pp. 1041–1049, 2007.

[15] G. Cardarilli, M. Re, and R. Lojacono, “Rns-to-binary
conversion for efficient vlsi implementation,” IEEE Trans-
actions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 45, no. 6, pp. 667–669, 1998.

[16] S. Carlough, A. Collura, S. Mueller, and M. Kroener, “The
ibm zenterprise-196 decimal floating-point accelerator,” in
Computer Arithmetic (ARITH), 2011 20th IEEE Symposium
on. IEEE, 2011, pp. 139–146.

[17] C.-H. Chang, A. S. Molahosseini, A. A. E. Zarandi, and
T. F. Tay, “Residue number systems: A new paradigm to
datapath optimization for low-power and high-performance
digital signal processing applications,” IEEE circuits and
systems magazine, vol. 15, no. 4, pp. 26–44, 2015.

[18] J.-S. Chiang and M. Lu, “Floating-point numbers in residue
number systems,” Computers & Mathematics with Ap-
plications, vol. 22, no. 10, pp. 127–140, 1991.

[19] R. Chokshi, K. S. Berezowski, A. Shrivastava, and S. J.
Piestrak, “Exploiting residue number system for power-
efficient digital signal processing in embedded processors,”
in Proceedings of the 2009 international conference on Com-
pilers, architecture, and synthesis for embedded systems.
ACM, 2009, pp. 19–28.

[20] S. CPU2006, “Standard performance evaluation corpora-
tion,” 2006.

[21] B. Deng, S. Srikanth, E. R. Hein, P. G. Rabbat, T. M. Conte,
E. DeBenedictis, and J. Cook, “Computationally-redundant
energy-efficient processing for y’all (creepy),” in Reboot-
ing Computing (ICRC), IEEE International Conference on.
IEEE, 2016, pp. 1–8.

[22] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous,
and A. R. LeBlanc, “Design of ion-implanted mosfet’s with
very small physical dimensions,” IEEE Journal of Solid-
State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[23] E. D. Di Claudio, G. Orlandi, and F. Piazza, “A systolic
redundant residue arithmetic error correction circuit,” IEEE
Transactions on Computers, vol. 42, no. 4, pp. 427–432,
1993.

[24] E. D. Di Claudio, F. Piazza, and G. Orlandi, “Fast combina-
torial rns processors for dsp applications,” IEEE transactions
on computers, vol. 44, no. 5, pp. 624–633, 1995.

[25] S. Dolev, S. Frenkel, D. E. Tamir, and V. Sinelnikov,
“Preserving hamming distance in arithmetic and logical
operations,” Journal of Electronic Testing, vol. 29, no. 6,
pp. 903–907, 2013.

[26] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner et al., “Razor:
A low-power pipeline based on circuit-level timing spec-
ulation,” in Microarchitecture, 2003. MICRO-36. Proceed-
ings. 36th Annual IEEE/ACM International Symposium on.
IEEE, 2003, pp. 7–18.

[27] M. Etzel and W. Jenkins, “Redundant residue number sys-
tems for error detection and correction in digital filters,”
IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 28, no. 5, pp. 538–545, 1980.

[28] C. Fetzer, U. Schiffel, and M. Süßkraut, “An-encoding
compiler: Building safety-critical systems with commodity
hardware,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2009, pp. 283–296.

[29] P. Forin, “Vital coded microprocessor principles and applica-
tion for various transit systems,” IFAC Control, Computers,
Communications, pp. 79–84, 1989.

[30] D. Gamberger, “New approach to integer division in residue
number systems,” in Computer Arithmetic, 1991. Proceed-
ings., 10th IEEE Symposium on. IEEE, 1991, pp. 84–91.

[31] H. L. Garner, “The residue number system,” IRE Transac-
tions on Electronic Computers, no. 2, pp. 140–147, 1959.

[32] S. Ghosh, P. Ndai, and K. Roy, “A novel low overhead
fault tolerant kogge-stone adder using adaptive clocking,”
in Design, Automation and Test in Europe, 2008. DATE’08.
IEEE, 2008, pp. 366–371.

[33] V. T. Goh and M. U. Siddiqi, “Multiple error detection
and correction based on redundant residue number systems,”
IEEE Transactions on Communications, vol. 56, no. 3, 2008.

[34] O. Goldreich, D. Ron, and M. Sudan, “Chinese remaindering
with errors,” in Proceedings of the thirty-first annual ACM
symposium on Theory of computing. ACM, 1999, pp. 225–
234.

[35] J. González and A. González, “Limits of instruction level
parallelism with data speculation,” in Proc. of the VECPAR
Conf. Citeseer, 1998, pp. 585–598.

[36] K. C. Gower, B. Hazelzet, M. W. Kellogg, and D. J.
Perlman, “High reliability memory module with a fault
tolerant address and command bus,” Jun. 19 2007, uS Patent
7,234,099.

[37] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei,
and D. Brooks, “Decor: A delayed commit and rollback
mechanism for handling inductive noise in processors,”
in High Performance Computer Architecture, 2008. HPCA
2008. IEEE 14th International Symposium on. IEEE, 2008,
pp. 381–392.

[38] N. Z. Haron and S. Hamdioui, “Redundant residue num-
ber system code for fault-tolerant hybrid memories,” ACM
Journal on Emerging Technologies in Computing Systems
(JETC), vol. 7, no. 1, p. 4, 2011.

[39] A. A. Hiasat and H. Abdel-Aty-Zohdy, “Semi-custom vlsi
design and implementation of a new efficient rns division
algorithm,” The Computer Journal, vol. 42, no. 3, pp. 232–
240, 1999.

[40] M. A. Hitz and E. Kaltofen, “Integer division in residue
number systems,” IEEE transactions on computers, vol. 44,
no. 8, pp. 983–989, 1995.

[41] Y.-M. Hsu and E. Swartzlander, “Time redundant error
correcting adders and multipliers,” in Defect and Fault
Tolerance in VLSI Systems, 1992. Proceedings., 1992 IEEE
International Workshop on. IEEE, 1992, pp. 247–256.

[42] C. Y. Hung and B. Parhami, “Fast rns division algorithms
for fixed divisors with application to rsa encryption,” In-
formation Processing Letters, vol. 51, no. 4, pp. 163–169,
1994.

[43] S. Iacobovici, “End-to-end residue based protection of an
execution pipeline,” Jun. 30 2009, uS Patent 7,555,692.

[44] IBM, “Ibm power system e880 server, an ibm power8
technology-based system, addresses the requirements of an
industry-leading enterprise class system,” 2014.

[45] B. W. Johnson, J. H. Aylor, and H. H. Hana, “Efficient use of
time and hardware redundancy for concurrent error detection
in a 32-bit vlsi adder,” IEEE journal of solid-state circuits,
vol. 23, no. 1, pp. 208–215, 1988.

[46] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-
page: A dram page-mode scheduling policy for the many-
core era,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM,
2011, pp. 24–35.

[47] R. S. Katti, “A new residue arithmetic error correction
scheme,” IEEE transactions on computers, vol. 45, no. 1,
pp. 13–19, 1996.

[48] O. Keren, I. Levin, V. Ostrovsky, and B. Abramov, “Arbitrary
error detection in combinational circuits by using partition-
ing,” in Defect and Fault Tolerance of VLSI Systems, 2008.
DFTVS’08. IEEE International Symposium on. IEEE, 2008,
pp. 361–369.

[49] R. Keyes, “Miniaturization of electronics and its limits,” IBM
Journal of Research and Development, vol. 32, no. 1, pp.
84–88, 1988.

[50] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin,
“Ferroelectric negative capacitance mosfet: Capacitance tun-
ing & antiferroelectric operation,” in Electron Devices
Meeting (IEDM), 2011 IEEE International. IEEE, 2011,
pp. 11–3.

[51] A. I. Khan, K. Chatterjee, J. P. Duarte, Z. Lu, A. Sachid,
S. Khandelwal, R. Ramesh, C. Hu, and S. Salahuddin,
“Negative capacitance in short-channel finfets externally
connected to an epitaxial ferroelectric capacitor,” IEEE
Electron Device Letters, vol. 37, no. 1, pp. 111–114, 2016.

[52] A. I. Khan and S. Salahuddin, “4 extending cmos with
negative capacitance,” CMOS and Beyond: Logic Switches
for Terascale Integrated Circuits, pp. 56–76, 2015.

[53] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using prime
numbers for cache indexing to eliminate conflict misses,” in
Software, IEE Proceedings-. IEEE, 2004, pp. 288–299.

[54] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and
extensible dram simulator,” IEEE Computer Architecture
Letters, vol. 15, no. 1, pp. 45–49, 2016.

[55] E. Krekhov, A.-r. A. Pavlov, A. Pavlov, P. Pavlov,
D. Smirnov, A. Tsar’kov, P. Chistopol’skii, A. Shandrikov,
B. Sharikov, and D. Yakimov, “A method of monitoring
execution of arithmetic operations on computers in com-
puterized monitoring and measuring systems,” Measurement
Techniques, vol. 51, no. 3, pp. 237–241, 2008.

[56] H. Krishna, B. Krishna, K.-Y. Lin, and J.-D. Sun, Com-
putational Number Theory and Digital Signal Processing:
Fast Algorithms and Error Control Techniques. CRC Press,
1994, vol. 6.

[57] H. Krishna, K.-Y. Lin, and J.-D. Sun, “A coding theory ap-
proach to error control in redundant residue number systems.
i. theory and single error correction,” IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 39, no. 1, pp. 8–17, 1992.

[58] H.-H. Lee, Y. Wu, and G. Tyson, “Quantifying instruction-
level parallelism limits on an epic architecture,” in Perfor-
mance Analysis of Systems and Software, 2000. ISPASS.
2000 IEEE International Symposium on. IEEE, 2000, pp.
21–27.

[59] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Microarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on. IEEE,
2009, pp. 469–480.

[60] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“Cacti-p: Architecture-level modeling for sram-based struc-
tures with advanced leakage reduction techniques,” in
Computer-Aided Design (ICCAD), 2011 IEEE/ACM Inter-
national Conference on. IEEE, 2011, pp. 694–701.

[61] D. Lipetz and E. Schwarz, “Self checking in current floating-
point units,” in Computer Arithmetic (ARITH), 2011 20th
IEEE Symposium on. IEEE, 2011, pp. 73–76.

[62] C.-K. Liu, “Error-correcting-codes in computer arithmetic,”
DTIC Document, Tech. Rep., 1972.

[63] H.-Y. Lo and T.-W. Lin, “Parallel algorithms for residue
scaling and error correction in residue arithmetic,” Wireless
Engineering and Technology, vol. 4, no. 04, p. 198, 2013.

[64] M. Lu and J.-S. Chiang, “A novel division algorithm for the
residue number system,” IEEE Transactions on Computers,
vol. 41, no. 8, pp. 1026–1032, 1992.

[65] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in Acm sigplan notices, vol. 40, no. 6.
ACM, 2005, pp. 190–200.

[66] F. J. MacWilliams and N. J. A. Sloane, The theory of error-
correcting codes. Elsevier, 1977.

[67] D. Marienfeld, E. S. Sogomonyan, V. Ocheretnij, and
M. Gossel, “New self-checking output-duplicated booth
multiplier with high fault coverage for soft errors,” in Test
Symposium, 2005. Proceedings. 14th Asian. IEEE, 2005,
pp. 76–81.

[68] J. Mathew, S. Banerjee, P. Mahesh, D. Pradhan, A. Jabir, and
S. Mohanty, “Multiple bit error detection and correction in
gf arithmetic circuits,” in Electronic System Design (ISED),
2010 International Symposium on. IEEE, 2010, pp. 101–
106.

[69] A. McMenamin, “The end of dennard scaling,” 2013.
[70] E. Mizan, T. Amimeur, and M. F. Jacome, “Self-imposed

temporal redundancy: An efficient technique to enhance the
reliability of pipelined functional units,” in Computer Archi-
tecture and High Performance Computing, 2007. SBAC-PAD
2007. 19th International Symposium on. IEEE, 2007, pp.
45–53.

[71] P. V. A. Mohan, “Rns-to-binary converter for a new three-
moduli set,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 54, no. 9, pp. 775–779, 2007.

[72] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical,
transparent operating system support for superpages,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 89–
104, 2002.

[73] M. Nicolaidis, “Carry checking/parity prediction adders and
alus,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 11, no. 1, pp. 121–128, 2003.

[74] M. Nicolaidis and H. Bederr, “Efficient implementations
of self-checking multiply and divide arrays,” in European
Design and Test Conference, 1994. EDAC, The European
Conference on Design Automation. ETC European Test Con-
ference. EUROASIC, The European Event in ASIC Design,
Proceedings. IEEE, 1994, pp. 574–579.

[75] M. Nicolaidis and R. Duarte, “Design of fault-secure parity-
prediction booth multipliers,” in Design, Automation and
Test in Europe, 1998., Proceedings. IEEE, 1998, pp. 7–
14.

[76] D. E. Nikonov and I. A. Young, “Overview of beyond-cmos
devices and a uniform methodology for their benchmarking,”
Proceedings of the IEEE, vol. 101, no. 12, pp. 2498–2533,
2013.

[77] G. A. Orton, L. E. Peppard, and S. E. Tavares, “New
fault tolerant techniques for residue number systems,” IEEE
transactions on computers, vol. 41, no. 11, pp. 1453–1464,
1992.

[78] J. H. Patel and L. Y. Fung, “Concurrent error detection in
alu’s by recomputing with shifted operands,” IEEE Trans.
Computers, vol. 31, no. 7, pp. 589–595, 1982.

[79] S. Peng and R. Manohar, “Fault tolerant asynchronous
adder through dynamic self-reconfiguration,” in Computer
Design: VLSI in Computers and Processors, 2005. ICCD
2005. Proceedings. 2005 IEEE International Conference on.
IEEE, 2005, pp. 171–178.

[80] V. Ramachandran, “Single residue error correction in residue
number systems,” IEEE transactions on computers, vol. 32,
no. 5, pp. 504–507, 1983.

[81] J. Ramirez, A. Garcia, S. Lopez-Buedo, and A. Lloris, “Rns-
enabled digital signal processor design,” Electronics Letters,
vol. 38, no. 6, pp. 266–268, 2002.

[82] T. R. Rao, “Biresidue error-correcting codes for computer
arithmetic,” IEEE Transactions on computers, vol. 100,
no. 5, pp. 398–402, 1970.

[83] W. Rao and A. Orailoglu, “Towards fault tolerant parallel
prefix adders in nanoelectronic systems,” in Design, Automa-
tion and Test in Europe, 2008. DATE’08. IEEE, 2008, pp.
360–365.

[84] W. Rao, A. Orailoglu, and R. Karri, “Fault identification in
reconfigurable carry lookahead adders targeting nanoelec-
tronic fabrics,” in Test Symposium, 2006. ETS’06. Eleventh
IEEE European. IEEE, 2006, pp. 63–68.

[85] B. R. Rau, “Pseudo-randomly interleaved memory,” in ACM
SIGARCH Computer Architecture News, vol. 19, no. 3.
ACM, 1991, pp. 74–83.

[86] M. Sachdev, “Fault-tolerant memory address decoder,”
Nov. 3 1998, uS Patent 5,831,986.

[87] S. Salahuddin and S. Datta, “Can the subthreshold swing in
a classical fet be lowered below 60 mv/decade?” in Electron
Devices Meeting, 2008. IEDM 2008. IEEE International.
IEEE, 2008, pp. 1–4.

[88] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer, “Anb-
and anbdmem-encoding: detecting hardware errors in soft-
ware,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2010, pp. 169–182.

[89] A. Sengupta and B. Natarajan, “Performance of systematic
rrns based space-time block codes with probability-aware
adaptive demapping,” IEEE Transactions on Wireless Com-
munications, vol. 12, no. 5, pp. 2458–2469, 2013.

[90] Z. Sperber, O. Levy, M. Mishaeli, and R. Gabor, “Recov-
erable parity and residue error,” Dec. 9 2014, uS Patent
8,909,988.

[91] S. Srikanth, B. Deng, and T. M. Conte, “A brief survey
of non-residue based computational error correction,” arXiv
preprint arXiv:1611.03099, 2016.

[92] C.-C. Su and H.-Y. Lo, “An algorithm for scaling and single
residue error correction in residue number systems,” IEEE
Transactions on Computers, vol. 39, no. 8, pp. 1053–1064,
1990.

[93] J.-D. Sun and H. Krishna, “A coding theory approach
to error control in redundant residue number systems. ii.
multiple error detection and correction,” IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 39, no. 1, pp. 18–34, 1992.

[94] J.-D. Sun, H. Krishna, and K. Lin, “A superfast algorithm
for single-error correction in rrns and hardware implemen-
tation,” in Circuits and Systems, 1992. ISCAS’92. Proceed-
ings., 1992 IEEE International Symposium on, vol. 2. IEEE,
1992, pp. 795–798.

[95] Y. Sun, M. Zhang, S. Li, and Y. Zhao, “Cost effective soft
error mitigation for parallel adders by exploiting inherent
redundancy,” in IC Design and Technology (ICICDT), 2010
IEEE International Conference on. IEEE, 2010, pp. 224–
227.

[96] R. M. Swanson and J. D. Meindl, “Ion-implanted com-
plementary mos transistors in low-voltage circuits,” IEEE
Journal of Solid-State Circuits, vol. 7, no. 2, pp. 146–153,
1972.

[97] A. Sweidan and A. A. Hiasat, “On the theory of error control
based on moduli with common factors,” Reliable computing,
vol. 7, no. 3, pp. 209–218, 2001.

[98] N. S. Szabo and R. I. Tanaka, Residue arithmetic and its
applications to computer technology. McGraw-Hill, 1967.

[99] S. Talahmeh and P. Siy, “Arithmetic division in rns using
galois field gf (p),” Computers & Mathematics with
Applications, vol. 39, no. 5-6, pp. 227–238, 2000.

[100] M. Talluri and M. D. Hill, Surpassing the TLB performance
of superpages with less operating system support. ACM,
1994, vol. 29, no. 11.

[101] Y. Tang, E. Boutillon, C. Jégo, and M. Jézéquel, “A
new single-error correction scheme based on self-diagnosis
residue number arithmetic,” in Design and Architectures for
Signal and Image Processing (DASIP), 2010 Conference on.
IEEE, 2010, pp. 27–33.

[102] T. F. Tay and C.-H. Chang, “A new algorithm for single
residue digit error correction in redundant residue number
system,” in Circuits and Systems (ISCAS), 2014 IEEE Inter-
national Symposium on. IEEE, 2014, pp. 1748–1751.

[103] ——, “A non-iterative multiple residue digit error detection
and correction algorithm in rrns,” IEEE transactions on
computers, vol. 65, no. 2, pp. 396–408, 2016.

[104] T. N. Theis, “(keynote) in quest of a fast, low-voltage digital
switch,” ECS Transactions, 45(6), 3-11, 2012.

[105] T. N. Theis and P. M. Solomon, “In quest of the “next
switch”: prospects for greatly reduced power dissipation in a
successor to the silicon field-effect transistor,” Proceedings
of the IEEE, vol. 98, no. 12, pp. 2005–2014, 2010.

[106] M. Valinataj and S. Safari, “Fault tolerant arithmetic opera-
tions with multiple error detection and correction,” in Defect
and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd
IEEE International Symposium on. IEEE, 2007, pp. 188–
196.

[107] D. P. Vasudevan and P. K. Lala, “A technique for modular
design of self-checking carry-select adder,” in Defect and
Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th
IEEE International Symposium on. IEEE, 2005, pp. 325–
333.

[108] D. P. Vasudevan, P. K. Lala, and J. P. Parkerson, “Self-
checking carry-select adder design based on two-rail encod-
ing,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 54, no. 12, pp. 2696–2705, 2007.

[109] J. Von Neumann, “Probabilistic logics and the synthesis of
reliable organisms from unreliable components,” Automata
studies, vol. 34, pp. 43–98, 1956.

[110] J. Von Neumann, A. W. Burks et al., “Theory of self-
reproducing automata,” IEEE Transactions on Neural Net-
works, vol. 5, no. 1, pp. 3–14, 1966.

[111] U. Wappler and C. Fetzer, “Hardware failure virtualization
via software encoded processing,” in Industrial Informatics,
2007 5th IEEE International Conference on, vol. 2. IEEE,
2007, pp. 977–982.

[112] R. W. Watson and C. W. Hastings, “Self-checked compu-
tation using residue arithmetic,” Proceedings of the IEEE,
vol. 54, no. 12, pp. 1920–1931, 1966.

[113] H. Xiao, H. K. Garg, J. Hu, and G. Xiao, “New error control
algorithms for residue number system codes,” ETRI Journal,
vol. 38, no. 2, pp. 326–336, 2016.

[114] L. Xiao and X.-G. Xia, “Error correction in polynomial
remainder codes with non-pairwise coprime moduli and
robust chinese remainder theorem for polynomials,” IEEE
Transactions on Communications, vol. 63, no. 3, pp. 605–
616, 2015.

[115] S.-S. Yau and Y.-C. Liu, “Error correction in redundant
residue number systems,” IEEE Transactions on Computers,
vol. 100, no. 1, pp. 5–11, 1973.

[116] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “Rsa speedup
with chinese remainder theorem immune against hard-
ware fault cryptanalysis,” IEEE Transactions on computers,
vol. 52, no. 4, pp. 461–472, 2003.

[117] P. Yin and L. Li, “A new algorithm for single error cor-
rection in rrns,” in Communications, Circuits and Systems
(ICCCAS), 2013 International Conference on, vol. 2. IEEE,
2013, pp. 178–181.

[118] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based
page interleaving scheme to reduce row-buffer conflicts and
exploit data locality,” in Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture.
ACM, 2000, pp. 32–41.

