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Abstract Optimization problems constrained by complex dynamicslead to computationally challenging problems
especially when high accuracy and efficiency are requiree.pésent an approach to adaptively control numerical
errors in optimization problems approximated using thedieiement method. The discrete adjoint equation serves as
a key tool to efficiently compute both parameter sensidgitind goal-oriented error estimates at the same disctetize
levels. By using a recovery method for the error estimatwesavoid expensive higher order adjoint calculations. We
nest the adaptivity of the mesh within the optimization aillpon, which is responsible for converging both the state
and optimization algorithms and thereby allowing the reofsstate, parameters, and reduced Hessian in subsequent
optimization iterations. Our approach is demonstrated parameter estimation problem for contamination transport
in a contact tank reactor. Significant efficiency and acguiaprovements are realized in comparison to uniform grid
refinement strategies and black-box optimization methadlexible and maintainable software interface was devedope
to provide access between the underlying linear algebrapodduction simulator and advanced numerical algorithms
such as optimization and error estimation.

Keywords optimization, PDE constrained optimization, error estiorg adjoint, adaptivity, parameter estimation,
contact tank reactor

1 INTRODUCTION

One of the key goals of numerical simulation is to approxermamplex physics as accurately as possible while main-
taining computational efficiency. This can be achieveduftothe advancement of numerical methods such as linear
solvers, nonlinear solvers, time integrators, precoonérs, and parallelization. More fundamentally howevss, dc-
curacy of numerical simulation is strongly dependent onahpropriate use of discretization techniques and mesh
refinement which almost always accomplishes higher leviedslation accuracy. But simply refining meshes becomes
computationally expensive, especially if multiple fordaimulations are required as part of more detailed optiticiza
studies. Therefore to maintain computational tractahitihe can only afford to sparingly refine the grid, prefeyahl
a way that is guided by the dynamics of the problem. This caadsemplished mathematically using the adjoint for-
mulation, which encompasses the necessary informationivte both the optimization and grid refinement problems.
Despite many technical advancements, several importelmiieal issues remain when coupling optimization and adap-
tivity, consisting of the computational expensive naturealculating an additional adjoint on higher order mesties,
lack of established algorithms to calculate error estiamatvithin an optimization context, and the challenges dased
with software implementation of intrusive algorithms iroguction simulation codes. In this paper we address these is
sues by 1) demonstrating recovery methods applied to ddjaised error estimators as an inexpensive alternative to
higher order adjoint solutions, 2) reusing Hessian, stateaptimization variables after each adaption cycle, 3tev
aging embedded optimization methods to efficiently combiehaptivity and optimization algorithms, and 4) enabling a
generalized interface to mitigate the complexities ofriisieing advanced numerical algorithms into productionesod
Significant research has been conducted in the area of aripoistgror estimation for finite element discretiza-
tions, especially for engineering responses of interegth @s surface fluxes, average values on subdomains or sur-
faces, and point values. The underlying tool in nearly althise approaches, beginning with the work of Becker
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and Rannacher [Becker and Rannacher(1996)], isotmputationallymake use of an auxiliary linear adjoint prob-
lem. Weighting the local finite element residuals with thgoad error yields both global error estimates on the er-
ror in the responses of interest and local error indicatoas ¢an be used to drive adaptive mesh refinement. This ap-
proach was subsequently pursued for linear elliptic proklfParaschivoiu et al(1997)Paraschivoiu, Peraire, atet&a
Prudhomme and Oden(1999)], optimization [Becker and KEQ@ff), Becker et al(2000)Becker, Kapp, and Rannacher,
Bangerth(2008)], and more general nonlinear systems ofsHB&ep et al(2000)Estep, Larson, and Williams]. Recent
reviews of adjoint-based error estimation can be found itefGand Siili(2002), Bangerth and Rannacher(2003)]. One
of the main research issues is how to reduce the high congmaatcost of approximating the adjoint solve with a
higher order method, while still preserving sufficient a@ay in the error estimators. We present a new approximation
approach for the adjoint solve using recovery methods thegliy computationaly efficient when compared to solving
the adjoint using a higher order method.

Optimization techniques have been studied for severalddscand more recently, efficient large scale algorithms
have demonstrated impressive computational performaiiage]fik et al(2005)Akcelik, Biros, Draganescu, GlaattHill, and van Bloemen V
The use of these algorithms require access to the linearagarastructure of the simulator which typically is nead-
ily available, especially in production codes. Differeewéls of interfaces can be considered and the choice depends
a balance of implementation effort versus desired perfaomaFor the most efficient algorithm, first and second order
sensitivity information need to be provided to the optini@a algorithm to realize potentially quadratic convergen
rates, whereas at the opposite end of the spectrum the aptigalculates the objective function gradient throughdini
difference techniques requiring very little from the siatokr (merely forward simulations) but at a significant perfo
mance cost. In this paper, we show performance comparisorfferent interface strategies from the “black box” to
the “simultaneous analysis and design” (SAND) approadhdaall-at-once approach). It is the SAND strategy how-
ever that not only significantly improves the computatioefiiciency but also provides the algorithmic flexibility to
accomodate adaptivity within the optimization algorithm.

Progress on algorithms for large scale optimization withpdidity in parallel environments has been hampered by
the complexity associated with the implementation procgssne of the few research efforts, Bangerth [Bangertr§p00
demonstrates large scale optimization algorithms wittdaptivity applied to inversion in 3D optical tomographipw-
ever, his finite element environment was appropriatelygtesi from the outset to accommodate adaptivity and access
to the linear algebra infrastructure. Such capabilitiess tgpically not available in existing legacy production esd
Short of completely refactoring, the algorithms in Banlgsrtvork cannot be conveniently encapsulated and effigientl
transferred to production codes. As part of this reseanch,a our goals was to create a general interface so that ex-
isting optimization libraries and adaptivity capabil#iean be seamlessly used by any simulation code that addyted t
interface. However, just creating an interface for optatian and adaptivity is still not sufficient to ensure thegevwity
of such an interface. The primary code developers are thpifceussed on the enhancement of the forward prediction
mode and not on the maintenance of interfaces for optinoizair error estimation. A general interface must therefore
also appeal to other nonlinear numerical algorithms (swctinge integrators and nonlinear solvers) that are in direct
support of the forward prediction. Our interface is des@jtteaccomplish this and although a detailed descriptiohef t
object oriented design of our interface is beyond the scoi@®paper, the importance of these implementation issues
warrants the inclusion of a brief description of our design.

In the remainder of the paper we present the algorithms formeoptimization and discuss different implementation
strategies. A performance comparison is presented usingfid transport datasets. The practical difficulties assedi
with the theoretical error for the optimality conditiongaliscussed and the dual-weighted residual approachiiégdst
Our adaptive process makes use of the adjoints in a recovettyoch to augment the solution field with higher order
information. This approach is verified by comparing it to amalgtic solution for convection-diffusion dynamics. A
description of our implementation approach is includedrpkeasize the intrusive nature of the implementation and
the added complications of attempting this in multiple odad production systems. After the verification section,
the physics of our example dataset are explained followewlinyerical results for both two and three dimensions. We
summarize the effectiveness of adaptivity in the optinmi@atontext in addition to showing the performance gains for
our embedded optimization and adaptivity methods whichbate supported by a single adjoint calculation on the
same discrete space. Numerical studies were performedial aad parallel for two and three dimensional datasets,
respectively.

2 OPTIMIZATION METHODOL OGIES

We start by defining our algorithms to solve large scale ogtition problems and by identifying appropriate solution
strategies that are extensible to leverage adaptivityp&agp that the forward model is described using a semilinear
variational statement: given a value of the paramgterl!, find the solution: = u(p) € V:



A(u,p)(v) =0, veV. Q)

where the exact form of the funcational spateand A are problem dependent. The parametean also belong to
a function space; here, for simplicity we assume that tharpater space is finite dimensional,poe IT = R™.

In order to define the optimization problem, we need a costtfanal F' that depends on the solutianand the
parameterg. The goal of the optimization problem is to fitd*, p*):

F(u®,p") = Tng(u,p) )

subject to the constraint in (1). A classical way to solves thioblem is to introduce a Lagrange multiplier fied,
also known as the adjoint state, and form a Lagrangian fomatiC that combines the objective function with the state
equation:

L(u,p,¢) = F(u,p) + A(u,p)(¢). ©)

The stationarity ofZ is derived by taking variations with respect to the adjoitit Etate (), and optimization pa-
rameter p). The following system of equations represent the firseoreecessary conditions for optimality (suppressing
the dependence du, p) for clarity in our notation):

Ly A state equation
Ly »={ Fu+ AT ¢ 3 =0 adjoint equation (4)
Ly Fp+ Al optimization equation

This system of equations is typically nonlinear and thexefequires a linearization step, which can be achieved
through Newton’s method. This system of equations for theitide updates is called the Karush-Kuhn-Tucker (KKT)
system:

Luu Lup AL (du Ly
Lpu Lpp A;{ dp p=—19 Lp (5)
Ay Ap O dg Ly

whereL.., is the Hessian operator of the Lagrangian with respect ta traiable. Different algorithms can solve these
optimality conditions and the right choice depends on sdvissues, most importantly on the size of the optimization
space, complexity of the constraints, and the affordagbilitthe implementation effort. The most difficult one to irapl
ment is &ull spacemethod in which (5) is solved directly. The most notable ablets are the need for second derivatives
and special preconditioning [Biros and Ghattas(2005apsBand Ghattas(2005b)]. Neither requirement is tractable
most production codes. An approximation to the Hessiandcbelconsidered such as BFGS or SR1 updating methods
[Nocedal and Wright(2000)], which simplifies the requirertgeconsiderably. A popular alternative is to eliminatéesta
and adjoint variables, thereby reducing the system to a geaide one in just the inversion parameters. Approaches of
this type are known agduced spaceethods.

Several important variants of reduced space methods camiséered. A nonlinear elimination variant of a reduced
space method would solve the nonlinear state equation {Bifen p for the state variable. Knowing the state then
permits solution of the adjoint equation for the adjointiahte ¢. Finally, with the state and adjoint known, the parameter
p is updated via an appropriate linearization of the optitiiwaequation. This loop is repeated until convergence. As
an alternative to such nonlinear elimination, one ofterfgueeto follow the Newton strategy dirst linearizing the
optimality system, antheneliminating the state and adjoint updates via block elitti@maon the linearized state and
adjoint equations. The resulting Schur complement opeiat&nown as theeduced Hessignand the equation to
which it corresponds can be solved to yield the parameteatepdfter applying appropriate discretizations, the a&ov
described methods require access to the linear algebraliticerdto the optimization algorithm directly communiazgi
with the simulator. In this paper, we have adopted the Newtostegy which exposes a variety of linear objects to
the optimization/adaptivity algorithm. In particular, weuse the reduced Hessian after adapting the mesh ancerealiz
significant performance improvements (see Section 6).

To accommodate optimization algorithms as part of a sirarlatode can be a challenging undertaking. A range of
non-standard linear algebra objects are needed includijegtive functions, inequality constraints, sensitivitjorma-
tion and a mechanism for the optimization algorithm to calrtine iterative loop. A decoupled approach is therefore a
convenient initial approach to making use of optimizatidhis often referred to as tH#ack boxinterface and requires
very little information from the underlying simulator. Senbasic data needs to be exchanged between optimization
and simulator (usually through the file system) such as thectibe function value, changes to the design parameters
and globalization data. The gradient of the objective fiomcts calculated through finite differences across therenti
simulator and although very expensive computationallynfi@any design variables, the interface is trivial. The omdjin



optimization problem (2) is reformulated by eliminating tstate variable and constraints as an unconstrained aptimi
tion problem:

F(u(p)*,p*) = ﬁynF(u(p)m) (6)

A logical improvement over thblack boxapproach is to substitute direct or adjoint based sensisvor the finite
difference calculations. It is different from the intrusigpproach described above in that there is still no direéetface
and therefore the simulator is converged at each optimizatérations. In the numerical results section, we preaent
performance comparison for the black box with finite differe, black box with adjoints, and a reduced space approach.
Unfortunately, the decoupled algorithms do not lend thdveseto efficient use of adaptivity. As the optimization al-
gorithm steers the simulator to convergence there is netdingerface to communicate adjoints or any other objects
between optimizer and forward simulator. A fully couplegegach on the other hand provides the necessary conduits
between the forward simulator and optimization algoritlmexchange adjoints, Hessians, objective function, and any
other pertinent information. Before outlining our algbriic strategy, the error estimates for the KKT system (4) and
the approximation approaches are explained.

3 OPTIMIZATION AND ERROR ESTIMATION

Our goal of the adaptive error control is to minimize the eindhe objective functior (v, p) using an adjoint equation
which is identical to the second equation in (4) used in o@tion. Below we present an approach for using the same
discrete adjoint to drive both algorithms. However, theoadjfor optimization is solved in the same functional space
as the forward problem and by finite element orthogonalftg, resulting weighted residual calculation for the error
estimate would be zero. This then suggests a need for dtgplcoint calculations, each in different functional sgmc
which is unfortunately computationally expensive. Oumnfatation proposes a recovery method whereby higher order
information is extracted from an adjoint solution on the samctional space as the optimization problem. This will
not result in the same levels of accuracy in comparison todgird solved in a higher functional space but we show
that this approximation appears sufficient to steer the radaptivity. Furthermore, highly accurate adjoints in tadye
stages of the optimization process will likely not justifyethigh cost-benefit ratio.

3.1 Finite element approximation and error estimation

The continuous first-order necessary conditions for optiynia (4) must be approximated in practice. Because of our i
terestin error estimation and adaptive mesh refinementnvpdoy the adaptive finite element method [Ainsworth and @2@e00)].
LetV;, C V be a finite element approximation space based on confornfémgests of fixed polynomial degree> 1.

The mesh is only required to be locally quasi-uniform [Aisth and Oden(2000)]. The finite element approximation

of the optimality conditions is then: find/, @, P) € V}, x V}, x II:

A(U,P)(v) =0, veV,
Fu(U, P)(v) + Au(U, P)(v,®) =0, veEV, (1)
Fp(U, P) + Ap(U, P)() = 0

We are interested in the error of the objective function

E(U, P) = F(u,p) — F(U, P).

An a posteriori error estimate for this error was derived leglger and Kapp [Becker and Kapp(1998)] which involves
the exact solution. For the case of a fixed finite-dimensipaghmeter space, this estimate takes the form

E(U, P) = 5 {AW, P)(e)
+Fu(U, P)(e) + Au(U, P)(e,®) ®
+Fp(U, P)(§) + Ap(U, P)(§, @)} + Rs,

where the remainder teris is cubic with respect to the errors
e=u—-U, e=¢—-b, (=p-—P. 9)
A lower order approximation can be defined by

£(U,P) = A(U, P)(e) + Ra, (10)



where the remaindeRs is only second order [Bangerth and Rannacher(2003)]. Time fio (10) avoids approximating
the state and inversion operators and thereby significamtiplifies the implementation in large production finite-ele
ment codes. Consequently, a loss in accuracy is realizedessith of the remainder term increasing from third to second
order (R3 — Rs). The lower order error estimate requires the exact solutidhe adjoint equation:

Au(u, p)(v,0) = =Fu(u,p)(v), veV. (11)

Since the exact solution is unknown, this problem is furtiggeroximated by replacing the exact statend parameter
p by the approximate solutioti and parameteP: find ¢ € V:

Ayu(U, P)(v,¢) = —Fu(U, P)(v), veV. (12)

3.2 Approximations to the adjoint problem

In order to derive a computable error estimate we need tooappate the continuous adjoint problem in (12). The
simplest way to do this is to use the same approximation sgaead solve forp € V},

Au(U, P)(0,®) = —Fy (U, P)(v), v € V. (13)

The solution to this problem is exactly the same as the adgmimponent of the solution to the full discrete optimality
problem (7), which is potentially convenient since it hasatly been computed. However, because of the Galerkin
orthogonality, this would give a zero approximation of threoe if substituted for¢ in (10). The ideal approach to
calculate the solution is to approximate (12) using a higher order spatial apprasion spacé/,. This can be done,

for example, by increasing the polynomial degree of thediriement spac®;, or by refining the underlying mesh.
Then the adjoint weights are approximated using the highderapproximatior® € v},

end—

This approach has the advantages of typically being quitarate, due to the use of a higher order method. It can also
be expensive, due to the higher order adjoint solve, anddiffigult to implement in existing production finite element
codes.

Various other less expensive approaches have been propsseyl postprocessing of the approximate solution
(U, @, P). In these cases, the error weights are approximated using smoothing operators that only depend on the
computed approximate solution and the problem data. Fad@int differential operators, Paraschivoiu et al.rfg&hivoiu et al(1997)Paras
used local Neumann problems on refined patches of elemeg&harate upper and lower bounds on the error in linear
functionals. This work was improved by Prudhomme and Odeadifomme and Oden(1999)], who used techniques
from generating upper and lower bounds on the error in theggmerm to derive sharper bounds on the error in linear
functionals. For more general partial differential eqoiasi, Becker and Rannacher [Becker and Rannacher(1996)] pro
posed an interpolation method for estimating first and se@sder derivatives of the adjoint solution computed on the
same finite element mesh. Several options for approximétimgdjoint were explored by Larsson et al. [Larsson et 8Ff0arsson, Hansbo,
including approximating the adjoimrror using a hierarchical higher order approximation with thedo order basis
functions removed. They also considered approximatiorieefdjoint error on local patches of elements, as was later
done by Carnes and Carey [Carnes and Carey(2008)].

In this work, we approximate the adjoint weights using rexg\procedures. Value and gradient recovery have been
used in finite elements for some time, beginning with the keykvwof Zienkiewicz et al. [Zienkiewicz and Zhu(1987)]
and more recently by Wiberg et al. [Wiberg and Li(1994)] andalD[Ovall(2007)]. We refer the reader to the book by
Ainsworth and Oden for a more detailed review [Ainsworth &ukn(2000)]. The value recovery is based on a least
squares polynomial fit of nodal values on a patch of elemewnisna an element. For elements of degree greater than
one, this method generally produces a higher order fieldoxppation on the element. However, for linear elements,
the accuracy may not be greatly improved. Thus, this approzay be sub-optimal when terms involving the value of
the adjoint erro¢ — ¢;,) are large.

Our choice of using a recovery method was primarily motidditg computational efficiency of solving the adjoint on
the same mesh plus inexpensive post-processing. In agditioapproach was convenient to implement in our produc-
tion finite element code. The approach uses local operaédirsed! on/, that can recover higher order approximations
of functions inV},. The form of the adjoint weights can be expressed as:

p—Drr(®)— D, V(p—P)~ Ry(VP) — VD

We employ a standard approach based on patches of elememtsiar vertex node (See Figure 1). We sample the finite
element gradients on the elements and fit a polynomial thrdug sampled values using a least squares fit. For the case
of linear finite elements in 2D, the sampling points are tleenent midpoints and the polynomial basigisz, y}. Then

the nodal values are used to define a global recovered gtanlig.
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Fig. 1 Sampling points for value and gradient recovery for lineaitdielements

4 ALGORITHMSFOR OPTIMIZATION UNDER ADAPTIVITY

To perform optimization under adaptive error control theich of the algorithm is partially dictated by the form of the
coupling between the application code and the optimizethdrdecoupled “black box” approach, the optimization loop
launches the application code whenever the state and pteseasitivities need to be evaluated. Adaptivity can bedo
by the application code, but the adapted mesh and state tch@ame-used for the next optimization step. Furthermore,
our experience has shown that in this case the optimizer iffeulty reaching a stable minimum when the mesh is
changing due to adaptivity.

Another possibility is to adapt the mesh at every step ancellyeconverging the mesh as part of the optimiza-
tion loop. Bangerth [Bangerth(2008)] demonstrates thisagh for problems with distributed parameters. The fodwar
simulator, optimization algorithm and the adaptivity macism are closely integrated. A SAND optimization imple-
mentation solves for feasibility and optimality simultansly, providing the necessary access to all the linearctbje
at any point of the forward prediction, optimization and patilay algorithms. Although our work also makes use of the
SAND optimization approach, we do not converge the mesh dopéhe optimization loop. The primary reason for
not using this approach was because the goal of our implememteffort was to develop an interface sufficiently flex-
ible to accomodate off-the-shelve optimization librargesl other advanced numerical algorithms. Adaptivity aheac
optimization iteration would have required optimizatidgaithms tailored to handle this and shifted the focus af ou
development efforts.

In our approach, adaptivity is performed as an outer loopradan inner optimization loop, which allows a fixed
(adapted) mesh to be used for optimization. Our integrapichization solution strategy provides, after each owtepl
iteration step, the necessary access to reuse various tibgects such as the reduced Hessian, state and optinmzatio
variables. Instead of recalculating with a prescribedahiuess, the optimization now starts from a much improved
starting point after each outer loop iteration. We show ittise 6 the computational improvement of this reuse mech-
anism. The stopping criteria for the outer loop should ijelaé set by comparing the error estimate for the objective
function with a prescribed tolerance. Because of the uaitequality of the error estimates that we compute, we inktea
use a fixed number of refinement levels. Algorithm 1 outlinesimplementation strategy.

Algorithm 1 Optimization under adaptive error control

Given an initial parameter valyg) and statd/,
Set initial Hessianfg = I
for k = 1 to number of adaption levels do
while optimization not convergedo
calculate adjoint sensitivities
perform step computation
globalize with line search
update optimization and state variab(ég,, py)
end while
Compute the adjoint based error estimate iUy, py.)
Adapt the mesh using error indicators
Prolong state from old mesh to néW, . ; = Uy,
Update ParameterB;, 1 = P,
Update Hessiatly, 1 = H
end for




In order to make use of the error estimator in adaptivity,rategy is needed to decide which elements to re-
fine/coarsen. The inputs are the element error contribsitiwhich are the restriction of the integrals in the estinfs¢e
equation 10) to a mesh elemekit These element indicators, denotggd, can be either positive or negative. This con-
founds most adaptive strategies, which are based on refahémgents with large indicators, and coarsening those with
small indicators.

Our approach to adaptivity is to compute two basic statiticthe element error indicators: the mgeaand standard
deviations. The idea behind the adaptivity is that refinement shouldentrate on thosgy that are outliers. This is
defined formally as: mark an elemekitfor refinement if

[nKx — pl > 0r o, (14)

whereé, is a free parameter. Typically we have ugggfrom 0.5 to 1.5, with decreasingy, yields more adaptivity.
In the study we keepy fixed at 0.5. We do not apply any coarsening, since we are anigerned with stationary
problems. However, the above approach can be extended Bsamalementx for coarsening if

[nre — ul < 8¢ o, (15)

with 6+ a free parameter.

5 IMPLEMENTATION

The implementation of analysis algorithms into producsamulation codes poses numerous challenges. First, produc
tion codes historically are designed to perform only fodvaredictions. The linear algebra representation is tylgica
designed with this in mind and accessing non-standard ricah@bjects requires extensive refactoring. For example i
the case of optimization algorithms, the adjoint calcolatiequires a transpose of the Jacobian which is not a sthndar
operation, especially in the parallel context (higher oat§oint solves for error estimators are even more diffituin-
plement). Furthermore, the terms in the general error estifiormula (8) are not included in typical production codes
Even the simpler error expression in (10) requires the matem of the finite element residual against special atljoin
weight functions. This can be done using the standard eleassembly process, but requires the code to support swap-
ping the nodal test functions with a single adjoint weightdtion for every possible term in the residual. Second, each
production code presents unique implementation stylds aifferent concrete linear algebra infrastructures. Tious
legacy production codes, implementing analysis algostdimectly in the code would duplicate implementation effor
This could be simplified if a general purpose, standardinégtface were to be adopted by all the legacy codes. Third,
such specialty interfaces are difficult to maintain becabseadvancement of production codes is centered around the
forward prediction mode and the responsibility for mainitag these specialty interfaces may become quickly outidate
as the development of the forward simulation code advanmugslanges. Our proposed solution for all the above men-
tioned issues is to design an interface sufficiently flexdotel extensible to accommodate different underlying linear
algebra infrastructures and to enable a range of numeligaligams of interest to the developers.

To this end, we have developed an interface that is suffigigeneral to provide a conduit from a range of advanced
numerical algorithms (ANAs) to different underlying limeglgebra infrastructures. Underlying the design is these
that the interface is stateless, lightweight, and extéas®ur stateless interface does not maintain temporariesap
any vector or matrix objects but instead manipulates pntehe interface is designed so that any input and output
variables can be easily added or deleted to accomodate gositain. This is a critical feature because the interface
ideally should not only be used in specialized ANAs (such@gmzation) but also algorithms central to the forward
simulator (i.e. nonlinear solver, time integration, etc).

5.1 Model Evaluator

The Thyra package in Trilinos [Heroux(2009)] contains adfeéhterfaces and supporting code that define basic inter-
operability mechanisms between different types of nuragégoftware. The foundation of all of these interfaces aee th
mathematical concepts of vectors, vector spaces, and bpesators, as well as interfaces to various linear and meenl

solvers. To address the communication from ANA to concrpt#ieation, the ModelEvaluator class is introduced (Fig

2). This design is based on the 'decorator’ design patteiintwinakes it possible to extend (decorate) the functionalit

of a class at run time. This works by adding a new decoratasdlzat wraps the original class in addition to combining
component pointers as field to the decorator class, irgtraithese pointers in the component constructor, andaedir

ing component methods to the pointers. For additional Betae [Gamma et al(1994)Gamma, Helm, Johnson, and Vigside
The essence of the ModelEvaluator class lies in the defindfonput, output and evaluation methods from which a va-
riety of input and output parameters can be defined for diffealgorithms.



- — Epetra-based application-
- Thyra-based interoperability P X PpIICE
Nonlinear interface laver | friendly implementation
ANA y i support interface
Thyra::ModelEvaluator - EpetraExt::ModelEvaluator
create_W_op() : LinearOpBase createlnArgs() : InArgs
create_W() : LinearOpWithSolveBase createOutArgs() : OutArgs
createlnArgs() : InArgs create_W() : Epetra_QOperator
createOutArgs() : OutArgs
evalModel( in InArgs, out OutArgs )

evalModel( in InArgs, out OutArgs )

Thyra::EpetraModelEvaluator

Concrete

createlnArgs() : InArgs Application

createOutArgs() : OutArgs
create_W() : LinearOpWithSolveBase M

Thyra::LinearOpWithSolveFactoryBase

evalModel( in InArgs, out OutArgs )

Fig. 2 The Trilinos Thyra::Model Evaluator UML class diagram. lifis::Epetra is the underlying vector and matrix paratlelss. The
ModelEvaluator class is part of the Trilinos::Thyra paakaghich is a facility to manage and support interfaces for exical software.

5.2 Legacy Production Simulator

The forward simulation models were implemented in a contmrtal mechanics framework called Sierra in which the
Aria package is responsible for the thermal and fluid cajtegsi! The Sierra framework (see Section 7 in [Biegler 2@03)Biegler, Ghattas, |
was designed to provide common finite element services amdlil allow for an efficient concentration on the physics
development. Parallelism, mesh adaptivity, contact anttiphysics management components are among the many
complex features that are available within this environinelowever, the framework was designed primarily to enable
the forward prediction mode which consequently createsifisgnt implementation challenges to incorporate analysi
algorithms. Aria is capable of first and second order finiearadnts on locally refined:{adaptive) meshes. The sup-
ported physics used were the incompressible flow and transpmules. The adjoint was implemented and solved by
making use of the solver capabilities from the Trilinos feamork. In addition to optimization and error estimatiorg th
Thyra::ModelEvaluator interface will also enable advahtime integration, and uncertainty quantification in thame
future.

6 NUMERICAL RESULTS

Optimization and adaptivity algorithms present significemplementation challenges but, as this section will show,
these disadvantages are offset by impressive accuracyesfutrpance improvements. The embedded nature of SAND
methods enable adjoint based error estimation to drivetaitsgvhich further improves the overall computationafief
ciency in addition to improving the accuracy of both the fard/and the optimization problems. In this numerical result
section, our goal is to demonstrate these algorithms ortmoal examples within a production type simulation code.
We target two and three dimensional datasets that desai@fid transport dynamics for a contact reactor tank used in
water treatment. Navier Stokes and convection-diffuseastion partial differential equations are implemented par-
allel finite element framework with embedded optimizatiower adaptivity. First, the recovery method will be verified
by comparing adjoint calculations using higher order elet®&o the recovery method with simple convection-diffasio
dynamics. Second, the performance of SAND versus NAND dptéition interfaces will be compared, followed by the
performance and accuracy of these interfaces combinedwifbrm (combined with a NAND interface) and adaptive
(combined with a SAND interface) refinement strategies. &-timensional flow and transport problem forms the basis
for our numerical experiments. Third and finally, a three elisional dataset for a subsection of the contact reacthr tan
will demonstrate our implementation in parallel, in addfitito a demonstration of the reuse of certain linear algebra
objects to help accelerate the convergence of the optiioizatoblem.



6.1 Prototype Two Dimensional Problem with Solution Vesdfion

We compare the accuracy of our recovery-based approachighertorder adjoint solve on a simple transport problem
in which the error is calculated using a known analyticalisoh. The model represents stationary transport of a epeci
by convection-diffusion as follows:

u-Ve—eAc=f in 2=(0,2) x (0,1),
c=0 on Iy, ={z=0},
c=1 on Iy ={z=2},

—eVe-n=0 on I,={y=0,1}

(16)

The velocity field is chosen to be parabolic witk= (4y(1—1v), 0). The dimensionless parametds equal to the inverse
of the Peclet number (Pe) and is set to 0.01 to prevent dtapitbblems from highly convective dominated dynamics,
which would require some form of stabilization. Althoughlstization is available in the SIERRA framework we elected
to use mild convective transport conditions instead of darafing our implementation with a stabilized formulation
The infinite dimensional problem is approximated usingieiir basis functions on quadrilateral elements.

Using methods of manufactured solution [Roache(19898he source ternf is chosen so that the exact solution is
given by
1 —exp((1+z(z — 2)y°(1 — y)*)a/e)

1 —exp(2/e)

The response functiosi is defined to be the average value of the species across tredormain:

1
J(c):ﬁ/gcd:c.

We employ two metrics to compare the performance of the exstimators. The first is the standard effectivity
index, which is defined to be the ratio of the error estimatahe exact error. Ideally this number should be close to
one. The second is the error reduction under adaptivitynvdeenpared to uniform mesh refinement. In Figure 3(a) we
plot the effectivity ratio for both the recovery method (desd as Q1R) and the higher order approach with bi-quadratic
elements (denoted as Q2) under uniform and adaptive refimerRer both the recovery and higher order adjoint the
residuals associated with surface flux boundary conditiamsbe neglected although in general these weighted résidua
contributions should be included.

For uniform refinement, the Q2 estimator effectivity termlabout 1.02, while the Q1R estimator only tends approx-
imately to the value of about -5.3. When adaptivity is uskd,gffectivity of both the Q1R and Q2 estimators becomes
more volatile because the meshes are much more irregulareydo, the Q2 estimator eventually stabilizes, while the
Q1R estimator still appears to oscillate on the finest adaptieshes. From this comparison, the Q1R estimator does not
appear to achieve reasonable effectivity values whereaQftestimator eventually settles on more stable quantities
However, in Figure 3(b) the error reduction from the Q1R gn#icantly better than uniform refinement and provides
equal error reduction as the Q2 estimator. Moreover, ther eeduction from the Q1R estimator is more monotone
than that obtained from the Q2 estimator. We conclude tla€QhR estimator can drive adaptivity although additional
work is required to achieve appropriate effectivity valudscordingly in our numerical experiments, the number of
refinement levels is set a priori and not dynamically deteediwith an effectivity tolerance.

u(z,y) =

6.2 Application to a Model for Transport in a Contact Tank &ea

Our recovery approach efficiently calculates error estinsatising the optimization adjoint. To further demonstthte
capability on a relatively complex problem, we select anrappate optimization problem constrained by convection-
diffusion-reaction transport of a species in a contact taalctor, which is used in water treatment. In this sectien th
details of the contact problem are described and in subségeetions this dataset will be used to perform numerical
experiments. Wang et al. [Wang and Falconer(1998)] deeel@two dimensional finite difference model of the flow
and transport in order to investigate transport of a tradezy focused primarily on resolving the fluid flow with diféert
turbulence models, concluding that solute transport ptiedis depends on the accuracy of the hydrodynamics. Adthou
in Wang's study the flow is turbulent, we have reduced Reyholdmber to the laminar case to allow for a more
simplified investigation of adaptivity and optimizatiorr ftoansport without the complications of turbulence. Iniidd
the chemical reactions which consume the reactant spe@es assumed to be first order and located on prescribed
surfaces.

For the contact tank, the boundary = 942 is divided into four parts: the inflow’,,, for which we specify a
parabolic fluid velocity and constant species concentmattee outflowr .+, for which we specify an open flow bound-
ary condition on the flow and a zero diffusive flux conditiontbe species concentration; the surface reaction,,
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Fig. 3 Results of the two dimensional verification problem. (a)eEfivity ratio for linear (Q1R) and quadratic (Q2) meshawder uniform
and adaptive mesh refinement. (b) Exact error under unifaiaptive refinement for Q1R and Q2.

for which we specify a first order reaction for the specieg ftbw boundary condition is no slip); and the remaining
surfacel, for which we also specify a zero diffusive flux condition oe $pecies and a no slip condition on the flow.

The mathematical model for the flow is defined by the statipimaompressible Navier Stokes equations along with
appropriate boundary conditions. Neglecting gravitysthean be formulated on a domainas follows.

pu-Vu—pAu+Vp =0 in £,
V-u=0 in 2,
U = Ujp on Ij,, (17)
w=0 on Trgn U Ty,

{—pI+pu(Vu+Vu)}-n=pn-Vu' on .

The actual contact tank geometry consists of a flow domain avgtingle inlet and outlet. The domain has multiple turns
at right angles to form a serpentine structure. We plot themded flow field for Re= 100 in Figure 4. The channel
was extended at the outlet (not shown) in order to allow thd flureturn to a near fully developed flow. The reaction
zones were located where the flow would be in closest proyitaithe walls, in order to increase mass transport.
Because our interest is in the species transport, we onlgidenthe flow as an auxiliary problem that provides
input to the transport through the fluid velocity. In orderatmid numerical errors from under-resolved flow, the flow
equations (17) were solved on a fine grid using finite elemeates consisting of quadratic velocities and continuous
linear pressures. This solution was then interpolated ¢ogttids (both uniform and adaptive) where the following
transport equation was solved:
u-Ve—DAc=0 in 0,
c=cip ON [y,
—DVe-n=0 on IoU Iy,
—DVe-n=kc on Iyin.

(18)

The dominant dimensionless groups for equations (17)d@&)he Reynolds number %%, the Peclet number

Pe= %, and a third dimensionless group denoted/by= %. HereU is defined to be the maximum inlet velocity
uin, L is the width of the flow channel, andis a reference surface reaction rate constant. In Table lpeefy the
baseline parameters for the contact tank model.

The solution to the steady state transport problem defingd &ycan be expressed in abstract form as in (1). To
do this, we define the function space§~ = {v € H'(2) : v|p,, = cin} andV = {v € H (2) : v|p,, = 0}. The
parameters are the set of reaction coefficiéntthat are specified as constants on the set of surfaces thatupak..

The weak solution is obtained by findig= c¢(k) € Vn:

Ale,k)(v) =0, veV (19)
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Velocity Magnitude

0.00 0.000228 0.000457 0.000685 0.000913

Fig. 4 Two dimensional contact reactor tank with a flow field for Rel00. Resolved flow was achieved by extensions at the outlet.

Name | Value | Units | Descripton | Name| Value | Units | Description
Re 100 - Reynolds numbe n 1.307e-3| [Pa — s] Viscosity
Pe 100 - Peclet number ug 6.330e-4| [m/s] Initial velocity
I7 3.160 - - Cin 1.0 - Inlet concen.
L 0.21 [m] Length D 1.329e-6| [m?2/s] Diffusivity
p 9.832e+2| [kg/m?] Density k 2.0e-5 [m/s] Reaction rate

Table 1 Nominal parameters for the contact tank model. Re is the Bldgmumber, the Peclet number Pe represents a ratio of camve
and diffusion, and the dimensionless numbErepresents the ratio of reaction and diffusion.

where the operatad is defined by

Ale,k)(v) = (u- Ve, v) + (DVe, Vo) + (ke,v) p

ren

; (20)

and we have used the usual notations for integral inner ptedu, w) = [, vw dz and (v, w) = [ vw ds.

By choosing appropriate finite dimensional spa&s* c V¢ andV, c V for the trial and test functions,
respectively, we can define the Galerkin finite element appration: findC' = C(k) € V7"

A(C,K)(v) =0, v e V. 1)

This abstract form provides a mapping to our algorithmiacdesion in the preceding sections.

6.3 Optimization of Multiple Reaction Parameters to Fit aderibed Concentration on Reaction Surfaces

We compare the performance of the various optimizationaggres described in Section 2, with the exception of the
full space approach. In addition, we compare the performamecl accuracy of using either uniform or adaptive grids for
the reduced space SAND approach.

Our test problem contains six reaction parameters. The gfodle optimization problem is to solve an inverse
problem by reconciling the differences between prescrimedl numerical concentration profiles. The area where the
comparison is made is along the total reaction surface,wihithis example consists of six disjoint surfaces, each wit
its own constant reaction rate (See Figure 5). The functiahwe fit is a linear function af that decreases along the
overall flow direction:

erxn(z) =1 —z/4. (22)
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inlet outlet

l |

- Reaction sites C

Fig. 5 Reaction sites are marked by the arrows in the two dimensemmgact tank. These sites are represented as six disjdegets of the
mesh

Since the length of the domain in thedirection is two, this should result in a concentrationfiedrom approximately
one to one half in the-direction. The response function in this case is defined by

1
J(c) = 5 /1} lc — erxn|? de. (23)
XN

The solutions to the forward and adjoint problem are showkigare 6 for Re=Pe=100 and at the optimal parameter
values. The forward solution exhibits large gradients tleasurfaces where reactions occur, as well as near thaigario
corner singularities. The adjoint has similar dynamicdy oaversed, and exhibits plumes that flow off the reaction
surface in the upwind direction. These plumes mask the séngedlike features in the adjoint solution.

We compare the various optimization approaches — black lighxfinite difference sensitivities (BB-FD), black box
with analytic sensitivities (BB), and reduced space withlgiic sensitivities (RS), using both uniform and adaptive
meshes. In all cases, the optimal parameters from the caaesth are used to initialize the optimization of the finer
mesh. However, only the RS approach is able to reuse theémokthte and reduced space Hessian approximation as
discussed in Section 4.

In Table 2 we can see that there are significant differencésicomputational cost. Most expensive is the BB-FD

Total Computational Time [s]

DoFs | J(c) x1e3 | %Error | BB-FD | BB | RS
893 4.99553 147.6 1537 176 24
3217 2.61738 29.75 3646 461 41
12161 2.15112 6.64 9253 1283 264
47233 2.05408 1.83 - 12077 3481
186113 2.01717 - - - 73101

Table 2 Optimization results for the contact tank using six parargeand uniform meshes. The error is with respect to the 1BBbE case
as the truth model. BB-FD represents the black box finitedifice interface, BB represents the black box with anadgisitivity case, and
RS represent the reduced space optimization approachuAfilonerical results were performed on a Intel Xeon 2.66 Gidzessor, running
RedHat Linux Enterprise release version 4.0.

approach. Here the cost can be more than an order of magrstoer than the BB approach. This is because of the
excessive number of function evaluations needed as wetieaiver accuracy of the finite difference derivatives. The
BB approach was about a factor of four to six slower than theg®8oach. The latter method likely was faster than the
black box case with analytic sensitivities because of theraved algorithm which allows infeasible paths toward the
optimal parameters in addition to the elimination of rejpedipre and post-processing of the simulator. These result
are consistent with past studies that have demonstratedothputational advantages of SAND methods over black
box implementations [van Bloemen Waanders et al(2002)‘aarBen Waanders, Bartlett, Long, Boggs, and Salinger,
Akcelik et al(2005)Akgelik, Biros, Draganescu, GlaattHill, and van Bloemen Waanders]. It is clear that avgjdhe

repetition of converging the forward simulator provides 8AND approach with significant computational advantages.
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Concentration
0.514 0.636 0.757 0.879 1.00

Adjoint Concentration
-2.23e+03 -1.18e+03 -141. 902. 1.94e+03

Fig. 6 Concentration solutions for the forward (top) and adjobut{om) for the multiple parameter case. The plumes off #agtion sites in
the adjoint solution mask the serpentine feature similéhédforward solution.

However, another advantage to the SAND approaches is thatiaitly can be implemented. We compared the RS
approach for both uniform and adaptive grids, with adaptidriven by the error estimator defined in Section 3. In
Table 3 we report the values and relative error of the ohjedtinction. We clearly see that with adaptivity, the accyra
in the objective function is improved by orders of magnituder what is computable using uniform grids. Moreover,
optimization under adaptivity is more efficient. To reaclpraximately two percent relative error using uniform grids
takes about one hour (3481 s); using adaptivity, a similaucy can be obtained in about one to three minutes.

RS, Uniform Refine RS, Adaptive Refine
DoFs | J(c) x 1e3 | % Error | Time[s] | DoFs | J(c) x 1e3 | % Error | Time [s]
893 4.99553 147.6 24 1425 3.79773 88.26 27
3217 2.61738 29.75 41 2896 2.35480 16.73 40
12161 2.15112 6.64 264 5020 2.09260 3.73 65
47233 2.05408 1.83 3481 10724 2.01748 0.012 172
186113 2.01717 - 73101 24166 2.02137 0.20 702
- - - - 34796 2.01767 0.02 2763
- - - - 119322 2.01726 - 14437

Table 3 Optimization results for the two dimensional contact tasig six parameters and adaptive meshes. The Reduced K#)ds (ised
to compare the accuracy and performance for uniform andtidapesh refinement. The error is with respect to the finedt gr

To appreciate the improvements in efficiency and accurheyilative error versus computational cost is plotted for
all the approaches — BB-FD, BB, and RS (both uniform and &dapfinement) — on a single graph in Figure 7. Several
conclusions can be drawn: first, the restriction to uniforeshes results in a limiting slope (dashed line) for the error
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BB-FD, Uniform
BB, Uniform
RS, Uniform
RS, Adaptive

% Error in Objective Function

z A | Ll Ll IR |
10 107 10° 107 10°

Total Computational Cost [s]

Fig. 7 Cost versus accuracy for the BB, BB-FD and RS (uniform angtads strategies. The dashed line represents the limgioge for
uniform refinement.

reduction (when plotted as log-log). This slope is a funttbthe smoothness of the exact forward and adjoint solsfion
which is reduced in this case because of the number of gelens@igularities in the problem occurring at re-entrant
corners. Second, the slope is much better when adaptive isfiused, actually closer to the optimal second order slope
that is observed for problems with smooth solutions on umifmeshes. As a result, the adaptive approach can realize
levels of accuracy not practically obtainable using umifaneshes. The RS adaptive results exhibit an anomalously low
objective function error value at approximately 200 sesoiie believe this to be a result of the somewhat random
nature of the adaptivity process.

Two of the adaptive grids used for refinement levels four axnéue shown in Figure 8. Adaptivity is concentrated
along the reaction surfaces and in regions where the adjolation plumes are located. No adaptivity occurs near the
outlet because the adjoint is approximately zero.

6.4 Large Scale Optimization of a 3D Contact Tank Model

Although a detailed three dimensional study is beyond tlpeof this paper, the implementation of any algorithms
in our computational framework must be functional in muétidimensions and operate in parallel. Therefore, in this
section our algorithms are demonstrated on a subsectiothoéa dimensional contact tank dataset (Figure 9) with an
increased number of inversion parameters (eighteen)datvearallel using eight Intel Xeon 2.66 GHz processors. For
this 3D case, the optimization is performed to match a difieconstant constant value on the uppe9)(and lower
(0.8) reaction surfaces. The solution concentration is platigeigure 9.

Our numerical experiments are limited to a comparison dbum refinement and adjoint based adaptive refinement,
all within the reduced space SAND optimization context. Aswen in Table 4, the adaptive refinement algorithm
achieves the same error as the uniform refinement, but withr@der of magnitude less number of degrees of freedom.
This translates then into more than an order of magnitudedwgment in computational efficiency. It should be noted
that the total cost of the adjoint based error estimatorguiie recovery post-processing approach was generally less
than 10 percent of the total computational cost.

As a final calculation, a comparison was performed to astesbenefits of re-using the reduced Hessian matrix,
which in this problem is an8 x 18 dense matrix. When the reduced Hessian is not re-usednitigized as an identity
matrix. We see in Table 5 that even for uniform problems, astetiional cost savings of a single optimization solve
on the finest mesh can be as much as 60%. When adaptive refinismsad, the cost savings can be as high as 70%.
Since most of the computation is done on the finest grid, welade that re-use of objects such as the reduced Hessian,
in addition to the state, between levels of mesh refinememtsigmificantly improve the efficiency of algorithms for
optimization under adaptivity.

14



AR DA NN
‘Zﬁwgﬁ‘ﬁ nﬂﬁ
P

N é.

‘ﬁ“‘% : mﬁ
I

e S

VA
o

5
N
7 Y

TR

iy
I,

JAVANAN
NANANAS]

\
L AVAVAYAYAVAVAN AN ANANAYAVAYA

VAYAYANYAN
‘g‘vmWAmA

Vi
N

Lt

AVAYAY
TAVAVAYAVAVAVANN
YAAYAYAVAVAVAVANAN
AAAAAAT
R AYAYAVAVAVAYA Vi

SNANANANANAY)

NAAYAY,
\V\/
\/

VAYAVAVAVAVAVLY

ANAVAVAVAVAVANIN

/]

P
wavy
"!i

q
TAVAYAS

YA
TANAYA
AN

JAYAY
YAVAVARYLVAVAV:
AVAY
¥
JANAYAYAYAYAVAYAVAVAVAVAVAVANAWAVAY

LYAVAVAVAVAVAVAVAY
va)
o,
AVAVAVAVAY

/X

YAVAYY
LVAVAVAY,

VAVAVAVAVAVAVAVAVAY

vAVaray

VAVAYAYAVAVAVAY,
VAVAY
SO
'ANANANAY/

VA
YAy

CAVAVAYAVAVA
Aﬂ’ﬂ
K
%
V4

>
£ %A R
VA
D B
AWV v 7
KL )

P Sl Rk
SN NS NS

v

vl

e
X N

&
o
/oy
A
“A
N

N

2

Y
h
V4
pamararaY
et
b, Y/
e
i
I

V4
R
=B

pae

=]
ok

J

=
<
AVAVA
vy
S
4“&

L)

Fig. 8 Adaptive meshes used at optimal value of reaction rate peteamfor 10,724 dofs (top) and 34,796 dofs (bottom)

RS, Uniform Refine RS, Adaptive Refine

DoFs | J(c) x 1e3 | % Error | Time[s] | DoFs | J(c) x 1e3 | % Error | Time [s]
532 1.23231 56.43 18 532 1.23231 56.43 18
3367 3.12091 10.34 69 1260 2.74336 3.01 39
23725 3.06178 8.25 995 4473 2.97430 5.16 118
177625 2.92271 3.33 8441 15237 2.89203 2.25 364
- - - - 60047 2.84875 0.72 1587

- - - - 234159 2.82843 - 9812

Table 4 Optimization results for the 3D contact tank using 18 patanseusing Reduced Space (RS) comparing both uniform argtiegla
refinement. Error are calculated with respect to the finadt gr

RS, Uniform Refine RS, Adaptive Refine
DoFs | Re-use| Iden | DoFs | Re-use| Iden
550 26 26 550 26 26

3385 18 19 914 21 22

23743 26 30 2722 17 30
177643 12 31 9517 12 29
- - - 36098 9 29

Table5 Comparison of iteration counts for both re-use of the redudessian and initialization with an identity matrix for hatniform and
adaptive refinement

7 CONCLUSIONS

We have presented an approach for implementing goal-edeaiaptivity and optimization in a production finite ele-

ment code. The adjoint is central to both calculating annogtisolution and error estimation for mesh adaptivity. To
avoid finite element orthogonality, ideally the adjoint &mtimating errors should be determined on a higher funakion

space than the corresponding adjoint for sensitivity dat@ns. This poses more computational demands and thierefo
we have developed a recovery process that allows the highetiénal space adjoint to be approximated by polynomial
projection. This error indicator avoids additional adjaialculations and was shown to be a viable tool for drivingmad
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Fig.9 Three dimensional dataset for a subsection of the contalct 18 reaction sites are indicated by the colored squasp}. (Eoncentration
profile is shown along the centerline (bottom).

tivity. Numerical experiments showed that effectivity oot be relied upon to terminate the adaptivity loop. Hogrev
future work is planned to investigate improvements.

The SAND optimization approach provides significant corapiahal advantages over a black-box interface, in
addition to a convenient environment for adjoint basedrestimator for adaptivity. The SAND optimization interéac
was shown to be compatible with adaptivity using a nestedaamh. Moreover, reduced space optimization methods
can be accelerated through the re-use of the state and garamgables, as well as the approximate reduced Hessian,
when transferred from coarse to fine grids.

We outlined the implementation requirements needed tolemgitimization under adaptivity in production simula-
tion codes. This was accomplished through a ModelEvalisistract interface from the Trilinos library. The ModelE-
valuator interface provides a conduit between advancederioat algorithms and the underlying linear algebra native
to the simulator. Besides enabling off-the-shelve optation libraries, other numerical algorithms can be effitien
interfaced including those algorithms that are essemtitile forward simulator, such as nonlinear solvers and timtee i
gration methods. Not only are duplicate implementationrédfavoided but this interface is more likely to be mairgdin
by those responsible for the forward simulation codes.

Finally, the effectiveness of our approach was demonstratea 2D convection-diffusion-reaction problem from
the water treatment community. It should be noted howeatrabr methods and interfaces are generally applicable to
a wide variety of physics and production simulation codestiermore, our numerical tests showed improved accuracy
in the optimization solution. Finally, we demonstrated algorithms on a 3D parallel dataset with an increased number
of optimization parameters.

Acknowledgements We thank Roscoe Bartlett for designing the Model Evaluatterface in addition to supporting the implementation of
this interface into the Sierra::Aria production simulator
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