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Abstract -- The focus of this paper is on the effectiveness of HEC (high-end computing) systems 

on meeting engineering and scientific analysis needs.  Performance measurement and analysis of 

the applications constituting the work load, on a large commodity InfiniBand cluster, and, on a 

large custom Cray XT3, is used to assess the merits of the competing HEC architectures.  Those 

applications with communication intensive algorithms show a factor of 2 to 10 better (on 1024 

processors) performance on XT3, making XT3 ideal for long, large capability simulations.  

However, applications with moderate to low communication need have comparable performance 

on the cluster and these commodity clusters eminently meet the need for higher volume capacity 

computing cycles.  We analyze the reasons for the performance difference seen between the two 

systems.  Since the single cpu wall clock execution time is very close between the two systems, 

we use parallel efficiency as a measure, to analyze optimal workload mapping on our capability 

and capacity computing resources. 

 

Introduction:  

Understanding the performance of scientific applications on high performance computers 

is important for setting resource management policies.  Application performance can be 

influenced by the architecture of the computer, software characteristics, and characteristics 

introduced by the simulation being run.  The same application may be used to run very large 

capability class simulations or used with a smaller number of processors in several runs in a 

capacity context to cover a range of parameter space for analysis like uncertainty quantification.  

In the context of current and future major investments in capacity and capability computing 

systems, it is useful to analyze mapping of workload against the available computing resources.  

Current HEC systems vary in the node/processor architecture, the inter-connect, and, system 

software.  IDC classification of HEC systems into two broad categories [1], namely, capability 

and capacity, is widely used.  However the demarcation is not strictly defined.  Moreover 

applications and analysis that are targeted for these HEC systems again cross the definition 

boundaries.  Our experience with a number of applications and analysts needs, clearly indicate 

need for large capacity compute cycles.  At the same time capability computing often addresses 

need for interesting and new science that were often not undertaken previously due to lack of 

compute power.  A broad guide line for classifying capability class simulations currently under 

vogue, include [2]: 

1) Simulations that use a significant fraction of the total nodes installed 

2) Simulations that require large memory, I/O, and storage 

3) Simulations with stringent time-to-solution and short design cycle times 

4) Some combination of the above analysis characteristics making it the only means of 

achieving the goal 

In this context, both from a management concern for providing the correct investment to meet an 

institutions need as well as from an analyst desire to extract optimal performance, there exists a 

strong need to understand effectiveness of different classes of HEC systems on meeting the 

engineering and scientific analysis needs.   
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Table 1 is the result of a usage survey done few years ago, listing the top few applications 

and node-hour percentage usage.  The current fraction is based on usage logs and estimated 

future fraction is based on user surveys reflecting programmatic needs.  The recent availability of 

large capability computing systems like ASC Red Storm at Sandia and ASC Purple at LLNL has 

enabled analysts to conceive new approaches and analysis that were if not impossible, were 

difficult to undertake on a routine basis.  The statistics of node-hours for such large capability 

class simulations are just beginning to emerge.  However, the question of appropriate allocation 

of compute cycles on capability and capacity computing systems when the demand for total 

node-hours exceeds available resources is an area of much interest. 

In this paper we have measured application scaling characteristics so that efficiency gains 

of a capability class system for each application guides the selection and allocation of limited 

capability computing cycles.  A large InifiniBand cluster with over 8000 processors and a large 

Cray XT3 with over 20000 processors are used to measure performance of seven applications of 

interest.  The measured parallel efficiency on both these systems is used to understand impact of 

architectural balance. Parallel efficiency works as a useful measure because the single cpu 

performance is very close.  In some cases, we used strong scaling with engineering models that 

do not lend to easy construction of weak scaling inputs.  It is recognized that scaling behavior is 

data set dependent and often bigger models permit scaling to a larger number of processors.  

However, the performance ratio between the two systems provides broad guidelines on optimal 

usage of both the systems to meet capability and capacity computing node-hour demands.    

 

Table 1.  SNL application node-hour usage and projections 

Code Use Numerical Method Current 

Fraction 

Future 

Fraction 

Presto Crash/  Solid dynamics FEM, explicit time 

integration 

34.4% 15% 

Salinas Vibration/    Structural 

dynamics 

FEM, spectral analysis 15.8% 10% 

LAMMPS Molecular dynamics FFT, sparse matrix 

methods 

12.8% 10% 

DSMC Plasma dynamics Discrete Simulation Monte 

Carlo 

10.4% 10% 

CTH Penetration/ 

Hydrodynamics 

Control volume, explicit 

time integration 

7.4% 10% 

ITS Radiation transport Monte Carlo .08% 15% 

SAGE Hydrodynamics Finite Volume 0.0% TBD 

       TOTAL                             81%          70% 

 

In the following sections we first provide a short description of each application and the 

analysis that was benchmarked on the two systems.  The wall clock run time and parallel 

efficiency plots show the scaling characteristics of the applications.  With T denoting wall clock 

run time, we define parallel efficiency at p processors as: (Tref/Tp)/(p/ref) for strong scaling and 

as (Tref/Tp) for weak scaling.  Here, ref, denotes the minimum number of processors at which the 

problem fits in memory and Tref may refer to a parallel implementation run time on a single 
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processor where appropriate.  Our approach is similar to that of Oliker, et.al. [3] in so far as we 

investigate the performance of full applications constituting most of the workload (Salinas was 

omitted and SIERRA/Fuego was included in our scaling studies) shown in Table 1.  The benefit 

of Red Storm’s Light Weight kernel and fast network performance has been presented by Hoise, 

et.al [4] considering application performance and performance models. 

 

Target Architecture Description: 

The Red Storm machine at Sandia National Laboratories in Albuquerque, New Mexico 

currently consists of 12,960 dual-core nodes with a 2.4GHz Opteron CPU with 2, 3, or 4 GB of 

main memory and a Cray SeaStar NIC/router attached via HyperTransport.  The network is a 

27x20x24 mesh topology, with a peak bidirectional link bandwidth of 9.6 GB/s.  The nearest 

neighbor NIC to NIC latency is specified to be 2 µsec, with 5.4 µsec measured MPI latency.  The 

compute nodes run the Catamount lightweight kernel, a follow-on to the Cougar/Puma design 

used on ASCI Red.  The I/O and administrative nodes run a modified version of SuSE Linux.  

The Cray-designed SeaStar communication processor / router is designed to off-load network 

communication from the main processor.  It provides both send and receive DMA engines, a 

500MHz PowerPC 440 processor, and 384 KB of scratch memory.  Combined with the 

Catamount lightweight kernel, the SeaStar is capable of providing true OS-bypass 

communication.  The Red Storm platform utilizes the Portals 3.3 communication interface, 

developed by Sandia National Laboratory and the University of New Mexico for enabling 

scalable communication in a high performance computing environment.  The Portals interface 

provides true one-sided communication semantics.  Unlike traditional one-sided interfaces, the 

remote memory address for an operation is determined by the target, not the origin.  This allows 

Portals to act as a building block for high performance implementations of both one-sided 

semantics (Cray SHMEM) and two-sided semantics (MPI-1 send/receive).  The Cray XT3 

commercial offering was nearly identical to the Red Storm machine installed at Sandia, before 

the recent upgrade to dual core nodes and newer SeaStar NIC.  The notable difference is that 

while the Red Storm communication topology is a 3-D mesh, the XT3 utilizes a 3-D torus 

configuration.  The difference is to allow a significant portion of the Red Storm machine to 

switch between classified and unclassified operation.   

The Thunderbird system was purchased for coordinated use as a production capacity 

computing cluster in a technical collaboration with Dell Computer Corporation (Computational 

nodes), with Cisco Systems (high-speed message passing interconnect), with Force10 

Networking (Ethernet interconnect), and with the Technology Integration Group 

(vendor/integrator).  Thunderbird is comprised of 4480 Dell PowerEdge 1850 commodity servers 

with 3.6GHz Intel EM64T dual-processors, with 6GB per node memory, linked with an 

InfiniBand message passing interconnect.  The interconnect is a dual layer hierarchical fat tree 

InfiniBand network.  There are 140 Compute racks, each with two 24 port InfiniBand 4x 

switches and 32 compute nodes.  There are 6 Ethernet racks with a single Force10 E1200 switch 

and Eight IB racks with a single 288 port IB 4x switch.  All MPI traffic is conducted across the 

InfiniBand network and all I/O is done across the Ethernet network.  Each 24 port IB switch has 

16 compute nodes connected to it and a single connection to each of the eight 288 port IB 

switches producing a 2-to-1 over subscription.  There is a core E1200 switch that is connected 

via 4 channel bonded 10GigE ports to the remaining 5 E1200s.  4 of the 5 lower level ethernet 

switches have 1024 compute nodes connecting at half GigE bandwidth and the remaining switch 

has 384 compute nodes also at half bandwidth.  Thunderbird’s software was recently upgraded to 
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OpenFabric Enterprise Distribution (OFED) and OpenMPI - Linux-based open source software 

stack qualified by the OpenFabrics Alliance to operate with multi-vendor InfiniBand hardware 

and implement open source Message Passing Interface (MPI) protocol.  Table 2 summarizes the 

important architectural characteristics of Red Storm and Thunderbird.  All the applications were 

compiled on both systems with PGI 6.2.3, except for the SIERRA/Fuego for which the Intel 

compiler 9.1 was used on Thunderbird. 

 

Table 2. Red Storm and Thunderbird architectural highlights 
Name Arch Network 

Topology 

Total 

P 

P/ 

Node 

Clock 

(GHz) 

Peak 

(GF/s/P) 

Streams 

BW(GB/s/P) 

MPI 

Lat 

(µsec) 

MPI BW 

(GB/s/P) 

Red Storm AMD 

Opteron 

Mesh / Z-

torus 

25,920 2 2.4 4.8 2.5 5.4 2.1 

Thunderbird Intel 

EM64T 

Fat tree 8960 2 3.6 7.2 3.8 6 0.468 

 

Applications and Benchmarks: 

 

a) SIERRA/Fuego: 

This application is an integral part of the SIERRA [5] multi-mechanics software 

development project at Sandia.  Fuego represents the turbulent, buoyantly driven incompressible 

flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of 

the simulation software. Syrinx represents the participating-media thermal radiation mechanics.  

Calore represents the heat transfer within an object.  Domino, et.al.[6] describe the details of the 

governing equations, discretization, decomposition and solution procedures.  The general 

coupling strategy for the suite of abnormal-thermal environments is provided in Figure 1.  

SIERRA/Fuego, SIERRA/Syrinx, SIERRA/Calore depend heavily on the core architecture 

developments provided by SIERRA for massively parallel computing, solution adaptivity, and 

mechanics coupling on unstructured grids. 
 

 
Figure 1. Abnormal-thermal coupling analysis with SIERRA/Fuego 

 

In the application chosen for this paper, coupled fire/thermal response predictions for a 

weapon-like calorimeter is validated for a quiescent fire representative of a transportation 

accident scenario.  The model constructed was used to compare numerical predictions against 

experimental data.  Temperature measurements were used to validate the coupled 

Fuego/Syrinx/Calore predictions.  The model consists of fluids (Fuego), radiation (Syrinx) and 

object heat transfer (Calore) meshes along with an output mesh.  The main Fuego fluid mesh for 

the scaling study was constructed with a 1M element model fluid mesh. Similar mesh sizes were 

used in the Syrinx radiation calculations.  The Calore mesh size is much smaller as it contains 
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only the outer shell of the object.  The output mesh is a vertical slice through the centerline of the 

fire that is only one cell thick.  The simulations solve the governing set of complex coupled 

equations whose solution over a broad range of time and length scales is sought.  This 

complexity in the model and the long run times to resolve the fire for 60-90 seconds could only 

be carried out on massively-parallel capability class supercomputers.  Figure 2 presents side-by-

side the execution time plot and the parallel efficiency plot.  The most dominant computation, 

namely the fluid region solve is plotted.  The reason that Red Storm scales better at 256 and 512 

processor counts is because of the better communication to computation balance, that is required 

for the implicit ML solver used for the fluid solve.  As this is a strong scaling run, the work per 

processor decreases and therefore it stresses the communication fabric over the several iterations 

required for the implicit solution. 
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SIERRA/Fuego; Parallel Efficiency (fluid Region)
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Figure 2. SIERRA/Fuego Performance on Red Storm and Thunderbird  

 

b) ITS Monte Carlo radiation transport:  

The INTEGRATED TIGER SERIES (ITS) code is an evolving Monte Carlo radiation transport 

code that has been used extensively in weapon-effect simulator design and analysis, radiation 

dosimetry, radiation effect studies and medical physics research.  Many individuals from the 

DOE labs and NIST have been involved over the years in the development and enhancement of 

ITS.  Physical rigor for the analysis is provided by employing accurate cross sections, sampling 

distributions, and physical models for describing the production and transport of the 

electron/photon cascade from 1.0 GeV down to 1.0 keV.  The ITS code is capable of analyzing 

particle transport through both combinatorial geometry models and CAD models.  It also has 

been significantly enhanced to permit adjoint transport calculations.    

For the purposes of this paper we have analyzed the performance using as input, data 

from a real satellite model.  The physical problem solved takes advantage of the MITS mutli-

group/continuous energy electron-photon Monte Carlo transport code’s capability to address 

realistic three-dimensional adjoint computations.  The run times for simulations for a complex 

combinatorial geometry model using conventional, or forward, transport are prohibitive and 

hence the adjoint calculations used in our satellite model.  Figure 3 presents side-by-side the 

execution time plot and the parallel efficiency plot for ITS.  The weak scaling runs were set up 

with 1.6 Million histories per processor.  The difference in parallel efficiency for this application 

can be directly related to the MPI bandwidth, as we have developed a performance model [7] 

that easily explains the increased overhead for the master/slave communications at the end of 

each batch of history computations.  As noted in Ref. [7] the algorithm for gathering the statistics 

after each batch has been modified in newer version of ITS to improve parallel scaling even on 

systems with lower communication performance.  However, for this exercise we present the 

results from the older algorithm as it exaggerates the difference between Thunderbird and Red 
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Storm, helping to point out the importance of communication bandwidth on scalability that may 

not be apparent when using a few hundred processors.  For Megabyte size messages that are sent 

from the slave processor to the master processor in a serial fashion, the factor of 3X better 

bandwidth on Red Storm explains the differences in parallel efficiency observed. 

 

ITS; Execution Time With Starsat CG Model

Weak Scaling with 1.6M histories/PE

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
, 

S
e

c
s Thunderbird

Red Storm

 

ITS; Parallel Efficiency With Starsat CG Model
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Figure 3. ITS Performance on Red Storm and Thunderbird  

 

c) LAMMPS: 

LAMMPS[8] is a classical molecular dynamics code that models an ensemble of particles 

in a liquid, solid, or gaseous state.  It can model atomic, polymeric, biological, metallic, granular, 

and coarse-grained systems using a variety of force fields and boundary conditions.  LAMMPS 

runs efficiently on single-processor desktop or laptop machines, but is designed for parallel 

computers.  It will run on any parallel machine that compiles C++ and supports the MPI 

message-passing library.  This includes distributed- or shared-memory parallel machines and 

Beowulf-style clusters.  LAMMPS can model systems with only a few particles up to millions or 

billions.   

The current version of LAMMPS is written in C++.  In the most general sense, 

LAMMPS integrates Newton's equations of motion for collections of atoms, molecules, or 

macroscopic particles that interact via short- or long-range forces with a variety of initial and/or 

boundary conditions.  For computational efficiency LAMMPS uses neighbor lists to keep track 

of nearby particles.  The lists are optimized for systems with particles that are repulsive at short 

distances, so that the local density of particles never becomes too large.  On parallel machines, 

LAMMPS uses spatial-decomposition techniques to partition the simulation domain into small 

3d sub-domains, one of which is assigned to each processor.  Processors communicate and store 

"ghost" atom information for atoms that border their sub-domain.  The simulation used in this 

study is a weak scaling analysis with the Lennard-Jones liquid benchmark.  The dynamics of the 

atomic fluid with 864,000 atoms per processor for 100 time steps is timed.  The execution time 

and parallel efficiency is shown in Figure 4.  
LAMMPS; Execution Time With Lennard Jones Input
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LAMMPS; Parallel Efficiency With Lennard Jones Input
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Figure 4. LAMMPS Performance on Red Storm and Thunderbird 

http://www-unix.mcs.anl.gov/mpi
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The reason that Red Storm and Thunderbird show similar performance is because 

LAMMPS has a high computation to communication time ratio and the message exchanges are 

implemented very efficiently.  LAMMPS divides the computational three dimensional space into 

three dimensional sub-volumes, and makes the sub-volumes as cubic as possible.  The amount of 

data exchanged is proportional to the surface area of the sub-volume.  This favorable volume to 

surface ratio leads to less than 3% MPI overhead for all the processor counts as shown in Table 3 

for this weak scaling analysis.  This Red Storm data was obtained using CrayPat instrumentation 

tool.  The data for Thunderbird would be similar and is not shown as there is insignificant 

difference in performance between the two systems except at 2048 processors.   

 

Table 3.  LAMMPS Red Storm MPI overhead  
Num 
PEs 4 8 16 32 64 128 256 512 1024 2048 

% time 
in MPI  0.4 1.5 0.9 1.5 2.1 1.5 2.1 1.8 2 2.4 

 

 

d) SIERRA/Presto: 

 Presto is a Lagrangian, three-dimensional explicit, transient dynamics code for the 

analysis of solids subjected to large, suddenly applied loads [9].  Presto is designed for problems 

with large deformations, nonlinear material behavior, and contact.  There is a versatile element 

library incorporating both continuum and structural elements.  The contact algorithm is supplied 

by ACME [10].  The contact algorithm detects contacts that occur between elements in the 

deforming mesh and prevents those elements from interpenetrating each other.  This is done on a 

decomposition of just the surface elements of the mesh.  The contact algorithm is communication 

intensive and can change as the problem progresses.   

The analysis used in this investigation is the Brick Walls problem consists of two sets of 

two brick walls colliding with each other.  It is a weak scaling investigation where each 

processor is assigned 80 bricks.  Each brick is discretized with 4 x 4 x 8 elements, for a total of 

10240 elements per processor.  Each brick is located on one processor so the only 

communication for the finite element portion of the code is for the determination of the length of 

the next timestep.  As the problem grows with the number of processors, the contact problem 

also grows.  Figure 5 shows the parallel performance of Presto on this problem.    Since each 

brick is assigned to one processor, the communication for the finite element portion of the 

simulation is reduced to a few global communications to determine the length of the next time 

step.  The contact portion of the calculation, however, involves communication in several phases.  

First, a small amount of information is communicated to allow for the calculation of the new 

decomposition.  Then the face information for the surface elements needs to be redistributed to 

the new decomposition.  After contact detection is performed, then a smaller amount of 

information representing the forces on the nodes is communicated back to the original 

decomposition.  The resulting communication pattern is not well structured and can involve the 

sending of a large number of small messages to processors that may not be nearby.   The rather 

rapid increase in run time after 256 processors on Thunderbird is suspected to be a consequence 

of the contact algorithm’s sensitivity to latency and due to the increase in the maximum latency 

with processor count as discussed by Leininger and Seager [11]. 
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Presto Execution Time per time step
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Presto Parallel Efficiency
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 Figure 5. SIERRA/Presto Performance on Red Storm and Thunderbird 

 

e) SAGE: 

SAGE is a LANL/SAIC multi-dimensional multi-material Eulerian hydrodynamics code 

with adaptive mesh refinement.  The code uses second order accurate numerical techniques.  

SAGE was tested extensively on Red Storm with simple inputs and complex asteroid impact 

input decks in the early days of bringing up Red Storm.  SAGE performance has been studied 

extensively by Kerbyson, et.al.,[12] and is frequently used by LANL to predict performance of 

new HPC architectures, using their application performance model[4].  We have used SAGE 

(version 20030505) to investigate scaling characteristics of Thunderbird and Red Storm.  The 

code was executed in a weak-scaling mode with a constant sub-grid per processor, thereby 

increasing the global problem with increasing processor count.  The input deck used is called 

timing_c and the problem was set up with approximately 80,000 cells per process, and it 

performs only hydro calculations.  This input deck imposes a high communication time to 

computation time ratio.  Figure 6 shows the wall time and parallel efficiency with this input 

deck.  The parallel efficiency is calculated using the 2 processor timing as the reference. 
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SAGE; Parallel Efficiency With timing_c input
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Figure 6. SAGE Performance on Red Storm and Thunderbird 

 

MPI profiles of the runs at 64, 256, and 1024 processors appear in Table 4, comparing the 

MPI overhead.  From Kerbyson’s [10] performance model we know that the communication is 

dominated by gather/scatter operations particularly in the z-direction exchanging boundary cell 

information and also by hundreds of MPI_Allreduce operations 4 bytes long at each time step.   

The large increase in MPI_Allreduce time in Thunderbird was associated with the release 1.1.2 

of OpenMPI used in most of our performance measurements.  This was confirmed by allreduce 

timings shown in Figure 10 in the last section on performance scaling analysis.  The linear 

increase in allreduce time with 1.1.2 is corrected in the later release 1.2.3.  The allreduce curve 

for Thunderbird measured more recently with 1.2.3, in fact follows very close to the performance 

curve for Red Storm showing a logarithmic growth with number of processors.  On observing 

this improvement the sage performance was measured again using the OpenMPI 1.2.3 release 

and clearly the execution time is significantly better and the trend is quite similar to Red Storm 

as shown in Figure 6.  The parallel efficiency plot still shows a 10% to 20% performance 
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advantage for Red Storm. 

 

   Table 4. Sage MPI Profile comparison 

Num 

Procs 

% 

Total 

MPI 

time; 

Red 

Storm 

% MPI Time 

in 

gather/scatter; 

Red Storm 

% MPI 

time in 

Allreduce; 

Red 

Storm 

% Total 

MPI time; 

Thunderbird 

% MPI Time 

in 

gather/scatter; 

Thunderbird 

% MPI time 

in Allreduce; 

Thunderbird 

64 27.7 59 27.4 45.79 64.36 28.43 

256 33.1 46.7 32.1 64.55 37.77 48.27 

1024 40.4 57.2 30.7 82.10 30.2 55.5 

 

 

f) ICARUS/DSMC: 

The Direct Simulation Monte Carlo (DSMC) method is the only proven method for 

simulating noncontinuum gas flows because continuum methods break down where particles 

move in ballistic trajectories with mean free path larger than cell dimensions, often because the 

device is small ( micro-or nano technology) or the fluid is very low pressure as in plasma or 

upper atmosphere.  Unlike most flow-simulation methods, DSMC uses computational molecules 

(“simulators”) that mimic real molecules by moving through space, reflecting from solid 

boundaries, and colliding with one another.  By sampling the velocities of large numbers of 

computational molecules, the gas flow is determined.  

 

Since DSMC is a Monte Carlo technique using computational molecules, the phases of 

computation corresponding to movement, reflection and collision of the molecules parallelizes 

easily.  However, based on the density distribution and the decomposition of the particle grid, 

between stages of computations, there could be significant messaging overhead as particles 

migrate among the cells.  Unsteady DSMC simulations for a two-dimensional microbeam 

investigated by Gallis and Torczynski [13] is used to set up a weak scaling study, fixing the 

number of simulators per processor.  Figure 7 shows the wall clock time for thousand time steps 

and the corresponding parallel efficiency. 

 

ICARUS DSMC; Execution Time 

Weak Scaling with 8125 simulators/cell/PE

0

0.005

0.01

0.015

0.02

0.025

0.03

0 256 512 768 1024 1280 1536 1792 2048

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
, 

h
rs

Thunderbird

Red Storm

 

ICARUS DSMC; Parallel Efficiency 

Weak Scaling with 8125 simulators/cell/PEE

0

0.2

0.4

0.6

0.8

1

1.2

0 256 512 768 1024 1280 1536 1792 2048

Number of Processors

P
a

ra
ll

e
l 

E
ff

ic
ie

n
c

y

Thunderbird

Red Storm

 
Figure 7. DSMC/ICARUS Performance on Red Storm and Thunderbird 

 

Towards understanding the performance seen in Figure 7, the MPI overhead of runs at 

64, 256, and 1024 processors is shown in Table 5.  The major computational stages at each time 

step are: a) create particles, b) move particles, c) communicate particles that have moved to cell 
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owned by another processor, d) compute electron / particle chemistry, e) compute monte-carlo 

collisions, f) solve EM field, and h) output cell, surface data at requested frequency.  Depending 

on the problem, some of the stages such as the electromagenetic field solve in this microdevices 

example are not invoked.  Outside the key computational loop are data input and results output 

whose computational overhead is negligible in comparison to the cost of resolving the flow over 

typical thousands of time steps.    The principal communication operation at each computational 

stage is the communication of the simulator/particle (position, velocity, etc.) information to the 

target processor that now has these new particles within its cells.   

 

Table 5. ICARUS MPI Profile comparison 

 

Num 

Procs 

% Total 

time in 

MPI; Red 

Storm 

% Total time 

in MPI; 

Thunderbird 

64 14.6 37.9 

256 26.6 56.0 

1024 31.0 75.6 

 

This is implemented in the code using an MPI_Reduce_scatter call that sets up the 

send/receive pairs between processors for all the particles that need to be exchanged.  This is a 

global synchronous operation and the time registered under MPI profile for this operation 

dominates the communication time.  However looking at the details of the profile shows that 

load imbalance in the move phase impacts this global operation as it does not begin to do the 

actual reduce_scatter till last slowest processor has completed its move phase.  Because of the 

physical geometry of the MEMS device and variations in the number of simulators per cell this 

load imbalance has a significant effect on parallel performance.  This is evident from the MPI 

time increasing for both Red Storm and Thunderbird in Table 5.  However the compounding 

effect slower message transfer, slower global operation in OpenMPI 1.1.2, together with 

influence of operating system noise interference in global operations [15] results in the much 

higher MPI overhead observed for thunderbird.  Work is in progress to understand quantitatively 

the impact of each of these and improve the performance on Thunderbird.   

 

g) CTH:  

CTH is an explicit, three-dimensional, multimaterial shock hydrodynamics code which 

has been developed at Sandia for serial and parallel computers.  It is designed to model a large 

variety of two- and three-dimensional problems involving high-speed hydrodynamic flow and 

the dynamic deformation of solid materials, and includes several equations of state and material 

strength models [14].  The numerical algorithms used in CTH solve the equations of mass, 

momentum, and energy in an Eulerian finite difference formulation on a three-dimensional 

Cartesian mesh.  CTH can be used in either a flat mesh mode where the faces of adjacent cells 

are coincident or in a mode with Automatic Mesh Refinement (AMR) where the mesh can be 

finer in areas of the problem where there is more activity.  We will be using the code in a flat 

mesh mode for this study. 

The shaped-charge consists of a cylindrical container filled with high explosive capped 

with a copper liner.  When the explosive is detonated from the center of the back of the 
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container, the liner collapses and forms a jet.  The problem is run in quarter symmetry and 

includes a target material.  The weak scaling analysis with CTH was setup with 90x216x90 

computational cells per processor.  Figure 8 shows the wall clock time per time step and the 

corresponding parallel efficiency. 

By using the code in flat mesh mode, the communication patterns are fairly simple and 

fixed for the entire calculation.  The problem space is a rectilinear grid of cells where each 

processor has a rectilinear sub grid of cells.  The processors’ domains are also arranged in a grid 

so that if two processors’ domains meet at a face, they share the entire face.  Quantities are 

exchanged at regular intervals across these faces, so each processor exchanges information with 

up to six other processors in the domain.  These messages occur several times per timestep and 

are fairly large since a face can consist of several thousand cells which have forty quantities in 

this simulation which are exchanged.  For this simulation, there are processors that communicate 

with six other processors once the number of processors in the simulation reaches 128.  There are 

also a few global communications to determine quantities such as the length of the next timestep. 
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Figure 8. CTH Performance on Red Storm and Thunderbird 

Workload Performance Scaling Analysis: 

As stated in the introduction we have analyzed the performance of various applications 

that constitute our workload with a view to understanding why we see differences in 

performance between the two compute systems considered.  In this section we present a simple 

analysis of the efficacy of the two systems against the work load.   It is recognized that this 

analysis may not correctly represent the current and future workload that would be undertaken in 

these two systems.  Application scaling behavior is strongly dependent on the amount of 

computation assigned per processor, which in turn is a function of the model size (or such similar 

parameter) that influences the compute time to communication time balance.  However, we hope 

to understand through this analysis, computer architectural balance issues that have big impact 

on matching the workload to the system.  One thing that we observed is despite Thunderbird’s 

Intel processors having a clock speed 50% larger than Red Storm’s AMD processors, one 

processor performance is very similar between these two machines.  No easy explanation is 

perhaps appropriate without further instrumentation and analysis  considering the widely varying 

nature of these applications, other than the observation that the better bandwidth of the Opteron 

seems to compensate for the lower clock speed. The first obvious conclusion that can be drawn 

from these application performance charts is that for many of our usual analysis needs that fall in 

64 to 256 processor range, the performance of the capacity cluster is good.  This is further 

evident from the efficiency ratio between Red Storm and Thunderbird at a few discrete processor 
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configurations listed in Table 6. 

 

Table 6. Efficiency ratio, Red storm to Thunderbird 

Apps.\PEs 64 256 1024 

ITS 1.048 1.101 2.121 

SAGE 1.590 1.692 3.413 

Fuego 0.999 1.933 10.133 

DSMC 1.385 1.800 3.943 

LAMMPS 1.074 1.109 1.108 

CTH  1.183 1.135 1.136 

Presto 1.091 1.214 2.563 
 

To analyze this further it is instructive to use a simple model of parallel efficiency as, E = 

1 / (1 + f), Where f is the ratio of communication time to compute time.  One way to investigate 

the impact of the parameter, f, is to plot parallel efficiency as function of communication load to 

computation load.   
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Figure 9.  Simple parallel efficiency model and impact of communication to computation 

ratio of different applications 

When this ratio is multiplied by the key platform balance characteristic, Bytes/Flop, a 

plot such as shown in Figure 9 may be constructed.  In this figure possible approximate 

Bytes/Flop balance ratio of 0.4 and 0.1 is taken to represent Red Storm and Thunderbird, 

respectively.  The ratios result from using a measured MPI ping-pong bandwidth of 1.9 GB/s for 

Red Storm and 700 MB/s for Thunderbird, (see Figure 10 below), while using their peak flop 

rate from Table 2.  Also shown in the plot is the efficiency ratio between these two cases.  This 

chart in conjunction with the Table 6 above and knowledge of the application and associated 

algorithms sheds much light on the impact of balance on scalability.  An application like 
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LAMMPS with a couple of percent MPI overhead yields similar performance, while for 

ICARUS/DSMC with 20-30% MPI overhead  we begin to observe factor of two efficiency ratio.    

Another probable cause for the lower parallel efficiency of Thunderbird is the cost of 

global operations as typified by the allreduce time shown in Figure 10.  At the time of writing 

this paper, the almost order of magnitude increase (after 128 processors) in time for an eight byte 

allreduce on Thunderbird when compared to Red Storm, is suspected to result from non-

optimized global operations after the recent upgrade to OpenMPI 1.1.2.  But it is certainly a 

major source for the poor efficiency in an application like ICARUS requiring global operations 

between fine grained particle movement computations. 
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Figure 10. MPI Allreduce and ping-pong performance comparison 

Our measurements on Thunderbird showed up to 30% variation in run times, whereas 

variations on Red Storm were less than 2-3%.  For the results presented in this paper, we used 

the best times that we observed.  Thunderbird run time variations were observed in as few as 64 

processor jobs.  The cause for the variation is suspected to be OS noise sources, similar to the 

observations by other investigators [14], although job placement on the mesh leading to network 

contention is also likely to play a part.  These jobs were run while the machines were in 

dedicated mode, so we did not have interference from other jobs being on the machines.  As 

simple test, parallel independent computations for 100 seconds (a matmul loop was used) on 100 

processors shows a maximum variation of 0.4% on Red Storm while variations on Thunderbird 

were as high as 2.5%.  Since no network activity is involved this variation is suspected to be 

caused by OS interrupts.  A similar simple test, to measure impact of variations in 

communication operations was constructed by 50 pairs of nodes exchanging 2GB messages for a 

nominal total run time of 100 seconds.  Red Storm tests showed a maximum difference in time of 

3% between any pair of nodes, while Thunderbird tests showed maximum difference of 42% in 

the run time between any pair of nodes.  This implies that applications that spend significant 

fraction of their compute cycle time in messaging are likely to see degraded performance, 

especially if there are frequent global operations or barriers requiring all the processors to synch 

up.    

 

If we take the work load percentages as defined in Table 1 and construct a weighted 
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efficiency ratio between Red Storm and Thunderbird using the parallel efficiency charts that 

have been identified for the applications constituting most of the work load, a chart as shown in 

Figure 11 emerges.  It provides a broad picture of the efficiency benefits a system like Red Storm 

affords on account of its better architectural balance albeit at higher investment costs with a set 

of  measured or estimated workload.  We used the best data we had for comparing Red Storm to 

Thunderbird with the weights shown on the caption in Figure 11.  Interestingly a similar analysis 

conducted in the context of the JASONs review [16] using parallel efficiency ratio between 

ASCI-RED and Sandia’s Cplant, benchmarking the applications constituting the workload, lead 

to a similar conclusion.   Such a chart may be used in a management context to gauge the return 

on investment between a capability and capacity system.  On the other hand, as noted in the 

introduction,  the justification for large capability system may transcend  monetary ROI 

considerations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Workload percentage weighted parallel efficiency ratio for Red 

Storm/Thunderbird and ASCI-Red/Cplant 

Conclusions:   

From performance analysis of application workload encompassing several applications to 

thousands of processors, we have measured parallel efficiency ratio between a tightly integrated 

HEC system, Red Storm, and a large InfiniBand cluster, Thunderbird.  Applications whose 

communication time to computation time ratio grows as a consequence of the inherent algorithm 

or as a consequence of poorer bytes/flop ratio at large processor counts, lead to less than desired 

parallel efficiency.  Such applications reveal a factor of 2 to 10 better performance on a tightly 

integrated HEC system like Red Storm.  This analysis also investigates the non-linear increase 

observed bytes/flop ratio on commodity clusters and postulates that OS noise and/or network 

contention and/or lack of maturity of the interconnect network software layers may be source of 

the differences seen between Red Storm and Thunderbird.  While this analysis exposes the 

symptoms, further work remains in finding its root cause and remedying the deficiencies.  Peak 

bytes to flop ratio between the two systems is quite reasonable, but does not explain the 

differences in parallel efficiencies at large processor counts.   
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