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Abstract

The peridynamic model is a new theory of continuum mechanics that is specifically ori-

ented toward modeling problems in which cracks or other discontinuities emerge sponta-

neously as a body deforms under load. In this study, the code that implements this theory,

EMU, is applied to a dynamic single-fracture experiment in a tough steel specimen. Accu-

racy of the method is illustrated by comparison with experimental data. Scaling properties

of the code on C-plant are investigated, including dependence of speedup on the material

model used. Excellent scaling properties are obtained with a material model that has low

requirements for memory and communications.

1. Introduction

Many problems of fundamental importance in mechanics involve the spontaneous emergence of disconti-

nuities, such as cracks, in the interior of a body. The classical theory of continuum mechanics is in some

ways poorly suited to modeling this type of problem, because the theory uses partial differential equations

as a mathematical description. The required spatial derivatives, by definition, do not exist on the surfaces

of discontinuity, so the entire formulation breaks down when such discontinuities form. Although much

work has been devoted to special techniques aimed at working around this problem, particularly in the the-

ory of fracture mechanics, these techniques are not fully satisfactory either in principle or in practice as

general descriptions of fracture. This difficulty is inherited by numerical methods that implement the clas-

sical theory, including nearly all finite-element and finite-difference codes in common usage at Sandia and

elsewhere.

Although this problem may appear at first glance as merely an academic issue, this inapplicability of the

theory to discontinuities severely limits our ability to numerically model cracks, shock waves, shear bands,

phase boundaries, and many other phenomena. These features are of critical importance to Sandia’s

responsibility for modeling material deformation and structural failure in nuclear weapons and other appli-

cations.

For this reason, Sandia has been developing a new theory of continuum mechanics, known as the

peridynamic model [1]. This model avoids the fundamental mathematical difficulty by using integral

equations as a description of material motion rather than differential equations. Therefore, the presence of

discontinuities in a deforming body does not limit the applicability of the peridynamic theory.

A computer code called EMU that implements the peridynamic theory is currently under development.

The code is showing promise in the modeling of penetration and impact problems where the discrete

nature of fracture is important. An example of such an application is perforation of thin ductile plates, in

which the load on the penetrator is strongly influenced by the formation of a few radial cracks that separate

the target into “petals.” The EMU simulation of this problem is shown in Figure 1.
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Because the formulation is oriented toward modeling cracks

and other discontinuities, it is important to carry out valida-

tion of EMU against data from single-crack dynamic fracture

experiments. The purpose of the current exercise is to pro-

vide validation of EMU with respect to dynamic fracture and

to demonstrate its performance on a massively parallel com-

puter.

2. Peridynamic theory

As remarked above, the peridynamic theory replaces the

basic equations of the classical theory of continuum mechan-

ics. The equation of motion in the peridynamic theory is

where is mass density, is the displacement vector field, is the body force density, and is a func-

tional of displacement. There are many possible choices for . The most intuitive and most widely stud-

ied is as follows:

where is a vector-valued function. Note that here is the

point where acceleration is being evaluated while is the

dummy variable of integration (Figure 2). The physical inter-

action between  and  is referred to as a bond.

The function contains all the constitutive information

about the material. It represents the force per unit volume that

exerts on due to the bond between these points. Note

the resemblance between the current formulation and molec-

ular dynamics (MD) due to the summation of forces between

particles separated by a finite distance. However, the peridy-

namic theory is also fundamentally different from MD in that

the peridynamic model is truly a continuum theory and is not

restricted in size scale to the atomic level.

It is convenient and reasonable to assume that material parti-

cles separated by a distance greater than some fixed number

do not interact. This number is called the horizon for the

material.

Figure 1. Typical EMU application: pet-

aling during perforation of a thin ductile

plate.
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3. Numerical method

EMU evaluates the integral in using the “brute force”

approach illustrated in Figure 3. The acceleration of node

i is being evaluated, and the integration occurs over all

nodes j located within a distance from node i. The

acceleration is found from the discretized form of :

Integration in time is performed using explicit central dif-

ferencing.

Figure 3 illustrates a rectangular structured grid, but

extension to nonrectangular or nonstructured grids is

straightforward.

The method described above is “brute force” in the sense

that it does not take advantage of more efficient means of

evaluating integrals such as octree or multigrid tech-

niques. More sophisticated methods will be examined for

future EMU development.

Parallelization is performed by allowing each processor

to be responsible for a fixed region of space (Figure 4).

As the body deforms, nodes are permitted to migrate

between processors. After each time step, the updated

variables for nodes within a distance of a given pro-

cessor are passed to that processor to be used in the fol-

lowing cycle.

This parallelization technique has the advantage of sim-

plicity and works well for applications in which the

motion of the nodes is not too large. More sophisticated

load balancing methods will be considered as part of

future development of EMU to account for possible

large displacements.

4. Kalthoff-Winkler problem description

A well-known dynamic single-fracture experiment is the

Kalthoff-Winkler experiment [2]. In this experiment, a

plate of tough maraging steel has two parallel notches

cut into to it with circular tips (Figure 5). A steel impac-

tor strikes the plate edge-on.

The plate material is X2 NiCoMo 18 9 5. This is apparently similar to Standard Grade 18Ni(300). The

composition is 18% nickel, 9% cobalt, and 5% molybdenum. According to handbook data [3], the tensile
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Figure 3. Nodes contributing to the acceler-

ation of node i.

L
˜ u

δ
L
˜ u

ρu
˜
˙̇

i
f
˜

u
˜

j
u
˜

i
– x

˜

j, x
˜

i
–( ) ∆x( )3

x
˜

j
x
˜

i
– δ<

∑=

Proc 0 Proc 1 Proc 2 Proc 3

Proc 4 Proc 5 Proc 6 Proc 7

Proc 8 Proc 9 Proc 10 Proc 11

Proc 12 Proc 13 Proc 14 Proc 15

Figure 4. Regions of space owned by the pro-

cessors and typical nodes within these

regions. Nodes can migrate between proces-

sors as the grid deforms.

x

y

δ

-3-



strength of this material is about 2000 MPa and the fracture toughness is about 90 MPa-m1/2. The plate

mass density was assumed to be 8000 kg/m3.

The impact creates compressive stress waves that move into the interior of the plate. As these waves inter-

act with the notch tips, mode-II loading occurs. Depending on the impact velocity, fracture may initiate at

the notch tips. Surprisingly, in these cases, the cracks do not grow parallel to the notches. Instead, they

grow at 68 degree angles to the notches. The ability of a code to reproduce this angle is a sensitive test of

whether it can model fracture accurately. (Certain choices of impact velocity were found in the experiment

to lead to the formation of shear bands rather than cracks.)

5. Computational model

The EMU model used a rectangular, equally spaced structured grid with dimensions 200x100x9. The

impactor was assumed to be a rigid cylinder. The grid boundaries were load-free all around.

Two different material models were used in this study. These are illustrated in Figure 6, which shows plots

of bond stretch between two arbitrary nodes and bond force per unit volume. The first model, called

microelastic, loads along the path shown. The bond breaks if its stretch reaches a critical value . If the

bond breaks, it stays broken forever, and the force in the bond remains zero. If it does not break, unloading

occurs along the original loading path.

The second material model considered is called microplastic. This is similar to the microelastic model,

except that unloading occurs along the path shown (if the bond does not break first), leading to a permanent

stretch in the bond upon full unloading.

50 mm

200 mm

32 m/s

1.5 mm

100 mm

50 mm

Maraging steel plate

Cylindrical impactor

Figure 5. Experimental setup (notches are not drawn to scale).

Mass = 1.57 kg

Thickness = 9 mm

ε0
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These two material models, although they give similar results in most applications, differ widely in their

computational requirements. The reason is that the microplastic model requires the storage of current bond

stretch values for each node j that interacts with a given node i. Since typically , where is the

mesh spacing, this means that approximately 113 ( ) variables must be stored for each node in

the microplastic model, and these variables must be passed between processors along with the other vari-

ables. So, the implications of the two material models for massively parallel implementation are quite dif-

ferent.

For the EMU model of the Kalthoff-Winkler experiment, the material parameters corresponded to a

Young’s modulus of 191 GPa, a Poisson ratio of 0.3, a mass density of 8000 kg/m3, a fracture toughness of

90 MPa-m1/2, and a tensile strength of 2000 MPa.

6. Results

Figure 7 shows the initial and final configurations of the body. The code correctly predicts the experimen-

tally observed crack angle and the fact that the cracks propagate all the way to the free surfaces. These

results are shown in Figure 8 for both material models. The crack length as a function of time is shown for

both materials in Figure 9. The similarity between the two curves indicates that physically, the material

models are behaving nearly identically.

A view of the cracks while they are growing is given in Figure 10, which shows synthesized Moire fringes.

Each fringe has constant displacement in the y direction, which is parallel to the notches. In this figure, the

displacements are exaggerated by a factor of 10 to make the crack shapes more visible.

7. Code performance

The EMU model with 180,000 nodes was run for 700 time steps on the Alaska C-plant with both material

models. The runtimes (wall clock times) are illustrated in Figure 11. Ideal linear speedup would corre-

spond to a straight line with slope -1 as indicated. Evidently the microelastic model comes closer to this

ideal than the microplastic model. This difference is due to the more burdensome message passing require-

ments of the microplastic model, as discussed above. With the microelastic model, scaling is fairly close to

linear over the range measured. However, it is likely that a minimum in this runtime curve exists some-

where to the right of the range shown (the microplastic curve shows signs of approaching such a mini-
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Figure 6. Loading and unloading paths for a single bond in the microelastic (left) and micro-

plastic (right) material models. In either model the bond can break irreversibly.
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Figure 7. EMU mesh and rigid impactor. Left: initial. Right: final.

Microelastic Microplastic

Figure 8. Crack paths (shown as contours of damage) predicted by EMU for both

material models.
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mum). A minimum in the microelastic curve is expected because in the limit of one node per processor,

variables for each node would need to be passed to the processor for every other node in its horizon in each

time step, which is clearly an inefficient process.

8. Conclusions

As a standard problem in dynamic fracture mechanics, this successful simulation of the Kalthoff-Winkler

problem represents an important milestone in the development and validation of the peridynamic theory.

Because this technique does not require the specification of kinetic laws for crack growth, and because it

does not require the tracking of individual cracks, it models fracture mechanics problems of arbitrary com-

plexity with potentially great generality. The Sandia applications of this technique are immediate and

include penetration mechanics and a wide range of problems involving material failure.

From a computational point of view, the main difference between EMU and standard hydrocodes is that in

EMU, each node interacts with many other nodes, not just with its nearest neighbors. This property, which

arises from the use of the underlying integral equation formulation, influences the picture of what an opti-

mum massively parallel system would look like for running the code.

The performance of the code on C-plant is shown in this study to depend on the material model. The

microelastic model, which does not require the storage of significant amounts of bond data, scales very

well as the number of processors is increased, as shown in Figure 11. With this material model, the code is

essentially compute limited unless the number of processors is very large. When the microplastic model is

used, more communication time between processors is required because of the greater quantity of bond

data used in the model. Therefore, in this case, the code tends to be limited by communication speed and

memory. This leads to less impressive, although still acceptable, scaling properties of the microplastic

model on C-plant compared with the microelastic model.

Note that the vast majority of Sandia applications, especially penetration and impact calculations, are

expected to require only the simpler microelastic model. In this case the current C-plant architecture is
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Figure 10. Synthesized Moire fringes showing

crack shapes at time 60 µs. Displacements are

exaggerated.

Figure 9. Crack length (measured from the original

notch tip location) as a function of time for both

materials.
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close to ideal. However, problems in which cyclic loading is important, such as fatigue cracking, might

require the microplastic model. For such problems, the present study shows that improvements in commu-

nication speed and memory per processor would have a favorable impact on the runtimes. The same situa-

tion applies to problems involving true long-range forces such as Van der Waals interactions, in which case

the horizon might be large compared with the mesh spacing. For such problems, more sophisticated inte-

gration methods such as multigrid could potentially cut down on the communications requirements.

In spite of these considerations, this study has shown that EMU yields accurate results on an important val-

idation problem, and that the numerical method can make effective use of the C-plant architecture.
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Figure 11. Runtimes on Alaska C-plant for both material models with the 180,000 node grid for

the Kalthoff-Winkler model. The dashed line shows the ideal case of linear speedup (slope = -1).

The microplastic model cannot be run with fewer than 18 processors because of memory require-

ments.
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